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Abstract
The inverse of the stiffness matrix of the time-harmonic Maxwell equation with 
perfectly conducting boundary conditions is approximated in the blockwise low-
rank format of H-matrices. Under a technical assumption on the mesh, we prove 
that root exponential convergence in the block rank can be achieved, if the block 
structure conforms to a standard admissibility criterion.

Keywords  Maxwell equations · Hierarchical matrices · Finite element method · 
Helmholtz decompositions

1  Introduction

A backbone of computational electromagnetics is the solution of the time-har-
monic Maxwell equations. Since the discovery of Nédélec’s edge elements (and 
their higher order generalizations) finite element methods (FEMs) have become an 
important discretization technique for these equations with an established conver-
gence theory [35]. While the resulting linear system is sparse, a direct solver cannot 
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achieve linear complexity as one has to expect, already for the case of quasi-uni-
form meshes with problem size N, a complexity O(N4/3) for the memory require-
ment and O(N2) for the solution time of a multifrontal solver [33]. Iterative solvers 
such as multigrid or preconditioned Schwarz methods can lead to optimal (or near 
optimal) complexity for the numerical solution of the time-harmonic Maxwell equa-
tions, at least in the low-frequency regime [2, 21, 27]. For the design and analysis 
of these methods, a key insight was the appropriate treatment of the gradient part of 
the Nédélec space and thus Helmholtz decompositions play an important role. The 
analysis of fast solvers for Maxwell’s equations, however, is less developed in areas 
such as high-frequency applications.

An alternative to classical direct solvers and iterative solvers came with the intro-
duction of H-matrices in [25]. This class of matrices consists of blockwise low-rank 
matrices of rank r, where the blocks are organized in a tree �I so that the memory 
requirement is typically O(rN depth(�I)) , where N is the problem size. This format 
comes with an (approximate) arithmetic that allows for addition, multiplication, 
inversion, and LU-factorization in logarithmic-linear complexity. Therefore, com-
puting an (approximate) inverse in the H-format can be considered a serious alterna-
tive to a direct solver or it can be used as a “black box” preconditioner in iterative 
solvers. We refer to the works [10, 20, 23, 26] for a more detailed discussion of ana-
lytical and algorithmic aspects of H-matrices.

A basic question in connection with the H-matrix arithmetic is whether matri-
ces and their inverses or factors in an LU-factorization can be represented well in 
the chosen format. While stiffness matrices arising from differential operators are 
sparse and are thus easily represented exactly in the standard H-matrix formats, the 
situation is more involved for the inverse. A first proof that inverses can be repre-
sented in the H-matrix format harks back to [5, 6] for scalar elliptic problems and 
[9] for the curlμ− 1curl operator; a generalization to pseudodifferential operators is 
done in [14]. These proofs rely on locally separable approximations of the contin-
uous Green’s function and a final projection of these approximations into discrete 
spaces. The final projection step limits, at least formally, the achievable accuracy 
of the matrix approximation by the discretization error. To circumvent this, a fully 
discrete approach was taken for FEM discretizations of various scalar elliptic opera-
tors in [1, 16] to show that the inverse of the FEM-matrix can be approximated at 
a root exponential rate in the block rank. The works [17, 18] extend these results 
to the boundary element method (BEM) and [19] to a FEM-BEM coupling setting. 
The underlying mechanism in these works is that ellipticity of the operator allows 
one to prove a discrete Caccioppoli inequality, where a higher order norm (e.g., the 
H1-norm) is controlled by a lower order norm (e.g., the L2-norm) on a slightly larger 
region. This gain in regularity can be exploited for approximation purposes, and an 
exponential approximation can be obtained by iterating the argument. The present 
setting of Maxwell’s equations is different since the corresponding Caccioppoli ine-
quality (Lemma 4.1) controls only the H(curl)-norm by the L2-norm. Since H(curl) 
is not compactly embedded in L2, this Caccioppoli inequality is insufficient for 
approximation purposes. We therefore combine this Caccioppoli inequality with a 
local discrete Helmholtz-type decomposition. The gradient part can be treated with 
techniques established in [16] for Poisson problems, whereas the remaining part can, 
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up to a small perturbation, be controlled in H1 so that approximation becomes feasi-
ble and one may proceed structurally similarly to the scalar case. The local discrete 
Helmholtz-type decomposition (Lemma 3.11) may also be of independent interest.

This paper is organized as follows. In Section  2, we introduce the time-har-
monic Maxwell equations and their discretization with Nédélec’s curl-conforming 
elements. We state the main result of this paper, namely, the existence of H-matrix 
approximations to the inverse stiffness matrix that converge root exponentially in 
the block rank. We hasten to add that we do not track the dependence on the fre-
quency ω in our analysis and focus on the case of fixed wave number κ. As in the 
case of the Helmholtz equation, the high-frequency case of � → ∞ would require 
specialized matrix formats such as directional H2-matrices ( DH

2 ) or the butterfly 
format; we refer to the literature discussions in [4, 7, 8]. To prove the approxi-
mability result of Section  2, we present in Section  3 a local discrete Helmholtz 
decomposition and prove stability and approximation properties of this decompo-
sition under a certain technical assumption on the mesh. In Section 4, we present 
a Caccioppoli-type inequality for discrete L-harmonic functions with L being the 
Maxwell operator. Furthermore, we obtain exponentially convergent approxima-
tions to discrete L-harmonic functions. Section 5 is concerned with the proof of 
the main result of this paper.

Concerning notation: Constants C > 0 may differ in different occurrences but are 
independent of critical parameters such as the mesh size. a ≲ b indicates the exist-
ence of a constant C > 0 such that a ≤ Cb. For a set A ⊂ ℝ

3 , we denote by |A| its 
Lebesgue measure. For finite sets B, the cardinality of B is also denoted by |B|. We 
employ standard Sobolev spaces as described in [34]. We also denote �c ∶= ℝ

3 ⧵�.

2 � Main results

2.1 � Model problem

Maxwell’s equations are a system of first-order partial differential equations that 
connect the temporal and spatial rates of change of the electric and magnetic fields 
possibly in the presence of additional source terms. Let 𝛺 ⊂ ℝ

3 be a simply con-
nected polyhedral domain with boundary Γ := ∂Ω that, in physical terms, is filled 
with a homogeneous isotropic material. Maxwell’s equations then connect the elec-
tric field E to the magnetic field H by

where G is a given function representing the applied current. Homogeneous isotropic 
materials can be characterized by a positive dielectric constant ε > 0, a positive 

(2.1a)
(
�
�

�t
+ �

)
E − ∇ × H = G in �,

(2.1b)�
�

�t
H + ∇ × E = 0 in �,
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permeability constant μ > 0, and a non-negative electric conductivity constant σ ≥ 0. 
In this paper, we consider perfectly conducting boundary conditions for E , i.e.,

 where n is the unit outward normal vector on Γ.
We assume the arising fields to be time-harmonic, i.e.,

for some given frequency ω. Substituting (2.2) into (2.1a) and (2.1b), we get

where η := ε + iσ/ω. Finally, the first-order system (2.3a) can be reduced to a sec-
ond-order equation by eliminating �

where κ := ω2η and F := −iωJ. For the sake of simplicity, we also assume μ = 1 in 
the following.

With L2(Ω) := L2(Ω)3, we define the space �(curl,�) ∶={
� ∈ �

2(�)∶ ∇ × � ∈ �
2(�)

}
, equipped with the norm

 and the subspace H0(curl,Ω) ⊂ H(curl,Ω) with zero boundary conditions

The following lemma asserts that the tangential trace operator for functions in 
H(curl,Ω) is indeed well-defined:

Lemma 2.1  [35, Thm. 3.29] Let Ω be a bounded Lipschitz domain. Then, the trace 
operator

 can be uniquely extended to a bounded linear operator �T ∶ �(curl,�) → �
−1∕2(� ).

