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Abstract
In this paper, we consider the numerical approximations of the Ericksen-Leslie sys-
tem for nematic liquid crystal flows, which can be used to describe the dynamics
of low molar-mass nematic liquid crystal in certain materials. The main numerical
challenge to solve this system lies in how to discretize nonlinear terms so that the
energy stability can be held at the discrete level. This paper address this numerical
problem by constructing a fully discrete virtual element scheme with second-order
temporal accuracy, which is achieved by combining the extrapolated Crank-Nicolson
(C-N) time-stepping scheme for the nonlinear coupling terms and the convex splitting
method for the Ginzburg-Landau term. The unconditional energy stability and unique
solvability of the fully discrete scheme are rigorously proved, we further prove the
optimal error estimates of the developed scheme. Finally, some numerical experiments
are presented to demonstrate the accuracy, energy stability, and performance of the
proposed numerical scheme.
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1 Introduction

Liquid crystals are substances, which exhibit a phase of matter that has properties
between a conventional liquid and a solid crystal. For instance, a liquid crystal may
flow like a liquid, but has the molecules in the liquid arranged or oriented in a crystal-
like way. One of the simplest liquid crystal phases is called the nematic phase. It is
characterized by a high degree of long range orientational order but no translational
order. Molecules in a nematic phase spontaneously order with their (for calamitic
molecules) long axes roughly parallel. Readers can refer to [37] for a review on
dynamic phenomena in liquid crystal materials.

To describe the liquid crystal flows we need not only the orientation, as represented
by the director field d, but also a macroscopic motion, represented by the velocity
field u. Ericksen and Leslie derived a hydrodynamic model for nematic liquid crystals
[23, 24, 37]. To understand the Ericksen-Leslie theory from the analysis point of view,
Lin [26] proposed a simplified systemwhich retained most mathematical and physical
significance of the original model for liquid crystal flows. The Ericksen-Leslie system
also emphasized the special coupling between the director and the flow field. We refer
to [18, 24, 26, 28] and the references therein for the derivation of the above system and
further physical background on the continuum theory of liquid crystals. In addition to
the well-known barriers for analyzing the Navier–Stokes equations, the non-convex
side constraint |d| = 1 causes further difficulties (see [15]) for both analytically and
numerically, and is a main source for possible formation of defects of the system at
finite times. Hence, a widely used approach is to approximate the constraint |d| = 1
by a penalty function such as the Ginzburg-Landau approximation.

Considering the boundary condition for the director vector d to be time-independent
and for any fixed ε, Lin and Liu [27] proved the global existence of weak solution and
local existence of classical solution for the regularized Ericksen-Leslie system. The
numerical studies for the regularized Ericksen-Leslie system were firstly proposed
by Liu and Walkington [30, 31], but the uniform discrete energy law is not available
for the numerical solutions. In [29], Lin and Liu presented two linear finite element
schemes, the first was using a backward Euler approximation in time and the second
using a characteristic method, but the discrete energy law and error estimates of these
schemes are not proved. In [5], the authors proposed two fully discrete finite element
methods, the first scheme for the regularized Ericksen-Leslie systemwas uncondition-
ally stable and convergent to the original problem, and the second scheme based on
direct discretization for the original problem was conditionally stable, however, the
convergence orders of numerical scheme are missing. In [21], Guillén-González and
Gutiérrez-Santacreu investigated a fully discrete mixed scheme based on continuous
finite elements, but the error estimate for the pressure is not given. In [32, 45–47],
the authors developed the linear, first-order or second-order energy stable numerical
schemes for the nematic liquid crystal flows, but the algorithms only consider the time
semi-discrete version assuming continuous space.

The main purpose of this paper is to develop and analyze a fully discrete virtual
element scheme for the regularized Ericksen-Leslie system. As a generalization of
the standard finite element method that allows for general polytopal meshes, the vir-
tual element method (VEM) was first proposed and analyzed in [6]. The VEM has
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some advantages over the standard finite element method. For example, it can handle
general polygons (including non-convex elements, very distorted elements and curved
elements [14]) and build the high-order methods without complex integration. In addi-
tion, by using the degrees of freedom and the construction of some operators involved
in the discretization of the problem, the VEM not only avoids an explicit expression of
a local basis function, but also introduces a non-polynomial virtual element discrete
space that includes (but is not limited to) standard polynomials. These characteristics
of the VEM guarantee its accuracy and efficiency. Until now, there have developed
many conforming and nonconforming VEMs for the parabolic problems [1, 35, 41],
second-order elliptic problems [2, 6, 10, 17], linear and nonlinear elasticity problems
[7, 9, 19], the Stokes [16, 33] and Navier–Stokes equations [13, 20, 34, 36], and so
on. In short, the main advantages of VEM include an extension of the classical finite
element method (FEM) to general polygonal and polyhedral meshes, and also as a
generalization of the mimetic finite difference method to arbitrary degrees of accuracy
and arbitrary continuity properties. We also mention that, compared with the standard
FEM for the nematic liquid crystal flows, the VEM can help us achieve higher order
approximations to gain better accuracy for the orientation vector d, which can be
confirmed by the numerical examples.

However, to our best knowledge, how to use theVEM for solving the hydrodynamic
model of nematic liquid crystal flows has not been resolved successfully, this is by
no means an easy task due to the highly nonlinear terms and the couplings among
the velocity, pressure and orientation vector of liquid crystals. The main contribution
of this paper is to develop an extrapolated Crank-Nicolson virtual element scheme
with second-order temporal accuracy for the nematic liquid crystal flows. Further-
more, we rigorously prove the unconditional energy stability, unique solvability and
optimal error estimates for the proposed scheme, especially for the pressure. Through
a set of benchmarking simulations, we further demonstrate the stability, accuracy and
effectiveness of the proposed schemes thereafter.

The rest of paper is organized as follows. In the next section, we establish the
hydrodynamics system for the nematic liquid crystal flows, and derive the uncondi-
tional energy stability in the continuous level. In Section 3, we propose a fully discrete
virtual element scheme and derive some properties of the numerical scheme, i.e., the
unique solvability, and the discrete energy law. In Section 4, we rigorously prove
the optimal error estimates for the proposed scheme. In Section 5, we perform some
numerical simulations to show the accuracy and efficiency of the developed scheme.
Section 6 provides some concluding remarks.

2 Preliminaries

2.1 Themodel system

We use E to denote the sum of the kinetic and Helmholtz free energy, which is
described by

E = Ekin + E, (2.1)
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where Ekin is the kinetic energy and E is the free energy, respectively, given by

Ekin =
∫

�

1

2
|u|2dx, E =

∫
�

f elast(d)dx, (2.2)

where u : �T → R
2 is the incompressible velocity field and d : �T → R

2 is the
orientation vector of liquid crystal molecules, where�T = �×(0, T ),� is a bounded
open subset of R2 with boundary ∂� and T > 0 is the final time. The energy density
f elast(d) is given by

f elast(d) = λ1

2
(∇ · d)2 + λ2

2
[d · (∇ × d)]2 + λ3

2
[d × (∇ × d)]2, (2.3)

where λ1, λ2 and λ3 are the Frank elastic constants describing splay, twist and bend
deformation, respectively. For simplicity, under the assumption that the Frank elastic
constants λ1 = λ2 = λ3 = λ, and the bulk liquid crystal energy has the form of
the Ginzburg-Landau energy for d, the potential term in the energy penalizes for
deviations of |d| from some constant value and replaces the hard length constraint of
the Oseen-Frank theory [43]. Then, the "regularized" bulk energy density of the liquid
crystal can be written as

f elast(d) = λ

2
|∇d|2 + 1

ε2
F(d), (2.4)

in which λ > 0 is the elastic constant, and 1
ε2
F(d) is a penalty term of the Ginzburg-

Landau energy, where ε is a penalization parameter, f (d) = ∇d F(d) for F(d) =
1
4 (|d|2 − 1)2 (see [15, 26, 27]).

By using the L2-gradient flow approach for the director field d, and the incom-
pressible Navier–Stokes equation for the fluid momentum, the hydrodynamics system
of the nematic liquid crystal flows is governed by:

d t + u · ∇d + γω = 0, in �T , (2.5a)

ω = −λ�d + 1
ε2

f (d), in �T , (2.5b)

ut + (u · ∇)u − ν�u + ∇ p − (∇d)Tω = 0, in �T , (2.5c)

∇ · u = 0, in �T , (2.5d)

where p : �T → R is the pressure, ω is the chemical potential derived by the
variational derivative of the total free energy, γ > 0 is the mobility constant and
ν > 0 is the fluid viscosity.

The above system (2.5a) should be completed by an appropriate initial and boundary
condition. For the sake of simplicity, we consider the following initial and boundary
conditions:

d(x, 0) = d0(x), u(x, 0) = u0(x), x ∈ �, (2.6)
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d(x, t) = 0, u(x, t) = 0 on (x, t) ∈ ∂� × (0, T ), (2.7)

where d0 : � → R
2 and u0 : � → R

2 are given functions.

2.2 Weak formulation

For 0 ≤ s ≤ ∞, 1 ≤ p ≤ ∞, we denote by Ws,p(D) and L p(D) the usual Sobolev
spaces andLebesgue spaces on a bounddomainD, equippedwith the norms ‖·‖Ws,p(D)

and ‖ · ‖L p(D), respectively. Let Hs(D) represent Ws,2(D) (where H0(D) represents
L2(D)), andwe define the inner (·, ·)s,D equippedwith the norm ‖·‖s,D and seminorm
| · |s,D. Especially, if D = �, we denote the L2 inner product (·, ·)0,� by (·, ·), while
the norm ‖ · ‖s,� and the seminorm | · |s,� are denoted by ‖ · ‖s and | · |s , respectively.
Boldfaced letters will be related to vector spaces, for instance, L p denotes a vectorial
L p space.

Now, we will introduce the function spaces

X : = H1
0(�), Y := L2(�), V := {v ∈ H1

0(�) : ∇ · v = 0},
Q : = L2

0(�) =
{
q ∈ L2(�) :

∫
�

qdx = 0

}
.

And we consider the linear forms:

M1(ϕ,ψ) :=
∑
K∈Ih

MK
1 (ϕ,ψ), ∀ϕ,ψ ∈ X;

M2(u, v) :=
∑
K∈Ih

MK
2 (u, v), ∀u, v ∈ V ;

A1(ϕ,ψ) :=
∑
K∈Ih

AK
1 (ϕ,ψ), ∀ϕ,ψ ∈ X;

A2(u, v) :=
∑
K∈Ih

AK
2 (u, v), ∀u, v ∈ V ;

B(v, q) :=
∑
K∈Ih

BK (v, q),∀v ∈ V , q ∈ Q;

D(v;ϕ,ψ) :=
∑
K∈Ih

DK (v;ϕ,ψ),∀v ∈ V ,ϕ ∈ X,ψ ∈ Y ;

C(u; v, z) :=
∑
K∈Ih

CK (u; v, z), ∀u, v, z ∈ V .
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where the local contributions are given as

MK
1 (ϕ,ψ) := (ϕ,ψ)0,K ; MK

2 (u, v) := (u, v)0,K ;
AK

1 (ϕ,ψ) := (∇ϕ,∇ψ)0,K ; AK
2 (u, v) := (∇u,∇v)0,K ;

BK (v, q) := (∇ · v, q)0,K ; DK (v;ϕ,ψ) := (v · ∇ϕ,ψ)0,K ;
CK (u; v, z) := 1

2
((u · ∇)v, z)0,K − 1

2
((u · ∇)z, v)0,K .

The variational formulation of problem (2.5a) reads as follows: Find (d,ω, u, p) ∈
X × Y × V × Q, for all (ξ , θ , v, q) ∈ X × Y × V × Q, for almost all t ∈ (0, T ),
there holds

M1(d t , θ) + D(u; d, θ) + γM1(ω, θ) = 0, (2.8a)

M1(ω, ξ) = λA1(d, ξ) + 1

ε2
( f (d), ξ), (2.8b)

M2(ut , v) + C(u; u, v) + νA2(u, v) − B(v, p) − D(v; d,ω) = 0, (2.8c)

B(u, q) = 0, (2.8d)

where we use the fact (v · ∇d,ω)0,K = ((∇d)Tω, v)0,K (see [21]). We endow (2.9)
with initial conditions d(·, 0) = d0 and u(·, 0) = u0. It is straightforward to show
that the system (2.8a) admits the law of energy, we state the result as a lemma here.

Lemma 2.1 Let (d,ω, u, p) solve (2.8a). Then, the energy law is satisfying

E(u, d) +
∫ t

0
(ν|u|21 + γ ‖ω‖20)ds = E(u0, d0),

where the energy is defined by

E(u, d) = 1

2
‖u‖20 + λ

2
|d|21 + 1

ε2
(F(d), 1).

