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Abstract
A new exponentially fitted version of the discrete variational derivative method for
the efficient solution of oscillatory complex Hamiltonian partial differential equations
is proposed. When applied to the nonlinear Schrödinger equation, this scheme has
discrete conservation laws of charge and energy. The new method is compared with
other conservative schemes from the literature on a benchmark problemwhose solution
is an oscillatory breather wave.
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1 Introduction

Let us consider a Hamiltonian partial differential equation (PDE) for a real or complex
variable z = z(x, t) in the form

∂z

∂t
= J δH

δz∗
, (1.1)

where z∗ is the complex conjugate of z, if z ∈ C, or z∗ = z, if z ∈ R, J is a
skew-adjoint operator independent of z, and H is a Hamiltonian functional,

H =
∫

H(z, zx )dx, (1.2)
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where H is a real local energy function. The operator δH
δz∗ on the right hand side of

(1.1) is the variational derivative ofH defined by theEuler-Lagrange expression.When
applied to the functional (1.2), it reduces to

δH
δz∗

= ∂H

∂z∗
− d

dx

∂H

∂z∗x
. (1.3)

When z is a complex variable, equation (1.1) is typically complemented by its complex
conjugate equation,

∂z∗

∂t
= J ∗ δH

δz
.

However, for real-valued Hamiltonians, these two equations are equivalent, and the
latter can be dropped without loss of information [3].

The study of Hamiltonian PDEs has attracted the attention of numerical analysts for
decades. Hamiltonian problems represent in fact one of the most successful areas of
application of the field of numerical analysis known as geometric numerical integra-
tion, having the goal of conserving some crucial property of the differential problem
[37]. These include the positivity of the solutions [20, 26, 47], local conservation law
of symplecticity [2, 5, 6, 40, 45], variational symmetries [41, 52], conservation laws
[31, 33, 56], and global invariants [2, 6, 40].

Preserving invariants is not only a property of the exact solutions that is desirable to
preserve, but also confers superior accuracy over long times. In fact, while for standard
non conservative methods the solution error grows quadratically in time, this drift is
only linear for methods that conserve invariants [24, 27, 28].

An invariant that all Hamiltonian PDEs have is the Hamiltonian functionalH itself.
Numerical methods that conserve theHamiltonian can be obtained by applying a space
discretization that defines a system of ODEs whose Hamiltonian function approxi-
mates functional H. An energy conserving method for ODEs is then applied for the
time discretization. Popular techniques to derive energy-conserving time integrators
include line integral methods [7–9] and discrete gradient methods [14, 21, 36, 44, 46].
One of the most studied energy-conserving methods is the average vector field (AVF)
method, and it can be derived from both these two approaches. The AVF method was
first introduced in [51], and despite its simplicity, it has important properties of linear
covariance and preservation of linear symmetry [14].

A different technique to derive energy conservingmethods for Hamiltonian PDEs is
the discrete variational derivative (DVD) method. In this approach, a discrete counter-
part of the variational derivative is applied to a space approximation of theHamiltonian
functional, yielding a scheme that conserves the semidiscrete energy [34, 35, 42, 43].

The conservation of the Hamiltonian, such as of any other global invariant of a
PDE, is obtained from the integration in space of a local conservation law provided
that the boundary conditions assigned to the problem satisfy suitable conservative
assumptions (e.g., periodicity). Conservation laws are total divergences,

Dx F + DtG, (1.4)
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that vanish when evaluated on solutions of the PDE. Functions F andG are called flux
and density, respectively, andmay depend on the independent variables, the dependent
variable, and its partial derivatives.

Since conservation laws are local properties, a numerical method must satisfy
stronger constraints to preserve them. Moreover, they hold true on any smallest part
of the domain and are satisfied by the solutions of the differential equation regardless
of the boundary conditions.

McLachlan and Quispel have proved that if the space discretization has an energy
conservation lawof the space discretization, then this is preservedby adiscrete gradient
method [44]. More recently, a strategy to derive in a systematic way bespoke finite
difference schemes that preserve multiple conservation laws has been proposed in [31,
33] and used in [30–33] to obtain methods with local conservation laws of energy and
of mass or charge.

Although all these integrators typically perform better than standard methods, they
require very small stepsizes in order to correctly reproduce the oscillations of a highly
oscillatory solution.

When the oscillatory behaviour of the solution is known a priori, exponentially
fitted (EF) methods can be used to solve the problem in an accurate and efficient way.
EF methods are obtained by requiring exactness for functions that belong to a specific
fitting space, whose choice depends on the expected behaviour of the solution [39,
49]. For example, a method that is exact for all functions in the space generated by

{cos(ωt), sin(ωt)},

is expected to approximate periodic solutions that oscillate with frequency ω better
than a standardmethod, particularly for large values ofω [48]. The chance of making a
convenient choice of the fitting space is based on the prior knowledge of the frequency
of oscillation, ω. However, when unknown, the frequency can be estimated by using
one of the many approaches suggested in literature [23, 50, 54, 55, 57]. High-order
methods are obtained by considering wider fitting spaces. A typical choice is [39, 49]

{1, t, . . . , t K , cos (ωt), sin (ωt), t cos (ωt), t sin (ωt), . . . , t P cos (ωt), t P sin (ωt)},

where K and P are non negative integers.
Exponential fitting techniques have been successfully used to solve problems of

very different nature, such as fractional differential equations [10], quadrature [16, 17,
29], interpolation [25], time and space integrators for ODEs [18, 19, 53] and PDEs
[13, 15, 22], integral equations [11, 12], boundary value problems [38].