Multiplying both sides of (2.4) with Ψ ∈ H0(curl,Ω) and integrating by parts, we 
obtain the weak formulation: Find E   H0(curl,Ω) such that

where ⟨⋅, ⋅⟩
�2(�) is the L2(Ω)-inner product. We assume that κ is not an eigenvalue 

of the operator ∇ × ∇ ×, see, e.g., [35, Sec. 4]. This implies in particular that κ ≠ 0 
since ∇H1

0
(�) is contained in the kernel of the operator ∇ × ∇ ×. Then, the Fredholm 

� × E = 0 on � ,

(2.2)E(x, t) = e−i�t�(x), H(x, t) = e−i�t�(x), G(x, t) = e−i�t�(x)

(2.3a)−∇ ×� − i��� = � in �,

(2.3b)∇ × � − i��� = 0 in �,

(2.4)L� ∶= ∇ × (�−1∇ × �) − �� = � in �,

‖U‖2
�(curl,�)

∶= ‖U‖2
�2(�)

+ ‖∇ × U‖2
�2(�)

,

�0(curl,�) ∶= {U ∈ �
2(�)∶ ∇ × � ∈ �

2(�), � × � = 0 on � }.

�T ∶ �
∞(�) → �

0(� ), � ↦ � × �|�

(2.5)
a(�,� ) ∶= ⟨∇ × �,∇ × �⟩

�2(�) − � ⟨�,�⟩
�2(�) = ⟨�,�⟩

�2(�) ∀� ∈ �0(curl,�),

∈
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alternative provides the existence of a unique solution to the variational problem, 
and we have the a priori estimate

for a constant Cstab that depends on Ω and κ, see, e.g., [28, Thm. 5.2].

2.2 � Discretization by edge elements

Let Th = {T1,… , TNT
} be a quasi-uniform triangulation of Ω with the mesh width 

h ∶= maxTj∈Th diam(Tj) , where the elements Tj ∈ Th are open tetrahedra. The mesh 
Th is assumed to be regular in the sense of Ciarlet, i.e., there are no hanging nodes. 
The assumption of quasi-uniformity includes the assumption of γ-shape regularity, 
i.e., there is γ > 0 such that diam(Tj) ≤ γ|Tj|1/3 for all Tj ∈ Th . For the Galerkin discre-
tization of (2.5), we use lowest order Nédélec’s H(curl,Ω)-conforming elements of 
the first kind, see, e.g., [35, Sec. 5]. That is, on T ∈ Th , we introduce the lowest 
order local Nédélec space

 and set

The standard degrees of freedom of �h(Th,�) are the line integrals of the tan-
gential component of Uh on the edges of Th , see, e.g., [35, Sec. 5.5.1], [3, Sec. 
2.3.2]. Hence, the dimension of �h(Th,�) is the number of edges of Th . The stand-
ard basis Xh ∶= {�e} of �h(Th,�) consists of the so-called (lowest order) edge 
elements, where the function �e ∈ �h(Th,�) is associated with the edge e of Th 
and is supported by the union of the tetrahedra sharing the edge e. More specifi-
cally, for an edge e with endpoints V1, V2 and a tetrahedron T with edge e, one has 
�e|T = �V1

∇�V2
− �V2

∇�V1
 , where �Vi

 is the standard hat function associated with 
vertex Vi.

A basis Xh,0 ∶= {�1,… ,�N} of �h,0(Th,�) with N ∶= dim�h,0(Th,�) is 
obtained by taking the �e ∈ Xh , whose edge e satisfies e ⊂ Ω; that is, Xh,0 is obtained 
from Xh by removing the shape functions associated with edges lying on Γ.

Using �h,0(Th,𝛺) ⊆ �0(curl,𝛺) as ansatz and test space in (2.5), we arrive at the 
Galerkin discretization of finding �h ∈ �h,0(Th,�) such that

Using the basis Xh,0 , the Galerkin discretization (2.7) can be formulated as a linear 
system of equations, where the system matrix � ∈ ℂ

N×N is given by

(2.6)‖�‖
�(curl,�) ≤ Cstab‖�‖�2(�)

N0(T) = {� + � × �∶ �, � ∈ ℝ
3, � ∈ T},

�h(Th,�) ∶= {�h ∈ �(curl,�)∶ �h|T ∈ N0(T) ∀T ∈ Th},

�h,0(Th,�) ∶= �h(Th,�) ∩�0(curl,�).

(2.7)a(�h,�h) = ⟨�,�h⟩�2(�) ∀�h ∈ �h,0(Th,�).

(2.8)�ij ∶= a(�j,�i), �j,�i ∈ Xh,0.
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For unique solvability of the discrete problem (2.7) or, equivalently, the invert-
ibility of A, we recall the following Lemma 2.2. In that result and throughout the 
paper, we denote by

the L2(Ω)-orthogonal projection onto �h(Th,�).

Lemma 2.2  [28, Thm. 5.7] Assume (2.6). There exists h0 > 0 depending on the 
parameters of the continuous problem and the γ-shape regularity of Th , such that, for 
h < h0, the discrete problem (2.7) has a unique solution, and there holds the stability 
estimate

Here, C > 0 is a constant depending solely on the γ-shape regularity of Th and the 
parameters of the continuous problem.

2.3 � Hierarchical matrices

The goal of this paper is to obtain an H-matrix approximation of the inverse matrix 
B := A− 1. An H-matrix is a blockwise low-rank matrix, where suitable blocks for 
low-rank approximation are chosen by the concept of admissibility, which is defined 
in the following.

Definition 2.3 (bounding boxes and η‑admissibility)  A cluster τ is a subset of the 
index set I = {1, 2,… ,N} . For a cluster 𝜏 ⊂ I  , an axis-parallel box BR𝜏

⊆ ℝ
3 is 

called a bounding box, if BR�
 is a cube with side length Rτ and ∪i∈𝜏 supp𝛹i ⊆ BR𝜏

 . 
Let η > 0. Then, a pair of clusters is called η-admissible, if there exist bounding 
boxes BR�

 and BR�
 of τ and σ such that

Definition 2.4 (Concentric boxes)  Axis-parallel boxes BR of side length R are called 
boxes. Two boxes BR and BR′ of side length R and R′ are said to be concentric, if they 
have the same barycenter and BR can be obtained by a stretching of BR′ by the factor 
R∕R� taking their common barycenter as the origin.

Definition 2.5 (cluster tree)  A cluster tree with leaf size nleaf ∈ ℕ is a binary 
tree �I with root I  such that each cluster � ∈ �I is either a leaf of the tree and 
satisfies |�| ≤ nleaf , or there exist disjoint subsets �′ , ��� ∈ �I of τ, called sons, 
with 𝜏 = 𝜏�∪̇𝜏�� . The level function level∶ 𝕋I → ℕ0 is inductively defined 
by level(I) = 0 and level(��) ∶= level(�) + 1 for �′ a son of τ. Furthermore, 
depth(�I) ∶= max�∈�I level(�) is called the depth of a cluster tree.

(2.9)�
L2

h
∶ �

2(�) → �h(Th,�)

‖‖�h
‖‖�(curl,�)

≤ C
‖‖‖�

L2

h
�
‖‖‖�2(�)

.

