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Abstract
We propose to employ a non-constant regularization weight function (RWF) for data
fitting via least-squares tensor-product (TP) spline fitting. In the first part of the paper,
we formulate the discrete and the continuous version of the problem, andwe investigate
the influence of the degree of the RWF—which is also chosen as a TP spline function
— in the latter situation. The second part presents two methods for automatically
generating non-constant RWFs in the discrete situation. These methods are shown to
be particularly useful if holes or features are present in the data.

Keywords Spline approximation · Regularization · Data with holes ·
Data with features

Mathematics Subject Classification (2010) 65D07 · 65D10

1 Introduction

Surface fitting is a classical problem in computer-aided geometric design (CAGD).
In particular, the need to approximate point data in three-dimensional space arises in
several steps of the process of designing and analyzing machine parts, e.g., in order
to generate a CAD (computer-aided design) model from scanned data.
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Several representations of surfaces have been explored in the rich literature on
this topic, which include implicit surfaces defined by radial basis functions [3] or
spline functions [14, 18], subdivision surfaces [10], and parametric spline (or, more
generally, NURBS) surfaces [13, 16]. We will focus on the latter class of surfaces,
which established itself as the universally accepted standard for representing free-form
shapes in CAD.

Generating a parametric spline representation typically involves a two-step proce-
dure. The first step is assigning parameter values to the point cloud data and various
methods are available for this task, see [6] and the references cited therein. Subse-
quently, fitting is used to create an approximating surface. Various methods have been
investigated in the literature, which include global least-squares fitting [13], iterative
methods [5, 19] or spline projection [2]. Several authors include the optimization of
the parameterization into the fitting [11], but this is beyond the scope of the present
paper.

We focus on the effects of noisy and uncertain data (in particular with holes) on
the least-squares approximation. Regularization is a well-established method [9, 15]
for handling this type of data. The most common regularization term is the simplified
version of the thin plate energy, which is based on the second order partial derivatives
of the surface, as in [12]. Typically, regularization possesses global influence and
smooths the resulting surface. Consequently, finding an optimal balance between the
quality of the shape and the precision — which is controlled by the choice of the
regularization parameter — is of vital interest, cf. [8, 17].

While the existing methods perform relatively well for data with a uniform level
of noise, they have difficulties if holes or features are present. To address this issue,
we propose a novel method that replaces the constant regularization weight by a non-
negative regularization weight function (RWF) acting on the parameter domain. This
allows for local control of the regularization.

The remainder of the paper consists of two main parts.
The first part, which is covered by the second section, recalls tensor-product spline

functions and introduces least-squares approximationwith a non-constant RWF,which
is represented by another spline function. We formulate the fitting problem both for
the case of continuous and for the case of discrete data. In the first case, we address
the case of data that are available on a subdomain only (which is characterized by zero
values of the RWF), and we investigate both the uniqueness of the solution and the
effect of varying degrees of the RWF.

The second part of the paper, which is contained in Section 3, presents twomethods
for automatically generating RWFs in the discrete case. The first method uses RWFs
with a support-guided choice of the spline coefficients and is particularly well suited
for data with holes. The second method uses an error-driven adaptation of the RWF
and is especially useful if the data contain features.

These two parts are followed by a conclusion, which summarizes the paper and
identifies possible directions for future research.
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2 Fitting with regularization

2.1 The two versions of the fitting problem

Given a smooth function f : Ω → R
n , where Ω = [0, 1]d is the unit cube in Rd , we

seek for an approximation in a spline space

S p
h =

⎧
⎨

⎩

∑

0≤i≤mh+p

ciB
p
i,h(t) | ci ∈ R

n

⎫
⎬

⎭
, t = (t1, . . . , td) ∈ Ω,

that is spanned by tensor-product B-splines B p
i,h(t) = bp

i1,1,h
(t1) · · · bp

id ,d,h(td) of
degree (p, . . . , p) defined over quasi-uniform knot vectors

Ξ
p
j,h = (0, . . . , 0

︸ ︷︷ ︸
p+1 times

, ξ1, j,h . . . , ξm j,h , j,h, 1, . . . , 1︸ ︷︷ ︸
p+1 times

), j = 1, . . . , d,

where the lower index h is the mesh size

h = max
j=1,...,d

max
i=0,...,m j,h

ξi+1, j,h − ξi, j,h

and ξ0, j,h = 0 and ξm j,h+1, j,h = 1. In order to guarantee the quasi-uniformity of the
knots, we require that

min
j=1,...,d

min
i=0,...,m j,h

ξi+1, j,h − ξi, j,h ≥ CQUh

is satisfied for some positive constant CQU, which is independent of h. We use multi-
indices fi = (i1, . . . , id) and assume p > 1.

Since the n coordinates are dealt with separately, we will restrict the theory to the
scalar-valued case n = 1. Later we will present examples with n = 2 and n = 3.