Proof By setting (θ , ξ , v, q) = (ω, d t , u, p) and taking the summation of the four
equations in (2.8a), we can easily get

1

2

d

dt
‖u‖20 + λ

2

d

dt
|d|21 + 1

ε2

d

dt
(F(d), 1) + ν|u|21 + γ ‖ω‖20 = 0. (2.9)
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After taking the integration of the above equation (2.9) from 0 to t , the desired
result can be obtained. The proof is finished.

3 Fully discrete virtual element scheme

3.1 Virtual element

The purpose of this section is to present the virtual element spaces and discrete bilinear
(and trilinear) forms.

3.1.1 Mesh notation andmesh regularity

Let {Ih} be a sequence of decompositions of � into polygonal elements K . Further-
more, hK is the diameter of K , and h := maxK∈Ih hK . For a given edge e ∈ Ih , we
write he for its length. Then, we make the following assumptions on Ih : there exists
constants ρ0, ρ1 > 0 such that for all K ∈ Ih ,

(S1) K is star-shaped with respect to a ball of radius ρ ≥ ρ0hK ;
(S2) he ≥ ρ1hK for all e ∈ Ih .

3.1.2 The construction of virtual element space Xh

Using the standard VEM notations, for k ∈ N, let us define the spaces

• Pk(K ), the set of polynomials of degree at most k on K (especially, P−1(K ) :=
{0}).

• Pk(e), the set of polynomials of degree at most k on e (especially, P−1(e) := {0}).
• B(∂K ) := {v ∈ C0(∂K ) : v|e ∈ Pk(e) for all edges e ∈ ∂K }.
• X̃h|K := {ϕ ∈ C0(K ) ∩ H1(K ) : ϕ|∂K ∈ [B(∂K )]2, �ϕ ∈ [Pk(K )]2}.

Next, we will introduce the helpful polynomial projections �
0,K
k and �

∇,K
k asso-

ciated with K ∈ Ih as follows:

• The L2-projection �
0,K
k : L2(K ) → [Pk(K )]2, defined by

(�
0,K
k ϕ, pk)0,K = (ϕ, pk)0,K , ∀ϕ ∈ L2(K ) and ∀ pk ∈ [Pk(K )]2.

• The H1-projection �
∇,K
k : H1(K ) → [Pk(K )]2, given by

⎧⎪⎨
⎪⎩

(∇�
∇,K
k ϕ,∇ pk)0,K = (∇ϕ,∇ pk)0,K , ∀ϕ ∈ H1(K ) and ∀ pk ∈ [Pk(K )]2,∫

∂K
�

∇,K
k ϕ ds =

∫
∂K

ϕ ds.
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Then, let k be a fixed positive integer and consider the following local virtual
element space on each K ∈ Ih (see [6])

Xh|K : = {ϕ ∈ X̃h|K : (�
∇,K
k ϕ, pk)0,K

= (ϕ, pk)0,K , pk ∈ [Pk(K )]2/[Pk−2(K )]2}, (3.1)

where the symbol [Pk(K )]2/[Pk−2(K )]2 denotes the polynomials in [Pk(K )]2 that
are L2-orthogonal to all polynomials of [Pk−2(K )]2 (observing that [Pk−2(K )]2 ⊂
[Pk(K )]2). And its degrees of freedom are given as follows:

I. the values of ϕ at the vertices of K ;
II. the values of ϕ at k − 1 uniformly spaced points on each edge e;
III. the moments

∫
K

ϕ · pk−2 dx, ∀ pk−2 ∈ [Pk−2(K )]2.
(3.2)

It is noteworthy that�0,K
k and�

∇,K
k are computable from (3.2) (see [6, 8]). Finally,

the global discrete virtual element space can be shown as

Xh := {ϕ ∈ X : ϕ|K ∈ Xh|K , ∀K ∈ Ih}. (3.3)

Under the assumption (S1)-(S2), the following estimates can be obtained for the
projection and interpolation operators [2, 44].

• For ∀K ∈ Ih and ∀ϕ ∈ Hs+1(K ) with s ∈ N, 1 ≤ s ≤ k, there holds

‖ϕ − �
0,K
k ϕ‖0,K + hK |ϕ − �

0,K
k ϕ|1,K ≤ Chs+1

K |ϕ|s+1,K . (3.4)

• There exists an interpolation ϕ I ∈ Xh|K such that for ϕ ∈ Hs+1(K ) with 1 ≤
s ≤ k, there holds

‖ϕ − ϕ I‖0,K + hK |ϕ − ϕ I |1,K ≤ Chs+1
K |ϕ|s+1,K . (3.5)

3.1.3 The construction of virtual element spaces V h and Qh

Follow with [12], for k ≥ 2, let us introduce the spaces

Gk(K ) := ∇(Pk+1(K )) ⊆ [Pk(K )]2,
Gk(K )⊥ := x⊥[Pk−1(K )] ⊆ [Pk(K )]2 with x⊥ := (x2,−x1) ,

Ṽ h|K :=
{
v ∈ H1(K ), s.t. v

∣∣∣
∂K

∈ [Bk(∂K )]2 ,

{−�v − ∇s ∈ Gk(K )⊥, for some s ∈ L2(K )

divv ∈ Pk−1(K ),

}
.
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Now we define the virtual element space V h|K as the restriction of Ṽ h|K given by

V h|K : = {v ∈ Ṽ h|K : (�
∇,K
k v, g⊥

k )0,K = (v,

g⊥
k )0,K , g⊥

k ∈ G⊥
k (K )/G⊥

k−2(K )}. (3.6)

Also, the corresponding unisolvent degrees of freedom in V h|K can be divided into
the following four types

(D1). the values of v at the vertexes of the polygon K ;
(D2). the values of v at k − 1 distinct points of every edge e ∈ ∂K ;
(D3). the moments

∫
K

v · g⊥
k−2 dx, ∀g⊥

k−2 ∈ G⊥
k−2(K );

(D4). the moments
∫
K
(divv)pk−1 dx, ∀pk−1 ∈ Pk−1(K )/R.

(3.7)

Then, the global virtual element space can be denoted as:

V h := {v ∈ V : v|K ∈ V h|K , ∀K ∈ Ih}. (3.8)

The following estimates can be obtained by using the assumption (S1)-(S2) (see
[12, 13]):

• For ∀K ∈ Ih and ∀v ∈ Hs+1(K ) with s ∈ N, 1 ≤ s ≤ k, we have

‖v − �
0,K
k v‖0,K + hK |v − �

0,K
k v|1,K ≤ Chs+1

K |v|s+1,K . (3.9)

• There exists an interpolation v I ∈ V h|K such that for v ∈ Hs+1(K ) with 1 ≤ s ≤
k, we have

‖v − v I ‖0,K + hK |v − v I |1,K ≤ Chs+1
K |v|s+1,K . (3.10)

For the chemical potential and the pressure, we take the standard finite-dimensional
spaces

Y h|K := [Pk(K )]2, Qh|K := Pk−1(K ), (3.11)

with the corresponding global virtual element spaces

Y h := {μ ∈ Y : μ|K ∈ Y h|K , ∀K ∈ Ih}, (3.12)

Qh := {q ∈ Q : q|K ∈ Qh|K , ∀K ∈ Ih}, (3.13)
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and we also remark that

divV h ⊆ Qh . (3.14)

3.1.4 The discrete forms and their properties

Next, our aim is to define a discrete version of the linear forms in (2.8a).

• Given Mh1(·, ·) : Xh|K × Xh|K → R and Mh2(·, ·) : V h|K × V h|K → R, we
define

Mh1(ϕh,ψh) :=
∑
K∈Ih

MK
h1(ϕh,ψh), Mh2(uh, vh) :=

∑
K∈Ih

MK
h2(uh, vh),

where the local contributions are given as

MK
h1(ϕh,ψh) := (�

0,K
k ϕh,�

0,K
k ψh)0,K

+|K |SKM(ϕh − �
0,K
k ϕh,ψh − �

0,K
k ψh),

MK
h2(uh, vh) := (�

0,K
k uh,�

0,K
k vh)0,K

+|K |SKM(uh − �
0,K
k uh, vh − �

0,K
k vh),

within SKM denotes a stabilization term.As amatter of fact, under themesh assump-
tions (S1)-(S2), we can take the following scaled stabilization corresponding to
the degrees of freedom

SKM(ϕh − �
0,K
k ϕh,ψh − �

0,K
k ψh) =

dimXh|K∑
j=1

dof
Xh|K
j (ϕh − �

0,K
k ϕh)

·dof Xh|K
j (ψh − �

0,K
k ψh),

SKM(uh − �
0,K
k uh, vh − �

0,K
k vh) =

dimV h|K∑
j=1

dof
V h|K
j (uh − �

0,K
k uh)

·dof V h|K
j (vh − �

0,K
k vh).

• Also, we defineAh1(·, ·) : Xh|K ×Xh|K → R andAh2(·, ·) : V h|K ×V h|K → R,
given by

Ah1(ϕh,ψh) :=
∑
K∈Ih

AK
h1(ϕh,ψh), Ah2(uh, vh) :=

∑
K∈Ih

AK
h2(uh, vh),
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where the local contributions are given as

AK
h1(ϕh,ψh) := (�

0,K
k−1∇ϕh,�

0,K
k−1∇ψh)0,K

+SKA(ϕh − �
∇,K
k ϕh,ψh − �

∇,K
k ψh),

AK
h2(uh, vh) := (�

0,K
k−1∇uh,�

0,K
k−1∇vh)0,K

+SKA(uh − �
∇,K
k uh, vh − �

∇,K
k vh),

in which SKA is a stabilization term, denoted by

SKA(ϕh − �
∇,K
k ϕh,ψh − �

∇,K
k ψh) =

dimXh|K∑
j=1

dof
Xh|K
j (ϕh − �

∇,K
k ϕh)

·dof Xh|K
j (ψh − �

∇,K
k ψh),

SKA(uh − �
∇,K
k uh, vh − �

∇,K
k vh) =

dimV h|K∑
j=1

dof
V h|K
j (uh − �

∇,K
k uh)

·dof V h|K
j (vh − �

∇,K
k vh).

• Regarding B(·, ·) : V h|K × Qh|K → R, we simply set

B(vh, qh) :=
∑
K∈Ih

BK (vh, qh) =
∑
K∈Ih

(∇ · vh, qh)0,K ,

i.e., as stated in [12, 13], we do not introduce any approximation of the bilinear
form. We notice that B(vh, qh) is computable from (3.7), since qh is polynomial
in each element K ∈ Ih .

• Next, given Dh(·; ·, ·) : V h|K × Xh|K × Y h|K → R, we define

Dh(vh;ϕh,ψh) :=
∑
K∈Ih

DK
h (vh;ϕh,ψh),

with local contributions

DK
h (vh;ϕh,ψh) := (�

0,K
k vh · �

0,K
k−1∇ϕh,�

0,K
k ψh)0,K .

• Moreover, we define Ch(·; ·, ·) : V h|K × V h|K × V h|K → R as

Ch(uh; vh, zh) :=
∑
K∈Ih

CK
h (uh; vh, zh),
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where

CK
h (uh; vh, zh) := 1

2
(�

0,K
k uh · �

0,K
k−1∇vh,�

0,K
k zh)0,K

−1

2
(�

0,K
k uh · �

0,K
k−1∇ zh,�

0,K
k vh)0,K .

Due toMh1(ϕh,ϕh) ≥ 0,Mh2(vh, vh) ≥ 0,Ah1(ϕh,ϕh) ≥ 0 andAh2(vh, vh) ≥
0 (see Lemma 3.3), we also define some energy norms, for all ϕh ∈ Xh and vh ∈ V h ,

|||ϕh |||2M1
:= Mh1(ϕh,ϕh) =

∑
K∈Ih

MK
h1(ϕh,ϕh), (3.15)

|||vh |||2M2
:= Mh2(vh, vh) =

∑
K∈Ih

MK
h2(vh, vh), (3.16)

|||ϕh |||2A1
:= Ah1(ϕh,ϕh) =

∑
K∈Ih

AK
h1(ϕh,ϕh), (3.17)

|||vh |||2A2
:= Ah2(vh, vh) =

∑
K∈Ih

AK
h2(vh, vh). (3.18)

Next, we will collect and prove some crucial properties of the discrete local linear
forms as follows.

Lemma 3.1 (see [6, 11]) The local bilinear forms MK
h1, MK

h2, AK
h1, AK

h2 on each
element K satisfy

(i) Consistency: for all pk ∈ [Pk(K )]2 and ϕh ∈ Xh|K , vh ∈ V h|K , there hold

MK
h1( pk,ϕh) = MK

1 ( pk,ϕh), MK
h2( pk, vh) = MK

2 ( pk, vh),

AK
h1( pk,ϕh) = AK

1 ( pk,ϕh), AK
h2( pk, vh) = AK

2 ( pk, vh).