(2.10)min{diam(BR�
), diam(BR�

)} ≤ � dist(BR�
,BR�

).
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Definition 2.6 (block cluster tree, sparsity constant and partition)  Let �I be a clus-
ter tree with root I  and η > 0 be a fixed admissibility parameter. The block cluster 
tree �I×I is a tree constructed recursively from the root I × I  such that for each 
block � × � ∈ �I×I with �, � ∈ �I , the set of sons of τ × σ is defined as

The sparsity constant Csp of a block cluster tree, see, e.g., [23, 30], is given as

The leaves of the block cluster tree induce a partition P of the set I × I  , which we 
call a partition based on �I . For such a partition P and a fixed admissibility param-
eter η > 0, we define the far field and the near field as

For clusters τ, 𝜎 ⊂ I  , we adopt the notation

For � ∈ ℂ
N and � ∈ ℂ

N×N , the restrictions x|τ and A|τ×σ are understood as 
(x|τ)i = χτ(i)xi and (A|τ×σ)ij = χτ(i)χσ(j)Aij, where χτ and χσ are the characteristic 
functions of the sets τ, σ. For integers r ∈ ℕ , matrices ℂ�×r are understood as 
matrices in ℂN×r such that each column is in ℂ�.

Definition 2.7 ( H‑matrices)  Let P be a partition of I × I  based on a cluster tree �I 
and admissibility parameter η > 0. A matrix � ∈ ℂ

N×N is an H-matrix, if, for every 
admissible pair (τ,σ) ∈ Pfar, we have a rank r factorization

 where ��� ∈ ℂ
�×r and ��� ∈ ℂ

�×r.

2.4 � Main result

The following theorem is the main result of this paper. It states that the inverse of 
the Galerkin matrix A from (2.8) can be approximated at an exponential rate in the 
block rank by an H-matrix.

Theorem  2.8  Let η > 0 be a fixed admissibility parameter and P be a parti-
tion of I × I  based on the cluster tree �I  and η. Let the mesh Th be such 
that Assumption 3.4 holds true for any box. Let h < h0 with h0 given by  

S(� × �) ∶=

{
� if � × � is �-admissible or S(�) = � or S(�) = �,

S(�) × S(�) else.

(2.11)

Csp ∶= max

{
max
�∈�I

||{� ∈ �I ∶ � × � ∈ �I×I}
||, max

�∈�I

||{� ∈ �I ∶ � × � ∈ �I×I}
||
}
.

(2.12)Pfar ∶= {(�, �) ∈ P ∶ (�, �) is �-admissible}, Pnear ∶= P ⧵ Pfar.

ℂ
� ∶=

{
� ∈ ℂ

N ∶ �i = 0 if i ∉ �
}
,

ℂ
�×� ∶= {� ∈ ℂ

N×N ∶ �ij = 0 if i ∉ � or j ∉ �}.

�|�×� = ����
H
��
,
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Proposition 2.2, and let A be the stiffness matrix given by (2.8). Then, there 
exists an H-matrix �H with blockwise rank r such that

The constants Capx, b > 0 depend only on κ, Ω, η, and the γ-shape regularity of the 
quasi-uniform triangulation Th . The constant Csp (defined in (2.11)) depends only on 
the partition �, � , d, and Ω.

Remark 2.9  The low-rank structure of the far-field blocks allow for efficient 
storage of H-matrices as the memory requirement to store an H-matrix is 
O(Cspdepth(�I)rN) . Standard clustering methods such as the geometric cluster-
ing for quasi-uniform meshes (see, e.g., [26, Sec. 5.4.2]) lead to balanced cluster 
trees, i.e., depth(�I) ∼ log(N) and a uniformly (in the mesh size h) bounded sparsity 
constant. In total this gives a storage complexity of O(rN log(N)) for the matrix �H 
instead of the O(N2) for the fully populated inverse A− 1.

3 � Helmholtz decompositions: continuous and localized discrete

Helmholtz decompositions, i.e., writing a vector field as a sum of a divergence-free 
field and a gradient field, play a key role in our analysis. In fact, we use two different 
decompositions, the regular decomposition (see, e.g., [28, Lem. 2.4] and [29, Thm. 
11]) and a localized discrete version (Definition 3.6).

Lemma 3.1 (Regular decomposition)  Let 𝛺 ⊂ ℝ
3 be a bounded Lipschitz domain. 

Then, there is a constant C > 0 depending only on Ω such that any E ∈ H0(curl,Ω) 
can be written as E = z + ∇p with � ∈ �

1
0
(�) and p ∈ H1

0
(�) and

Proof  Regular decompositions are available in the literature, see, e.g., [28, Lem. 
2.4] and [29, Thm. 11]. The statement that ‖�‖

�2(�) and ‖∇p‖
�2(�) are controlled by 

‖�‖
�2(�) is a variation of these estimates. For a proof, see [32] or the appendix. 	�  ◻ 

The function z of the regular decomposition provided by Lemma 3.1 is not neces-
sarily divergence-free. This can be corrected by subtracting a gradient. To that end, 
we introduce, for a given open set �D ⊆ 𝛺 and a chosen �̃ ∈ L∞(Ω) with �̃ ≡ 1 on D̃ , 
the mapping �2(�) → H1

0
(�)∶ � ↦ �

�
 by

Lemma 3.2  The mapping �2(�) ∋ � ↦ �
�
∈ H1

0
(�) has the following properties:

	 (i)	 ����
��H1(�)

≤ C‖�̃‖L∞(�)‖�‖�2(supp �̃) , where the constant depends only on Ω.
	 (ii)	 ⟨� − ∇�

�
,∇v⟩

L2(D̃) = 0 for all v ∈ H1
0
(�).

‖‖�−1 − �H
‖‖2 ≤ CapxCspdepth(�I)h

−1e−b(r
1∕4∕ ln r).

‖�‖
�

1
0
(�) ≤ C‖�‖

�(curl,�), ‖�‖
�2(�) + ‖∇p‖

�2(�) ≤ C‖�‖
�2(�).

(3.1)⟨∇�
�
,∇v⟩L2(�) = ⟨�̃�,∇v⟩L2(�) ∀v ∈ H1

0
(�).
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Proof  By construction, we have ‖‖∇�z
‖‖�2(�)

≤ ‖‖�̃�‖‖�2(�)
 . The constant C in state-

ment (i) reflects the Poincaré constant of the simply connected domain Ω. The prop-
erty (ii) follows by construction. 	�  ◻ 

Remark 3.3 (classical Helmholtz decomposition)  Selecting D̃ = � and correspond-
ingly �̃ ≡ 1 yields the decomposition E = (z −∇φz) + ∇(p + φz) with the orthog-
onality ⟨� − ∇�

�
,∇(p + �

�
)⟩L2(�) = 0 and ‖� − ∇𝜑

�
‖
�(curl,𝛺) ≲ ‖�‖

�(curl,𝛺) , 
‖� − ∇𝜑

�
‖
�2(𝛺) ≲ ‖�‖

�2(𝛺) , ‖∇(p + 𝜑
�
)‖L2(𝛺) ≲ ‖�‖

�2(𝛺).

Regular decompositions as in Lemma 3.1 can also be done locally for discrete 
functions. Let P1(T) denote the space of polynomials of degree at most 1 on T ∈ Th . 
We introduce spaces of globally continuous, piecewise linear polynomials by

We will require the following assumption on the meshes Th:

Assumption 3.4  For a simply connected domain D ⊂ ℝ
3 , define the sets of ele-

ments touching D as

For any box D ⊂ ℝ
3 , there is a set D̃  which is a union of elements in Th such that

1.	  �D ⊂ �D,
2.	  dist(�D̃,D) ≤ 2h,
3.	  D̃ is simply connected.