We investigate the influence of regularization when the function f is only available
on a subdomain. Our goal is to achieve optimal convergence rate while simultaneously
regularizing in the subdomain without data in order to select a sensible solution of
an underdetermined problem. We perform regularization based on second derivatives
since according to our practical experience it often manages to avoid artifacts such
as oscillations and self-intersections. This is essential for applications in CAD since
CAD kernels do not accept trimmed surfaces that are constructed from base surfaces
possessing self–intersections.

We analyze the spline approximations that are obtained by solving the regularized
fitting problem

minimize
s∈S p

h

(| f − s|2L2(Ω),ω
+ |s|2W 2,2(Ω),λ

)
, (1)
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where | · |2
L2(Ω),ω

is the weighted L2 seminorm with a non-negative weight function ω,
which is a norm if ω is positive almost everywhere. In order to keep the presentation
simple, we will assume that ω is a piecewise smooth function with a finite number of
smooth pieces. Furthermore, we use the weighted W 2,2 seminorm

|s|W 2,2(Ω),λ =
⎛

⎝

∫

Ω

λ

d∑

ν=1

d∑

η=1

(∂νηs)
2dt

⎞

⎠

1
2

,

where the non-negative weight function λ is called the regularization weight function
(RWF). This seminorm is related to the simplified version of the thin plate energy.
Again, we will assume that λ is a piecewise smooth function with a finite number of
smooth pieces.

This formulation of the problem is motivated by the approximation of functions
that are accessible on a certain closed subdomain Ω0 ⊂ Ω . This is modelled by
considering weight functions ω that take value zero on the complementary subdomain
H = Ω \ Ω0, which will be called the hole. We will assume that the boundary of H
is piecewise smooth with finitely many segments/patches.

It should be noted that the minimum of (1) for s ∈ C(Ω) ∩ W 2,2(H) is not
guaranteed to be a highly smooth function. E.g., it is a function that is equal to f on
Ω0 and a linear function on H if d = 1 and λ = 0 on Ω0. Hence, while the use of
regularization may potentially have some benefits for any positive mesh size h, it does
not make sense to consider the obtained limit as h → 0.

Clearly, the solution without regularization (i.e., for λ = 0) is generally not unique
if H �= ∅, i.e., several spline approximations that realize the smallest value of the
objective function exist for sufficiently small mesh size h. Note that ω is bounded
since we consider it as a function on the unit cube Ω , which is a compact subset of
R
d . Consequently, the L2 norm can be used to bound the weighted L2 seminorm,

|φ|L2(Ω),ω ≤ ‖ω‖L∞(Ω), ‖φ‖L2(Ω).

This observation implies the following result:

Lemma 1 If λ = 0 and f ∈ W p+1,2(Ω) with p + 1 > d/2, then any solution sh of
(1) satisfies

| f − sh |L2(Ω),ω ≤ C0h
p+1,

where C0 is independent of h, but depends on CQU, f , ω and p.

This result follows directly from classical results from spline theory [1], which
ensure the existence of quasi-interpolation operators Π

p
h that transform any given
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function φ ∈ W p+1,2(Ω) into a spline functionΠ
p
h φ. Wemay express these operators

as

Π
p
h : W p+1,2(Ω) → S p

h , φ �→ Π
p
h (φ) =

∑

0≤i≤mh+p

B p
i,h(t)µ

p
i,h(φ)

with linear coefficient functionals μ
p
i,h . According to a classical result [1, Theorem

5.2 with � = q = 0 and r = 2], the error satisfies

‖φ − Π
p
h φ‖L2(Ω) ≤ C1h

k |φ|Wk,2(Ω) (2)

for 1 ≤ k ≤ p + 1. The constant C1 is independent of Ξ
p
j,h and h, but it depends on

CQU. The case k = p + 1 is needed to derive the Lemma, while k = 1 will be used
to establish a (pointwise) convergence property of the coefficient functionals in the
Appendix.

Two cases of weight functions ω will be analyzed in the remainder of the paper:

1. The weight function ω is a classical function (as opposed to the next case) that
is zero on the hole H ⊂ Ω . This is considered in the next section and suitable
choices of the RWF λ are analyzed.

2. We also consider generalized weight functions ω which are sums of Dirac delta
functions

ω(t) = 1

N

N∑

i=1

δ(t − ti )

for a finite set of nodes ti ∈ Ω . This transforms Problem (1) into the discrete fitting
problem

minimize
s∈S p

h

(
1

N

N∑

i=1

‖ f (ti ) − s(ti )‖2 + |s|2W 2,2(Ω),λ

)

. (3)

Lemma 1 does not apply, since ω is not a classical function. However, the original
problem can be seen as the limit case of the discrete version as N → ∞. We will
return to this problem in Sections 3.1 and 3.2.