In this paper we consider EF methods that have a local conservation law of the
energy. An EF version of the AVF method has been introduced by Miyatake in [48].
We show that this method has the same local energy conservation law of the classic
AVF method.

For many important Hamiltonian PDEs (e.g., Korteweg de Vries equation), the
AVF method and the DVDmethod lead to the same schemes [21]. We show that when
they are applied to the nonlinear Schrödinger (NLS) equation, they yield two different

123



49 Page 4 of 22 D. Conte and G. Frasca-Caccia

schemes. Therefore, we propose a new EF version of the DVD method in [43] for
complex Hamiltonian evolution equations in the form

∂z

∂t
= −i

δH
δz∗

, (x, t) ∈ (a, b) × (0, T ). (1.5)

The new EF DVD method and the standard DVD method applied to (1.5) conserve
the same global energy.

We apply theAVFmethod, theDVDmethod, and their EF versions to theNLS equa-
tion and demonstrate that, although they are all different schemes, they all conserve
the same local conservation law of the Hamiltonian.

Moreover, the DVDmethod and the EFDVDmethod have also a local conservation
law of charge. Although these conservation laws are different, they imply conservation
of the same discrete global charge when the boundary conditions are conservative.

With these premises, this paper is organised as follows. InSection 2,wefirst describe
the DVD method in [43] for complex Hamiltonian PDEs (1.5). Then we introduce
the new EF version of this method, showing that both schemes conserve the same
semidiscrete global energy. In Section 3, we describe the AVF method in [51] for
equation (1.1) and its EF version introduced in [48], and we show that these methods
have the same local conservation law of the energy. In Section 4, we apply all these
methods to the NLS equation, and we give explicit expressions of their conservation
laws and of their invariants. In Section 5, a highly oscillatory breather wave solution of
theNLS equation is taken as a benchmark problem to test the properties of convergence
and conservation of the considered schemes and to compare their accuracy. Finally,
we draw some conclusive remarks in Section 6.

2 Discrete variational derivativemethod

We begin this section by defining the discrete operators that are used throughout this
paper. We first introduce a uniform grid with nodes

xm = a + (m − 1)�x, m = 1, . . . , M, �x = b − a

M − 1
,

tn = n�t, n = 0, . . . , N , �t = T

N
,

and the vectors Z ∈ R
M and zn of the approximations

Zm(t) ≈ z(xm, t), t ∈ (0, T ), (zn)m = zm,n ≈ z(xm, tn),

respectively. Moreover, we define the difference operators

δ+
m Zm = Zm+1−Zm

�x
, δ−

m Zm = Zm−Zm−1

�x
, δ(2)

m Zm = Zm+1−2Zm + Zm−1

�x2
,
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acting similarly on the first indexwhen applied to zm,n , and the time difference operator
and average operators,

δ+
n zm,n = zm,n+1−zm,n

�t
, μnzm,n = zm,n+1+zm,n

2
, μmzm,n = zm+1,n+zm,n

2
.

As in [43], we introduce the DVD method assuming that the local energy of equation
(1.5) is of the form

H(z, zx ) =
∑

�

| f�(z)|p� |g�(zx )|q� .

However, the method can be defined for problems whose Hamiltonian function
involves higher order derivatives of z [43]. Let be H̃(Z) the vector whose m-th entry
is a space approximation of H at x = xm in the form

H̃(Z)m =
∑

�

P�(Zm)Q+
� (Zm)Q−

� (Zm) ≈ H(z, zx )|x=xm , (2.1)

where

P�(Zm)=| f�(Zm)|p� , Q+
� (Zm)=|g+

� (δ+
m Zm)|q+

� , Q−
� (Zm)=|g−

� (δ−
m Zm)|q−

� ,

(2.2)
functions f�, g

+
� and g−

� are analytic and p�, q
+
� , q−

� ∈ {2, 3, . . .}. The DVD method
approximates equation (1.5) as

δ+
n zm,n = −iF(zn, zn+1)m, (2.3)

where

F(zn, zn+1)m =
(

δ H̃

δ(z∗
n+1, z

∗
n)

)

m

(2.4)

is a discrete approximation of the variational derivative at time t = tn . Function
F(a,b) is continuous for any value of (a,b) [21] and is defined as

(
δ H̃

δ(a,b)

)
m

=
(

∂ H̃

∂(a,b)

)
m
− δ−

m

(
∂ H̃

∂δ+(a,b)

)
m
− δ+

m

(
∂ H̃

∂δ−(a,b)

)
m

, (2.5)

where the operators at the right hand side are given by

(
∂ H̃

∂(a, b)

)
m
=

(
Q+

� (am)Q−
� (am) + Q+

� (bm)Q−
� (bm)

2

)(
f�(am) − f�(bm)

am − bm

)
ρ1, (2.6)

(
∂ H̃

∂δ+(a, b)

)
m
=

(
P�(am) + P�(bm)

2

)(
Q−

� (am) + Q−
� (bm)

2

)(
g+
� (δ+

mam) − g+
� (δ+

mbm)

δ+
mam − δ+

mbm

)
ρ2,

(2.7)
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(
∂ H̃

∂δ−(a, b)