We call D̃ a mesh-conforming region for D. If a box D has more than one mesh-
conforming region D̃ , one is selected as “the” mesh-conforming one.
Remark 3.5  The reason behind Assumption 3.4 is that the region D̂ may not be sim-
ply connected, but by adding elements of the mesh holes may be filled to obtain a 
simply connected set D̃.

The spaces localized to a mesh-conforming region D̃ are given by

(3.2)S1,1(Th) ∶= {ph ∈ H1(�)∶ ph|T ∈ P1(T) ∀T ∈ Th},

(3.3)S
1,1

0
(Th) ∶= S1,1(Th) ∩ H1

0
(�).

Th(D) ∶= {T ∈ Th ∶ �T ∩ D� > 0},

�D ∶= int

�
⋃

T∈Th(D)

T

�
.

(3.4)S1,1(Th, D̃) ∶=
{
ph|D̃ ∶ ph ∈ S

1,1

0
(Th)

}
,

(3.5)�h(Th, D̃) ∶=
{
�h|D̃ ∶ �h ∈ �h,0(Th,�)

}
.
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Definition 3.6 (Local discrete regular decomposition)  Let D ⊂ ℝ
3 be a box and D̃ 

be the corresponding mesh-conforming region from Assumption 3.4. We denote by 
�∇

D̃
∶ �

2(D̃) → ∇S1,1(Th, D̃) the �2(D̃)-projection onto ∇S1,1(Th, D̃) given by

Let � ∈ C∞(�) be a cut-off function with 0 ≤ η ≤ 1 and η ≡ 1 on D̃ . Let Eh be such 
that ηEh ∈ H0(curl,Ω) as well as �

h

|||D̃ ∈ �
h
(T

h
, D̃) . Decompose ηEh ∈ H0(curl,Ω)  

as ηEh = z + ∇p, where � ∈ �
1
0
(�) and p ∈ H1

0
(�) are given by Lemma 3.1.

Then, the local discrete regular decomposition is given by �h = �h +�∇

D̃
∇p on 

D̃ with �h ∶= �h −�∇

D̃
∇p . We write ∇ph = �∇

D̃
∇p for some ph ∈ S1,1(Th, D̃).

For future reference, we note that

Remark 3.7 

1.	 The function ph ∈ S1,1(Th, D̃) that satisfies ∇ph = �∇

D̃
� , is not unique. However, 

its gradient ∇ph is unique.
2.	 Due to the cut-off function η, the decomposition depends on Eh on supp η only, 

which is quantified in the stability assertions of Lemma 3.11.
3.	 The local regular decomposition provides, for a function Eh that is a dis-

crete function on D̃ , two representations in view of η ≡ 1 on D̃ , namely, 
�h|D̃ = (� + ∇p)|D̃ = �h + ∇ph.

4.	 For �h ∈ �h,0(Th,�) , the decomposition Eh = (z −∇φz) + ∇(p + φz) of Remark 
3.3 yields upon setting ∇ph ∶= 𝛱∇

𝛺
∇(p + 𝜑

�
) ∈ ∇S1,1

0
(Th,𝛺) ⊂ �h,0(Th,𝛺) and 

�h ∶= �h − ∇ph ∈ �h,0(Th,�) the decomposition Eh = zh + ∇ph with

	   which is a discrete Helmholtz decomposition as described in, e.g., [22, Cor. 
5.1] and [35, Sec. 7.2.1].

The following lemma formulates a local exact sequence property.

Lemma 3.8  Let D ⊂ ℝ
3 be a box such that D ∩ Ω is a simply connected Lipschitz 

domain and D̃ be given according to Assumption 3.4. Assume that D̃ ∩ �� is con-
nected. (In particular, the empty set is connected.) Then, for all �h ∈ �h(Th, D̃) with 
∇× vh = 0 on D̃ , we can find a �̃h ∈ S1,1(Th, D̃) such that vh = ∇�̃h.

Proof  We recall from, e.g., [35, Thm. 3.37] the following commuting diagram prop-
erty: for a simply connected Lipschitz domain ω the condition ∇ ×� = 0 implies 

(3.6)⟨� −�∇

D̃
�,∇vh⟩�2(D̃) = 0 ∀vh ∈ S1,1(Th, D̃).

(3.7)
����

∇

D̃
�
����2(D̃)

≤ ‖�‖
�2(D̃).

⟨�h,∇ph⟩�2(𝛺) = 0, ‖�h‖�2(𝛺) + ‖∇ph‖�2(𝛺) ≲ ‖�h‖�2(𝛺),

‖�h‖�(curl,𝛺) ≲ ‖�h‖�(curl,𝛺),
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� = ∇� for some ψ ∈ H1(ω); furthermore, ψ is unique up to a constant. The dis-
crete commuting diagram property for a tetrahedron T is: if � ∈ N0(T) satisfies 
∇ ×� = 0 , then there is �h ∈ P1(T) with � = ∇�h.

The condition ∇ ×  vh = 0 on D̃ implies vh = ∇φh for some �h ∈ H1(D̃) . The 
function φh is unique up to a constant, which we fix, for example, by the condition 
∫

D̃
�h = 0 . For each T ∈ Th(D) , the condition ∇ ×  vh = 0 on T implies the exist-

ence of �̃h,T ∈ P1(T) with �h = ∇�̃h,T on T. The polynomial �̃h,T is unique up to a 
constant, which we fix by requiring ∫

T
�̃h,T = ∫

T
�h . By the uniqueness assertion 

we have �h|T = �̃h,T |T . Define �̃h ∈ S1,0(Th, D̃) elementwise by �̃h|T = �̃h,T . Since 
�h ∈ H1(D̃) we directly obtain �̃h ∈ S1,1(Th, D̃). 	�  ◻ 

In order to prove the following lemmas, we need to introduce some projections and 
their properties. Let D ⊂ ℝ

3 be a box and D̃ be defined according to Assumption 3.4. 
We define the space

Let ��0(T) ∶= {� + b�∶ � ∈ ℝ
3, b ∈ ℝ} be the classical lowest order Raviart-

Thomas element defined on T. Introduce

On D̃ the Raviart-Thomas interpolation operator �
D̃
∶ �

1(D̃) → �h(Th, D̃) is 
defined elementwise by �

D̃
�|T ∶= �T� , where the elemental interpolation opera-

tor �T ∶ �
1(T) → ��0(T) is characterized by the vanishing of certain moments of 

� −�T� , viz.,

where ν is the unit normal to f and dA denotes the surface measure on f. Define the 
space

and the Nédélec interpolation operator �
D̃
∶ �h(Th, D̃) → �h(Th, D̃) elementwise by 

�
D̃
�|T ∶= �T� , where the elemental interpolant �T� ∈ N0(T) is characterized by 

the vanishing of certain moments of � − �T� , viz.,

here, τ is a unit vector parallel to the edge e. A key property of the operators �
D̃
 and 

�
D̃
 is that they commute, i.e., (see, e.g., [35, (5.59)])

�(div, D̃) ∶=
{
U ∈ �

2(D̃)∶ ∇ ⋅ U ∈ L2(D̃)
}
.

(3.8)�h(Th, D̃) ∶= {Uh ∈ �(div, D̃)∶ Uh|T ∈ ��0(T) ∀T ∈ Th(D)}.

∫f

(� −�T�) ⋅ �qdA = 0 ∀q ∈ P0(f ) ∀ faces f of T ∈ Th,

(3.9)�h(Th, D̃) ∶= {� ∈ �
1(D̃)∶ ∇ × � ∈ �

1(T) ∀T ∈ Th(D)}

∫
e

(
� − �

T
�
)
⋅ �de = 0 ∀ edges e of T ∈ T

h
;

(3.10)�
D̃
∇ × � = ∇ × �

D̃
� ∀� ∈ �h(Th, D̃).



