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Abstract
In this article, we are concerned about a stabilizer-free weak Galerkin (SFWG) finite
element method for approximating a second-order linear viscoelastic wave equation
with variable coefficients. For SFWG solutions, both semidiscrete and fully discrete
convergence analysis is considered. The second-order Newmark scheme is employed
to develop the fully discrete scheme. We obtain supercloseness of order two, which is
two orders higher than the optimal convergence rate in 2 and 1 norms.
In other words, we attain 3 2 in 2 norm and 2 2 in

1 norm. Several numerical experiments in a two-dimensional setting are car-
ried out to validate our theoretical convergence findings. These experiments confirm
the robustness and accuracy of the proposed method.

Keywords Viscoelastic wave equations Stabilizer-free weak Galerkin method
Semidiscrete and fully discrete schemes Supercloseness

Mathematics Subject Classification (2010) 65N15 65N30

1 Introduction

Let be a bounded convex polygonal domain in 2 3 with boundary .
In , we consider a SFWG finite element method for solving a second-order linear
viscoelastic wave equation,

in 0 (1.1)
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with initial and boundary conditions;

0 0 0 0 in 0 on 0 (1.2)

where represents the displacement, is the coefficient of elasticity and
is the coefficient of viscoelasticity. We assume that the coefficient matrices

2 2 and 2 2 are symmetric and uniformly positive defi-
nite in . The initial data 0 0 and the forcing term are assumed to be
smooth functions in their respective domains of definition, and is the finite termi-
nal observation time. Additional regularity assumptions were made throughout the
paper to carry out the convergence analysis.

The model problems describe the wave propagation processes of
actual vibration in a viscoelastic medium (1.1) and (1.2) and [14, 34] provides

some details on how the PDE was derived from physical principles. The viscoelastic
wave equation can be used to describe the attenuation of seismic waves in fluid-
saturated systems. In seismic wave simulation, two types of wave equations are used:
pure elastic wave equations and viscoelastic wave equations. This study describes a
generalized wave equation that incorporates viscoelastic and pure elastic phenomena
into a single wave equation. The viscoelasticity in the generalized wave equation
is defined by a controlling parameter . There are numerous physical backgrounds
for the viscoelastic wave equations, such as during the heat conduction in memory
materials [29], gas diffusion [61], propagation of sound through viscous media [42],
and so on. We aim to develop a SFWG method to effectively simulate the wave
propagation in viscoelastic media. We are well aware that, due to the complexities of
the data and the geometry of the computational domain in real-world applications,
the model problems (1.1) and (1.2) may not have a classical solution. The rate of
convergence of numerical approximations is highly dependent on the smoothness of
a solution. For the related regularity results of the model problems (1.1) and (1.2),
we refer to [42, 49].

Many efforts are devoted to find the accurate and efficient numerical solution for
the associated second-order viscoelastic wave equations, like, conforming finite ele-
ment methods for the model problems (1.1) and (1.2) in the case 1
where 1 is a constant, have been considered in [26, 32, 46]. The mixed finite element
method and discontinuous Galerkin methods for the viscoelastic wave equation have
also been considered in the existing literature (see [31, 39, 44, 45]). Existing literature
dictates a diverse collection of finite element algorithms for equation (1.1) without
first-order derivatives in time. Several numerical methods have been developed to
solve the wave equation via finite elements, such as conforming finite element meth-
ods [10, 27, 41], Mixed FEMs [18, 25], and Discontinuous Galerkin (DG) methods.
DG methods for solving the wave equation have appeared in the literature, e.g., the
penalty DG method (PDG) (cf. [2, 28]), the local DG (LDG) (cf. [8, 17]), the hybrid
DG (HDG) (cf. [11, 15, 16]), and hybrid high-order (HHO) method (cf. [12, 13]).
In the same context, more recently, the weak Galerkin finite element methods have
gained attention in the field of numerical partial differential equations. The WG-
FEMs refers to the numerical algorithms for differential equations which are derived
from weak formulations of the problems by replacing the involved differential opera-
tors by its weak forms and adding parameter free stabilizers [51]. The WG method in
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[51] has many new features including symmetric positive definite formulation, higher
order of convergence and, more importantly, allowing the use of general meshes such
as hybrid meshes, polygonal and polyhedral meshes, and meshes with hanging nodes.
There is abundant existing literature on such PDEs; e.g., for elliptic equations [36,
37, 50, 52], parabolic equations [20, 33, 60, 62], hyperbolic equations [4, 30, 53, 59].
One close relative of the WG finite element method is the hybrid high-order (HHO)
method [12, 22]. The reconstruction operator in the HHO method corresponds to the
weak gradient in the WG methods. Hence, HHO and WG methods differ only in
the choice of the discrete unknowns and in the stabilization design. A comparative
study on the weak Galerkin finite element methods (WGFEMs) with the HHO meth-
ods for biharmonic equation can be found in [23]. Although the close connections
between HHO and WG methods should be mutually beneficial, the author believes
that these connections are not sufficiently explicit in the literature, and the connec-
tion between hybrid high-order methods and weak Galerkin methods is also meant
to draw the community’s attention to this opportunity. Furthermore, a comparative
study on WGFEMs with the widely accepted discontinuous Galerkin finite element
methods (DGFEMs) and the classical mixed finite element methods (MFEMs) can
be found in [35].

The stabilization term is one of the most challenging aspects of WG-FEMs
and other discontinuous Galerkin finite element methods. This term is frequently
employed in finite element formulations with discontinuous approximations to per-
form the connection of discontinuous functions across element boundaries, which
complicates their implementation and analysis. Ye and Zhang [54] proposed a
stabilizer-free weak Galerkin (SFWG) finite element method for solving a second-
order elliptic equation on polytopal meshes without compromising the order of
accuracy. This method is much simpler than the standard WG-FEMs, with fewer
coefficients and high orders of accuracy on polytopal/polyhedral meshes. The
reported method has been developed by [5, 6, 54–57] to solve the elliptic equations
and [3] for the parabolic equation. However, the stabilizer-free weak Galerkin method
is still in its stage of development and research is underway to develop robust higher
order methods with a comparable number of unknowns to weak Galerkin methods
when implemented appropriately.