)
m
=

(
P�(am) + P�(bm)

2

)(
Q+

� (am) + Q+
� (bm)

2

)(
g−
� (δ+

mam) − g−
� (δ+

mbm)

δ−
mam − δ−

mbm

)
ρ3,

(2.8)

respectively, with

ρ1 = ρ(p�; f�(am), f�(bm)),

ρ2 = ρ(q+
� ; g+

� (δ+
mam), g+

� (δ+
mbm)),

ρ3 = ρ(q−
� ; g−

� (δ−
mam), g−

� (δ−
mbm)),

and

ρ(k; s1, s2) =

⎧⎪⎨
⎪⎩

s∗
1 + s∗

2

2
(|s1|k−2 + |s1|k−4|s2|2 + . . . + |s2|k−2) if k even,

s∗
1 + s∗

2

2

|s1|k−1 + |s1|k−2|s2|2 + . . . + |s2|k−1

|s1| + |s2| if k odd.

Method (2.3)–(2.8) is second-order accurate in space and time, and when it is com-
plemented by suitable boundary conditions, for example periodic, it conserves the
semidiscrete global energy [43]

H̃(Z) = �x
∑
m

H̃(Z)m . (2.9)

2.1 Exponentially fitted discrete variational derivative method

Here, we derive an exponentially fitted version of the DVD method (2.3)–(2.8) fol-
lowing an approach that has been similarly used in [22] for approximating the space
derivatives of a diffusion equation. Assuming that the solution of (1.5) is smooth, the
continuity of the discrete variational derivative (2.5) implies that in the limit �t → 0,
method (2.3)–(2.8) converges to the system of ODEs,

Z′(t) = −iF(Z(t),Z(t)), (2.10)

where the function at the right hand side is well defined due to the smoothness of
functions f�, g

+
� and g−

� .
If the solution of (2.10) oscillates with frequency ω, we look for an approximation

of the time derivative at the left hand side of (2.10) requiring that it is exact when the
solution belongs to the fitting space � generated by the basis

B� = {1, cos(ωt), sin(ωt)}. (2.11)

We start from the truncated Taylor expansions

u(t + �t) = u(t + �t
2 ) + �t

2 u′(t + �t
2 ) + O(�t2),
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u(t) = u(t + �t
2 ) − �t

2 u′(t + �t
2 ) + O(�t2),

yielding
u(t + �t) − u(t) = �tu′(t + �t

2 ) + O(�t2). (2.12)

Moreover, equations

�tu′(t + �t
2 ) = �tu′(t) + O(�t2),

�tu′(t + �t
2 ) = �tu′(t + �t) + O(�t2),

and (2.12) imply that

u(t + �t) − u(t) = �t
2 (u′(t + �t) + u′(t)) + R(�t2). (2.13)

The remainder R(�t2) = O(�t2) when u is a generic function, and it is zero if u
belongs to the function space generated by the set {1, t, t2}. Our goal is to suitably
modify equation (2.13) in order to obtain a formula such that R(�t2) = 0 when
evaluated on functions u ∈ �. In particular, we look for a formula of the type

αu(t + �t) + βu(t) = �t
2 (u′(t + �t) + u′(t)), (2.14)

that holds true for all u ∈ � and for two real coefficients α and β to be determined.
These two parameters are determined by requiring exactness of formula (2.14) for all
u ∈ B�. Substituting u(t) = 1 in (2.14) implies α = −β. Requiring exactness of
(2.14) for both u(t) = sin(ωt) and u(t) = cos(ωt) is equivalent as solving (2.14) for
u(t) = eiωt , i.e.,

α(eiω(t+�t) − eiωt ) = iω�t

2
{eiω(t+�t) + eiωt },

or equivalently,

α(eiω�t − 1) = iω�t

2
{eiω�t + 1},

that yields

α = ω�t(1 + cos(ω�t))

2 sin(ω�t)
. (2.15)

Therefore, with this approximation of the time derivative, the exponentially fitted
version of the DVD method (2.3) proposed in this paper is given by

αδ+
n zm,n = −iF(zn, zn+1)m (2.16)

with α defined in (2.15).

Theorem 1 Under suitable boundary conditions, such as periodic, the EF DVD
method (2.16) conserves the semidiscrete global energy (2.9).
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Proof The proof follows along similar lines as the one that in [43] shows that method
(2.3) conserves (2.9). In fact, given the definitions (2.1), (2.6)–(2.8), and repeatedly
applying the equality

1
2 (β1 −β2)(β3 +β4)+ 1

2 (β1 +β2)(β3 −β4) = β1β3 −β2β4, β1, β2, β3, β4 ∈ C,

one has

H̃(zn+1) − H̃(zn) = �x
∑
m

(H̃(zn+1)m − H̃(zn)m) (2.17)

= �x
∑
m

{(
∂ H̃

∂(zn+1, zn)

)
m

(zm,n+1 − zm,n) +
(

∂ H̃

∂(zn+1
∗, zn∗)

)
m

(z∗m,n+1 − z∗m,n)

+
(

∂ H̃

∂δ+(zn+1, zn)

)
m

δ+
m (zm,n+1 − zm,n) +

(
∂ H̃

∂δ+(zn+1
∗, zn∗)

)
m

δ+
m (z∗m,n+1 − z∗m,n)

+
(

∂ H̃

∂δ−(zn+1, zn)