	 M. Faustmann et al.

1 3

59  Page 12 of 32

Moreover, the lowest order elemental Nédélec interpolants have first-order approxi-
mation properties.

Lemma 3.9  ([35, Thm. 5.41]) Let T ∈ Th . Then, for U ∈ H1(T) with ∇×U ∈ H1(T), 
we have

In the following, we show local stability and approximation properties for 
the local discrete regular decomposition of Definition 3.6. This will be based on 
Lemma 3.8 with D = BR, where BR is a box with side length R. It is an important 
geometric observation that, due to the assumption that Ω is a Lipschitz polyhe-
dron, the intersection BR ∩Ω is a Lipschitz domain and the intersection BR ∩�c 
is connected provided R is sufficiently small. Then, the additional assumptions on  
D ∩ Ω = BR ∩ Ω in Lemma 3.8 can be satisfied. We formulate this as an assump-
tion on R in terms of a number Rmax > 0  that depends on Ω:

Definition 3.10 (Rmax)Rmax > 0   is such that for any R ∈ (0,Rmax] and any box BR 
with ||BR ∩ Ω|| > 0 , the intersection BR ∩ Ω is a Lipschitz domain and BR ∩�c is 
connected.

Lemma 3.11 (stability of local discrete regular decomposition)  Let ε ∈ (0,1), 
R ∈ (0,Rmax] be such that h

R
< 𝜀

4
 , and let BR and B(1+ε)R be concentric boxes. 

Define B̃R according to Assumption 3.4. Let � ∈ W1,∞(�) be a cut-off function 
with supp 𝜂 ⊆ B(1+𝜀)R ∩𝛺 , η ≡ 1 on B̃R , 0 ≤ η ≤ 1, and ‖∇�‖L∞(�) ≤ C�

1

�R
 . Let Eh 

∈ H(curl,B(1+ε)R ∩Ω) be such that ηEh ∈ H0(curl,Ω) as well as �h ∈ �h(Th, B̃R) . Let 
ηEh = z + ∇p be the regular decomposition of ηEh given by Lemma 3.1 and let zh 
and ∇ph be the contributions of the local discrete regular decomposition of Defini-
tion 3.6 with D = BR and D̃ = B̃R there. Then, Eh = zh + ∇ph on B̃R ∩� , and the fol-
lowing local stability and approximation results hold:

where the constant C > 0 depends only on Ω, the γ-shape regularity of the quasi-
uniform triangulation Th , and Cη.

Proof  The proof is done in two steps. We note that the condition on the parameter ε 
and the assumption on the mesh-conforming region (Assumption 3.4) ensures that 
�BR ⊆ B(1+𝜀)R.

Step 1: In this step we provide a proof of the stability estimate. Recalling the sta-
bility estimate Lemma 3.1 and using the product rule for the curl operator, it follows 
that

��� − �T�
���2(T)

≲ h
�
���

�1(T) + ‖∇ × �‖
�1(T)

�
,

��∇ × (� − �T�)
���2(T)

≲ h‖∇ × �‖
�1(T).

��∇ph���2(BR∩�)
+ ���h���(curl,BR∩�)

≤ C
�
��∇ × �h

���2(B(1+�)R∩�)
+

1

�R
���h

���2(B(1+�)R∩�)

�
,

��� − �h
���2(BR∩�)

≤ Ch‖�‖
�1(B(1+�)R∩�)

≤ Ch
�
��∇ × �h

���2(B(1+�)R∩�)
+

1

�R
���h

���2(B(1+�)R∩�)

�
,
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Since ∇ph satisfies (3.6), we get with (3.7) and the aid of (3.11)

The definition of zh gives

The combination of the above inequalities provides the desired local stability 
result.

Step 2: To prove the approximation property, we first need to ascertain the exist-
ence of �h ∈ S1,1(Th, B̃R) such that �h − �

B̃R
� = ∇�h on B̃R . To that end, we note that 

�h ∈ �h(Th, B̃R) , use the commuting diagram property (3.10) of �
B̃R

 and �
B̃R

 , and the 
fact that �

B̃R
 is a projection operator to compute on B̃R:

Lemma 3.8 then provides the existence of �h ∈ S1,1(Th, B̃R) such that 
�h − �

B̃R
� = ∇�h on B̃R . Since ph satisfies (3.6), we get from z + ∇p = Eh = zh + ∇ph 

on B̃R and the approximation property of �
B̃R

 given in Lemma 3.9

The combination of the above inequality and (3.11) implies

which finishes the proof. 	�  ◻ 

(3.11)

‖�‖
�

1
0
(𝛺) + ‖∇p‖L2(𝛺) ≲

��𝜂�h
���(curl,𝛺)

≲ ��∇ × �h
���2(B(1+𝜀)R∩𝛺)

+ ‖∇𝜂‖L∞(B(1+𝜀)R∩𝛺)
���h

���2(B(1+𝜀)R∩𝛺)
+ ���h

���2(B(1+𝜀)R∩𝛺)

𝜀R≲1

≲ ��∇ × �h
���2(B(1+𝜀)R∩𝛺)

+
1

𝜀R
���h

���2(B(1+𝜀)R∩𝛺)
.

��∇ph��L2(BR∩𝛺)
≤ ‖∇p‖L2(�BR)

≤ ‖∇p‖L2(𝛺) ≲
��∇ × �h

���2(B(1+𝜀)R∩𝛺)
+

1

𝜀R
���h

���2(B(1+𝜀)R∩𝛺)
.

‖‖�h‖‖�(curl,BR∩𝛺)
≲ ‖‖∇ × �h

‖‖�2(B(1+𝜀)R∩𝛺)
+

1

𝜀R
‖‖�h

‖‖�2(B(1+𝜀)R∩𝛺)
.

∇ × (�h − �
B̃R
�) = ∇ × �h −�

B̃R
∇ × � = ∇ ×

(
�h|B̃R

)
−�

B̃R
∇ ×

(
�h|B̃R

)

= ∇ ×
(
�h|B̃R

)
− ∇ × �

B̃R

(
�h|B̃R

)
= 0.

��� − �h
��
2

�2(�BR)
=

�
� − ��BR

�, � − �h

�

�2(�BR)
+
�
��BR

� − �h, � − �h

�

�2(�BR)

=
�
� − ��BR

�, � − �h

�

�2(�BR)
− ⟨∇𝜑h,∇(ph − p)⟩

�2(�BR)

=
�
� − ��BR

�, � − �h

�

�2(�BR)
≲
���� − ��BR

�
����2(�BR)

��� − �h
���2(�BR)

≲ h‖�‖
�1(B(1+𝜀)R∩𝛺)

��� − �h
���2(�BR)

.

��� − �h
���2(BR∩𝛺)

≤ ��� − �h
���2(�BR)

≲ h‖�‖
�1(B(1+𝜀)R∩𝛺)

≲ h
�
��∇ × �h

���2(B(1+𝜀)R∩𝛺)
+

1

𝜀R
���h

���2(B(1+𝜀)R∩𝛺)

�
,
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4 � Low‑dimensional approximation of discrete L‑harmonic functions

We say that �h ∈ �h(Th, D̃) is discrete L-harmonic on D̃ , if a(Eh, vh) = 0 for all 
�h ∈ �h,0(Th,�) with supp �h ⊂ �D ; such a space will be formally introduced as 
Hc,h(D̃) below. In this section, we show that discrete L-harmonic functions can 
be approximated from low-dimensional spaces on compact subsets of D̃ . Discrete 
interior regularity estimates, introduced in the following, play a key role.