The main contribution of this paper is to develop and analyze an SFWG finite
element method for the second-order linear viscoelastic wave equation with vari-
able coefficients. The main aspect of our proof is using a non-standard elliptic-type
projection operator instead of the usual elliptic projection. The error estimates in
the triple-bar norm and 2 norm are new (see Theorems 3.2, 3.3, and 4.1). More
precisely, we have obtained convergence rates two orders higher than the optimal
convergence rates in the triple bar norm and 2 norm. That means we have achieved
supercloseness property for the SFWG space 1 1

2 in
the triple-bar norm and 2 norm. The semidiscrete and fully discrete algorithms
and error estimates are discussed for variable coefficients, while most existing work
(except [19, 50]) assumed piecewise constant coefficients. The mathematical analy-
sis for variable coefficients adds more challenges than one would imagine, and this
work fills a gap in the existing literature. Furthermore, semidiscrete error analysis
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has been extended for a fully discrete scheme. The fully discrete space-time finite
element discretization can be reinterpreted as the Crank-Nicolson discretization of
the reformulation of the governing equation in the first-order system, as in Baker
[9]. Several numerical experiments have been reported to establish the efficiency of
the SFWG method in scientific computing. It is noteworthy that the earlier work on
viscoelastic wave equation with constant coefficients via standard WG-FEMs have
considered the backward Euler scheme (see Theorem 3.2, [53]). This article is only
concerned with the order of convergence in the triple-bar norm. The optimal error
estimates in the 2 norm for viscoelastic wave equation using standard WG-FEMs
are still unexplored. Therefore, this study is motivated by removing stabilizers from
WG-FEMs, simplifying the formulation, and reducing programming complexity for
solving the viscoelastic wave equation. Furthermore, it reduces programming com-
plexity and saves CPU time in numerical calculations while maintaining the high
accuracy of numerical solutions. We have obtained accuracy rates two orders higher
than the optimal convergence rates for the corresponding SFWG solution in the 2

and triple-bar norms. Our obtained results intend to enhance the numerical analysis
technique of the second-order viscoelastic wave equation. To my best knowledge,
the SFWG finite element method for the viscoelastic wave equation with variable
coefficients have not been illustrated yet.

To conclude the introduction, we describe the lineup of this paper. Section 2 of
the paper introduces some commonly used notations and the SFWG discretization.
The error estimates of the semidiscrete SFWG algorithm are discussed in Section 3.
In addition, Section 4 proposes a Newmark second-order scheme and establishes
supercloseness a priori error bounds in the 1 and 2 norms. In contrast,
Section 5 examines various numerical examples demonstrating the SFWG algo-
rithm’s robustness. In Section 6, a summary of this work’s contributions is described.
Finally, in the “Appendix,” there is a description of the semidiscrete solution’s stabil-
ity. Throughout this paper, is a positive generic constant independent of the mesh
parameters (defined in Section 2.2) and time step (defined in Section 5) and not
necessarily the same at each occurrence.

2 Preliminaries and SFWG discretization

2.1 Basic notations

We will follow the usual notation for Sobolev spaces and norms throughout the work.
For any domain 2 we use and to denote the norm and
semi-norm in the Sobolev space for any 1, respectively. The inner prod-
uct in is denoted by . The space 0 coincides with 2 , for
which the norm and the inner product are denoted by and , respectively.
For simplicity of notation, we skip the subscript in the norm and inner product
notation when . 1

0 is a closed subspace of 1 , which is also the
closure of 0 (the set of all functions with compact support) with respect to
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the norm of ( cf. [1]). Furthermore, for a given Banach space . , we
will make use of the Bôchner spaces

0 for a.e. 0 and
0

2

endowed with the norm

0 0
2

1
2

for 2

ess sup 0 for .

We denote by 0 , 1 , the space of all measurable functions
0 for which

0

0 0

2 1
2

.

For our notational convenience, we will be using , or interchangeably to
denote time differentiation of . Similar remarks hold for other higher-order time
derivatives. When no risk of confusion exists, we shall write 2 for 2 0 ,

for 0 and for 0 .

2.2 Stabilizer-free weak Galerkin discretization

In this section, we shall describe the SFWG finite element discretization for the
model problems (1.1) and (1.2) and review the definition of the weak gradient
operator.

For some 0 0 and 0 0 , let be a partition of the domain consisting
of triangles in two-dimensional space satisfying a set of conditions specified in [52].
Denote by the set of all edges in and let 0 be the set of all interior edges. For
every element , we denote by the measure of and by its diameter
and mesh size max for .

Let be any triangle with interior 0 and boundary . For any given integer
1, denote the space of polynomials of total degree or less on the element

. Analogously, 1 denotes the space of polynomials of total degree 1
or less on edge . On each element , define the following local SFWG
finite element space

0 0 1 .

The global weak finite element space associated with is defined as

0 0 0 . (2.1)

Here, represent the jump across an interior edge
0.

Denote by 0 the subspace of consisting of all finite element functions with
vanishing boundary value

0 0 . (2.2)
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For each 0 , the weak gradient of it, denoted by w, is defined as
the unique polynomial w 1

2 that satisfies the following equation

w q 0 q q n q 1
2. (2.3)

The usual 2 inner product can be written locally on each element as follows

w w w w . (2.4)

For each element , denote by 0 the usual 2 projection operator from 2

onto and by the 2 projection from 2 onto 1 for any .
We shall combine 0 with by writing 0 . In addition to , let
be another local 2 projection from 2 2 onto 1

2.
We recall the following crucial approximation properties for local projections 0

and .

Lemma 2.1 (Lemma 4.1, [52]) Let be a finite element partition of satisfying the
shape regularity assumption as specified in [52]. Then, for 1 , we have

0
2 2

0
2 2 1 2

1 0 .

Lemma 2.2 (Lemma 4.1, [52]) Let be a finite element partition of satisfying the
shape regularity assumption as specified in [52]. Then, for 1 , we have

2 2 2 2 2
1

0 2.