)
m

δ−
m (zm,n+1 − zm,n)+

(
∂ H̃

∂δ−(zn+1
∗, zn∗)

)
m

δ−
m (z∗m,n+1−z∗m,n)

}

Summing by parts and assuming that the arising boundary terms vanish, the right hand
side of (2.17) can be equivalently written as

�x
∑
m

{(
δ H̃

δ(zn+1, zn)

)
m
(zm,n+1 − zm,n) +

(
δ H̃

δ(z∗
n+1, zn

∗)

)

m

(z∗m,n+1 − z∗m,n)

}

(2.18)

where we have also used definition (2.5). Taking into account that zn and zn+1 satisfy
(2.16), definition (2.4), and observing that

(
δ H̃

δ(z∗
n+1, zn

∗)

)

m

=
(

δ H̃

δ(zn+1, zn)

)∗

m
,

we can rewrite expression (2.18) as

−i
�t�x

α

∑
m

{F(z∗
n, z

∗
n+1)mF(zn, zn+1)m − F(zn, zn+1)mF(z∗

n, z
∗
n+1)m

} = 0

(2.19)

Therefore,
H̃(zn+1) = H̃(zn)

follows from (2.17). ��
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3 Average vector fieldmethod

We introduce here the AVFmethod for Hamiltonian problems in the form (1.1). Given
a semidiscretization of the Hamiltonian functional (1.2),

H̃ = �x
∑
m

H̃(Z)m, (3.1)

the AVF method amounts to [51]

δ+
n zn = J̃

∫ 1

0
∇H̃(ξzn+1 + (1 − ξ)zn) dξ, (3.2)

where J̃ is a skew-adjoint finite dimensional semidiscretization ofJ . TheAVFmethod
(3.2) is second-order accurate, and if the boundary conditions are periodic, it con-
serves the semidiscrete global energy (3.1) [14]. More recently, it has been proved
that, regardless of the specific boundary conditions assigned to the problem, the AVF
method preserves the local energy conservation law of the space discretization of (1.1)
[33, 44].

An exponentially fitted version of the AVF method that is exact on functions in the
linear space generated by the basis B� in (2.11) has been introduced in [48] and is
defined by

αδ+
n zn = J̃

∫ 1

0
∇H̃(ξzn+1 + (1 − ξ)zn) dξ, (3.3)

where the parameter α is defined as in (2.15). Under suitable assumptions on the
boundary conditions, the EF AVFmethod (3.3) conserves the global energy (3.1). The
following theorem proves that the energy is conserved locally.

Theorem 2 The EF AVF method (3.3) has a local energy conservation law.

Proof Following similar steps as those proving the local conservation of the energy of
the classical AVF method (3.2) in [33], we obtain

δ+
n H̃(zn)m = 1

�t

∫ 1

0

d

dξ
H̃(ξzn+1 + (1 − ξ)zn)m dξ

=
∑
m

δ+
n zm,n

∫ 1

0

∂

∂Zm
H̃(Z)

∣∣∣∣
Z=ξz1+(1−ξ)z0

=
(∫ 1

0
∇ H̃(ξzn+1 + (1 − ξ)zn) dξ

)
δ+
n zn + δ+

m F̃(zn, zn+1)

= 1

α

∫ 1

0
∇ H̃(ξzn+1 + (1 − ξ)zn) dξ J̃

∫ 1

0
∇H̃(ξzn+1 + (1 − ξ)zn) dξ

+ δ+
m F̃(zn, zn+1) = δ+

m F̃(zn, zn+1),

where we omit the expression of the flux, F̃ . This follows from the application of the
summation by parts formula, does not depend on α, and can be found in [33].
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Remark 1 As the conservation law obtained in the proof of Theorem 2 is independent
of α, it follows that the solutions of the EF AVF method (3.3) and of the classic AVF
method (3.2) satisfy the same conservation law.

4 Nonlinear Schrödinger equation

The nonlinear Schrödinger (NLS) equation for the complex variable z = u + iv,

izt + zxx + |z|2z = 0, (x, t) ∈ (a, b) × (0, T ), (4.1)

can be written in Hamiltonian form (1.5) with Hamiltonian functional [4]

H =
∫

H(z, zx )dx =
∫ (

|zx |2 − 1
2 |z|4

)
dx .

Equation (4.1) can also be equivalently written as a system of two PDEs for the real
variables u and v, {

ut + vxx + (u2 + v2)v = 0,

−vt + uxx + (u2 + v2)u = 0.
(4.2)

System (4.2) can be written in Hamiltonian form,

(
ut
vt

)
= J

(
δH
δu
δH
δv

)
, J =

(
0 1

2− 1
2 0

)
, H =

∫
(u2x + v2x − 1

2 (u
2 + v2)2) dx .

(4.3)
Among the infinitely many conservation laws of the NLS equation, we consider here
those of the charge and the energy, in the form

Dx F� + DtG� = 0, � = 1, 2, (4.4)

with
F1 = 2uvx − 2uxv, G1 = u2 + v2, (4.5)

and

F2 = −2uxut − 2vxvt , G2 = u2x + v2x − 1

2
(u2 + v2)2, (4.6)

respectively.When suitable boundary conditions, such as periodic, are assigned to sys-
tem (4.2), integration in space of these two conservation laws implies the conservation
of the global charge and the global energy

M =
∫

(u2 + v2) dx, H =
∫

(u2x + v2x − 1
2 (u

2 + v2)2) dx .