4.1 � The Caccioppoli‑type inequalities

Caccioppoli inequalities usually estimate higher order derivatives by lower 
order derivatives on (slightly) enlarged regions. The following discrete Cacciop-
poli-type inequalities are formulated with an h-weighted H(curl)-norm and an 
h-weighted H1-norm. For a box BR of side length R > 0, we define the norms 
|||⋅|||c,h,R and |||⋅|||g,h,R (the subscripts c and g abbreviate “curl” and “gradient”) as 
follows:

For any bounded open set B ⊂ ℝ
3 , we define

and

The following lemma provides a discrete Caccioppoli-type estimate for functions 
in Hc,h(B(1+�)R ∩�).

Lemma 4.1  Let ε ∈  (0,1) and R ∈ (0,2diam(Ω)) be such that h
R
< 𝜀

4
 . Let BR and 

B(1+ε)R be two concentric boxes and �h ∈ Hc,h(B(1+�)R ∩ �) . Then, there exists a 
constant C depending only on κ, Ω, and the γ-shape regularity of the quasi-uniform 
triangulation Th such that

Proof  Let � ∈ C∞(�) be a cut-off function with supp 𝜂 ⊆ B(1+𝜀∕2)R , 0 ≤ η 
≤ 1, η ≡ 1 on BR ∩ Ω, and ‖∇j𝜂‖L∞(𝛺) ≲ (𝜀R)−j for j ∈ {0,1,2}. We notice 

(4.1)
�������2

c,h,R
∶=

h2

R2
‖∇ × �‖2

�2(BR∩�)
+

1

R2
‖�‖2

�2(BR∩�)
∀� ∈ �(curl,BR ∩�),

(4.2)���u���2
g,h,R

∶=
h2

R2
‖∇u‖2

�2(BR∩�)
+

1

R2
‖u‖2

L2(BR∩�)
∀u ∈ H1(BR ∩�).

H
c,h(B ∩𝛺) ∶= {�

h
∈ �(curl,B ∩𝛺) ∶ ∃��

h
∈ �

h,0(Th,𝛺) s.t. �
h
|
B∩𝛺 = ��

h
|
B∩𝛺,

a(�
h
,𝛹

h
) = 0 ∀𝛹

h
∈ �

h,0(Th,𝛺), supp 𝛹
h
⊂ B ∩𝛺}

Hg,h(B ∩𝛺) ∶= {ph ∈ H1(B ∩𝛺) ∶ ∃�ph ∈ S
1,1

0
(Th) s.t. ph�B∩𝛺 = �ph�B∩𝛺,

⟨∇ph,∇𝜓h⟩�2(B∩𝛺) = 0∀𝜓h ∈ S
1,1

0
(Th), supp 𝜓h ⊂ B ∩𝛺}.

‖‖∇ × �h
‖‖�2(BR∩�)

≤ C
1 +�

�
||||||�h

||||||c,h,(1+�)R.
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supp (𝜂2�h) ⊆ B(1+𝜀∕2)R ∩𝛺 and since 4h ≤ εR we have supp�𝛺(𝜂2�h) ⊆ B(1+𝜀)R ∩𝛺 . 
The proof is done in two steps.

Step 1: Using the vector identity

we get

Young’s inequality then gives

Kicking back the term 1
2
‖‖�∇ × �h

‖‖
2

�2(BR∩�)
 to the left-hand side, we arrive at

Since �𝜅� + ‖∇𝜂‖2
L∞

≲ (𝜀R)−2 with implied constant depending on κ, we are left with 
estimating Re a(ηEh,ηEh).

Step 2: Using the orthogonality relation in the definition of the space 
Hc,h(B(1+�)R ∩�) , we get

For each element T ∈ Th , Lemma 3.9 yields

To proceed further, we observe that �h|T ∈ N0(T) has the form Eh = a + b × x so 
that curl Eh|T = 2b and hence 

∑3

j=1
�𝜕xj�h� ≲ �∇ × �h� pointwise on T so that we get 

with an implied constant independent of the function η

�2(∇ × �h) ⋅ (∇ × �h) = ∇ × �h ⋅
(
∇ ×

(
�2�h

)
− ∇�2 × �h

)

= (∇ × �h) ⋅ ∇ ×
(
�2�h

)
− 2�(∇ × �h) ⋅ (∇� × �h),

��∇ × �h
��
2

�2(BR∩�)
≤ ���∇ × �h

��
2

�2(�)

= Re
�
a
�
�h, �

2
�h

�
+ �⟨��h, ��h⟩�2(BR∩�) − 2⟨�∇ × �h,∇� × �h⟩�2(BR∩�)

�

≤ Re a
�
�h, �

2
�h

�
+ ������h

��
2

�2(B(1+�)R∩�)
+ 2���∇ × �h

���2(BR∩�)
��∇� × �h

���2(BR∩�)
.

(4.3)

‖‖∇ × �h
‖‖
2

�2(BR∩�)
≤ ‖‖�∇ × �h

‖‖
2

�2(�)

≤ Re a
(
�h, �

2
�h

)
+ |�|‖‖�h

‖‖
2

�2(B(1+�)R∩�)

+
1

2
‖‖�∇ × �h

‖‖
2

�2(BR∩�)
+ 2‖‖∇� × �h

‖‖
2

�2(BR∩�)
.

(4.4)

��∇ × �h
��
2

�2(BR∩�)
≤ ���∇ × �h

��
2

�2(�)

≤ 2Re a
�
�h, �

2
�h

�
+ 2

�
��� + 2‖∇�‖2

L∞

����h
��
2

�2(B(1+�)R∩�)
.

(4.5)

Re a
(
�h, 𝜂

2
�h

)
= Re a

(
�h, 𝜂

2
�h − �𝛺

(
𝜂2�h

))

≲ ‖‖∇ × �h
‖‖�2(B(1+𝜀)R∩𝛺)

‖‖‖∇ ×
(
𝜂2�h − �𝛺

(
𝜂2�h

))‖‖‖�2(B(1+𝜀)R∩𝛺)

+‖‖�h
‖‖�2(B(1+𝜀)R∩𝛺)

‖‖‖𝜂
2
�h − �𝛺

(
𝜂2�h

)‖‖‖�2(B(1+𝜀)R∩𝛺)
.

(4.6)
‖‖‖𝜂

2
�h − �𝛺

(
𝜂2�h

)‖‖‖
2

�2(T)
+
‖‖‖∇ ×

(
𝜂2�h − �𝛺

(
𝜂2�h

))‖‖‖
2

�2(T)

≲ h2
(
|𝜂2�h|2�1(T)

+ |∇ ×
(
𝜂2�h

)
|2
�1(T)

)
.
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Using (4.7) we obtain

Computing ∇ ×
(
�2�h

)
= ∇�2 × �h + �2∇ × �h , using the product rule and the fact 

that �xj (∇ × �h) = 0 since ∇ × Eh is constant gives again in view of (4.7) and 𝜀R ≲ 1

Summing the squares of (4.8), (4.9) over all elements T with T ∩ supp η ≠ Ø, which 
is ensured if we sum over all T with T ⊂ B(1+ε)R ∩Ω, and inserting the result in (4.6) 
yields

Using Young’s inequality, h ≲ 1 and 0 ≤ η ≤ 1 as well as the definition of the norm 
|||⋅|||c,h,R , we obtain

Inserting this in (4.4) produces

Using again Young’s inequality to kick the term ‖‖�∇ × �h
‖‖�2(B(1+�)R∩�)

 of the right-
hand side back to the left-hand side produces the desired estimate. 	�  ◻ 

For functions in Hg,h(B(1+�)R ∩�) , a discrete Caccioppoli-type estimate has 
already been established in [16, Lem. 2], which we state in the following for the 
sake of completeness.