For ease of use, we adopt the notations listed below

0 0 0 0 0 . (2.5)

0 0 0 0 0 . (2.6)

0

2
0
2 0

2
0
2 0 0 . (2.7)

Next, we recall the following identity for our later analysis (cf. Lemma 2.1, [6])

w
1 . (2.8)

Next, we define the bilinear maps ( 1 2), involving discrete
weak gradient operator w, by

1 w w (2.9)
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and

2 w w . (2.10)

For any the triple-bar norm is defined as (cf. [6])

2
w

2 . (2.11)

It follows from uniformly positive-definite of the coefficient matrices and in
which there exist two positive constants and such that

2 2 for r 1 2. (2.12)

The triple-bar norm is coercive with respect to the semi-norm 1 defined by

1 0
2 1

0
2

1
2

0 . (2.13)

In other words, for any 0 , there exist two constant 1 2 0
such that the following inequalities hold true (cf. Lemma 3.2, [6])

1 1 2 1 . (2.14)

It is easy to see that 1 and define norms in 0.
For any 1 , the following trace inequality holds (cf. [52])

2 1 2 2 . (2.15)

In addition, the following Poincaŕe-type inequality also holds (cf. Lemma 7.4, [51])

0 0
0. (2.16)

3 Error analysis for the semidiscrete scheme

This section deals with the error analysis for the spatially discrete SFWG scheme.
Supercloseness convergence rate in 1 norm and 2 norm is derived
under the appropriate regularity assumptions on the solution.

The continuous-time SFWG finite element approximation to the model problems
(1.1) and (1.2) is defined as follows: Find 0 0 0 satisfying

0 1 2 0 0
0 (3.1)

with 0 0 and 0 0 are approximations of the initial functions
0 and 0.
The following result deals with the existence and uniqueness of the SFWG

solution . We borrowed the basic technique from [38].

Theorem 3.1 For each 0 0 there exists a function 2 0 0

satisfying (3.1).
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Proof For a given element 0 0 let 0 1 2 0 be a set of
basis functions for where 0 dim and 1 2
be a set of basis function for 1 where dim 1 . Then, every

0
0

0 0 can be written as

0

1

0 0

1

where 0 0 are the coefficient functions for 1 0 and
1 . For 1 0 , we write 0 with

0 0 for 1 0 & 0 0 for 0 1 0

0 for 1 0 & 0 for 0 1 0

and similarly to capture the unknown coefficient functions, we define

0 for 1 0 & 0 for 0 1 0 .

Then, we seek our semidiscrete solution 0
0 such that

0

1

0

1

0

0

1

.

Now, set 1 2 0 in (3.1) to obtain

0

1

1

0

1

2

0

1

1 2 0 .

We can rearrange the above equation as

0

1

0

1

1

0

1

2 1 2 0 .

On each element the local stiffness matrix 1 2 associated with the
bilinear maps defined by (2.9) and (2.10) can thus be written as a block
matrix

0 0 0

0
(3.2)
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where 0 0 is a 0 0, 0 is a 0 , 0 is a 0, and is a
matrices. More precisely, these matrices are given by

0 0 0 0 0 0

0 0

where are the row and column indices, respectively.
We denote by

0 1 0 0 0

and

1 1 0
0

0

the components of the given initial approximation 0 and 0 respectively.

Then, for our semidiscrete solution, we need to find an unknown vector
1 0 such that

1 2

0 0 and 0 1 for 0
(3.3)

where the coefficient matrices are given by

0 0

and the source term is given by

1 0 0

with 1 0 .
Note that the matrices and right-hand side vectors all are well-defined. Since

0 0 0 0 & 1 1

and

0 0

for all 0 and 1 2 .
Furthermore, for any 0 0 we have

0
0

1

0 .

Hence, the matrix is invertible for all 0 and the equation (3.3) can be
restated as:

1
1

1
2

1

0 0 and 0 1.

Now, the existence of the solution 2 0 0 follows from the standard ODE
theory.

Regarding the stability of , we have the following result. We can find the proof
of this Lemma in the Appendix.
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Lemma 3.1 For any 0 , let satisfy the SFWG scheme (3.1). Then, we have

0

2

0

2 0 2
6

0 2
6

2
3 2 .

Now, we define the error as:

0 0 0 .

Error is characterized in the following result, which is vital for our convergence
analysis.

Lemma 3.2 For all 0
0 we have

0 1 2 1 2

3 4 (3.4)

where bilinear forms 1 2 3 4 are given by

1 n 0

2 w

3 n 0

4 w .

Proof On each element for 0
0 we test equation (1.1)

against 0 to arrive at

0 0 0 0

0 0 n 0

0 n 0

0 0 n 0

0 n 0 . (3.5)
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Here, we have used the divergence theorem and the fact that

n 0 and n 0.

Then, integration by part together with definition (2.3) for weak gradient and 2

projection yields

w 0 n

0 0 n

0 0 n . (3.6)

As a consequence of (3.6), we get

w 0 0 n . (3.7)

Combining (3.5), (3.6) and (3.7), we have

0 0 w w

0 n

0 n

0 w w w w

1 2 3 4 (3.8)

Using the definition of the bilinear map in the above equation leads to

0 1 2 0

1 2 3 4 . (3.9)

Subtracting (3.9) from (3.1) leads us to the desired result.

We state the following crucial estimates for the bilinear maps 1 2 3 4.

Lemma 3.3 Assume that is shaped regular discretization of computational
domain . Then, for 3 and 0 we have

1 2
2

3 (3.10)

2 1
3

3 (3.11)

3 2
2

3 (3.12)

4 1
3

3 (3.13)

where 2 and 2 are a positive constant depending on
2 the element-wise 2 norm of the coefficient matrix and .
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Proof For 1 estimate, apply trace inequality (2.15) and Lemma 2.2, and we get

1 0

2
1
2 1

0
2

1
2

2 2 2

1
2

0
2 1

0
2

1
2

2
2

3 1

2
2

3 . (3.14)

Let be the average of on each element . Then, we have (see page 2118
in [52])

. (3.15)

Then, using the definition of operator, Lemma 2.2, and estimate (3.15), we obtain

2 w

w

w

1 w

1
3

3 . (3.16)

Similar arguments yield

3 2
2

3

4 1
3

3

The proof is completed.