As shown in [21], the two approaches of the AVF method and the DVD method yield
the same scheme in many cases. However, when they are applied to the NLS equation,
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two different schemes are obtained. We derive them here separately based on the same
definition of the discrete Hamiltonian H̃ given in [43],

H̃(Z)m = |δ+
m Zm |2 + |δ−

m Zm |2
2

− 1

2
|Zm |4. (4.7)

Setting Zm = Um + iVm , we can rewrite H̃ equivalently as

H̃(U,V)m = 1

2

{
(δ+

mUm)2 + (δ+
mVm)2 + (δ−

mUm)2 + (δ−
mVm)2

}
− 1

2
(U 2

m + V 2
m)2.

(4.8)

4.1 Discrete Variational Derivative method

Considering the definition of H̃ given in (4.7), the classical DVD method (2.3) yields
the scheme [43]

iδ+
n zm,n = δ(2)

m μnzm,n + μn(|zn,m |2)μnzn,m . (4.9)

Setting zm,n = um,n + ivm,n , method (4.9) is equivalent to the following scheme for
system (4.2)

ÃDV D :=
(

δ+
n um,n + δ

(2)
m μnvm,n + μn(u2m,n + v2m,n)μnvm,n

−δ+
n vm,n + δ

(2)
m μnum,n + μn(u2m,n + v2m,n)μnum,n

)
= 0. (4.10)

A parametric family of schemes for the NLS equation that have discrete conservation
laws of charge and energy has been introduced in [32]. These two discrete conservation
laws approximate their continuous counterparts given by (4.4) with (4.5) and (4.6),
respectively, and are exactly satisfied by the solutions of the schemes. As observed in
[32], method (4.9) belongs to this family, and its conservation laws are in the form of
discrete divergences

δ+
n G̃� + δ+

m F̃�, � = 1, 2, (4.11)

that vanish when evaluated on solutions of (4.10). In fact, they can be equivalently
written in characteristic form [32],

δ+
n G̃� + δ+

m F̃� = C̃� Ã
DV D, � = 1, 2, (4.12)

with

F̃1 = 2(μmμnum−1,n)(δ
−
mμnvm,n) − 2(δ−

mμnum,n)(μmμnvm−1,n),

G̃1 = u2m,n + v2m,n, C̃1 = (2μnum,n,−2μnvm,n),

F̃2 = − 2(δ−
mμnum,n)(δ

+
n μmum−1,n) − 2(δ−

mμnvm,n)(δ
+
n μmvm−1,n), (4.13)
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G̃2 = 1
2

{
(δ+

mum,n)
2 + (δ−

mum,n)
2 + (δ+

mvm,n)
2 + (δ−

mvm,n)
2
}

− 1
2 (u

2
m,n + v2m,n)

2,

C̃2 = (−2δ+
n vm,n,−2δ+

n um,n).

The exponentially fitted version (2.16) of the DVD method (4.9) is given by

iαδ+
n zm,n = δ(2)

m μnzm,n + μn(|zn,m |2)μnzn,m, (4.14)

with α defined according to (2.15). With the same notation used in (4.10), method
(4.14) is equivalent to

ÃDV D
α :=

(
αδ+

n um,n + δ
(2)
m μnvm,n + μn(u2m,n + v2m,n)μnvm,n

−αδ+
n vm,n + δ

(2)
m μnum,n + μn(u2m,n + v2m,n)μnum,n

)
= 0. (4.15)

Theorem 3 The EF DVDmethod ÃDV D
α has discrete conservation laws of charge and

energy defined by
δ+
n G̃� + δ+

m F̃� = C̃� Ã
DV D
α , � = 1, 2,

with
G̃1 = α(u2m,n + v2m,n), (4.16)

and functions F̃1, C̃1, F̃2, G̃2, and C̃2, defined as in (4.13).

Proof As the only difference between schemes ÃDV D
α and ÃDV D is the factor α

multiplying the forward difference approximations of the time derivative, we only
need to investigate how the introduction of this factor effects the conservation laws of
ÃDV D .

Product C̃2 ÃDV D
α is not affected by the value of α. In fact, expanding it one obtains

that
−2α(δ+

n vm,n)(δ
+
n um,n) + 2α(δ+

n um,n)(δ
+
n vm,n) = 0,

and there is no other term that depends on α. So method ÃDV D
α has the same energy

conservation law of the classic DVD method ÃDV D obtained in [32].
Expanding the product C̃1 ÃDV D

α one obtains that the parameter α only appears in

2α(μnum,n)(δ
+
n um,n) − 2α(μnvm,n)(δ

+
n vm,n) = δ+

n (α(u2m,n + v2m,n)),

defining the density of the charge conservation law of the exponentially fitted method
as in (4.16). As α does not multiply any other term, the expression of the flux is the
same as that of the classic DVD method, and it is given by F̃1 in (4.13). ��
Remark 2 Under suitable boundary conditions, e.g. periodic, summation in space of
the obtained local conservation laws implies that the DVD method (4.10) and the EF
DVD method (4.15) conserve the global charge,

M̃n = �x
∑
m

(u2m,n + v2m,n), (4.17)
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and the global energy,

H̃n = �x
∑
m

{
1
2

[
(δ+

mum,n)
2 + (δ−

mum,n)
2 + (δ+

mvm,n)
2 + (δ−

mvm,n)
2
]

− 1
2 (u2m,n + v2m,n)

2
}

.