2.2 Regularization with optimal rate of convergence

We consider a classical weight function ω which is equal to zero on the hole H ⊂ Ω .
We investigate the influence of the regularization weight function. In contrast to the
non-uniqueness of the solutions to the unregularized problem, i.e., λ = 0 on Ω , the
regularized problem (1) possesses a unique solution under a mild assumption on the
RWF:

Lemma 2 The solution of Problem (1) is unique if the regularization weight function
λ + ω is positive almost everywhere and ‖ω‖L2(Ω) �= 0.
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Proof Since λ + ω is positive almost everywhere we have supp(λ) ∪ supp(ω) = Ω .
(Note that we use the closed support of a function, and not the set-theoretic one.) The
regularized fitting problem defines the non-negative definite quadratic form

Q(s) = |s|2L2(Ω),ω
+ |s|2W 2,2(Ω),λ

on S p
h .

It is positive definite since Q(s) = 0 implies that

|s|2L2(Ω),ω
= 0 and |s|2W 2,2(Ω),λ

= 0,

hence s = 0 on suppω, which has a non-empty interior as ω is assumed to be a
piecewise smooth function with a finite number of smooth pieces. Moreover, s is
linear on suppλ, thus s = 0 on the entire domain Ω = [0, 1]d , due to p > 1 and
supp(λ) ∪ supp(ω) = Ω .

Consequently, when considering the representation of the unknown function s with
respect to the B-splines spanning S p

h , Problem (1) is equivalent to the minimization of
a quadratic function on the coefficient space. The solution is unique since the quadratic
form assigns the zero value to the difference of any two minimizers s and ŝ. ��

Next, we analyze the error of this unique solution. We will assume that the RWF λ

fulfils the condition

λ(t)
{= 0 if t /∈ H ,

≤ ε dist(t, ∂H)q otherwise
(4)

for some constant ε > 0 and for some degree q , and is positive on the hole H , which
is a subdomain. Consequently, the RWF satisfies the assumptions of Lemma 2. In
practice, one would first construct λ and check that there exists an ε satisfying (4);
the ε then appears in the following estimate. Note that it can be modified simply by
multiplying λ with a positive constant.

Theorem 1 The solution sh of (1) satisfies

| f − sh |2L2(Ω),ω
≤ C2(1 + ε)h2p+2,

if λ satisfies (4) and the degree q of λ fulfils q ≥ 2p + 4 + d, where the constant C2
depends on f , ω, p and q.

Proof We define the truncation operator T p
h : Sp

h → S p
h as

T p
h

⎛

⎝
∑

0≤i≤mh+p

ciB
p
i,h(t)

⎞

⎠ =
∑

0≤i≤mh+p,

B p
i,h |Ω0 �=0

ciB
p
i,h(t).
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We generate a spline approximation of f with the help of the quasi-interpolation
operator Π

p
h and the truncation operator T p

h ,

uh = T p
h Π

p
h f . (5)

Now, we consider the solution sh ∈ Sp
h to Problem (1) and obtain

| f − sh |2L2(Ω),ω
≤ | f − sh |2L2(Ω),ω

+ |sh |2W 2,2(Ω),λ

≤ | f − uh |2L2(Ω),ω
︸ ︷︷ ︸

(i)

+ |uh |2W 2,2(Ω),λ
︸ ︷︷ ︸

(i i)

≤ C2(1 + ε)h2p+2,

with C2 = max(C2
1‖ω‖2L∞(Ω)‖ f ‖2

W p+1,2(Ω)
,C3), where we used the approximation

properties (2) of the quasi-interpolation operator, together with the observation

T p
h (Π

p
h f )|Ω0 = Π

p
h f |Ω0

and Proposition 1 (see the Appendix) to estimate the two terms (i) and (i i), respec-
tively. ��

We conclude the section with some numerical results. In the following examples
we will choose λ ∈ Sqk as a spline function

λ(t) = 10−6
∑

0≤i≤mk+q,

Bq
i,k |Ω0=0

Bq
i,k(t),

with a uniform knot vector of mesh size k = 1
128 .

First, we present a univariate example to illustrate the observations of Theorem 1.
We solve Problem (1) for

f (t) = sin(4π(t + 1

80
)),

with Ω = [−1, 1] and H = [− 1
2 ,

1
2 ], using splines of degree p = 2, . . . 5 with

dyadically refined uniform knots (starting with h = 1), and for various degrees of the
RWF. The results are reported in Fig. 1. According to Theorem 1, choosing q ≥ 2p+5
would ensure the optimum rate of convergence. The experimental results confirm the
theoretical bound, but we already get good results for smaller degrees q.

Unfortunately, the condition number of the linear system obtained from Problem 1
becomes rather high as h decreases, especially for higher values of the degree q.
Figure2 reports these condition numbers for the univariate example for various com-
binations of p and q. For comparison we also plot the condition number for a constant
regularization as a baseline.