Lemma 4.2  ([16, Lem. 2]) Let ε ∈ (0,1) and R ∈ (0,2diam(Ω)) be such that h
R
< 𝜀

4
 . 

Let BR and B(1+ε)R be two concentric boxes and ph ∈ Hg,h(B(1+�)R ∩�) . Then, there 
exists a constant C > 0 depending only on Ω and the γ-shape regularity of the quasi-
uniform triangulation Th such that

(4.7)
3∑

j=1

‖‖‖𝜂𝜕xj�h
‖‖‖�2(T)

≲ ‖‖𝜂∇ × �h
‖‖�2(T)

.

(4.8)�𝜂2�h��1(T) ≲
1

𝜀R
���h

���2(T)
+ ‖𝜂∇ × �h‖�2(T).

(4.9)|∇ ×
(
𝜂2�h

)
|
�1(T) ≲

1

(𝜀R)2
‖‖�h

‖‖�2(T)
+

1

𝜀R
‖‖𝜂∇ × �h

‖‖�2(T)
.

Re a
(
�h, 𝜂

2
�h − �𝛺

(
𝜂2�h

))
≲

(
‖‖∇ × �h

‖‖�2(B(1+𝜀)R∩𝛺)
+ ‖‖�h

‖‖�2(B(1+𝜀)R∩𝛺)

)

×
h

𝜀R

(
1

𝜀R
‖‖�h

‖‖�2(B(1+𝜀)R∩𝛺)
+ ‖‖𝜂(∇ × �h)

‖‖�2(B(1+𝜀)R∩𝛺)

)
.

Re a
(
�
h
, 𝜂2�

h
− �𝛺

(
𝜂2�

h

))
≲ h

2

(𝜀R)2
‖‖∇ × �

h

‖‖
2

�2(B(1+𝜀)R∩𝛺)
+

1

(𝜀R)2
‖‖�h

‖‖
2

�2(B(1+𝜀)R∩𝛺)

+
h

𝜀R
‖‖∇ × �

h

‖‖�2(B(1+𝜀)R∩𝛺)
‖‖𝜂∇ × �

h

‖‖�2(B(1+𝜀)R∩𝛺)

≲ 𝜀−2||||||�h

||||||
2

c,h,(1+𝜀)R
+ 𝜀−1||||||�h

||||||c,h,(1+𝜀)R‖‖𝜂∇ × �
h

‖‖�2(B(1+𝜀)R∩𝛺)
.

‖‖∇ × �h
‖‖
2

�2(BR∩𝛺)
≤ ‖‖𝜂∇ × �h

‖‖
2

�2(𝛺)

≲ 𝜀−2||||||�h
||||||

2

c,h,(1+𝜀)R
+ 𝜀−1||||||�h

||||||c,h,(1+𝜀)R‖‖𝜂∇ × �h
‖‖�2(B(1+𝜀)R∩𝛺)

.

‖‖∇ph‖‖�2(BR∩�)
≤ C

1+�

�
||||||ph||||||g,h,(1+�)R.
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4.2 � Low‑dimensional approximation in Hc,h(BR ∩˝).

In this subsection, we apply the Caccioppoli-type estimates from Lemmas 4.1 and 
4.2 to find approximations of the Galerkin solutions from low-dimensional spaces. 
We will need a Poincaré inequality as given in [24, (7.45)]: for open sets D ⊂ ω with 
|D| > 0 and u ∈ H1(ω), we have

In the following, we consider low-dimensional approximations of discrete harmonic 
functions in Lemma 4.3 that generalizes [16, Lem. 4].

Lemma 4.3  Let ε ∈ (0,1), q ∈ (0,1), R ∈ (0,2diam(Ω)), and m ∈ ℕ satisfy

where the constant Capp is given in [16, Lem. 3, Lem. 4] and depends only on Ω and 
the γ-shape regularity of the quasi-uniform triangulation Th . Let BR, B(1+ε)R, B(1 + 2ε)R 
be concentric boxes. Then, there exists a subspace Wm of Hg,h(BR ∩�) of dimension

with the following approximation properties:

	 (i)	 If uh ∈ Hg,h(B(1+�)R ∩�) and B(1+�)R ∩�c = � , then

	 (ii)	 If uh ∈ Hg,h(B(1+2�)R ∩�) and B(1+�)R ∩�c ≠ � , then

Here, C′
dim

 , C′
app

 depend only on Ω and the γ-shape regularity of the quasi-uniform 
triangulation Th.
Proof  We start with the case of boxes not entirely contained in Ω.

Case 1: Let B(1+�)R ∩�c ≠ � . For the Lipschitz domain Ω, [37, Chap. VI, 
Sec. 3, Thm. 5’] asserts the existence of a bounded linear extension opera-
tor E�c ∶ H1(�c) → H1(ℝ3) such that E�c v|�c = v for each v ∈ H1(Ωc). The fact 
that Ωc is Lipschitz (see [31, Thm. 2] for details) implies the existence of a con-
stant c > 0 depending only on Ω such that for all x ∈ Ωc and all r ∈ (0,1) we have 
|Br(x) ∩�c| ≥ cr3 , where Br(x) denotes the ball of radius r centered at x. Selecting 
an x ∈ B(1+�)R ∩�c and noting that BεR/2(x) ⊂ B(1 + 2ε)R, we conclude

(4.10)
���u −

1

�D�∫Dudx���L2(𝜔) ≲ �D�−2∕3(diam(D))3‖∇u‖
L2(𝜔).

(4.11)
h

R
≤ q�

8mmax{1,Capp}
,

dimWm ≤ C�
dim

(
1+�−1

q

)3

m4

min
ũm∈Wm

||||||uh − ũm
||||||g,h,R ≤ C�

app
qm‖‖∇uh‖‖�2(B(1+�)R∩�)

.

min
ũm∈Wm

||||||uh − ũm
||||||g,h,R ≤ C�

app
qm�−2‖‖∇uh‖‖�2(B(1+2�)R∩�)

.

|B(1+2�)R ∩�c| ≥ |B�R∕2(x) ∩�c| ≥ c(�R∕2)3.
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 Due to (4.11), [16, Lem. 4] provides a subspace Wm of Hg,h(BR ∩�) such that

where Cdim depends only on Ω and the γ-shape regularity of the quasi-uniform trian-
gulation Th . We denote by ûh the extension by zero of uh to Ωc. It follows from the 
Poincaré inequality (4.10) and |||B(1+2𝜀)R ∩𝛺c||| ≳ (𝜀R)3 that

Combining (4.14) and (4.12) leads to

Case 2: Let B(1+�)R ∩�c = � . We note that constant functions are in Hg,h(BR ∩�) . 
Hence, by [16, Lem. 4] there is a subspace Wm ⊂ Hg,h(BR ∩𝛺) such that 1 ∈ Wm and

with dimension

A standard Poincaré inequality (i.e., (4.10) with D = B(1+ε)R) implies

Combining (4.17) and (4.16) completes the proof. 	�  ◻ 

Remark 4.4  The factor ε− 2 instead of ε− 0 for boxes BR near the boundary is a con-
sequence of not assuming a relation between the orientation of the boxes and the 
boundary. Aligning boxes with the boundary allows one to better exploit boundary 
conditions and improve the factor ε− 2.