By letting in (3.4), we have

1

2 0
2

2
2 2

1 2

3 4 .
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By integration over the time interval 0 , we get

1

2 0
2

0

2

2
2 1

2 0 0 2

2
0 2

0
1

0
2

0
3

0
4

It then follows from the estimates (3.10)–(3.13) together with Young’s inequality for
some appropriate 0 lead to

1

2 0
2

0

2

2
2

0

2

2 2

0

2
3

2
3 .

Here, we have used the fact that 0 0 0 0. As a consequence, we
have 0 0.

We can rearrange the above inequality as

2 2 2

0

2
3

2
3 . (3.17)

Finally, the estimate (3.17) leads us to the following point-wise 0 1

convergence result.

Theorem 3.2 Let 1 0 3 be the solution of the model problems
(1.1) and (1.2) and 2 0 0 be the solution of SFWG scheme (3.1). Then,
we have

2

0

2
3

2
3

1
2
.

Remark 3.1 Theorem 3.2 has been established with constant coefficients in (see
Theorem 3.2 in [53]) with the stabilizer-based WG-FEM using weak Galerkin space

2 1 1
2 .

In the present study, we have derived the same order of convergence using the SFWG
method with variable coefficients with weak Galerkin space

1 1
2 .

To get a supercloseness order of error estimate in the 2 norm, we define a non-
standard elliptic type projection operator, which is crucial for our later error analysis.
For 1 0 , where 1

0
2 define 0 by

1 2 0 0
0 (3.18)

with 0 0 0 and

.
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Note that can be recognized as the SFWG finite element approximation solution
applied to the following initial boundary value problem

in 0 (3.19)

with boundary condition 0 on 0 and initial condition 0
0 in .

Remark 3.2 Note that in the 1 and 2 norms, error bounds for the projection
operator satisfying equation (3.18) with constant coefficients have been proved
using the standard WG methods (see cf. [21]). A limitation of this article is the
use of constant coefficients, which do not occur in some applications. In the next
lemma, we use the SFWG algorithm with variable coefficients to bound the error

0 in both triple-bar and 2 norms. Here, the
weak function 0 in our weak finite element space . For simplicity, we
continue to denote 0 by , where .

Lemma 3.4 Let 1 0 3 be the solution of the model problems (1.1)
and (1.2). Let 1 0 0 be the SFWG solution of the (3.19). Then, there
exists a constant such that

2
1 0 3 (3.20)

3
1 0 3 . (3.21)

Proof The following analysis used to derive (3.9), we obtain

1 2 0 1 2

3 4 0
0. (3.22)

Now, subtracting (3.18) from the above equation, we arrive at the following error
relation for

1 2 1 2 3

4 0 . (3.23)

Finally, setting in (3.23) and then standard analysis leads to the following
estimate

2 0 2 2 2 2
1 0 3

2 2 2
1 0 3 . (3.24)

Here, we have used the fact that 0 0.
For the estimate (3.21), we define a dual problem that seeks a solution
1 2 such that

in (3.25)
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and 0 for some 0 . Assume that there exists a unique solution
1 2 such that (cf. [7])

1 2 2 2 . (3.26)

Multiply the equation (3.25) by we get

. (3.27)

Next, arguing as in (3.8), we obtain

w w w w

1 2 3 4 (3.28)

where the bilinear maps are as defined in Lemma 3.2.
Now, integrate equation (3.28) in 0 to obtain

1

2
2

0
w w w w

0
1

0
3

0
2

0
4

0
w w w w

w w 0
0

1
0

3 .

0
2

0
4 .

In the above, we have applied the facts that w w and w 0

w 0 for 0, and 0 0. Hence the factor w w 0
w 0 w 0 0.

Furthermore, using bilinear maps (2.9) and (2.10), we can rearrange the above
equation as follows

1

2
2

0
1 2

0
1

0
3

0
2

0
4 .

Next, using the error equation (3.23), we obtain

1

2
2

0
1

0
3

0
2

0
4

0
1

0
3

0
2

0
4 . (3.29)
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The right hand side of the above equation needs to be estimated now. To do this, first,
we consider the term 1 and employ the same procedure as in (3.14) along
with Lemma 2.2 1 , we get

1
2

2 2
1
2

1 2 . (3.30)

Likewise, for the term 3 we obtain

3 1 2 . (3.31)

Combining the estimates (3.30) and (3.31), we obtain

1 3 2 2 (3.32)

which together with estimate (3.20) and (3.26) yields

0
1

0
3

3
1 3 2 2 . (3.33)

Next, we consider the term 2 and follows the same procedure as in (3.16)
along with Lemma 2.2 0 , we get

2 1 w

1 1 . (3.34)

Similarly, for the term 4 we obtain

4 1 1 . (3.35)

Combining the estimates (3.34) and (3.35), we obtain

2 4 1 1

2 2 . (3.36)

As a consequence of (3.33), we get

0
2

0
4

3
1 3 2 2 . (3.37)
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Next, we use trace inequality (2.15), and Lemma 2.1 to get the bound for the term
1 as

1 0

2

1
2

0
2

1
2

2 2 2

1
2

1
0

2

1
2

2
3

1
0

2
1 2

2
3

2
0

2
0

2
1 2

2
3 2. (3.38)

Similar arguments yield

3
3

3 2. (3.39)

Now, for the estimates of remaining terms 2 & 4 we apply
the estimates (3.11), and (3.13) which leads us to

2 4
3

3

3
3 2 2 . (3.40)

In the last inequality, we have used the estimate (6.19) (see Appendix, Remark 6.1).
Now, apply the estimates (3.38), (3.39), and (3.40) on RHS of (3.29 ), we get

0
1

0
3

0
2

0
4

3
1 3 1 2 2 2

3
1 3 2 2 . (3.41)

In the last inequality, we used the estimate (3.26).
Combining the estimates (3.29) and (3.41) and then using Young’s inequality, we

obtain

1

2
2 2

2 2
2 3 2

1 3 (3.42)
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for some appropriate 0.
Now, we select such that max 0 so that 2

2 2

2 and subsequently estimate (3.42) reduces to

1

2
2 2 2 3 2

1 3 .