Very high condition numbers lead to numerical solutions with artifacts, especially
near the boundary of the hole. In practice, one may use lower values of q and accept
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Fig. 1 Univariate example: Rate of convergence of the regularized approximation for p = 2, 3, 4, 5 and
various values of the degree q

that Theorem 1 — which states a sufficient condition anyway — cannot be applied.
For instance, using q = 7 for cubic splines does not increase the condition number
too much compared to the constant regularization, but still gives good approximation
results. Alternatively, it is also possible to employ advanced stabilization techniques
as described in [4], which should improve the situation.

Second, we consider the bivariate case in order to illustrate that the theory applies
to this situation also. More precisely, we solve Problem (1) for

f (t1, t2) = sin(4π(t1 + 1

80
)) sin(4π(t2 + 1

80
)),

with Ω = [−1, 1]2 and H = [0, 1]2, using splines of degree p = 2, . . . 5 with
dyadically refined uniform knots (starting with h = 1), and for various degrees of the
RWF. The results are reported in Fig. 3. According to Theorem 1, choosing q ≥ 2p+6
would ensure the optimum rate of convergence. The experimental results indicate a
good agreement with the theoretical bound. As before, even smaller degrees q already
give good results.
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Fig. 2 Univariate example: Condition numbers for p = 2, 3, 4, 5 and various values of the degree q

3 Data-dependent RWFs in the discrete case

In the remainder of the paper, we will address the discrete fitting problem (3) (i.e., the
case of weight functions ω that are sums of Dirac delta functions), due to its practical
importance. The given data thus consists of a set of values

fi = f (ti )

with associated parameters ti , i = 1, . . . , N , which we collect in the set

T = {ft j , j = 1, . . . , N }.

The theoretical results from the previous section are no longer applicable for the
discrete problem. Nevertheless, our goal of using regularization is very similar; we
want to achieve good accuracywhile regularizing in order to avoid artifacts. Therefore,
we try to apply an analogous setting in the discrete case.
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Fig. 3 Bivariate example: Rate of convergence of the regularized approximation for p = 2, 3, 4, 5 and
various values of the degree q

Wewill propose twomethods that adapt the RWF λ to the given data. Both generate
RWFs λ ∈ Sqk , which are spline functions

λ(t) =
∑

0≤i≤mk+q

λiB
q
i,k(t) (6)

of some degree q with RWF mesh size k.

3.1 On-off regularization

The first method is particularly suited if the data contains holes, i.e., if large regions
without any data are present. The choice of the RWF degree is guided by the experi-
mental results from the previous section.We assume that the RWFmesh size k exceeds
the sampling density but is still much smaller than the hole size.

123

58   Page 10 of 24



Adaptive and local regularization for data fitting... 

We propose a support-guided construction of the RWF λ. Given two constants
λmax > λmin > 0, we chose the coefficients in (6) as

λi =
{

λmax if ∀ j : Bq
i,k(t j ) = 0,

λmin otherwise.
(7)

We present two examples.
The first example, which uses artificially generated data, shows that the support-

guided adaptation method of the RWF may give better results than constant
regularization. In the example we solve Problem (1) for data which are sampled from
the surface in Fig. 4.

The surface is constructed from the cubic Bézier surface with control points

c0,0 = (0, 0, 0)T , c0,1 = (1, 0, 0)T , c0,2 = (2, 0, 0)T , c0,3 = (3, 0, 0)T ,

c1,0 = (0, 1, 0)T , c1,1 = (6, 6, 4)T , c1,2 = (−3, 6, 4)T , c1,3 = (3, 1, 0)T ,

c2,0 = (0, 2, 0)T , c2,1 = (6, −3, 4)T , c2,2 = (−3, −3, 4)T , c2,3 = (3, 2, 0)T ,

c3,0 = (0, 3, 0)T , c3,1 = (1, 3, 0)T , c3,2 = (2, 3, 0)T , c3,3 = (3, 3, 0)T .

This surface is trimmed in the parameter domain by the rectangle ]0.5, 0, 95[×
]0.6, 0.95[, which corresponds to the hole for this example. We sample the surface on
a regular grid with mesh size 1

100 .
The data are fitted with a B-Spline tensor-product surface of degree p = 3 and

with mesh size h = 0.0625. A regularization is needed since choosing λ = 0 leads
to infinitely many solutions. We show in Fig. 5 the approximations using the support-
guided construction (7) of the RWF with k = 0.01875 and q = 12 for various values
of λmin and λmax.