(4.18)

4.2 Average vector field method

With the approximation (3.1) and (4.8) of the Hamiltonian functional, the AVFmethod
(3.2) approximates system (4.3) as

ÃAV F :=
(

δ+
n um,n + δ

(2)
m μnvm,n + μn(v

2
m,n + 2

3u
2
m,n)μnvm,n + 1

3μn(u2m,nvm,n)

−δ+
n vm,n + δ

(2)
m μnum,n + μn(u2m,n + 2

3v2m,n)μnum,n + 1
3μn(v

2
m,num,n)

)
= 0.

(4.19)

Similarly, the approximation given by the exponentially fitted AVF method (3.3)
amounts to

ÃAV F
α :=

(
αδ+

n um,n + δ
(2)
m μnvm,n + μn(v

2
m,n + 2

3u
2
m,n)μnvm,n + 1

3μn(u2m,nvm,n)

−αδ+
n vm,n + δ

(2)
m μnum,n + μn(u2m,n + 2

3v2m,n)μnum,n + 1
3μn(v

2
m,num,n)

)
=0,

(4.20)

with α given in (2.15).

Theorem 4 The classic AVF method (4.19) and the EF AVF method (4.20) satisfy the
same energy conservation law of the classic DVD method (4.9) and of the EF DVD
method (4.14), defined by

δ+
m F̃2 + δ+

n G̃2 = C̃2 Ã
AV F = C̃2 Ã

AV F
α = C̃2 Ã

DV D = C̃2 Ã
DV D
α ,

with functions F̃2, G̃2 and C̃2 given in (4.13).

Proof The statement can be proved by expanding the calculations outlined in
Theorem 2. However, we instead evaluate the differences

ÃAV F − ÃDV D = ÃAV F
α − ÃDV D

α = �t

6

(
δ+
n um,n(um,n+1vm,n − um,nvm,n+1)

−δ+
n vm,n(um,n+1vm,n − um,nvm,n+1)

)
.

(4.21)
Since, with C̃2 defined in (4.13),

C̃2

(
δ+
n um,n(um,n+1vm,n − um,nvm,n+1)

−δ+
n vm,n(um,n+1vm,n − um,nvm,n+1)

)
= 0,

it follows from (4.12), Theorem 3 and (4.21) that

δ+
m F̃2 + δ+

n G̃2 = C̃2 Ã
DV D = C̃2 Ã

DV D
α = C̃2 Ã

AV F = C̃2 Ã
AV F
α ,

with G̃2 and F̃2 given in (4.13). ��

123



49 Page 14 of 22 D. Conte and G. Frasca-Caccia

5 Numerical tests

As a benchmark problem to compare the numerical methods described in this paper
and to test their conservative properties, we consider here the breather solution [1],

z(x, t)=
(

2β2 cosh θ+2iβ
√
2−β2 sinh θ

2 cosh θ−
√
4 − 2β2 cos(

√
ωβx)

−1

)
√

ωeiωt , θ =ωβ

√
2−β2t, β <

√
2,

(5.1)

u(x, t) = Re(z), v(x, t) = Im(z).

As in [15], we consider the restriction of this solution to the domain (x, t) ∈
[−π/7, π/7] × [0, 0.5], and we set β = 1.4. Figure1 shows a graph of the exact
solution. The initial condition is obtained from formula (5.1) evaluated at t = 0. The
frequency of oscillation of u and v in time is given by ω, and it can be derived from the
initial condition. We set here ω = 25 and test the performance of the exponentially
fitted DVD and AVF methods and of their classic versions in accurately following
the oscillations of the solution in time. The numerical methods are solved on uniform
grids defined by �x = 2π/7000 and �tk = 0.01/2k, k = 0, . . . , 5.

As the computational cost of all methods is similar, we compare them on the basis
of the error in their solution at the final time t = tN , evaluated as

Sol err =
√

‖uN − u(x, tN )‖2 + ‖vN − v(x, tN )‖2
‖u(x, tN )‖2 + ‖v(x, tN )‖2 .

We investigate the convergence of the schemes by estimating the order of accuracy of
the time integrator as

Order = log2

(
Sol errk−1

Sol errk

)
, k = 1, . . . , 5, (5.2)

where Sol errk denotes the error in the solution obtained with time step �tk .
For fixed �x , this estimate of the order of convergence is valid only for k small

enough, so that �tk is large enough compared to �x , and the leading term of error is

Fig. 1 Solution of the breather problem for NLS: |z(x, t)| (left), u(x, t) (centre), v(x, t) (right)
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Table 1 Error in local conservation laws

DVD[43] EF DVD AVF [51] EF AVF [48]
k Err1 Err2 Err1 Err2 Err1 Err2 Err1 Err2

0 2.68e−08 8.05e−07 2.92e−08 7.51e−07 1.33e+00 6.89e−07 8.83e−01 7.91e−07

1 3.35e−08 1.13e−06 3.69e−08 9.62e−07 2.67e−01 8.22e−07 1.82e−01 9.67e−07

2 3.55e−08 8.94e−07 3.65e−08 9.20e−07 6.21e−02 1.00e−06 4.24e−02 9.79e−07

3 4.09e−08 1.10e−06 4.41e−08 9.58e−07 1.52e−02 1.05e−06 1.04e−02 1.12e−06

4 3.68e−08 1.14e−06 3.95e−08 1.31e−06 3.79e−03 1.14e−06 2.59e−03 1.13e−06

5 4.27e−08 1.24e−06 5.01e−08 1.21e−06 9.48e−04 1.14e−06 6.47e−04 1.09e−06

proportional to �tk . Hence, in the following tables, the symbol “***” means that the
method has converged to a solution whose time component of the error is negligible
compared to the spatial one.