(ii) Stability: there exist positive constants α�
i , α

∗
i , i = 1, 2, 3, 4, independent of h

and K , such that for all ϕh ∈ Xh|K and vh ∈ V h|K ,

α�
1MK

1 (ϕh,ϕh) ≤ MK
h1(ϕh,ϕh) ≤ α∗

1MK
1 (ϕh,ϕh),

α�
2MK

2 (vh, vh) ≤ MK
h2(vh, vh) ≤ α∗

2MK
2 (vh, vh),

α�
3AK

1 (ϕh,ϕh) ≤ AK
h1(ϕh,ϕh) ≤ α∗

3AK
1 (ϕh,ϕh),

α�
4AK

2 (vh, vh) ≤ AK
h2(vh, vh) ≤ α∗

4AK
2 (vh, vh).

Since the symmetry of MK
h1(·, ·), MK

h2(·, ·), AK
h1(·, ·), AK

h2(·, ·), we obtain the fol-
lowing continuity results.
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Lemma 3.2 (see [6, 12]) There exist the constants C̃1, C̃2, C̃3, C̃4 > 0, independent
of h, for all ϕh,ψh ∈ Xh and uh, vh ∈ V h, such that

Mh1(ϕh,ψh) ≤ C̃1‖ϕh‖0‖ψh‖0, Mh2(uh, vh) ≤ C̃2‖uh‖0‖vh‖0,
Ah1(ϕh,ψh) ≤ C̃3|ϕh |1|ψh |1, Ah2(uh, vh) ≤ C̃4|uh |1|vh |1.

From the stability result in Lemma 3.1, we can get the coercivity of MK
h1, MK

h2,
AK

h1, AK
h2.

Lemma 3.3 (see [11, 13]) There exist the constants α1, α2, α3, α4 > 0, independent
of h, for all ϕh ∈ Xh and vh ∈ V h, such that

Mh1(ϕh,ϕh) ≥ α1‖ϕh‖20, Mh2(vh, vh) ≥ α2‖vh‖20,
Ah1(ϕh,ϕh) ≥ α3|ϕh |21, Ah2(vh, vh) ≥ α4|vh |21.

The bilinear form B(·, ·) satisfy the discrete inf-sup condition.
Lemma 3.4 (see [12, 13])Under themesh regularity assumption (S1)-(S2), there exists
a positive constant β independent of h such that

sup
vh∈V h ,vh �=0

B(vh, qh)

|vh |1 ≥ β‖qh‖0, ∀qh ∈ Qh .

Similarly, we have the following continuity properties for Dh(·; ·, ·) and Ch(·; ·, ·),
respectively.

Lemma 3.5 There exist the constants Ĉ1, Ĉ2, Ĉ3, Ĉ4 > 0, independent of h, such that
for all ϕh ∈ Xh, ψh ∈ Y h, uh, vh, zh ∈ V h,

|Dh(vh;ϕh,ψh)| ≤ Ĉ1‖ϕh‖W1,∞(�)‖vh‖0‖ψh‖0,
|Dh(vh;ϕh,ψh)| ≤ Ĉ2‖vh‖L∞(�)|ϕh |1‖ψh‖0,
|Ch(uh; vh, zh)| ≤ Ĉ3‖uh‖L∞(�)|vh |1‖zh‖0,
|Ch(uh; vh, zh)| ≤ Ĉ4|uh |1|vh |1|zh |1.

Proof The first three inequalities can be obtained by the Hölder inequality, the con-
tinuity of the projection �

0,K
k with respect to the L∞-norm, and the proof of last

inequality can be found in [13]. ��
Lemma 3.6 Under the assumption (S1)-(S2), consider v ∈ Hk(�) ∩ L∞(�), ϕ ∈
Hk+1(�) ∩ W1,∞(�) with k ≥ 1, for ∀ψh ∈ Y h, we can obtain

|D(v;ϕ,ψh) − Dh(v;ϕ,ψh)| ≤ Chk(‖v‖L∞(�)‖ϕ‖k+1 + ‖ϕ‖W1,∞(�)‖v‖k)‖ψh‖0.
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Proof According to the definitions ofD(·; ·, ·) andDh(·; ·, ·), using theHölder inequal-
ity, the continuity of �

0,K
k and �

0,K
k−1, we have

D(v;ϕ,ψh) − Dh(v;ϕ,ψh)

=
∑
K∈Ih

{(v · ∇ϕ,ψh)0,K − (�
0,K
k v · �

0,K
k−1∇ϕ,�

0,K
k ψh)0,K }

=
∑
K∈Ih

{[(v · ∇ϕ,ψh)0,K − (�
0,K
k−1(v · ∇ϕ),�

0,K
k ψh)0,K ]

+ [(�0,K
k−1(v · ∇ϕ),�

0,K
k ψh)0,K − (�

0,K
k−1(v · �

0,K
k−1∇ϕ),�

0,K
k ψh)0,K ]

+ [(�0,K
k−1(v · �

0,K
k−1∇ϕ),�

0,K
k ψh)0,K − (�

0,K
k v · �

0,K
k−1∇ϕ,�

0,K
k ψh)0,K ]}

=
∑
K∈Ih

{J1 + J2 + J3}.

(3.19)

By the definition of �
0,K
k and the Hölder inequality, we obtain

∑
K∈Ih

J1 =
∑
K∈Ih

(I − �
0,K
k−1)(v · ∇ϕ),ψh)0,K

≤ ChkK
∑
K∈Ih

‖v‖L∞(K )‖∇ϕ‖k,K ‖ψh‖0,K

≤ Chk‖v‖L∞(�)‖ϕ‖k+1‖ψh‖0.

(3.20)

Using the continuity of �
0,K
k and �

0,K
k−1, the Hölder inequality and from (3.4), we

get

∑
K∈Ih

J2 ≤
∑
K∈Ih

‖v‖L∞(K )‖(I − �
0,K
k−1)∇ϕ‖0,K ‖ψh‖0,K

≤ ChkK
∑
K∈Ih

‖v‖L∞(K )‖∇ϕ‖k,K ‖ψh‖0,K

≤ Chk‖v‖L∞(�)‖ϕ‖k+1‖ψh‖0.

(3.21)

For the term J3 in (3.19), using the Hölder inequality, we have

∑
K∈Ih

J3 ≤
∑
K∈Ih

‖�0,K
k−1∇ϕ‖L∞(K )‖(I − �

0,K
k−1)v‖0,K ‖ψh‖0,K

≤ ChkK
∑
K∈Ih

‖�0,K
k−1∇ϕ‖L∞(K )‖v‖k,K ‖ψh‖0,K ,

note that, the term ‖�0,K
k−1∇ϕ‖L∞(K ) can be estimated as

‖�0,K
k−1∇ϕ‖L∞(K ) ≤ h−1

K ‖�0,K
k−1∇ϕ‖L∞(K ) ≤ h−1

K ‖∇ϕ‖L∞(K ) ≤ ‖ϕ‖W1,∞(K ),
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and thus,

∑
K∈Ih

J3 ≤ Chk‖ϕ‖W1,∞(�)‖v‖k‖ψh‖0. (3.22)

Consequently, combining (3.20)–(3.22) with (3.19) together, the proof of the
desired result is finished.

Lemma 3.7 Under the assumption (S1)-(S2), consider u, v ∈ X ∩ Hk+1 with k ≥ 1,
for ∀zh ∈ V h, we can obtain

|C(u; v, zh) − Ch(u; v, zh)| ≤ Chk(‖u‖k+1(‖v‖k+1 + ‖v‖1)
+‖v‖k+1(‖u‖k + ‖v‖1))|zh |1.

Proof By definition of C(·; ·, ·) and Ch(·; ·, ·), one can obtain

C(u; v, zh) − Ch(u; v, zh) = 1

2

∑
K∈Ih

[(u · ∇v, zh)0,K − (�
0,K
k u · �

0,K
k−1∇v, �

0,K
k zh)0,K ]

− 1

2

∑
K∈Ih

[(u · ∇ zh , v)0,K − (�
0,K
k u · �

0,K
k−1∇ zh , �

0,K
k v)0,K ]

:= 1

2
T1 − 1

2
T2.

(3.23)

For the term T1, by simple calculation, we have

T1 =
∑
K∈Ih

{(u · ∇v, (I − �
0,K
k )zh)0,K + ((I − �

0,K
k )u · ∇v,�

0,K
k zh)0,K

+ ((�
0,K
k u) · (I − �

0,K
k−1)∇v,�

0,K
k zh)0,K }

:=
∑
K∈Ih

{T11 + T12 + T13}.
(3.24)

Using the definition of �
0,K
k and the Hölder inequality, we have

∑
K∈Ih

T11 =
∑
K∈Ih

(u · ∇v, (I − �
0,K
k )zh)0,K

=
∑
K∈Ih

((I − �
0,K
k−2)(u · ∇v), (I − �

0,K
k )zh)0,K

≤ Chk |u · ∇v|k−1|zh |1.

(3.25)

and by the Hölder inequality and Sobolev embedding Hk(�) ⊂ W k−1,4(�), we infer

|u · ∇v|k−1 ≤ ‖u‖W k−1,4‖∇v‖W k−1,4 ≤ C‖u‖k‖∇v‖k . (3.26)

123

Page 15 of 43    30



Zou et al.

By (3.25) and (3.26) we finally obtain

∑
K∈Ih

T11 ≤ Chk‖u‖k‖v‖k+1|zh |1. (3.27)

For the term T12 in (3.24), using the Hölder inequality, we have

T12 = ((I − �
0,K
k )u · ∇v,�

0,K
k zh)0,K

≤ ‖∇v‖0,K ‖(I − �
0,K
k )u‖L4(K )‖�0,K

k zh‖L4(K ).
(3.28)

From (3.10), we know that, there exists a polynomial uπ ∈ Pk(K ) such that

‖u − uπ‖L4(K ) ≤ ChkK |u|W k,4(K ),

and thus, by the continuity of �
0,k
K with respect to the L2-norm

‖(I − �
0,K
k )u‖L4(K ) ≤ ‖u − uπ‖L4(K ) + ‖�0,K

k (u − uπ )‖L4(K )

≤ C‖u − uπ‖L4(K ) ≤ ChkK |u|Wk,4(K ).
(3.29)

Applying the Hölder inequality and Sobolev embeddings H1(�) ⊂ L4(�) and
Hk+1(�) ⊂ W k,4(�), by (3.28) and (3.29), we obtain

∑
K∈Ih

T12 ≤ ChkK
∑
K∈Ih

‖∇v‖0,K |u|W k,4(K )‖zh‖L4(K )

≤ Chk‖v‖1‖u‖k+1|zh |1.
(3.30)

For the term T13 in (3.24), it holds that

∑
K∈Ih

T13 =
∑
K∈Ih

((�
0,K
k u) · (I − �

0,K
k−1)∇v,�

0,K
k zh)0,K

≤ Chk |∇v|k,K ‖u‖L4(K )‖zh‖L4(K )

≤ Chk‖v‖k+1‖u‖1|zh |1.

(3.31)

By combining (3.27), (3.30) and (3.31), we get

|T1| ≤ Chk(‖u‖k‖v‖k+1 + ‖v‖1‖u‖k+1 + ‖v‖k+1‖u‖1)|zh |1. (3.32)
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For the second term T2, applying the Hölder inequality and the Sobolev embedding,
we obtain

T2 =
∑
K∈Ih

{(u · ∇ zh, (I − �
0,K
k )v)0,K + ((I − �

0,K
k )u · ∇ zh,�

0,K
k v)0,K

+ ((�
0,K
k u) · (I − �

0,K
k−1)∇ zh,�

0,K
k v)0,K }

≤ Chk(‖u‖k+1‖v‖k+1 + ‖v‖1‖u‖k+1 + ‖v‖k+1‖u‖1)|zh |1.

(3.33)

We finish the proof by combining (3.32)–(3.33) with (3.23).

3.2 Fully discrete scheme

We choose the time step size τ = T /N , where N represents the number of the time
sequence, and we give tn = nτ, n = 0, . . . , N . Moreover, for any sufficiently regular
time function ϕ(·, t), we denote ϕn = ϕ(·, tn), and also introduce the backward
differential operator δt satisfying

δtϕ
n = ϕn − ϕn−1

τ
.

For convenience, the following notations will be used throughout this paper

dn+ 1
2 = dn+1 + dn

2
, ˜d

n+ 1
2 = 3dn − dn−1

2
,

un+ 1
2 = un+1 + un

2
, ũn+ 1

2 = 3un − un−1

2
.