The standard method of using a constant RWF is equivalent to choosing λmin =
λmax; this corresponds to the diagonal elements in the upper part (above the dashed
line) of Fig. 5. Clearly, a rather large regularization is needed to avoid self-intersec-
tions. Such a choice of the RWF, however, entails a large approximation error, as
one may see by comparing the original straight patch boundaries in Fig. 4 with their
curved approximations in Fig. 5 (λmin = λmax = 10−1) or by comparing the errors in
Table 1. Choosing smaller values of the constant RWF leads to approximations with
self-intersections, see Fig. 5 (λmin = λmax = 10−4 and 10−7). While we obtain a
good fit of the data and a good approximation error, see Table 1, the surface is still
unsuitable for applications, as one may encounter difficulties when using it as a base
surface for a trimmed surface patch.

Fig. 4 Input surface and the sampled points
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Fig. 5 First example: Results obtained for support-guided RWFs with various values of λmin (rows) and
λmax (columns)

Table 1 First example: L∞/L2-errors of the approximations for various values of λmin, λmax

10−1 10−4 10−7

10−1 2.78e−1 / 6.54e−2 2.13e−1 / 5.16e−2 2.12e−1 / 5.15e−2

10−4 2.86e−2 / 3.91e−3 6.32e−3 / 6.61e−4 6.32e−3 / 9.32e−4

10−7 3.14e−2 / 4.31e−3 2.72e−3 / 6.12e−4 1.42e−5 / 3.75e−6

0 3.14e−2 / 4.31e−3 2.74e−3 / 6.17e−4 1.05e−6 / 2.06e−6
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The self-intersection is still present for approximations with support-guided con-
struction (7) of the RWF for λmin > λmax, whereas they disappear in the cases
λmin < λmax, see Fig. 5. For the cases without self-intersection λmax influences the
behavior of the approximation in the hole. It seems that choosing λmax = 10−4,
λmin = 10−7 or 0 is a good trade-off between accuracy and quality of the approxima-
tion, see Fig. 5 and Table 1.

In practice, the determination of the optimal choice of λmin and λmax might not
be straight-forward and depends on the specific example. In general, we suggest to
use λmin < λmax, where λmin should be chosen according to the type of data given
on Ω \ H . For example, if the data contains noise, a certain minimal value of λmin
might be required to avoid oscillations with respect to the data; at the same time, λmin
should not be too high in order to keep the error low. The choice of λmax depends on
the desired behavior within the hole. Therefore, a user-guided choice is suggested.

As the secondexample,we reconstruct the surfaceof a turbine endwall, seeFig. 6 (a),
where the measured data consisting of 109, 965 samples have a hole at the connection
to the turbine blade, see Fig. 6 (b).

We compare two results of the classical methodwith constant regularization param-
eters λ = 10−5 and λ = 10−7 with the support-guided construction of the RWF with
λmax = 10−5, λmin = 10−7. In all three cases we used cubic tensor-product B-splines
with 1, 273 degrees of freedom. The results are shown in Fig. 7.

While all the results have a comparable root mean square error (RMSE) and max-
imum error (ME), see Table 2, the advantage of the support-guided RWF becomes
clear when considering the approximation close to and inside the hole. Approxima-
tion with constant regularization produces an artifact in the form of a bump where no
data is provided, see Fig. 7. This artifact makes the result unsuitable for the subsequent
geometric processing, in particular concerning the construction of blend surfaces via
the rolling ball method.

This problem is no longer present for the third approximation. We generate a
support-guided RWF according to (7) with k = 0.015625 and degree q = 3. Even
if this degree is lower than the ones considered in the previous section, it works well
in practice and speeds up the computation since fewer Gauss nodes are needed and
a larger value of k is sufficient to achieve the desired effect. Summing up, we obtain
a better approximation since the resulting surface is as flat as the input data, thus
adhering to user expectation.

Fig. 6 Second example: Turbine endwall (red, left) and input points (colored according to the u-parameter,
right)
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Table 2 Second example: ME / RMSE of the approximations of the endwall

λ = 10−5 λ = 10−7 support-guided RWF

1.88e−5 / 2.87e−6 1.69e−5 / 2.75e−6 1.69e−5 / 2.83e−6

As demonstrated by the two examples, the support-guided approach works well for
data with holes. However, it is not yet suitable for data with varying sampling density.
A more general approach will be described in the next section.

3.2 Bounded slope regularization

We present an iterative method that generates a RWF of degree 0, based on the distri-
bution of the fitting error.

1. Given a relatively large regularization parameter λ(0), we solve the regularized
fitting problem for λ(t) = λ(0), i.e., for a RWF with coefficients λi = λ(0).

2. We apply Algorithm 1 in order to modify the coefficients λi. More precisely, we
decrease the values λ(t j ) of the RWF if the error at t j exceeds a given threshold
ε, i.e., if

||sh(t j ) − f j || ≥ ε.

Simultaneously, we keep the discrete logarithmic slope of the RWF bounded,

λj/λi ≥ αk if |i − j| ≤ 1,

where the user-defined constant α < 1 specifies themaximum discrete logarithmic
slope and k is the mesh size of the RWF.