The error in the local conservation laws is evaluated as

Err� = max
m,n

(
{D�x F̃� + D�t G̃�}

∣∣
(xm ,tn)

)
, � = 1, 2,

where for all schemes functions F̃1, G̃2 and F̃2 are those given in (4.13) and function
G̃1 is defined in (4.16) for the EF DVD method (4.15), or in (4.13) for all other
methods.

Since the solution of this problem satisfies periodic boundary conditions, the global
charge and Hamiltonian are conserved. We evaluate the error in these two invariants
as

ErrM = max
n

∣∣M̃n − M̃0
∣∣ , ErrH = max

n

∣∣H̃n − H̃0
∣∣ ,

with M̃n and H̃n defined as in (4.17) and (4.18), respectively.
In Tables 1 and 2, we show the errors in the local conservation laws and in the

global invariants, respectively. All methods preserve the energy conservation law and
the global energy. The errors in the table are affected by accumulation of the round-offs
and by the approximate solution of the nonlinear schemes by Newton’s method and
are roughly equal for all values of �t .

Table 2 Error in global invariants

DVD [43] EF DVD AVF [51] EF AVF [48]
k ErrM ErrH ErrM ErrH ErrM ErrH ErrM ErrH

0 1.14e−13 2.27e−12 1.14e−13 2.56e−12 1.84e−02 2.44e−12 1.85e−02 2.05e−12

1 3.69e−12 1.42e−13 1.88e−12 1.21e−13 4.75e−03 3.41e−12 4.77e−03 4.15e−12

2 1.25e−12 9.95e−14 1.76e−12 1.07e−13 1.20e−03 2.67e−12 1.20e−03 2.61e−12

3 8.88e−14 1.19e−12 7.11e−14 1.25e−12 3.00e−04 9.09e−13 3.00e−04 1.59e−12

4 7.82e−14 1.31e−12 7.82e−14 1.14e−12 7.50e−05 1.48e−12 7.50e−05 1.36e−12

5 8.17e−14 1.31e−12 8.17e−14 1.08e−12 1.87e−05 1.71e−12 1.87e−05 1.14e−12
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Table 3 Order of convergence in time and error in solution

DVD [43] EF DVD AVF [51] EF AVF [48]
k Sol err Order Sol err Order Sol err Order Sol err Order

0 7.32e−02 8.79e−03 2.01e−01 2.06e−01

1 1.84e−02 1.99 2.15e−03 2.03 1.29e−01 0.64 1.22e−01 0.76

2 4.55e−03 2.01 4.89e−04 2.13 3.80e−02 1.76 3.56e−02 1.78

3 1.09e−03 2.06 1.50e−04 1.70 9.71e−03 1.97 9.06e−03 1.97

4 2.58e−04 2.07 1.52e−04 *** 2.33e−03 2.06 2.16e−03 2.07

5 1.49e−04 *** 1.63e−04 *** 4.65e−04 2.32 4.19e−04 2.37

The solutions of classic AVF and EF AVF do not satisfy the conservation law of the
charge and do not conserve the global charge. The corresponding errors decrease with
the time step and approach zero with the same rate of convergence of the schemes.

In Table 3, we show the error in the solution and the estimated rate of convergence
of the four considered schemes. All schemes converge with accuracy of the second
order, until the space component of the error (∼ 1.50e-04) prevails.

Figure 2 shows a logarithmic plot of the solution error against �t illustrating the
rate of convergence of all the methods.

Compared to the AVF methods, the DVD methods not only conserve the charge
locally and globally but also are more accurate for all values of �t .

The EF AVF method proposed in [48] is not substantially more accurate than the
classic AVF method. Instead, the EF DVD method introduced here is about one and
two orders of magnitude more accurate than the classic DVD and the AVF methods,
respectively. The new method is also the one that achieves the maximum possible
accuracy in the solution (attainable with the chosen value of �x) with the largest time
step (k = 3). It is worth stressing that as both the classic DVD and the EF DVD
methods preserve two conservation laws, the higher accuracy of the EF DVD method
is to be ascribed to the exponential fitting approach in time, that is, by having the

Fig. 2 Solution error for NLS breather (logarithmic scale on both axis)
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Fig. 3 Solution error for NLS breather (logarithmic scale on both axis)

required exactness of the method on elementary oscillatory functions having the same
frequency of the solution.

We remark that a similar test on this problem has been done in [15] by using a
second order exponentially fitted method that preserves the local conservation laws of
charge and momentum of system (4.2). Comparing with the solution errors reported
in [15], we observe that the EF DVDmethod introduced here is the most accurate and
gives errors in the solution that are about ten times smaller.