Thus, for suitable 0, we obtain

2 2 3 2
1 3 .

The proof is completed.

Remark 3.3 A modification in the dual problem that seeks a solution 1 0
2 such that

in

with 0 leads to the following estimate

2
2 0 2

0

2

2 3 2
1 0 3 . (3.43)

We omit the details.

Next, to obtain supercloseness error estimate in the 2 norm, we split our error
into two standard components and using the following relation

where . From Lemma 3.4, we already have a bound for . We only
need to bound .

Next, using the definitions of projection operators and we arrive at the
following important identity

0 1 2
2

2 0 1 2

2

2 0

1 2

0

2

2 0

2

2 0

2

2 0

2

2 0

2

2 0 0
0
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which can be rearranged as

0 0 2 2 1

0 0 0
0 0. (3.44)

Now, for 0 , we define

0 .

Then, clearly 0 and , 0 . Now, substituting
0 in (3.44) and making some rearrangements, we get

1

2
2 2

1

2
1

. (3.45)

Integrating (3.45) from 0 to , and using the fact that 0 and 0 0, we
derive

1

2
2 1

2
1 0 0

0

2ds 0 0
0

ds

Applied Cauchy-Schwarz inequality, Lemma 3.4 together with the fact that 0
0 0 0 and 1 0 0 0, yields

1

2
2

0

2ds
0

ds. (3.46)

Since is continuous in the time variable, we select such that
max0 . We observe that 0 , which together with Young’s
inequality for some appropriate 0 leads us to

1

2
2

0

2ds max
0 0

2 2

2 2
2 2 .

We can restate the above inequality

2
2

2
2 2 (3.47)

Then, from the estimate (3.43), we recall

2 2
3

1 0 3 . (3.48)

Finally, combining the estimates (3.47) and (3.48) together with Lemma 3.4 leads us
to the following error estimate for the semidiscrete scheme (3.1).
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Theorem 3.3 Let and be the solutions of the model problems (1.1) and (1.2)
and SFWG scheme (3.1), respectively. Assume that 2 0 3 and

2 0 3 . Then, there is a constant such that

3
2 3 2 3 .

Remark 3.4 Recall that 0 0 and 0 0 where 0 is the interior of
the element . Then, Theorem 3.3 leads to the following estimate

0 0
3

2 3 2 3 .

4 Fully discrete scheme

In this section, we describe an implicit second-order Newmark scheme for time dis-
cretization that we use to approximate the solution of the model problems (1.1)
and (1.2).

We first divide the time interval 0 into equally spaced subintervals by
the following points

0 0 1

with being the time step. Let 1 be the th sub-interval.
For a sequence 0

2 , we define

1

and
1
2

1

2
1 0 1 1.

Also, for a continuous mapping 0 2 , we define ,
0 . Then, the fully discrete SFWG finite element approximation to the
model problems (1.1) and (1.2) is defined as follows: Find 0

0

such that
1
2 for 0 1 2 1 (4.1)

and

0 1
1
2 2

1
2

1
2 0

0 (4.2)

with 0 0 and 0 0.
For the well-posedness of the fully discrete schemes (4.1) and (4.2), we have the

following result in terms of the auxiliary variable .

Lemma 4.1 There exists a unique sequence 0
0 and a corresponding

unique sequence 0
0 satisfying the fully discrete schemes (4.1) and (4.2).

Proof From (4.1), we have

1

2
1 . (4.3)
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Using (4.3) in (4.2), we get

1
0

2

4
1

1

2
2

1 0 (4.4)

where is the linear functional given by

0

2

4
1

2
2

1
1
2 0 0

0. (4.5)

Due to the positivity of bilinear forms 1 & 2 there exists uniquely
defined 1 0 satisfying equation (4.4) and subsequently 1 exists uniquely
for 0 1 1.

Later on, we will need the following results. The proofs involve using Taylor’s
series and standard arguments; therefore, details are omitted.

Lemma 4.2 For any 3 2 , we have

1
2 2

3

120

1
2 . (4.6)

In order to compute the error between and , we first established the error
for for 1 . To do so, we have the following result.

Lemma 4.3 Let and be the solutions of the model problems (1.1) and (1.2) and
the fully discrete schemes (4.1) and (4.2), respectively. Then, we have

max
1

2 4

0

2

0

2 .

Proof Substitute and 1 in (3.1) and then add to have

0 1

1
2

2

1
2

1
2 0

0 0
0 (4.7)

where
1
2 .

Now, subtracting (4.2) from (4.7), we have

0 1
1
2 2

1
2 0

0 (4.8)

with .
From (4.1), it is easy to observe that

1
2

1
2

1
2

1
2 (4.9)
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so that
1

0

1

0

1
2

1

0

&
1

0

.

Here, we have used the fact that 0 0 0 0 0 0 and 0

0 0 0 0 0.
Hence, applying the above relations, it follows that

2
0

1

0

(4.10)

1
2

2
0

1
2

1

0

1
2

2
0

1

0

. (4.11)

Now, we define a sequence 0 such that
0 0 and

1

0

1
2 1 2 1

so that

1
2

2
0

1
2

1

0

1
2 . (4.12)

Hence, applying the identities (4.10)-(4.12) leads us to

0 1
1
2 2

1
2

2
0

0 2
1
2 1

1
2

2

1

0

0 2
1
2 1

1
2

0
2

2

0

1

0

for any 0
0.

Using (4.8), for 1 1, we derive

0 2
1
2 1

1
2

1 0 2 2 (4.13)

where

1 2

1

0

& 2 2

1

0

.
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Substituting
1
2 in (4.13) and making some rearrangements, we

arrive at
1 1 2 2

1
2

1
2 1

1 1

1 2 1
1
2 2 2 2

1
2 .