3. We solve the regularized fitting problem for the modified RWF and continue with
the previous step, or we abandon the procedure if the RWF did not change or
if a maximum number of iterations has been reached. The maximum number of

Fig. 7 Approximations (top row), and side view of the approximation (bottom row) obtained for a constant
RWF λ = 10−5 (left), another constant RWF λ = 10−7 (center) and the support-guided RWF (right) with
λmax = 10−5, λmin = 10−7
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iterations is chosen as

⌊
log(λmin) − log(λ0)

log(αk)

⌋

(8)

since this ensures that theminimumof the RWF coefficients λi does not get smaller
than λmin.

Algorithm 1: Adaptive (error-driven) choice of the RWF.
Input : coefficients λi of the RWF and regularized spline approximation sh
Output : modified coefficients λi, adapted according to the error distribution

1 for i=0,…, mk do
2 for j = 1, . . . , N do
3 if B0

i,k (t j ) �= 0 and ‖sh(t j ) − f j‖ > ε then

4 λi ← λi · αk ;
5 break /* exit loop for j */
6 chc ← true /* chc = “coefficient has changed” */
7 while chc do
8 chc ← false;
9 for i, j = 0, . . . ,mk do

10 if |i − j| = 1 and λj/λi < αk then
11 λi ← λi · αk ;
12 chc ← true

Again we present two examples.
The first example, which is again based on artificially generated data, explores the

influence of the RWFmesh size k and the slope parameter α, focusing on the univariate
case. We consider a set of data (ti , fi )i=0,...,43 ∈ R

2, see Fig. 8. It combines relatively
dense data from the graph of a scaled trigonometric function on the right-hand side
with sparse data from a straight line on the left-hand side. The figure depicts the B-
spline approximations in S31/36 obtained by solving problem (3) for various constant
RWFs. In addition, we visualize the curvature by plotting the graph of the signed
logarithm

sign(s′′
h ) log(1 + |s′′

h |)

of the second derivative.
We observe that the constant RWF does not give good results. We either obtain

large oscillations for small constant values of the RWF or big errors for large constant
values of the RWF, see Fig. 8 and Table 3.

Now we use the error-guided RWF adaptation (see Algorithm 1) to create different
non-constant RWFs λ. The procedure is initializedwith a constant RWF λ ∈ S0k , which
is equal to λ(0) = 10−2 on the entire domain. We then alternate between solving the
regularized fitting problem and applying Algorithm 1 with ε = 10−3 until we reach
the maximum number (8) of iterations, where λmin = 10−10.
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Fig. 8 B-Spline approximations of a univariate data set (visualized as red squares) for various constant
RWFs. The gray curve—which refers to the axis on the right–hand side— represents the signed logarithm
of the second derivative

Fig. 9 RWFs (red curves), approximations (black curves) and signed logarithm (gray curves) of the second
derivatives generated by the error–guided adaptation algorithm, for α ∈ {10−2.5, 10−10, 10−40} (from left
to right) and k ∈ { 15 , 1

20 , 1
80 } (from top to bottom)
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Table 3 L∞/L2-errors of the curves discussed in the first example

λ = 10−2 λ = 10−6 λ = 10−10 λ = 10−14

Constant λ

1.48e−1 / 5.95e−2 6.87e−3 / 8.84e−4 8.57e−5 / 2.61e−5 8.58e−5 / 2.61e−5

λ from RWF adaptation algorithm

α = 10− 5
2 α = 10−10 α = 10−40

k = 1
5 4.94e−4 / 1.48e−4 2.46e−4 / 8.05e−5 8.57e−5 / 2.61e−5

k = 1
20 8.31e−4 / 2.57e−4 8.42e−4 / 3.10e−4 7.55e−4 / 2.73e−4

k = 1
80 9.81e−4 / 3.19e−4 9.60e−4 / 3.90e−4 9.96e−4 / 2.86e−4

Figure 9 depicts the automatically generated RWFs and the resulting approxima-
tions, respectively, for various values of the RWF mesh size k and of the constant α

that specifies the maximum discrete logarithmic slope of the RWF. We note that for
the same values of α the slope of the corresponding RWFs is approximately the same
for small enough values of k. We conclude the choice of k has little influence, provided
that it is sufficiently small.

Visual inspection indicates that we get best results for smaller values of both α and
h, which correspond to the lower right part of the second figure. Clearly, the possibility
to decrease these parameters is limited by the precision of the floating point numbers.

Table 3 reports the L∞-error and L2-error of the approximations. We note that the
errors obtained by the adaptive method all possess the same order of magnitude, while
the constant regularization needs low values of the regularization parameter to match
these results.

In the second example, we apply the method of data obtained from an optical scan
of a turbine blade. The input is a parameterized triangle mesh with 271, 914 vertices.

Fig. 10 Data (left) and the automatically generated adaptive RWF λ (right), both on the parameter domain
of the blade surface
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The data are approximated by solving the discrete regularized fitting problem (3) for
cubic tensor-product B-Splines with 27, 191 degrees of freedom.