Due to the strong nonlinearity of the penalty function, a challenging issue to solve
the system (2.5a) numerically is how to design efficient schemes that preserve the
energy stability of the discrete system. In this study, we will regularize the penalty
function through the idea of convex splitting. More precisely, we rewrite F(d) as the
sum of a convex function and a concave function

F(d) = Fv(d) + Fc(d) := 1

4
d4 + (−1

2
d2 + 1

4
),

and accordingly f (d) = f v(d) + f c(d) := d3 − d.
The idea of convex splitting is to use explicit discretization for the concave part

(i.e., f c (̃d
n+ 1

2 )) and implicit discretization for the convex part. Thus, we approximate

f v(d
n+ 1

2 ) by the Crank-Nicolson scheme

f v(d
n+ 1

2 ) ≈ Fv(dn+1) − Fv(dn)

dn+1 − dn
= 1

2
((dn+1)2 + (dn)2)dn+ 1

2 .
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Now, we will propose a fully discrete virtual element scheme with second-order
temporal accuracy as follows.

Find (dn+1
h ,ωn+1

h , un+1
h , pn+1

h ) ∈ Xh×Y h×V h×Qh such that forn = 0, · · · , N−
1 and (ξh, θh, vh, qh) ∈ Xh × Yh × V h × Qh , there hold

Mh1(δt d
n+1
h , θh) + Dh(u

n+ 1
2

h ; d̃n+ 1
2

h , θh) + γMh1(ω
n+ 1

2
h , θh) = 0, (3.34a)

Mh1(ω
n+ 1

2
h , ξ h) = 1

2ε2
(((�0

kd
n+1
h )2 + (�0

kd
n
h)

2)�0
kd

n+ 1
2

h ,�0
kξh) (3.34b)

− 1

ε2
(�0

k
˜d
n+ 1

2
h ,�0

kξh) + λAh1(d
n+ 1

2
h , ξ h),

Mh2(δtu
n+1
h , vh) + Ch (̃un+ 1

2
h ; un+ 1

2
h , vh) + νAh2(u

n+ 1
2

h , vh) (3.34c)

−B(vh, p
n+ 1

2
h ) − Dh(vh; d̃n+ 1

2
h ,ω

n+ 1
2

h ) = 0,

B(u
n+ 1

2
h , qh) = 0, (3.34d)

where we set d0h = d0I , ω0
h = ω0

I , u
0
h = u0I , and d0I , ω0

I , u
0
I denote the suitable

interpolations of d0, ω0, u0 (see (3.5) and (3.10)), respectively. Let �0
k be the pro-

jection onto the piecewise (with respect to Ih) polynomials up to degree k satisfying
�0

kξh |K = �
0,K
k ξh for all ξh ∈ Xh .

Remark 3.1 Since the extrapolated C-N scheme (3.34a) is a two-step scheme, it needs
two initial values to achieve second-order accuracy. For simplicity, as in [3], we define
d−1
h = d0h and u−1

h = u0h to be interpolant of d0 and u0. In addition, we also take
d(x, t) = d0 and u(x, t) = u0 for t ≤ 0, which can be seen as a contraction from
the internal to the negative time direction.

The equation (3.34d) along with the property (3.14), implies that the discrete veloc-

ity u
n+ 1

2
h ∈ V h is exactly divergence-free. More generally, introducing the continuous

and discrete kernels:

W = {v ∈ V : B(v, q) = 0, ∀q ∈ Q}, Wh = {v ∈ V h : B(v, q) = 0, ∀q ∈ Qh},

we can readily check that Wh ⊆ V h . Therefore, we consider the following reduced
problem, which is equivalent to the scheme (3.34a).

Find (dn+1
h ,ωn+1

h , un+1
h ) ∈ Xh × Y h × Wh such that for n = 0, · · · , N − 1 and

(ξh, θh, vh) ∈ Xh × Y h × Wh , there hold

Mh1(δt d
n+1
h , θh) + Dh(u

n+ 1
2

h ; d̃n+ 1
2

h , θh) + γMh1(ω
n+ 1

2
h , θh) = 0, (3.35a)

Mh1(ω
n+ 1

2
h , ξ h) = 1

2ε2
(((�0

kd
n+1
h )2 + (�0

kd
n
h)

2)�0
kd

n+ 1
2

h ,�0
kξh) (3.35b)
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− 1

ε2
(�0

k
˜d
n+ 1

2
h ,�0

kξh) + λAh1(d
n+ 1

2
h , ξ h),

Mh2(δtu
n+1
h , vh) + Ch (̃un+ 1

2
h ; un+ 1

2
h , vh) + νAh2(u

n+ 1
2

h , vh)

−Dh(vh; d̃n+ 1
2

h ,ω
n+ 1

2
h ) = 0. (3.35c)

The design of convex splitting approach enables us to prove the unconditional
stability of the proposed scheme. We now establish a discrete energy law of the fully
discrete virtual element scheme, which show that the total discrete energy is non-
increasing and is therefore unconditionally stable.

Theorem 3.1 The scheme (3.35a) admits the following discrete energy dissipation law

Eh(um+1
h , dm+1

h ) +
m∑

n=0

{ντ |||un+ 1
2

h |||2A2
+ γ τ |||ωn+ 1

2
h |||2M1

+ 1

4ε2
‖�0

kd
n+1
h − 2�0

kd
n
h + �0

kd
n−1
h ‖20} = Eh(u0h, d0h),

where the discrete energy Eh is defined by

Eh(um+1
h , dm+1

h ) = 1

2
|||um+1

h |||2M2
+ λ

2
|||dm+1

h |||2A1
+ 1

ε2
(F(�0

kd
m+1
h ), 1)

+ 1

4ε2
‖�0

kd
m+1
h − �0

kd
m
h ‖20.

Proof By taking θh = τω
n+ 1

2
h in (3.35a), we obtain

Mh1(d
n+1
h − dnh,ω

n+ 1
2

h ) + τDh(u
n+ 1

2
h ; d̃n+ 1

2
h ,ω

n+ 1
2

h ) + γ τ |||ωn+ 1
2

h |||2M1
= 0.

(3.36)

Taking ξh = dn+1
h − dnh in (3.35b), it is easy to check that

1

2
(((�0

kd
n+1
h )2 + (�0

kd
n
h)

2)�0
kd

n+ 1
2

h ,�0
kd

n+1
h − �0

kd
n
h)

= 1

4

∫
�

|�0
kd

n+1
h |4 − |�0

kd
n
h |4dx,
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and

(�0
k
˜d
n+ 1

2
h ,�0

kd
n+1
h − �0

kd
n
h)

= 1

2
(3�0

kd
n
h − �0

kd
n−1
h ,�0

kd
n+1
h − �0

kd
n
h)

= 1

2
(�0

kd
n+1
h + �0

kd
n
h,�

0
kd

n+1
h − �0

kd
n
h)

−1

2
(�0

kd
n+1
h − 2�0

kd
n
h + �0

kd
n−1
h ,�0

kd
n+1
h − �0

kd
n
h)

= 1

2
(‖�0

kd
n+1
h ‖20 − ‖�0

kd
n
h‖20) − 1

4
(‖�0

kd
n+1
h − �0

kd
n
h‖20 − ‖�0

kd
n
h − �0

kd
n−1
h ‖20

+||�0
kd

n+1
h − 2�0

kd
n
h + �0

kd
n−1
h ||20).

From the definition of F(d), we deduce

Mh1(ω
n+ 1

2
h , dn+1

h − dnh) = λ

2
|||dn+1

h |||2A1
− λ

2
|||dnh |||2A1

+ 1

ε2
(F(�0

kd
n+1
h ) − F(�0

kd
n
h), 1)

+ 1

4ε2
(‖�0

kd
n+1
h − �0

kd
n
h‖20 − ‖�0

kd
n
h − �0

kd
n−1
h ‖20

+‖�0
kd

n+1
h − 2�0

kd
n
h + �0

kd
n−1
h ‖20). (3.37)

Setting vh = τu
n+ 1

2
h in (3.35c), we have

1

2
|||un+1

h |||2M2
− 1

2
|||unh |||2M2

+ ντ |||un+ 1
2

h |||2A2

− τDh(un+ 1
2 ; d̃n+ 1

2
h ,ω

n+ 1
2

h ) = 0. (3.38)

Summing up (3.36)- (3.38), we obtain

1

2
|||un+1

h |||2M2
+ λ

2
|||dn+1

h |||2A1
+ 1

ε2
(F(�0

kd
n+1
h ), 1) + 1

4ε2
‖�0

kd
n+1
h − �0

kd
n
h‖20

+ ντ |||un+ 1
2

h |||2A2
+γ τ |||ωn+ 1

2
h |||2M1

+ 1

4ε2
‖�0

kd
n+1
h −2�0

kd
n
h+�0

kd
n−1
h ‖20

= 1

2
|||unh |||2M2

+ λ

2
|||dnh |||2A1

+ 1

ε2
(F(�0

kd
n
h), 1) + 1

4ε2
‖�0

kd
n
h − �0

kd
n−1
h ‖20.

(3.39)

Finally, the desired result follows from the application of the operator
∑m

n=0 to
(3.39). Next, we prove the existence and uniqueness of the numerical solution in
(3.35a) by using the Brouwer’s fixed point theorem.

Theorem 3.2 The fully discrete scheme (3.35a) admits a unique solution
(dn+1

h ,ωn+1
h , un+1

h ) ∈ Xh × Y h × Wh.
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Proof To begin with, for any (ξh, θh, vh) ∈ Xh × Y h × Wh , we can rewrite (3.35a)
as

2Mh1(d
n+ 1

2
h , θh)−2Mh1(dnh, θh)+τDh(u

n+ 1
2

h ; d̃n+ 1
2

h , θh) + γ τMh1(ω
n+ 1

2
h , θh)

− 2Mh1(ω
n+ 1

2
h , ξ h) + 2λAh1(d

n+ 1
2

h , ξ h)

+ 1

ε2
(((2�0

kd
n+ 1

2
h − �0

kd
n
h)

2 + (�0
kd

n
h)

2)�0
kd

n+ 1
2

h ,�0
kξ h)

− 2

ε2
(�0

k
˜d
n+ 1

2
h ,�0

kξh) + 2Mh2(u
n+ 1

2
h , vh) − 2Mh2(unh, vh)

+ τCh (̃un+ 1
2

h ; un+ 1
2

h , vh) + ντAh2(u
n+ 1

2
h , vh) − τDh(vh; d̃n+ 1

2
h ,ω

n+ 1
2

h ) = 0.

(3.40)

Then, we define a mapping � : Xh × Yh × Wh → Xh × Y h × Wh . Given
(dn−1

h , un−1
h ) ∈ Xh × Wh and (dnh,ω

n
h, u

n
h) ∈ Xh × Y h × Wh , find (z1, z2, z3) ∈

Xh × Y h × Wh such that

(�(z1, z2, z3), (ξ h, θh, vh))

= 2Mh1(z1, θh) − 2Mh1(dnh, θh) + τDh(z3; d̃n+ 1
2

h , θh)

+ γ τMh1(z2, θh) − 2Mh1(z2, ξ h) + 2λAh1(z1, ξ h)

+ 1

ε2
(((2�0

k z1 − �0
kd

n
h)

2 + (�0
kd

n
h)

2)�0
k z1,�

0
kξh)

− 2

ε2
(�0

k
˜d
n+ 1

2
h ,�0

kξh) + 2Mh2(z3, vh) − 2Mh2(unh, vh)

+ τCh (̃un+ 1
2

h ; z3, vh) + ντAh2(z3, vh) − τDh(vh; d̃n+ 1
2

h , z2),

(3.41)

for any (ξh, θh, vh) ∈ Xh × Y h × Wh . By applying the Lemma 3.3, Lemma 3.5, the
Cauchy-Schwarz inequality and inverse inequality, we have

(�(z1, z2, z3), (ξ h, θh, vh))

≤ C̃1‖z1‖0‖θh‖0 + C̃1‖dnh‖0‖θh‖0 + Ĉ1τh
−1 |̃dn+ 1

2
h |1‖z3‖0‖θh‖0

+ C̃1γ τ‖z2‖0‖θh‖0 + C̃1‖z2‖0‖ξ h‖0 + C̃3λ|z1|1|ξh |1
+ 1

ε2
(4‖(�0

k z1)
3‖0 + 4h−1‖�0

kd
n
h‖0‖(�0

k z1)
2‖0

+ 2h−1‖(�0
kd

n
h)

2‖0‖�0
k z1‖0)‖�0

kξh‖0
+ 2

ε2
‖�0

k
˜d
n+ 1

2
h ‖0‖�0

kξh‖0 + C̃2‖z3‖0‖vh‖0 + C̃2‖unh‖0‖vh‖0
+ Ĉ4τ |̃un+ 1

2
h |1|z3|1|vh |1 + C̃4ντ |z3|1|vh |1 + Ĉ1τh

−1 |̃dn+ 1
2

h |1‖vh‖0‖z2‖0
≤ C∗{(‖z1‖0 + ‖z2‖0 + ‖z3‖0)‖θh‖0 + (‖z1‖1 + ‖z2‖0)‖ξ h‖1

+ (‖z2‖0 + ‖z3‖1)‖vh‖1}.