Next, using Cauchy-Schwarz inequality, together with coercivity (2.12), we obtain

1 1 2
1
2 2 2

1
2

2
1

1 1

1 2 1
1
2 2 2

1
2

2 2
1
2 .

Now, applying Young’s inequality by appropriately selecting 0 in the above
relation leads us to

1 1
1

1 1
1

1
2

2
2

2
2 . (4.14)

Summing (4.14) from 1 to 1 with 2 , we obtain

max
2

2 1 2 1
2 1

0
1

2
2

2 . (4.15)

For estimation of the terms 1 and 1, we note that

1 1
2

2
1 &

1
2

1

2

1
0.

Now, putting 0 in the error equation (4.8) and using the above identities, we have

2
2

1
0

1
2

1 1
1

1

0
0

2 0
0 2

0 0. (4.16)

Substituting 1 2
1 in (4.16) together with coercivity (2.12), we obtain

1 2 1
2 2

2
0 1 0 1

2
0 1 .

Next, use Cauchy-Schwarz and Young’s inequalities to have

1 2 1
2 4

4
0 2 1 2 2

4

4
0 2

1 2 2 0
2

1
2
.

Now, selecting 0 appropriately leads us to

1 2 1
2

4 0 2 2 0
2
. (4.17)
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Combining (4.15) and (4.17), we have

max
1

2 4 0 2 2 0
2 1

0
1

2
2

2 . (4.18)

Now, we shall estimate both terms 1 and 2. For the estimation of 1, use
triangle inequality and Cauchy-Schwarz inequality to have

1
2

2

4
2 2

1

0

2 2

2

4
2 2

1

0

2 2

2

4
2

1

0

2 2 .

Then, using Lemma 4.2, we obtain

1
2 5

1
2 4

0

2

3
1

2 . (4.19)

The following estimate for 2 is achieved using the same technique as used for
deriving 1

2
2 5

1 2 4

0

2 . (4.20)

Finally, using (4.19) and (4.20) in (4.18), we obtain

max
1

2 4

0

2

0

2 .

The following Theorem states the optimal 2 error result.

Theorem 4.1 Suppose that the model problems (1.1) and (1.2) and the fully discrete
schemes (4.1) and (4.2) has a unique solution and , respectively. Assume that
the initial data 0 6 1

0 and 0 6 1
0 . Furthermore,

suppose that 1 0 3 then, we have

max
0

3 2

where 0 2
6

0 2
6

2
3 2

2
1 3

1
2
.
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Proof We split the error as

.

Applying the triangle inequality in the above relation, we get

.

Using Theorem 3.3, Lemmas 3.1, and 4.3 in the above inequality gives the desired
result.

Remark 4.1 For the fully discrete solution 0 , we observe that

0 0 0 0 .

Now, using the standard approximation property for the 2 projection 0
2 (see Lemma 4.1 in [52]), we obtain

0
2 2

0
2 2 1 2

1 .

Therefore, for the fully discrete schemes (4.1) and (4.2), we obtain
1 2 (4.21)

with weak Galerkin space 1 1
2 . For the possible exten-

sion of the estimate (4.21), we refer to achieving superconvergence by one-
dimensional discontinuous finite elements [58]. We are working on improving the
estimate (4.21) by bridging the HHO and the weak Galerkin methods.

5 Numerical section

In this section, we shall illustrate various types of numerical examples to validate the
theoretical convergence results for the second-order viscoelastic wave equations (1.1)
and (1.2) in , where 2 and 0 1 . The model problems (1.1)
and (1.2) are solved on finite element partitions of various configurations, including
triangular and rectangular meshes, to demonstrate the flexibility and efficiency of the
SFWG algorithm.

Let be the SFWG solution defined by (4.1) and (4.2). We calculated the fol-
lowing error to illustrate the convergence history of the SFWG approach in terms of
discretization error:

at final time with respect to the triple-bar norm and 2 norm. More precisely,
the errors are reported with respect to the triple-bar norm and 2 norm through tables
for the SFWG space

1 1
2

with a time step 1 .
Let be the error corresponding to the 1 norm or 2 norm on the

th iteration for a given finite number of successive iterations (indexed by ), and
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be the corresponding mesh size. The expected order of convergence (EOC) is then
defined as

log 1 log 1 .

Example 5.1 (Smooth solution with smooth coefficient) In the first numerical exam-
ple, we consider the model problems (1.1) and (1.2) in , where 0 1
0 1 . Numerical solution is compared with the following exact solution

2 exp sin sin

with coefficients selected as
The choice for determines the source term initial data, and boundary data. In

this case, we have uniformly partitioned the domain into sub rectangles, then
divided each rectangular element by a diagonal line with a negative slope, with the
mesh size set to 1 . Figure 1 depicts the initial mesh and its refinement. The

1 norm and 2 norm errors for linear, quadratic, and cubic WG spaces
at final time 1 are reported in Table 1, demonstrating that the rate of convergence

2 in the triple-bar norm and 3 in the 2 norm. Table 2 demonstrating
the rate of convergence in time direction, which shown the second order accuracy.

Example 5.2 (Smooth solution with smooth coefficient) In this example, we consider
the model problems (1.1) and (1.2) in , where 0 1 0 1 . Numerical
solution is compared with the following exact solution

2

4
exp sin sin .