We compare the results obtained for two constant values of the RWF λ, and for
a piecewise constant RWF with k = 0.015625, see Fig. 10, which is automatically

Fig. 11 The three approximations (surfaces and reflection line visualization) of a turbine blade. Top: λ =
10−4, center: λ = 10−6, bottom: adaptive λ
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generated by the error-guided adaptation algorithm with ε = 5 · 10−5 and α = 10−10.
The procedure is initialized with λ = 10−4.

The figure visualizes the distribution of the data in the parameter domain and
the automatically generated RWF, whose values vary between λ = 10−4 (red) and
λ = 5.6 · 10−6 (dark blue). Note that adaptation algorithm ensures low values of the
RWF near the leading edge of the blade (which corresponds to a centrally located
vertical line in the domain), while the values in the feature region (which is located in
the southwest corner of the domain) remain unchanged.

The approximations results are visualized in Fig. 11:

– For the larger constant RWF (top row), λ = 10−4, we observe no oscillations near
the feature of the blade, but we get a relatively high maximum error of 2.05 ·10−4.
Only 77% of the points satisfy the required tolerance 5 · 10−5.

– For the smaller constant RWF (middle row), λ = 10−6, we observe significant
oscillations near the feature, but we obtain a lower maximum error of 4.13 · 10−5.
Now, all the points are below the tolerance, but the surface quality is insufficient.

– Finally, the approximation with adaptively constructed λ (bottom) combines high
surface quality (no oscillations) with a low maximum error of 4.97 · 10−5. Again,
all the points satisfy the required tolerance.

4 Conclusion

We explored the use of a non-constant regularization weight function for least-squares
tensor-product spline fitting. First, we analyzed the effect of introducing a regular-
ization term for least-squares fitting in the context of data with holes. We established
conditions on the RWF, in particular on its behaviors near to the hole’s boundaries,
that ensure the optimal rate of convergence.

Second, we presented two methods for automatically generating non-constant
RWFs that are adapted to the data. The first one, which we called the support-guided
RWF, was shown to be particularly well suited for data with holes. The secondmethod,
which uses an iterative procedure to adapt the RWF to the data, is useful when features
are present in the data.

Besides the issue of stabilization, which was already mentioned in Section 2.2,
the possible future work may aim at extending the theoretical results to the discrete
case. Moreover, the regularization concepts for tensor-product spline surfaces can be
further advanced by the study of more flexible RWFs and their construction. So far,
only tensor-product splines were used as RWFs, thereby imposing limitations on the
shape of the support boundaries. Additional flexibility may be useful when dealing
with holes of general shape, and possibilities for adaptive refinement (cf. [7]) are
potentially beneficial as well.
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Appendix: A bound on the Sobolev seminorm of the truncated spline
projection

The proof of Theorem 1 relies on a bound on the Sobolev seminorm of the truncated
spline projection. We use this Appendix to present this result, together with its proof.

Proposition 1 We consider again the assumptions of Theorem 1. The truncated spline
projection defined in (5) satisfies

|uh |2W 2,2(Ω),λ
≤ εC3h

2p+2 ,

where the constant C3 depends on f , ω, p and q.

Before presenting the proof, we derive an auxiliary result.

Lemma 3 Given a point t0 ∈ [0, 1]d , we consider multi-indices ih satisfying

t0 ∈ suppB p
ih ,h

that are indexed by a zero sequence of mesh sizes h. The values of the associated linear
coefficient functionals converge to the value of the function at this point,

lim
h→0

μ
p
ih ,h

(φ) = φ(t0)

if φ is C2 smooth.

Proof For each mesh size h we denote with �h the d-dimensional knot span that
contains t0 (or one of them, if several knot spans with this property exist). As the first
step, we exploit the linearity of the coefficient functionals and the equivalence of the
norms on the finite-dimensional space of polynomials of degree p to conclude that

max
i:�h⊆suppB p

i,h

|μp
i,h(φ) − φ(t0)| = max

i:�h⊆suppB p
i,h

|μp
i,h

(
φ − φ(t0)

)|

≤ C9

hd

∥
∥
∥

∑

0≤i≤mh+p

B p
i,h(t)μ

p
i,h

(
φ − φ(t0)

)∥∥
∥
L2(�h)

= C9

hd

∥
∥
∥Π

p
h (φ) − φ(t0)

∥
∥
∥
L2(�h)

,

where the existence of the h-independent constant C9 is guaranteed by the quasi–
uniformity of the knot vectors. The factor 1/hd is due to the integration over the knot
span that is involved on the definition of the L2 norm on �h . Secondly we apply the
triangle inequality, arriving at

∥
∥
∥Π

p
h (φ) − φ(t0)

∥
∥
∥
L2(�h)

≤
∥
∥
∥Π

p
h (φ) − φ

∥
∥
∥
L2(�h)

+
∥
∥
∥φ − φ(t0)

∥
∥
∥
L2(�h)

.