(3.42)
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where C∗ depends on τ, h, γ, λ, ε, ν, ‖dnh‖0, ‖unh‖0, |̃d
n+ 1

2
h |1, |̃un+ 1

2
h |1. Therefore, we

can get that the mapping � is continuous.
Setting (ξh, θh, vh) = (z1, z2, z3) in (3.41), from Lemma 3.2 and Lemma 3.3, the

Cauchy-Schwarz inequality and inverse inequality, we obtain

(�(z1, z2, z3), (z1, z2, z3))

= 2λ|||z1|||2A1
+ 1

ε2
(((2�0

k z1 − �0
kd

n
h)

2 + (�0
kd

n
h)

2)�0
k z1,�

0
k z1)

− 2

ε2
(�0

k
˜d
n+ 1

2
h ,�0

k z1)

− 2Mh1(dnh, z2) + γ τ |||z2|||2M1
+ 2|||z3|||2M2

− 2Mh2(unh, z3)

+ ντ |||z3|||2A2

≥ 2(
α3λ

h2
‖z1‖0 − 1

ε2
‖d̃n+ 1

2
h ‖0)‖z1‖0 + (α1γ τ‖z2‖0 − 2C̃1‖dnh‖0)‖z2‖0

+ 2(α2‖z3‖0 − C̃2‖unh‖0)‖z3‖0 + α4ντ |z3|21
+ 1

ε2

∫
�

|2�0
k z1 − �0

kd
n
h |2|�0

k z1|2dx + 1

ε2

∫
�

|�0
kd

n
h |2|�0

k z1|2dx.

(3.43)

Hence, from (3.43) we infer that the mapping � satisfies the following properties:

there exists ‖d̃n+ 1
2

h ‖0, ‖dnh‖0, ‖unh‖0 such that for ∀(z1, z2, z3) ∈ Xh × Y h × Wh ,

(�(z1, z2, z3), (z1, z2, z3)) ≥ 0,

with

‖z1‖0 = h2

α3λε2
‖d̃n+ 1

2
h ‖0, ‖z2‖0 = 2C̃1

α1γ τ
‖dnh‖0, ‖z3‖0 = C̃2

α2
‖unh‖0.

It follows from the Brouwer’s fixed point theorem (see [38]) that there exists

(d
n+ 1

2
h ,ω

n+ 1
2

h , u
n+ 1

2
h ) ∈ Xh × Y h × Wh such that

�(d
n+ 1

2
h ,ω

n+ 1
2

h , u
n+ 1

2
h ) = 0,

which also implies the existence of the solution to (3.35a). Next, it suffices to establish
the uniqueness of the solution to (3.35a).
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Assume (dn+1
h1 ,ωn+1

h1 , un+1
h1 ) and (dn+1

h2 ,ωn+1
h2 , un+1

h2 ) are two solutions to (3.35a).

Let d
n+ 1

2
h = d

n+ 1
2

h1 − d
n+ 1

2
h2 , ω

n+ 1
2

h = ω
n+ 1

2
h1 − ω

n+ 1
2

h2 and u
n+ 1

2
h = u

n+ 1
2

h1 − u
n+ 1

2
h2 , for

any (ξ h, θh, vh) ∈ Xh × Y h × Wh , we can get

2Mh1(d
n+ 1

2
h , θh) + τDh(u

n+ 1
2

h ; d̃n+ 1
2

h , θh) + γ τMh1(ω
n+ 1

2
h , θh)

− 2Mh1(ω
n+ 1

2
h , ξ h)

+ 2λAh1(d
n+ 1

2
h , ξ h) + 1

ε2
(((2�0

kd
n+ 1

2
h1 − �0

kd
n
h)

2

+ (�0
kd

n
h)

2)�0
kd

n+ 1
2

h1 ,�0
kξh)

− 1

ε2
(((2�0

kd
n+ 1

2
h2 − �0

kd
n
h)

2 + (�0
kd

n
h)

2)�0
kd

n+ 1
2

h2 ,�0
kξh) + 2Mh2(u

n+ 1
2

h , vh)

+ τCh (̃un+ 1
2

h ; un+ 1
2

h , vh) + ντAh2(u
n+ 1

2
h , vh) − τDh(vh; d̃n+ 1

2
h ,ω

n+ 1
2

h ) = 0.

(3.44)

By taking θh = ω
n+ 1

2
h , ξh = d

n+ 1
2

h and vh = u
n+ 1

2
h in (3.44), we can obtain

γ τ |||ωn+ 1
2

h |||2M1
+ 2λ|||dn+ 1

2
h |||2A1

+ 2|||un+ 1
2

h |||2M2
+ ντ |||un+ 1

2
h |||2A2

+ 1

ε2
|�0

kd
n
h |2‖�0

kd
n+ 1

2
h ‖20+

1

ε2
((2�0

kd
n+ 1

2
h1 −�0

kd
n
h)

2�0
kd

n+ 1
2

h1 ,�0
kd

n+ 1
2

h )

− 1

ε2
((2�0

kd
n+ 1

2
h2 − �0

kd
n
h)

2�0
kd

n+ 1
2

h2 ,�0
kd

n+ 1
2

h ) = 0.

(3.45)

Using the inequality
∣∣|2a1−a|2a1−|2a2−a|2a2

∣∣ ≤ 4(|a1|+|a2|+ 1
2 |a|)2|a1−a2|

(see [4, 25]), from Theorem 3.1 we have

1

ε2
((2�0

kd
n+ 1

2
h1 − �0

kd
n
h)

2�0
kd

n+ 1
2

h1 ,�0
kd

n+ 1
2

h )

− 1

ε2
((2�0

kd
n+ 1

2
h2 − �0

kd
n
h)

2�0
kd

n+ 1
2

h2 ,�0
kd

n+ 1
2

h )

≤ 1

ε2
(max{|�0

kd
n+ 1

2
h1 |, |�0

kd
n+ 1

2
h2 |, |�0

kd
n
h |})2‖�0

kd
n+ 1

2
h ‖20 ≤ C(ε, d0h)‖�0

kd
n+ 1

2
h ‖20.

(3.46)

Choosing the proper parameters ε such that 1
ε2

|�0
kd

n
h |2 −C(ε, d0h) ≥ 0, combining

(3.45)–(3.46), we can arrive at

γ τ |||ωn+ 1
2

h |||2M1
+ 2λ|||dn+ 1

2
h |||2A1

+ 2|||un+ 1
2

h |||2M2
+ ντ |||un+ 1

2
h |||2A2

≤ 0.

(3.47)

Therefore, we conclude that

d
n+ 1

2
h = 0, ω

n+ 1
2

h = 0, u
n+ 1

2
h = 0.
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The proof is finished.

4 Error estimates

This section is devoted to the error estimates of the scheme (3.35a). We henceforth
denote by C a generic constant that is independent of the mesh size h and the time
step τ but possibly depends on the data and the solution. Whenever no confusion is
possible we use the expression a � b to say that there exists a generic constantC such
that a ≤ Cb.

In order to derive the error estimates for the numerical scheme in terms of time and
space discretization, we shall assume that the weak solution to the system (2.5a) are
regular enough. More precisely, we assume

(A) :

⎧⎪⎨
⎪⎩
d, d t , d t t ∈ L∞(0, T ; Hk+1(�) ∩ W1,∞(�)), d t t t ∈ L∞(0, T ; X);
ω,ωt ∈ L∞(0, T ; Hk+1(�) ∩ L∞(�)), ωt t ∈ L∞(0, T ;Y);
u, ut , ut t ∈ L∞(0, T ; Hk+1(�) ∩ L∞(�)), ut t t ∈ L∞(0, T ; V ).

The weak formulation of problem (2.5a) satisfies the following truncation forms:

M1(δt dn+1, θh) + 1

2
D(un+1; dn+1, θh) + 1

2
D(un; dn, θh) (4.1a)

+γM1(ω
n+ 1

2 , θh) = M1(R
n+ 1

2
d , θh),

M1(ω
n+ 1

2 , ξ h) = λA1(dn+ 1
2 , ξ h)

+ 1

2ε2
((dn+1)3 − dn+1 + (dn)3 − dn, ξ h), (4.1b)

M2(δtun+1, vh) + 1

2
C(un+1; un+1, vh) + 1

2
C(un; un, vh)

+νA2(un+ 1
2 , vh) (4.1c)

−1

2
D(vh; dn+1,ωn+1) − 1

2
D(vh; dn+1,ωn+1) = M2(R

n+ 1
2

u , vh),

where R
n+ 1

2
d := δt dn+1 − d

n+ 1
2

t , R
n+ 1

2
u := δtun+1 − u

n+ 1
2

t denote the truncation
errors. Thus, we can easily establish the following estimate, provided that the exact
solutions are sufficiently smooth or in the assumption (A).

Lemma 4.1 Under the assumption (A), it holds

‖Rn+ 1
2

d ‖0 + ‖Rn+ 1
2

u ‖0 � τ 2, n = 0, 1, · · · , N − 1.

123

30   Page 24 of 43



Virtual element scheme for the nematic liquid crystal flows

Proof Using the Taylor expansions, we have

‖Rn+ 1
2

d ‖20s = ‖ 1

2τ

∫ tn+1

tn
(tn+1 − t)2d t t t ds − 1

2

∫ tn+1

tn
(tn+1 − t)dt t t ds‖20

� 1

τ 2

∫ tn+1

tn
(tn+1 − t)4ds ·

∫ tn+1

tn
‖d t t t‖20ds +

∫ tn+1

tn
(tn+1 − t)2ds

·
∫ tn+1

tn
‖d t t t‖20ds

� τ 3
∫ tn+1

tn
‖d t t t‖20ds � τ 4.

Similarly, we can prove that

‖Rn+ 1
2

u ‖20 � τ 4.

This completes the proof.
Let (d,ω, u, p) be the solution of (2.8a) and (dnh,ω

n
h, u

n
h) be the solution of (3.35a),

we introduce the following error decompositions:

end := dnh − dn = ηnd + χn
d , ηnd := dnh − dnI , χn

d := dnI − dn;
enω := ωn

h − ωn = ηnω + χn
ω, ηnω := ωn

h − ωn
I , χn

ω := ωn
I − ωn;

enu := unh − un = ηnu + χn
u , ηnu := unh − unI , χn

u := unI − un,

there exist d I ∈ Xh , ωI ∈ Y h , uI ∈ Wh as the interpolations of the exact solution d,
ω, u of the problem (2.8a), which satisfy (3.35a), (3.10), respectively.

By subtracting the corresponding fully discrete scheme (3.35a) from the equations
(4.1a), we derive the error equations as follows

Mh1(δtη
n+1
d , θh) = M1(δt dn+1, θh) − Mh1(δt d

n+1
I , θh)

+ 1

2
D(un+1; dn+1, θh) + 1

2
D(un; dn, θh) − Dh(u

n+ 1
2

h ; d̃n+ 1
2

h , θh)

+ γM1(ω
n+ 1

2 , θh) − γMh1(ω
n+ 1

2
h , θh) − M1(R

n+ 1
2

d , θh),

(4.2)

λAh1(η
n+ 1

2
d , ξ h) = λA1(dn+ 1

2 , ξ h) − λAh1(d
n+ 1

2
I , ξ h)

− M1(ω
n+ 1

2 , ξ h)+Mh1(ω
n+ 1

2
h , ξ h)−

1

ε2
(dn+ 1

2 , ξ h)+
1

ε2
(�0

k
˜d
n+ 1

2
h ,�0

kξh)

+ 1

2ε2
((dn+1)3 + (dn)3, ξ h) − 1

2ε2
(((�0

kd
n+1
h )2 + (�0

kd
n
h)

2)�0
kd

n+ 1
2

h ,�0
kξh),

(4.3)
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Mh2(δtη
n+1
u , vh) + νAh2(η

n+ 1
2

u , vh) = M2(δtun+1, vh) − Mh2(δtu
n+1
I , vh)

+ νA2(un+ 1
2 , vh) − νAh2(u

n+ 1
2

I , vh) + 1

2
C(un+1; un+1, vh) + 1

2
C(un; un, vh)

− Ch (̃un+ 1
2

h ; un+ 1
2

h , vh) − 1

2
D(vh; dn+1,ωn+1) − 1

2
D(vh; dn,ωn)

+ Dh(vh; d̃n+ 1
2

h ,ω
n+ 1

2
h ) − M2(R

n+ 1
2

u , vh).