I took the following data from the true solution , which has the coefficients
. As illustrated in Fig. 2, we have uniformly partitioned the domain into

sub rectangles with a mesh size of 1 . Table 3 show the sequence of
convergence for the WG spaces 1 2, and 3. It demonstrated that we
had obtained the optimal order of accuracy in the triple-bar and 2 norms.
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1 An initial triangular mesh for 1 2 (left), and its refinement for 1 8 (right) in Example 5.1
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Table 1 The history of convergence with 1 in Example 5.1

1 EOC EOC

1 2 6.468691e-03 - 3.724247e-02 -

1 4 4.635769e-04 3.802593e+00 4.352819e-03 3.096927e+00

1 8 3.009466e-05 3.945229e+00 5.362389e-04 3.021002e+00

1 16 1.900158e-06 3.985316e+00 6.701159e-05 3.000393e+00

1 32 1.190808e-07 3.996106e+00 8.389944e-06 2.997678e+00

1 64 7.355213e-09 4.017029e+00 1.022743e-06 3.036217e+00

2 EOC EOC

1 2 9.129500e-04 - 6.101349e-03 -

1 4 1.644990e-05 5.794385e+00 3.185192e-04 4.259676e+00

1 8 3.447039e-07 5.576578e+00 1.974468e-05 4.011844e+00

1 16 8.922583e-09 5.271752e+00 1.236310e-06 3.997352e+00

1 32 2.623241e-10 5.088039e+00 7.737803e-08 3.997973e+00

1 64 7.520471e-12 5.124383e+00 4.706211e-09 4.039286e+00

3 EOC EOC

1 2 1.856813e-04 - 1.208604e-03 -

1 4 8.503071e-07 7.770629e+00 3.003950e-05 5.330337e+00

1 8 7.365781e-09 6.851002e+00 9.534857e-07 4.977506e+00

1 16 1.047106e-10 6.136359e+00 2.999974e-08 4.990190e+00

1 32 1.526153e-12 6.100364e+00 9.739272e-10 4.944992e+00

Example 5.3 (Smooth solution with discontinuous coefficients) In this example, we
will describe the SFWG algorithm for discontinuous coefficients, which is concerned
with the higher order of convergence. To do so, we modify this example from [24].
We consider the following IBVP

in (5.1)

where 1 1 1 1 and 0 1 .
The exact solution is the same as in Example 5.2. For this case, finite ele-

ment partitioning is referred to as triangulation. Then, to emphasize the significance

Table 2 The history of convergence in time in Example 5.1

1 EOC EOC

1 2 1.497415e-02 0 7.115828e-02 0

1 4 3.134150e-03 2.256328e+00 1.445307e-02 2.299656e+00

1 8 7.298239e-04 2.102454e+00 3.284000e-03 2.137849e+00

1 16 1.788235e-04 2.029012e+00 7.972708e-04 2.042312e+00

1 32 4.447484e-05 2.007475e+00 1.977739e-04 2.011218e+00

1 64 1.110421e-05 2.001883e+00 4.934586e-05 2.002851e+00
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Fig. 2 An initial rectangular mesh for 1 2 (left), and its refinement 1 4 (right) in Example 5.2

Table 3 The history of convergence in Example 5.2

1 EOC EOC

1 2 2.356697e-03 - 1.069616e-02 -

1 4 1.776841e-04 3.729380e+00 1.538992e-03 2.797035e+00

1 8 1.155518e-05 3.942703e+00 1.981903e-04 2.957027e+00

1 16 7.290864e-07 3.986306e+00 2.495079e-05 2.989729e+00

1 32 4.567492e-08 3.996616e+00 3.124340e-06 2.997462e+00

1 64 2.683221e-09 4.089364e+00 3.750312e-07 3.058468e+00

2 EOC EOC

1 2 3.144880e-04 - 1.577914e-03 -

1 4 5.395449e-06 5.865118e+00 6.104106e-05 4.692094e+00

1 8 8.788066e-08 5.940053e+00 2.265242e-06 4.752043e+00

1 16 1.490727e-09 5.881458e+00 8.683974e-08 4.705166e+00

1 32 2.917810e-11 5.674987e+00 3.732893e-09 4.539989e+00

1 64 6.430722e-13 5.503761e+00 1.740321e-10 4.422868e+00

3 EOC EOC

1 2 5.087126e-05 - 2.642776e-04 -

1 4 2.530311e-07 7.651392e+00 3.181595e-06 6.3762e+00

1 8 2.116147e-09 6.90173e+00 5.905929e-08 5.7514e+00

1 16 2.780496e-11 6.25007e+00 1.597479e-09 5.2083e+00

1 32 3.917809e-13 6.14926e+00 4.732893e-11 5.0769e+00
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Table 4 The history of convergence in Example 5.3

1 EOC EOC

1 2 7.805155e-04 - 1.209341e-04 -

1 4 5.126943e-05 3.928256e+00 1.703776e-05 2.827413e+00

1 8 3.214451e-06 3.995454e+00 2.305186e-06 2.885781e+00

1 16 2.009431e-07 3.999714e+00 2.981483e-07 2.950781e+00

1 32 1.255910e-08 3.999982e+00 3.782245e-08 2.978715e+00

1 64 7.820511e-10 4.005326e+00 4.708344e-09 3.005951e+00

[6pt] 2 EOC EOC

1 2 2.035232e-04 - 2.396299e-05 -

1 4 3.214578e-06 5.984420e+00 9.834507e-07 4.606811e+00

1 8 5.023629e-08 5.999755e+00 6.174704e-08 3.993410e+00

1 16 7.849282e-10 6.000025e+00 3.956745e-09 3.963983e+00

1 32 1.502711e-11 5.706921e+00 2.382245e-10 4.053920e+00

1 64 4.563261e-13 5.041358e+00 1.564672e-11 3.928389e+00

of our model problem, we choose the data appearing in the above problem from the
with the following physical coefficients, which we select from [47].