We now test the convergence of the schemeswhen the error in the time discretization
is negligible compared to the error in space. We estimate the order of accuracy of the
schemes according to equation (5.2), where Sol errk denotes now the solution error
obtained with time step �t = 0.001 and �x = 2π/(700 · 2k−2), with k = 0, . . . , 5.
The results are shown in Table 4 and represented in Fig. 3 showing a logarithmic plot
of the solution error against�x . We note that for large values of�x , the solution error
is essentially due to the coarse space discretization, so all methods perform similarly
with second-order convergence as expected. For small values of �x , the methods
perform differently: the time component of the error neatly prevails in the solution of
the two AVFmethods, and so there is no improvement in accuracy by further reducing
�x . Conversely, the EF DVD method is the only one having a rate of convergence

Table 4 Order of convergence in space and error in solution

DVD [43] EF DVD AVF [51] EF AVF [48]
k Sol err Order Sol err Order Sol err Order Sol err Order

0 2.86e−01 2.87e−01 2.80e−01 2.81e−01

1 6.99e−02 2.03 7.03e−02 2.03 6.35e−02 2.14 6.39e−02 2.13

2 1.67e−02 2.07 1.70e−02 2.05 1.09e−02 2.55 1.11e−02 2.53

3 3.92e−03 2.09 4.16e−03 2.03 2.64e−03 2.04 2.04e−03 2.44

4 9.62e−04 2.03 1.00e−03 2.06 5.36e−03 *** 4.91e−03 ***

5 6.61e−04 *** 2.27e−04 1.89 6.10e−03 *** 5.67e−03 ***
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Table 5 Solution error and order of convergence

DVD [43] EF DVD AVF [51] EF AVF [48]
k Sol err Order Sol err Order Sol err Order Sol err Order

1 1.79e−02 1.61e−02 1.19e−01 1.12e−01

2 4.56e−03 1.97 3.95e−03 2.09 3.45e−02 1.79 3.20e−02 1.80

3 1.14e−03 1.99 9.82e−04 2.01 8.89e−03 1.96 8.22e−03 1.96

4 2.86e−04 2.00 2.45e−04 2.00 2.24e−03 1.99 2.07e−03 1.99

5 7.45e−05 2.00 6.12e−05 2.00 5.61e−04 2.00 5.18e−04 2.00

closer to the expected maximum order for all the considered values of �x , due to its
higher accuracy in time.

We conclude this section with an experiment for testing the convergence of the
considered numerical methods when both time and space discretizations are refined.
The order of convergence is estimated according to (5.2), where the solution errors
are evaluated on the grids with

�tk = 0.01/2k, �xk = 2π/(350 · 2k), k = 1, . . . , 5. (5.3)

These stepsizes have been chosen such that the space and time discretizations of the
classic DVD method similarly contribute to the solution error.

The convergence of all methods is studied in Table 5. The rate of convergence is
two for all methods and all values of k. We note that the EF DVD performs only
slightly better than the classic DVD method. This is due to the fact that, while on
this grid, the time and space components of the error are of similar magnitude for the
classic DVD method, this is not true for the EF DVD method. In fact, the exponential
fitting approach reduces the time component of the error, and the error in space is
dominant on this grid. Indeed, the EF DVD method can be solved on the same spatial
grid with time step up to three times larger without significantly affect the solution
errors presented in Table 5. The results in Table 6 show that with a time step three
times coarser the accuracy of the EF DVDmethod is not compromised and is the same

Table 6 Solution error of classic DVD [43] and EF DVDwith space step as in (5.3) and different time steps

DVD [43] EF DVD
�t = 3�tk �t = �tk �t = 3�tk �t = �tk

k Sol err Order Sol err Order Sol err Order Sol err Order

1 1.58e−01 1.79e−02 1.95e−02 1.61e−02

2 3.92e−02 2.01 4.56e−03 1.97 4.54e−03 2.10 3.95e−03 2.09

3 1.00e−02 1.97 1.14e−03 1.99 1.13e−03 2.00 9.82e−04 2.01

4 2.48e−03 2.01 2.86e−04 2.00 2.81e−04 2.01 2.45e−04 2.00

5 6.24e−04 1.99 7.45e−05 2.00 7.04e−05 2.00 6.12e−05 2.00
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Fig. 4 Solution error for NLS breather (logarithmic scale on both axis)

as that of the classic DVD method on the finer time grid. Conversely, the error in the
solution of the classic DVD method increases taking these larger values of �t .

The solutions of both classic AVF and EF AVF are instead mainly affected by the
error of the time integrator. The same accuracy of the classic DVD method can only
be achieved by taking time steps that are more than twice smaller.

Figure 4 illustrates the dependence of the solution error on �x (left) and �t (right)
in logarithmic scale. It is evident that the EF DVD is able to achieve the same accuracy
on coarser time grids.

6 Conclusion

In this paper, we have introduced a new exponentially fitted version of the discrete
variational derivative method in [43] for complex Hamiltonian PDEs. We have proved
that when applied to the nonlinear Schrödinger equation, this method has local con-
servation laws of charge and energy that approximate the continuous ones.

In a more general setting, for real or complex Hamiltonian PDEs, we have proved
that the exponentially fitted AVF method introduced by Miyatake [48] has the same
local conservation law of the energy of the classic AVF method. However, neither the
AVF method nor its exponentially fitted version conserve the charge.

The four considered methods have been applied to a problem whose solution is a
breather wave that oscillates with known frequency. The conservative properties of all
schemes have been tested, and the proposed EF DVDmethod is the one that performs
better.
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