(4.4)

Theorem 4.1 Under the assumption (A), the following inequality holds

‖em+1
u ‖20 + |em+1

d |21 + τ

m∑
n=0

(|en+ 1
2

u |21 + ‖δt en+1
d ‖20 + ‖en+ 1

2
ω ‖20) � τ 4 + h2k .

Proof First of all, we make the following induction assumption for the error functions
at the previous time steps:

‖ηmu ‖20 + |ηmd |21 ≤ C†
0(τ

4 + h2k), (4.5)

for n ≤ m ≤ N − 1. Such an induction assumption will be recovered by the error
estimate at the next time step tm+1.

The application of the induction assumption (4.5) (for n ≤ m ≤ N − 1) and the
assumption (A) yields (see [40, 42, 48, 49])

‖dmh ‖2
W1,∞(�)

≤ C‖dm‖2
W1,∞(�)

+ C‖dmI − dm‖2
W1,∞(�)

+ C‖ηmd ‖2
W1,∞(�)

≤ C‖dm‖2
W1,∞(�)

+ Chk−2|dm |2k + CC†
0h

−2(τ 4 + h2k) ≤ C,
(4.6)

‖umh ‖2L∞(�) ≤ C‖um‖2L∞(�) + C‖umI − um‖2L∞(�) + C‖ηmu ‖2L∞(�)

≤ C‖um‖2L∞(�) + Chk |um |2k+1 + CC†
0h

−2(τ 4 + h2k) ≤ C,
(4.7)

for τ ≤ h2√
CC†

0

and h < h0, where h0 is a small positive constant. Subsequently, we

will establish the error estimate at tm+1 and recover (4.5). By taking θh = τδtη
n+1
d

and τη
n+ 1

2
ω in (4.2), we obtain

τ |||δtηn+1
d |||2M1

= τM1(δt dn+1, δtη
n+1
d ) − τMh1(δt d

n+1
I , δtη

n+1
d )

+ τ

2
D(un+1; dn+1, δtη

n+1
d ) + τ

2
D(un; dn, δtηn+1

d )

− τDh(u
n+ 1

2
h ; d̃n+ 1

2
h , δtη

n+1
d )

+ γ τM1(ω
n+ 1

2 , δtη
n+1
d ) − γ τMh1(ω

n+ 1
2

h , δtη
n+1
d ) − τM1(R

n+ 1
2

d , δtη
n+1
d ),

(4.8)

123

30   Page 26 of 43



Virtual element scheme for the nematic liquid crystal flows

and

γ τ |||ηn+ 1
2

ω |||2M1
= τM1(δt dn+1, η

n+ 1
2

ω ) − τMh1(δt d
n+1
I , η

n+ 1
2

ω )

− τMh1(δtη
n+1
d , η

n+ 1
2

ω )

+ τ

2
D(un+1; dn+1, η

n+ 1
2

ω ) + τ

2
D(un; dn, ηn+ 1

2
ω ) − τDh(u

n+ 1
2

h ; d̃n+ 1
2

h , η
n+ 1

2
ω )

+ γ τM1(ω
n+ 1

2 , η
n+ 1

2
ω ) − γ τMh1(ω

n+ 1
2

I , η
n+ 1

2
ω ) − τM1(R

n+ 1
2

d , η
n+ 1

2
ω ).

(4.9)

Taking ξh = γ τδtη
n+1
d and τδtη

n+1
d in (4.3), we derive

λγ

2
|||ηn+1

d |||2A1
− λγ

2
|||ηnd |||2A1

= λγ τA1(dn+ 1
2 , δtη

n+1
d )

− λγ τAh1(d
n+ 1

2
I , δtη

n+1
d )

− γ τM1(ω
n+ 1

2 , δtη
n+1
d )+γ τMh1(ω

n+ 1
2

h , δtη
n+1
d )− γ τ

ε2
(dn+ 1

2 , δtη
n+1
d )

+ γ τ

ε2
(�0

k
˜d
n+ 1

2
h ,�0

kδtη
n+1
d ) + γ τ

2ε2
((dn+1)3 + (dn)3, δtη

n+1
d )

− γ τ

2ε2
(((�0

kd
n+1
h )2 + (�0

kd
n
h)

2)�0
kd

n+ 1
2

h ,�0
kδtη

n+1
d ),

(4.10)

and

λ

2
|||ηn+1

d |||2A1
− λ

2
|||ηnd |||2A1

= λτA1(dn+ 1
2 , δtη

n+1
d ) − λτAh1(d

n+ 1
2

I , δtη
n+1
d )

− τM1(ω
n+ 1

2 , δtη
n+1
d ) + τMh1(ω

n+ 1
2

I , δtη
n+1
d ) + τMh1(η

n+ 1
2

ω , δtη
n+1
d )

− τ

ε2
(dn+ 1

2 ,δtη
n+1
d )+ τ

ε2
(�0

k
˜d
n+ 1

2
h ,�0

kδtη
n+1
d )+ τ

2ε2
((dn+1)3+(dn)3,δtη

n+1
d )

− τ

2ε2
(((�0

kd
n+1
h )2 + (�0

kd
n
h)

2)�0
kd

n+ 1
2

h ,�0
kδtη

n+1
d ).

(4.11)

Setting vh = τη
n+ 1

2
u in (4.4), we have

1

2
|||ηn+1

u |||2M2
− 1

2
|||ηnu|||2M2

+ ντ |||ηn+ 1
2

u |||2A2
= −τM2(R

n+ 1
2

u , η
n+ 1

2
u )

+ τM2(δtun+1, η
n+ 1

2
u )

− τMh2(δtu
n+1
I , η

n+ 1
2

u ) + ντA2(un+ 1
2 , η

n+ 1
2

u ) − ντAh2(u
n+ 1

2
I , η

n+ 1
2

u )

+ τ

2
C(un+1; un+1, η

n+ 1
2

u ) + τ

2
C(un; un, ηn+ 1

2
u ) − τCh (̃un+ 1

2
h ; un+ 1

2
h , η

n+ 1
2

u )

− τ

2
D(ηn+1

u ; dn+1,ωn+ 1
2 ) − τ

2
D(ηnu; dn,ωn+ 1

2 ) + τDh(η
n+ 1

2
u ; d̃n+ 1

2
h ,ω

n+ 1
2

h ).

(4.12)
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Combining (4.8)–(4.12), we can get

1

2
|||ηn+1

u |||2M2
− 1

2
|||ηnu|||2M2

+ λ(1 + γ )

2
|||ηn+1

d |||2A1
− λ(1 + γ )

2
|||ηnd |||2A1

+ ντ |||ηn+ 1
2

u |||2A2
+ τ |||δtηn+1

d |||2M1
+ γ τ |||ηn+ 1

2
ω |||2M1

= −τM1(R
n+ 1

2
d , δtη

n+1
d ) − τM1(R

n+ 1
2

d , η
n+ 1

2
ω ) − τM2(R

n+ 1
2

u , η
n+ 1

2
u )

+ τ [M1(δt dn+1, δtη
n+1
d ) − Mh1(δt d

n+1
I , δtη

n+1
d )]

+ τ [M1(δt dn+1, η
n+ 1

2
ω ) − Mh1(δt d

n+1
I , η

n+ 1
2

ω )]
+ τ [M2(δtun+1, η

n+ 1
2

u ) − Mh2(δtu
n+1
I , η

n+ 1
2

u )]
+ γ τ [M1(ω

n+ 1
2 , η

n+ 1
2

ω ) − Mh1(ω
n+ 1

2
I , η

n+ 1
2

ω )]
− τ [M1(ω

n+ 1
2 , δtη

n+1
d ) − Mh1(ω

n+ 1
2

I , δtη
n+1
d )]

+ ντ [A2(un+ 1
2 , η

n+ 1
2

u ) − Ah2(u
n+ 1

2
I , η

n+ 1
2

u )]
+ λ(1 + γ )τ [A1(dn+ 1

2 , δtη
n+1
d ) − Ah1(d

n+ 1
2

I , δtη
n+1
d )]

+ τ [1
2
C(un+1; un+1, η

n+ 1
2

u ) + 1

2
C(un; un, ηn+ 1

2
u ) − Ch (̃un+ 1

2
h ; un+ 1

2
h , η

n+ 1
2

u )]

− τ [1
2
D(η

n+ 1
2

u ; dn+1,ωn+1) + 1

2
D(η

n+ 1
2

u ; dn,ωn) − Dh(η
n+ 1

2
u ; d̃n+ 1

2
h ,ω

n+ 1
2

h )]

+ τ [1
2
D(un+1; dn+1, δtη

n+1
d )+ 1

2
D(un; dn, δtηn+1

d )−Dh(u
n+ 1

2
h ; d̃n+ 1

2
h , δtη

n+1
d )]

+ τ [1
2
D(un+1; dn+1, η

n+ 1
2

ω ) + 1

2
D(un; dn, ηn+ 1

2
ω ) − Dh(u

n+ 1
2

h ; d̃n+ 1
2

h , η
n+ 1

2
ω )]

− (1 + γ )τ

ε2
[(dn+ 1

2 , δtη
n+1
d ) − (�0

k
˜d
n+ 1

2
h ,�0

kδtη
n+1
d )]

+ (1 + γ )τ

2ε2
[((dn+1)3 + (dn)3, δtη

n+1
d )

− (((�0
kd

n+1
h )2 + (�0

kd
n
h)

2)�0
kd

n+ 1
2

h ,�0
kδtη

n+1
d )]

:= I1 + I2 + · · · + I16.

(4.13)

Applying the Cauchy-Schwarz inequality and Young’s inequality, from Lemma 4.1
we have

I1 + I2 + I3 � τ‖Rn+ 1
2

d ‖0‖δtηn+1
d ‖0 + τ‖Rn+ 1

2
d ‖0‖ηn+ 1

2
ω ‖0 + τ‖Rn+ 1

2
u ‖0‖ηn+ 1

2
u ‖0

� τ 5 + τ

14
‖δtηn+1

d ‖20 + γ τ

8
‖ηn+ 1

2
ω ‖20 + ντ

10
‖ηn+ 1

2
u ‖20.

(4.14)
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According to the consistency of MK
h1, using the Cauchy-Schwarz inequality,

Young’s inequality, Lemma 3.2, (3.4) and (3.5), we obtain

I4 =τM1(δt (dn+1 − �0
kd

n+1), δtη
n+1
d ) + τMh1(δt (�

0
kd

n+1 − dn+1), δtη
n+1
d )

+ τMh1(δt (dn+1 − dn+1
I ), δtη

n+1
d )

�τ(

∫ tn+1

tn

1

τ 2
dt)(

∫ tn+1

tn
‖(d t − �0

kd t )‖20 + ‖d t − (d I )t‖20dt)

+ τ

14
‖δtηn+1

d ‖20

�h2k+2
∫ tn+1

tn
‖d t‖20dt + τ

14
‖δtηn+1

d ‖20 � τh2k+2 + τ

14
‖δtηn+1

d ‖20.

(4.15)

Similarly, we have

I5 � h2k+2
∫ tn+1

tn
‖d t‖20dt + λγ τ

8
‖ηn+ 1

2
ω ‖20 � τh2k+2 + γ τ

8
‖ηn+ 1

2
ω ‖20, (4.16)

I6 � h2k+2
∫ tn+1

tn
‖ut‖20dt + ντ

10
‖ηn+ 1

2
u ‖20 � τh2k+2 + ντ

10
‖ηn+ 1

2
u ‖20. (4.17)

According to the consistency of MK
h1, Lemma 3.2, (3.4) and (3.5), we have

I7 =γ τM1(ω
n+ 1

2 − �0
kω

n+ 1
2 , η

n+ 1
2

ω ) + γ τMh1(�
0
kω

n+1 − ωn+ 1
2 , η

n+ 1
2

ω )

+ γ τMh1(ω
n+ 1

2 − ω
n+ 1

2
I , η

n+ 1
2

ω )

�γ τ(‖ωn+ 1
2 − �0

kω
n+ 1

2 ‖0 + ‖ωn+ 1
2 − ω

n+ 1
2

I ‖0)‖ηn+ 1
2

ω ‖0
�τh2k+2 + γ τ

8
‖ηn+ 1

2
ω ‖20.