2

1 1.2 10 4 1.44 108 if 2 2 1 4,

1 1.6 10 4 1.96 108 if 2 2 1 4.
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Fig. 3 An initial quadrilateral mesh (left), and its refinement (right)
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Table 5 The history of convergence in Example 5.4

1 EOC EOC

1 2 7.195140e-02 – 1.389247e-01 –

1 4 4.254137e-03 4.080084e+00 1.665745e-02 3.060063e+00

1 8 2.664639e-04 3.996854e+00 2.085589e-03 2.997641e+00

1 16 1.655666e-05 4.008456e+00 2.595551e-04 3.006342e+00

1 32 1.032863e-06 4.002692e+00 3.239902e-05 3.002019e+00

1 64 6.452204e-08 4.000712e+00 4.048378e-06 3.000534e+00

2 EOC EOC

1 2 8.207043e-04 – 4.848864e-03 –

1 4 2.010429e-04 2.029359e+00 1.688366e-03 1.522019e+00

1 8 7.028182e-06 4.838208e+00 1.364999e-04 3.628656e+00

1 16 2.251476e-07 4.964209e+00 1.033595e-05 3.723156e+00

1 32 7.077973e-09 4.991391e+00 7.716701e-07 3.743543e+00

1 64 2.214920e-10 4.998010e+00 5.741410e-08 3.748507e+00

The Dual Phase-Lag (DPL) bioheat transport model on multi-layered material
describes the above mentioned problem. Because the thermal properties of biological
media differ between layers, heterogeneity in the underlying media is natural. The
DPL model is widely used to investigate heat transport in metallic films during ultra-
fast laser heating [40, 48]. represents the equivalent thermal wave speed, and
the electron thermal diffusivity of the material is represented by . Our numerical
results are based on uniform triangular meshes with 1 and 2 at final time

1. We have obtained optimal order of convergence in both 2 and 1 norms, as
shown in Table 4, which confirms our theoretical conclusions in Theorem 4.1.

Example 5.4 (Smooth solution on quadrilateral mesh) In this example, we will
glance at the SFWG algorithm on a quadrilateral mesh, emphasizing a higher order
of convergence. We solve the model problems (1.1) and (1.2) in 0 1 2 with the
exact solution

2 exp sin 2 sin 2 .

The initial mesh is depicted in Fig. 3 (Left). Figure 3 (right) show the mesh generated
by the uniform refinement procedure. Table 5 shows the errors with respect to the
triple-bar norm and the 2 norm for 1 and 2 SFWG spaces at final
time 1.

6 Conclusion

In this study, we have described SFWG finite element method for a second-order
linear viscoelastic wave equation with variable coefficients. We have applied the
SFWG method for space discretization and the implicit second-order Newmark
scheme for time discretization and obtained superconvergence in 1 norm and
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2 norm, that is, the two orders higher than optimal order. Numerous numerical
examples are illustrated using various degrees of polynomials in the SFWG spaces.

The extension of this theory with a high order of accuracy is being considered as
future work for the Westervelt’s quasi-linear acoustic wave equation

2 2 in 0 (6.1)

where 2 is a bounded and convex domain. The equation (6.1) is widely used
to simulate high-intensity focused ultrasound fields generated by medical ultrasound
transducers.

Appendix

Proof of Lemma 3.1. Differentiating (3.1) twice with respect to time and substitute
we have

1 2 .

We can restate the above equation as

1

2
2

1 2 .

Now, integrate the above equation with respect to time from 0 to and apply the
Cauchy-Schwarz inequality; we get

1

2
2 1

2
2

0

2

0

2

1

2
0 2 1

2
0 2 1

2 0

2

0

2 .

We can rearrange the above equation as

0

2

0

2 0 2 0 2

0

2 . (6.2)

Now, we need to bound 0 2 and 0 2 in (6.2). To this end, taking 0
in (1.1), it follow that for 0

0 0
2 0 2 1 (6.3)

and

0 0
4 0 4 2 (6.4)
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Next, we differentiate (3.1) with respect to time and using the definition of
operator (3.18). Then, setting 0 to have

0 0 1 0 2 0 0 0

1 0 2 0 0 0

0 0 0 0

Now, applying the Cauchy-Schwarz inequality together with the estimate (6.3) in the
above equation with 2 we obtained

0 0
4

0
4 2 2 . (6.5)

In the previous estimate, we have used the fact that (cf. [43], Proposition 7.1)

sup
0

1
1 (6.6)

for any Banach space .
As a consequence of estimate (6.5) together with standard inverse inequality,

estimate (6.4) with 2 and the fact that 2 2 we obtain

0 1 0 0
6

0
6 2 2 . (6.7)

Again, we are differentiating (3.1) thrice with respect to time and substitute
, we get

1 2 .

Then, it follows from (6.2) that

0

2

0

2 0 2 0 2

0

2 . (6.8)

Here, the term 0 can be bound using the estimate (6.7). To the bound
0 and in (6.8), we follow the step from (6.3)–(6.7), and we get

0 0
6

0
6 3 2 .

Lemma 6.1 Let 1 0 2 be the solutions of the (3.19) and be its
SFWG approximation. Then, there exists a constant such that

2 2 (6.9)

Proof The following analysis used to derive (3.9), we obtain

1 2 0 1 2

3 4 0
0. (6.10)
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Next, we may define 0 as the solution to the SFWG approximation of the
equation (3.19) that follows

1 2 0 0
0 (6.11)

with 0.
Now, subtracting (6.11) from the equation (6.10), we arrive at the following error

relation for

1 2 1 2 3

4
0 0 . (6.12)

Finally, putting in (6.12) and then standard analysis as we did in Theorem
3.2 combined with the estimations (3.32) and (3.36) yields the following estimate

2 0 2 2 2
1 0 2

2 2
1 0 2

2 2
2 2 .

Here, we have used the estimate (3.26) together with the fact that 0 0. The
proof is completed.

Remark 6.1 We recall a dual problem that seeks a solution 1 2

such that

in (6.13)

and 0 for some .
We may define 0 as the solution to the discrete problem of the equation

(6.13) that follows

1 2 0 0
0 (6.14)

with 0.
Setting in (6.14) and using the coercive property (2.12), we obtain

2 1

2
2 0 .

Next, integrate the above equation in 0 to obtain

2 1

2
2 0 0 0 .

Here, we used the fact that 0 and hence, 2 0.
Now, we apply the Poincaŕe-type inequality (2.16) and positive definiteness of
2 in the above estimate, we get

. (6.15)

When we set in (6.14), we can get

. (6.16)
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The following estimates are satisfied by , which is the SFWG approximation to
(see estimate (6.9))

2 2 . (6.17)

Now, we combine estimates (6.15) and (6.17) to obtain

2 2 . (6.18)

As a consequence, we can prove that

2 2 . (6.19)
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