123

58   Page 20 of 24



Adaptive and local regularization for data fitting... 

While we may use the inequality (2) with � = p and domain �h to bound the first
term on the right–hand side, the second term can be estimated via the first derivatives,
which gives

|φ(t) − φ(t0)| ≤ |hmax
t′∈�h

‖∇φ(t′)‖ | if t ∈ �h

since φ is required to be C2 smooth. Finally we complete the proof by combining
these observations to obtain

|μp
ih ,h

(φ) − φ(t0)| ≤ max
i:�h⊆suppB p

i,h

|μp
i,h(φ) − φ(t0)|

≤ C9

hd
(
C1h |φ|W 1,2(�h)︸ ︷︷ ︸

≤C11hd |φ|W2,∞(Ω)

+C10h
d+1|∇φ|W 1,∞(Ω)

)

and noting that the right-hand side converges to zero as h → 0. ��

Now we are ready to prove the proposition.

Proof (Proposition 1) Let

Hs = Ω \
⋃

i:ωBp
i,h �=0

suppBp
i,h ⊂ H

be the subdomain of Ω with the property that no basis function possesses a support
which simultaneously overlaps Ω0 and Hs , see Fig. 12.

Fig. 12 A domain Ω , a subdomain H (hole, light and dark blue) and the resulting subdomain Hs (dark
blue), for p = 3
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We split the domain into several subdomains and obtain

|uh |2W 2,2(Ω),λ
=

∫

Ω

λ(t)
d∑

ν,η=1

(∂νηuh(t))2dt

=
∫

Ω0

λ

d∑

ν,η=1

(∂νηuh)
2dt

︸ ︷︷ ︸
(a)

+
∫

H\Hs

λ

d∑

ν,η=1

(∂νηuh)
2dt

︸ ︷︷ ︸
(b)

+
∫

Hs

λ

d∑

ν,η=1

(∂νηuh)
2dt

︸ ︷︷ ︸
(c)

.

We note that λ|Ω0 = 0, thus the integral (a) does not contribute to the squared L2

norm. Similarly, the integral (c) also vanishes since T p
h (Π

p
h f )|Hs = 0. The integral

(b) can be estimated by

∫

H\Hs

λ

d∑

ν,η=1

(∂νηuh)
2dt =

∫

H\Hs

λ

d∑

ν,η=1

(∂νηT
p
h Π

p
h f )2dt

≤
∫

H\Hs

λ

d∑

ν,η=1

∑

i: 0≤i≤mh+p
j: 0≤j≤mh+p

B p
i,h ·B p

j,h |H\Hs �=0

|µp
i,h( f )µ

p
j,h( f )| |∂νηB

p
i,h∂νηB

p
j,h | dt.

According to Lemma 3 there exists a constant C4 — which depends on f — such
that the coefficient functionals satisfy |μp

i,h( f )| ≤ C4 if the value of h is sufficiently
small, hence

∫

H\Hs

λ

d∑

ν,η=1

(∂νηuh)
2dt ≤ C2

4

∫

H\Hs
λ

d∑

ν,η=1

∑

i: 0≤i≤mh+p
j: 0≤j≤mh+p

B p
i,h ·B p

j,h |H\Hs �=0

(|∂νηB
p
i,h∂νηB

p
j,h |)dt.

Moreover, for all ν, η, i and j there exists a constant C5 such that

|∂νηB
p
i,h∂νηB

p
j,h | ≤ C5h

−4,

thus

∫

H\Hs

λ

d∑

ν,η=1

(∂νηuh)
2dt ≤ C2

4C5h−4
∫

H\Hs
λ

d∑

ν,η=1

∑

i: 0≤i≤mh+p
j: 0≤j≤mh+p

B p
i,h ·B p

j,h |H\Hs �=0

1 dt.

The number of terms in the summation can be bounded by a constant multiplied with
the number of elements that intersect H \ Hs , i.e., by C6

hd−1 , where the constant C6
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depends on p, d and ω. We thus arrive at

∫

H\Hs

λ

d∑

ν,η=1

(∂νηuh)
2dt ≤ C2

4C5C6h
−d−3

∫

H\Hs

λ dt.

We now use the assumption (4), which implies

λ(t) ≤ εdist(t, ∂H)q ≤ εC7h
q on H \ Hs

and the fact that

vold(H \ Hs) ≤ C8h

to get

∫

H\Hs

λ dt ≤ εC7C8h
q+1.

Finally we arrive at

∫

H\Hs

λ

d∑

ν,η=1

(∂νηuh)
2dt ≤ εC2

4C5C6C7C8h
q−d−2.

The claimed result then follows since q ≥ 2p + 4 + d is assumed in the theorem. ��
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