(4.18)

Using the same argument as in (4.18), we have

I8 � τ(‖ωn+ 1
2 − �0

kω
n+ 1

2 ‖0 + ‖ωn+ 1
2 − ω

n+ 1
2

I ‖0)‖δtηn+1
d ‖0

� τh2k+2 + τ

14
‖δtηn+1

d ‖20, (4.19)

I9 � ντ(|un+ 1
2 − �0

ku
n+ 1

2 |1 + |un+ 1
2 − u

n+ 1
2

I |1)|ηn+ 1
2

u |1
� τh2k + ντ

10
|ηn+ 1

2
u |21. (4.20)
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According to the consistency ofAK
h1, Lemma 3.2, (3.4) and (3.5), and the Courant-

Friedrichs-Lewy (CFL) condition: τ ≤ Ch2, we have

I10 �λ(1 + γ )τ(|dn+ 1
2 − �0

kd
n+ 1

2 |1 + |dn+ 1
2 − d

n+ 1
2

I |1)|δtηn+1
d |1

�τh−1(|dn+ 1
2 − �0

kd
n+ 1

2 |1 + |dn+ 1
2 − d

n+ 1
2

I |1)‖δtηn+1
d ‖0

�h2k + τ

14
‖δtηn+1

d ‖20.
(4.21)

For the trilinear term, we have

I11 = τ

2
C(un+1 − 2un + un−1; un+ 1

2 , η
n+ 1

2
u ) + τ

4
C(un+1 − un; un+1 − un, η

n+ 1
2

u )

+ τ [C (̃un+ 1
2 ; un+ 1

2 , η
n+ 1

2
u ) − Ch (̃un+ 1

2 ; un+ 1
2 , η

n+ 1
2

u )]
+ τCh (̃un+ 1

2 − ũ
n+ 1

2
h ; un+ 1

2 , η
n+ 1

2
u ) + τCh (̃un+ 1

2
h ; un+ 1

2 − u
n+ 1

2
h , η

n+ 1
2

u )

� τ |un+1 − 2un + un−1|1|un+ 1
2 |1|ηn+ 1

2
u |1 + τ |un+1 − un |1|un+1 − un |1|ηn+ 1

2
u |1

+ τhk(‖ũn+ 1
2 ‖k+1(‖un+ 1

2 ‖k+1 + ‖un+ 1
2 ‖1) + ‖un+ 1

2 ‖k+1(‖ũn+ 1
2 ‖k + ‖ũn+ 1

2 ‖1))|ηn+ 1
2

u |1
+ τ‖un+ 1

2 ‖L∞(�)(‖enu‖0 + ‖en−1
u ‖0)|ηn+ 1

2
u |1 + τ |̃un+ 1

2
h |1|χn+ 1

2
u |1|ηn+ 1

2
u |1

� τ 5 + τh2k + τh2k+2 + τ‖ηnu‖20 + τ‖ηn−1
u ‖20 + ντ

10
|ηn+ 1

2
u |21,

(4.22)

Similarly, we obtain

I12 = − τ

2
D(η

n+ 1
2

u ; dn+1 − 2dn + dn−1, ωn+ 1
2 ) − τ

4
D(η

n+ 1
2

u ; dn+1 − dn, ωn+1 − ωn)

− τ [D(η
n+ 1

2
u ; d̃n+ 1

2 , ωn+ 1
2 ) − Dh(η

n+ 1
2

u ; d̃n+ 1
2 , ωn+ 1

2 )]
− τDh(η

n+ 1
2

u ; d̃n+ 1
2 − d̃

n+ 1
2

h , ωn+ 1
2 )

− τDh(η
n+ 1

2
u ; d̃n+ 1

2
h , χ

n+ 1
2

ω ) − τDh(η
n+ 1

2
u ; d̃n+ 1

2
h , η

n+ 1
2

ω )

:= R1 + R2 + · · · + R6,

(4.23)

which can be estimated through

R1 + R2 + · · · + R5

� τ |ηn+ 1
2

u |1|dn+1 − 2dn + dn−1|1|ωn+ 1
2 |1 + τ |ηn+ 1

2
u |1|dn+1 − dn|1|ωn+1 − ωn|1

+ τhk(‖ωn+ 1
2 · ∇ d̃

n+ 1
2 ‖k + ‖ωn+ 1

2 ‖L∞(�)‖d̃n+ 1
2 ‖k+1

+ ‖d̃n+ 1
2 ‖W1,∞(�)‖ωn+ 1

2 ‖k)‖ηn+ 1
2

u ‖0
+ τ |ηn+ 1

2
u |1 |̃dn+ 1

2
h − d̃

n+ 1
2

h |1|ωn+ 1
2 |1 + τ |ηn+ 1

2
u |1 |̃dn+ 1

2
h |1|χn+ 1

2
ω |1

� τ 5 + τh2k + τ |ηnd |21 + τ |ηn−1
d |21 + ντ

10
|ηn+ 1

2
u |21.

(4.24)
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Noting that, the term R6 in (4.23) and the term S6 add up to 0. For I13, we obtain

I13 = τ

2
D(un+ 1

2 ; dn+1 − 2dn + dn−1, δtη
n+1
d )

+ τ

4
D(un+1 − un; dn+1 − dn, δtη

n+1
d )

+ τ [D(un+ 1
2 ; d̃n+ 1

2 , δtη
n+1
d ) − Dh(un+ 1

2 ; d̃n+ 1
2 , δtη

n+1
d )]

+ τDh(un+ 1
2 ; d̃n+ 1

2 − d̃
n+ 1

2
h , δtη

n+1
d ) + τDh(un+ 1

2 − u
n+ 1

2
h ; d̃n+ 1

2
h , δtη

n+1
d )

� τ‖un+ 1
2 ‖L∞|dn+1 − 2dn + dn−1|1‖δtηn+1

d ‖0 + τ‖un+1 − un‖L∞|dn+1

− dn|1‖δtηn+1
d ‖0

+ τhk(‖un+ 1
2 · ∇ d̃

n+ 1
2 ‖k + ‖un+ 1

2 ‖L∞(�)‖d̃n+ 1
2 ‖k+1

+ ‖d̃n+ 1
2 ‖W1,∞(�)‖un+ 1

2 ‖k)‖δtηn+1
d ‖0

+ τ‖un+ 1
2 ‖L∞(�)(|end |1 + |en−1

d |1)‖δtηn+1
d ‖0 + τ‖d̃n+ 1

2
h ‖W1,∞(�)‖χ

n+ 1
2

u

+ η
n+ 1

2
u ‖0‖δtηn+1

d ‖0
� τ 5 + τh2k + τh2k+2 + τ |ηnd |21 + τ |ηn−1

d |21 + τ‖ηn+1
u ‖20 + τ‖ηnu‖20

+ τ

14
‖δtηn+1

d ‖20,

(4.25)

where we use the result (4.6). For I14, we have

I14 = τ

2
D(un+ 1

2 ; dn+1−2dn+dn−1, η
n+ 1

2
ω ) + τ

4
D(un+1−un; dn+1−dn, η

n+ 1
2

ω )

+ τ [D(un+ 1
2 ; d̃n+ 1

2 , η
n+ 1

2
ω ) − Dh(un+ 1

2 ; d̃n+ 1
2 , η

n+ 1
2

ω )]
+ τDh(un+ 1

2 ; d̃n+ 1
2 − d̃

n+ 1
2

h , η
n+ 1

2
ω )

+ τDh(χ
n+ 1

2
u ; d̃n+ 1

2
h , η

n+ 1
2

ω ) + τDh(η
n+ 1

2
u ; d̃n+ 1

2
h , η

n+ 1
2

ω )

:= S1 + S2 + · · · + S6,

(4.26)

which can be estimated through

S1 + S2 + · · · + S5 � τ 5 + τh2k + τh2k+2 + τ |ηnd |21 + τ |ηn−1
d |21

+ γ τ

8
‖ηn+ 1

2
ω ‖20, (4.27)
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Applying the Cauchy-Schwarz inequality and Young’s inequality, we have

I15 = − (1 + γ )τ

ε2
{(dn+ 1

2 − d̃
n+ 1

2 , δtη
n+1
d )

+ [(̃dn+ 1
2 , δtη

n+1
d ) − (�0

k d̃
n+ 1

2 ,�0
kδtη

n+1
d )]

+ (�0
k d̃

n+ 1
2 − �0

k d̃
n+ 1

2
h ,�0

kδtη
n+1
d )}

�τ‖dn+1 − 2dn + dn−1‖0‖δtηn+1
d ‖0 + τ‖d̃n+ 1

2 − �0
k d̃

n+ 1
2 ‖δtηn+1

d ‖0
+ τ‖d̃n+ 1

2 − d̃
n+ 1

2
h ‖0‖δtηn+1

d ‖0
�τ 5 + τh2k+2 + τ‖ηnd‖20 + τ‖ηn−1

d ‖20 + τ

14
‖δtηn+1

d ‖20.

(4.28)

Using the inequality
∣∣|a1|2|b1|− |a2|2|b2|

∣∣ ≤ (max{|a1|, |b1|, |a2|, |b2|})2(2|a1 −
a2|− |b1 − b2|) (see [4, 25]), the Cauchy-Schwarz inequality and Young’s inequality,
we have

I16 = (1 + γ )τ

2ε2
{((dn+1)3 + (dn)3 − ((dn+1)2 + (dn)2)dn+ 1

2 , δtη
n+1
d )

+ [(((dn+1)2 + (dn)2)dn+ 1
2 , δtη

n+1
d ) − (�0

k(((d
n+1)2

+ (dn)2)dn+ 1
2 ),�0

kδtη
n+1
d )]

+ (�0
k(((d

n+1)2 + (dn)2)dn+ 1
2 ) − ((�0

kd
n+1)2

+ (�0
kd

n)2)�0
kd

n+ 1
2 ,�0

kδtη
n+1
d )

+ (((�0
kd

n+1)2 + (�0
kd

n)2)�0
kd

n+ 1
2 − ((�0

kd
n+1
h )2

+ (�0
kd

n
h)

2)�0
kd

n+ 1
2

h ,�0
kδtη

n+1
d )}

�τ‖dn+ 1
2 ‖L∞(�)‖dn+1 − dn‖20‖δtηn+1

d ‖0
+ τ‖((dn+1)2 + (dn)2)dn+ 1

2 − �0
k(((d

n+1)2 + (dn)2)dn+ 1
2 )‖0‖δtηn+1

d ‖0
+ τ(‖dn+1 − �0

kd
n+1‖0 + ‖dn − �0

kd
n‖0)‖δtηn+1

d ‖0
+ τ(‖dn+1 − dn+1

h ‖0 + ‖dn − dnh‖0)‖δtηn+1
d ‖0

�τ 5 + τh2k+2 + τ‖ηn+1
d ‖20 + τ‖ηnd‖20 + τ

14
‖δtηn+1

d ‖20.

(4.29)

Combining the above estimates (4.14)–(4.29) and using Lemma 3.3, we have

1

2
|||ηn+1

u |||2M2
− 1

2
|||ηnu|||2M2

+ λ(1 + γ )

2
|||ηn+1

d |||2A1
− λ(1 + γ )

2
|||ηnd |||2A1

+ ντ

2
|||ηn+ 1

2
u |||2A2

+ τ

2
|||δtηn+1

d |||2M1
+ γ τ

2
|||ηn+ 1

2
ω |||2M1

� h2k + τ 5 + τh2k + τh2k+2 + τ |||ηn−1
u |||2M2

+ τ |||ηnu|||2M2
+ τ |||ηn+1

u |||2M2

+ τ |||ηn−1
d |||2A1

+ τ |||ηnd |||2A1
+ τ |||ηn+1

d |||2A1
.

(4.30)
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Summing (4.30) over n from 0 to m, using the fact that η−1
u = η0u = 0 and

η−1
d = η0d = 0, we have

|||ηm+1
u |||2M2

+ |||ηm+1
d |||2A1

+ τ

m∑
n=0

(|ηn+ 1
2

u |21 + ‖δtηn+1
d ‖20 + ‖ηn+ 1

2
ω ‖20)

� τ 4 + h2k + τ

m∑
n=0

(τ 4 + h2k) + C0τ

m∑
n=0

(|||ηnu|||2M2
+ |||ηn+1

u |||2M2

+ |||ηnd |||2A1
+ |||ηn+1

d |||2A1
).

(4.31)

When 0 < τ ≤ τ0 := 1
2C0

< 1
C0
, for any 0 < n ≤ M − 1, since 1 ≤ 1

1−C0τ
≤ 2

and from (4.31), it can be readily seen that

|||ηm+1
u |||2M2

+ |||ηm+1
d |||2A1

+ τ

m∑
n=0

(|ηn+ 1
2

u |21 + ‖δtηn+1
d ‖20 + ‖ηn+ 1

2
ω ‖20)

�
1 +

m∑
n=0

τ

1 − C0τ
(τ 4 + h2k) + C0τ

1 − C0τ

m∑
n=0

(|||ηnu|||2M2
+ |||ηnd |||2A1

).

(4.32)

By using the Gronwall’s inequality and from Lemma 3.3, we have

‖ηm+1
u ‖20 + |ηm+1

d |21 + τ

m∑
n=0

(|ηn+ 1
2

u |21 + ‖δtηn+1
d ‖20 + ‖ηn+ 1

2
ω ‖20) � τ 4 + h2k .(4.33)

Finally, by applying the triangle inequality, we can obtain

‖em+1
u ‖20 + |em+1

d |21 + τ

m∑
n=0

(|en+ 1
2

u |21 + ‖δt en+1
d ‖20 + ‖en+ 1

2
ω ‖20) � τ 4 + h2k .

The above estimate implies that the induction assumption (4.5) could be recovered
at tm+1. Thus the mathematical induction is closed.

Remark 4.1 Using the Poincaré inequality and Theorem 4.1, we can easily get

‖em+1
u ‖20 + ‖em+1

d ‖20 � τ 4 + h2k .

Theorem 4.2 Under the assumption (A), the following inequality holds

τ

m∑
n=0

‖en+ 1
2

p ‖20 � τ 4 + h2k .
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Proof Setting vh = τδtη
n+1
u in (4.4), we obtain

ν

2
|||ηn+1

u |||A2 − ν

2
|||ηnu|||A2 + τ |||δtηn+1

u |||2M2

= −τM2(R
n+ 1

2
u , δtη

n+1
u ) + τ [M2(δtun+1, δtη

n+1
u ) − τMh2(δtu

n+1
I , δtη

n+1
u )]

+ ντ [A2(un+ 1
2 , δtη

n+1
u ) − Ah2(u

n+ 1
2

I , δtη
n+1
u )]

+ τ [1
2
C(un+1; un+1, δtη

n+1
u ) + 1

2
C(un; un, δtηn+1

u )

− Ch (̃un+ 1
2

h ; un+ 1
2

h , δtη
n+1
u )]

− τ [1
2
D(δtη

n+1
u ; dn+1,ωn+1) + 1

2
D(δtη

n+1
u ; dn,ωn)

− Dh(δtη
n+1
u ; d̃n+ 1

2
h ,ω

n+ 1
2

h )].

(4.34)

By using a similar procedure for the proof of Theorem 4.1, we can get

|en+1
u |21 + τ

m∑
n=0

‖δt en+1
u ‖20 � τ 4 + h2k . (4.35)

By subtracting (3.34c) from the equations (2.8c), according to the consistency of
MK

h2 and AK
h2, we have

B(vh, e
n+ 1

2
p ) = −M2(δt (un+1 − �0

ku
n+1), vh) − Mh2(δt (�

0
ku

n+1 − un+1), vh)

+ Mh2(δt e
n+1
u , vh) − νA2(un+ 1

2 − �0
ku

n+ 1
2 , vh) − νAh2(�

0
ku

n+ 1
2 − un+ 1

2 , vh)

+ νAh2(e
n+ 1

2
u , vh) − 1

2
C(un+1 − 2un + un−1; un+ 1

2 , vh)

− 1

4
C(un+1 − un; un+1 − un, vh)

− [C (̃un+ 1
2 ; un+ 1

2 , vh)−Ch (̃un+ 1
2 ; un+ 1

2 , vh)]−Ch (̃un+ 1
2 −ũ

n+ 1
2

h ; un+ 1
2 , vh)

− Ch (̃un+ 1
2

h ; un+ 1
2 − u

n+ 1
2

h , vh) + 1

2
D(vh; dn+1 − 2dn + dn−1,ωn+ 1

2 )

+ 1

4
D(vh; dn+1 − dn,ωn+1 − ωn)

+ [D(vh; d̃n+ 1
2 ,ωn+ 1

2 ) − Dh(vh; d̃n+ 1
2 ,ωn+ 1

2 )]
+ Dh(vh; d̃n+ 1

2 − d̃
n+ 1

2
h ,ωn+ 1

2 ) + Dh(vh; d̃n+ 1
2

h ,ω
n+ 1

2
h − ωn+ 1

2 ).

(4.36)
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Using theCauchy-Schwarz inequality, Poincaré-Friedrichs inequality, (3.9)–(3.10),
Lemma 3.5, Lemma 3.6 and Lemma 3.7, we can get

B(vh, e
n+ 1

2
p )

� hk+1‖vh‖0 + ‖δt en+1
u ‖0‖vh‖0 + hk |vh |1 + |en+ 1

2
u |1|vh |1 + τ 2|vh |1

+ hk(‖ũn+ 1
2 ‖k+1(‖un+ 1

2 ‖k+1 + ‖un+ 1
2 ‖1)

+ ‖un+ 1
2 ‖k+1(‖ũn+ 1

2 ‖k + ‖ũn+ 1
2 ‖1))|vh |1

+ hk(‖ωn+ 1
2 · ∇ d̃

n+ 1
2 ‖k + ‖ωn+ 1

2 ‖L∞(�)‖d̃n+ 1
2 ‖k+1

+ ‖d̃n+ 1
2 ‖W1,∞(�)‖ωn+ 1

2 ‖k)‖vh‖0
+ (‖en+1

u ‖0 + ‖enu‖0 + ‖en−1
u ‖0)|vh |1 + (|end |1 + |en−1

d |1)|vh |1 + ‖en+ 1
2

ω ‖0‖vh‖0
� (τ 2 + hk + hk+1 + |en+ 1

2
u |1 + ‖en+ 1

2
ω ‖0 + ‖δt en+1

u ‖0)|vh |1.

(4.37)

Considering the discrete inf-sup condition in Lemma 3.4, we have

‖en+ 1
2

p ‖0 � sup
vh∈V h ,vh �=0

B(vh, e
n+ 1

2
p )

|vh |1
� τ 2 + hk + |en+ 1

2
u |1 + ‖en+ 1

2
ω ‖0 + ‖δt en+1

u ‖0. (4.38)

From Theorem 4.1, (4.35) and (4.38), we obtain

τ

m∑
n=0

‖en+ 1
2

p ‖20 � τ

m∑
n=0

(τ 4 + h2k) + τ

m∑
n=0

(|en+ 1
2

u |21 + ‖en+ 1
2

ω ‖20 + ‖δt en+1
u ‖20)

� τ 4 + h2k . (4.39)

The proof is finished.

5 Numerical experiments

In this section, we will present the numerical experiments to validate the theories
derived in the previous section and demonstrate the accuracy and energy stability
of the proposed numerical scheme. Further, we will apply the developed scheme to
simulate the defect dynamics in flows of liquid crystals. In the present work, a family
of polygonal meshes are generated by PolyMesher [39] and the codes are implemented
by using the software package FreeFem++, see [22].
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5.1 Accuracy and stability test

We first test the accuracy and stability of the proposed algorithm. The polynomial
degree of accuracy for the numerical tests is k = 2. The computational domain is set
as � := (0, 1)2. And we set the initial conditions as follows

d0 = (sin(a), cos(a))t , a := 2.0π(cos(x) − sin(y)), u0 = 0, p0 = 0,

and set the parameters as ν = 0.1, λ = γ = 1 and ε = 10−3.
For the disk � we consider the sequences of polygonal meshes:

• Sequence of the distorted quadrilateral meshes with h = 1/5, 1/10, 1/20, 1/40,
1/80,

• Sequence of the Voronoi meshes with h = 1/5, 1/10, 1/20, 1/40, 1/80.

Figure1 displays an example of the adopted meshes. Since we do not have the exact
solution of the given problem, to verify the optimal convergence rates, the reference
solution is taken as the numerical solution, where the time step size τ is required to
satisfy τ = O(h2).

To verify the convergence rates of spatial errors, we fix the time step size τ =
1.2 × 10−4 and choosing the decreasing mesh sizes. Figure2 shows the errors and
convergence rates of the velocity, orientation vector and pressure fields by using the
two polygonal meshes. We can see that the obtained spatial convergence rate of both
are O(h2), which is consistent with our theoretical prediction.

To confirm the temporal error, we take the reference solution corresponding to
τ = 1×10−4 and h = 1/80. In Fig. 3,we show the L2 errors of the velocity, orientation
vector and pressure fields at t = 0.5 by using the two polygonal meshes, where we
choose the decreasing temporal step sizes. It can be seen that the convergence rate are
bothO(τ 2) for all variables, which is consistent with the theoretical predictions given
in the previous section.

Fig. 1 Sample meshes: The distorted quadrilateral meshes (left) and Voronoi meshes (right)
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Fig. 2 Convergence tests by refinement computed by using (a) the distorted quadrilateral meshes and (b)
Voronoi meshes in spatial direction

In Fig. 4, we plot the time evolution curve of the total energy to test the energy
stability of the proposed scheme. It can be seen that the obtained energy evolution
curves always showmonotonic decays, which means that our scheme is energy stable.

To compare the approaches between the FEM and VEM, the domain � is
partitioned with a sequence of standard triangular meshes with diameter h =
1/4, 1/8, 1/16, 1/32. Table 1 presents the numerical results when t = 0.6. It is worth
noting that, the value |d| is close to 1 in the theoretical analysis, by contrast, the
proposed VEM computes the orientation vector d with higher accuracy than FEM as
depicted in Table 1.
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(a)

10-4 10-2 100
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10-4

10-2

100
(b)

Fig. 3 Convergence tests by refinement computed by using (a) the distorted quadrilateral meshesand (b)
Voronoi meshes in temporal direction
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Fig. 4 Time evolution of the total energy functional Eh

5.2 Dynamics of defects in liquid crystals

In this subsection, we study the defect dynamics in flows of liquid crystals numerically
using the implemented VEM.

Weconsider the computational domain as� := [0, 1]×[0, 1]. The initial conditions
are set as follows:

d0 = (cos(a), sin(a)), a := 1
2 arctan 2(y, x),

u0 = (0.1 × cos 2(θ0 + arctan( y
x−1 )), 0.1 × sin 2(θ0 + arctan( y

x−1 ))), p0 = 0,

where θ0 denotes the relative orientation, and the homogeneous Dirichlet boundary
conditions are enforced over u and d, respectively. The parameters are chosen as
ν = 0.1, λ = γ = 1, ε = 10−3, τ = 0.005, h = 1/100.

When the orientation of the liquid crystal on the x − y plane is isotropic and
dominant, we refer to this state as the defect, which may include an isotropic state or
anoblate state. Figures 5 and6 show the liquid crystal director orientation, flowvelocity
field and corresponding velocity magnitude with the relative orientation θ0 = 0 and
θ0 = 0.5, respectively. We observe that the initially imposed+1 defect is not stable so
that it splits into two+ 1

2 defects over time subject to the Dirichlet boundary condition.

Table 1 Maximal of (|dnh | − 1)
(DoFs values) computed by
using FEM and VEM

1/h 4 8 16 32

FEM 3.78e−01 3.64e−01 2.99e−01 2.05e−01

VEM 6.45e−07 5.84e−07 4.37e−07 3.96e−07
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Fig. 5 Defect dynamics. This figure shows that an initially unstable+1 defect splits into two+ 1
2 defects and

the two defects remain stable subject to theDirichlet boundary conditionwith θ0 = 0. The left column shows
the liquid crystal director orientation on the x − y plane at times: (a)-(d) are for t = 0.005, 0.05, 0.1, 0.2.
The middle column shows the flow velocity field. The right column shows the corresponding magnitude of
velocity

The two + 1
2 defects move away from each other slowly and then evolves to reach a

steady state, inducing a weak velocity field shown in the middle column of Figs. 5 and
6, where two pairs of vortices are shown existing around the defects, but the patterns
of the defects and vortices are changed with the different relative orientation.
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Fig. 6 Defect dynamics. This figure shows that an initially unstable +1 defect splits into two + 1
2 defects

and the two defects remain stable subject to the Dirichlet boundary condition with θ0 = 0.5. The left
column shows the liquid crystal director orientation on the x − y plane at times: (a)-(d) are for t =
0.005, 0.05, 0.1, 0.2. The middle column shows the flow velocity field. The right column shows the
corresponding magnitude of velocity

6 Concluding remarks

In this paper, we consider the virtual element approximations of a hydrodynamics
system for modeling the nematic liquid crystal flows, which is obtained by using the
L2-gradient flow approach. In discrete level, we develop an unconditionally energy
stable fully discrete numerical scheme, achieved by the convex splitting technique
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to deal with the strong nonlinearity in the penalty function, and use the extrapolated
Crank-Nicolson (C-N) time-stepping scheme for nonlinear terms and coupling terms.
In addition, the unique solvability in the discrete level is derived, and we strictly prove
the optimal error estimates of the proposed scheme.We also conduct several numerical
experiments to demonstrate the accuracy and stability of the scheme, and the numerical
results also illustrate the good performance of the proposed scheme. Furthermore, the
numerical scheme has been used to simulate the dynamics of defects in liquid crystals.
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