In the following, we will need a simplified version of Lemma 4.3:

(4.12)min
ũm∈Wm

||||||uh − ũm
||||||g,h,R ≤ qm||||||uh||||||g,h,(1+�)R,

(4.13)dimWm ≤ Cdim

(
1+�−1

q

)3

m4,

(4.14)

1

R
‖‖uh‖‖L2(B(1+𝜀)R∩𝛺)

≤ 1

R
‖‖uh‖‖L2(B(1+2𝜀)R∩𝛺)

=
1

R
‖‖�uh‖‖L2(B(1+2𝜀)R)

≲
|B(1+2𝜀)R|

R|B(1+2𝜀)R∩𝛺
c|2∕3

‖‖∇�uh‖‖�2(B(1+2𝜀)R)

≲ (1+2𝜀)3R3

𝜀2R3
‖‖∇�uh‖‖�2(B(1+2𝜀)R)

≲ 𝜀−2‖‖∇�uh‖‖�2(B(1+2𝜀)R)
.

(4.15)min
�um∈Wm

||||||uh − �um
||||||g,h,R ≲ 𝜀−2qm‖‖∇uh‖‖�2(B(1+2𝜀)R∩𝛺)

.

(4.16)

min
ũm∈Wm

||||||uh − ũm
||||||g,h,R = min

ũm∈Wm,c∈ℝ

||||||uh − ũm + c||||||g,h,R ≤ qmmin
c∈ℝ

||||||uh − c||||||g,h,(1+�)R

dimWm ≤ Cdim

(
1+𝜀−1

q

)3

m4 + 1 ≲
(

1+𝜀−1

q

)3

m4.

(4.17)

min
c∈ℝ

||||||uh − c||||||g,h,(1+𝜀)R ≤ ||||
||||
||||
uh −

1

|B(1+𝜀)R|∫ B(1+𝜀)R
uh
||||
||||
||||g,h,(1+𝜀)R

≲
|B(1+𝜀)R|

R|B(1+𝜀)R|2∕3
‖‖∇uh‖‖�2(B(1+𝜀)R∩𝛺)

+
h

(1+𝜀)R
‖‖∇uh‖‖�2(B(1+𝜀)R∩𝛺)

≲ ‖‖∇uh‖‖�2(B(1+𝜀)R∩𝛺)
.
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Corollary 4.5  Let R ∈ (0,2diam(Ω)), ε ∈ (0,1), q ∈ (0,1). There are constants C′′
dim

 
and C′′

app
 depending only on Ω and the γ-shape regularity of the quasi-uniform trian-

gulation Th such that, for any concentric boxes BR, B(1 + 2ε)R and any m ∈ ℕ , there 
exists a subspace Wm ⊂ Hg,h(BR ∩�) of dimension

such that for any uh ∈ Hg,h(B(1+2�)R ∩�) there holds

Proof  The case that the parameters satisfy (4.11) is covered by Lemma 4.3. For the 
converse case h∕R > q𝜀∕(8mmax{1,Capp}) , we take Wm ∶= Hg,h(BR ∩�) so that 
the minimum in (4.18) is zero and observe in view of the quasi-uniformity of Th

which finishes the proof. 	�  ◻ 

If Eh is locally discrete divergence-free, then the function ∇(p + φz) in the 
decomposition Eh = z −∇φz + ∇(p + φz) given by Definition 3.6 is also locally 
discrete divergence-free since z −∇φz is divergence-free. The following lemma 
shows that �∇

B̃(1+2�)R

∇(p + �
�
) is discrete divergence-free as well:

Lemma 4.6  Let ε ∈ (0,1), R ∈ (0,2diam(Ω)), and let B(1+jε)R, j ∈{0,1,2}, be concen-
tric boxes. Introduce Th(B(1+2�)R ∩�) and B̃(1+2�)R according to Assumption 3.4. Let 
� ∈ C∞(�) be a cut-off function with η ≡ 1 on B̃(1+2�)R . Let Eh be such that ηEh ∈
H0(curl,Ω) and �h ∈ Hc,h(B(1+2�)R ∩�) . Decompose ηEh ∈ H0(curl,Ω) as ηEh = z + 
∇p with � ∈ �

1
0
(�) and p ∈ H1

0
(�) according to Lemma 3.1. Let the mapping 

�
�
∶ �

1
0
(�) → H1

0
(�) be defined according to (3.1) taking �̃ ≡ � there. Then, 

�∇

B̃(1+2�)R

∇(p + �
�
) is discrete divergence-free on B̃(1+2�)R , i.e.,

Proof  We use �h ∈ Hc,h(B(1+2�)R ∩�) and (3.6) so that, for vh ∈ S1,1(Th, B̃(1+2�)R) 
with suppvh ⊂ �B(1+2𝜀)R , we have

dimWm ≤ C��
dim

(�q)−3m4

(4.18)min
ũm∈Wm

||||||uh − ũm
||||||g,h,R ≤ C��

app
qm�−2‖‖∇uh‖‖�2(B(1+2�)R∩�)

.

dimHg,h(BR ∩𝛺) ≲
(

R

h

)3

≲
(

m

𝜀q

)3

= (𝜀q)−3m3 ≤ (𝜀q)−3m4,

(4.19)

⟨𝛱∇
�B(1+2𝜀)R

∇(p + 𝜑
�
),∇vh⟩�2(�B(1+2𝜀)R)

= 0 ∀vh ∈ S1,1(Th, �B(1+2𝜀)R), supp vh ⊂ �B(1+2𝜀)R.

0 = a(�h,∇vh) = ⟨∇ × �h,∇ × ∇vh⟩�2(B̃(1+2�)R)
− � ⟨�h,∇vh⟩�2(B̃(1+2�)R)

= −�⟨�h,∇vh⟩�2(B̃(1+2�)R)
= −�⟨��h,∇vh⟩�2(B̃(1+2�)R)

= −�⟨� + ∇p,∇vh⟩�2(B̃(1+2�)R)

= −�⟨� − ∇�
�
+ ∇�

�
+ ∇p,∇vh⟩�2(B̃(1+2�)R)

= −�⟨(� − ∇�
�
) +�∇

B̃(1+2�)R

(∇�
�
+ ∇p),∇vh⟩�2(B̃(1+2�)R)

Lem. 3.2
= −�⟨�∇

B̃(1+2�)R

(∇�
�
+ ∇p),∇vh⟩�2(B̃(1+2�)R)

,
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which finishes the proof. 	�  ◻ 

We will make use of the orthogonal projection

where orthogonality is defined in terms of the inner product associated with the 
weighted norm |||⋅|||c,h,R.

Lemma 4.7 (single‑step approximation)  Let ε ∈  (0,1), R > 0 be such that 
(1 + 4�)R ∈ (0,Rmax] , and q ∈ (0,1). Let B(1+jε)R, j = 0,…,4, be concentric 
boxes. Then, there exists a family of linear spaces �H,m ⊂ Hc,h(BR ∩𝛺) (para-
metrized by H > 0, m ∈ ℕ ) with the following approximation properties: For each 
�h ∈ Hc,h(B(1+4�)R ∩�) there is a �1,h ∈ �H,m ⊂ Hc,h(BR ∩𝛺) with

	 (i)	 (�h − �1,h)|BR∩�
∈ Hc,h(BR ∩�),  

	 (ii)	 ||||||�h − �1,h
||||||c,h,R ≤ C��

app

(
H

R
�−1 + qm�−3

)
||||||�h

||||||c,h,(1+4�)R,

	 (iii)	 dim�H,m ≤ C��
dim

[(
R

H

)3

+ (�q)−3m4

]
,

where the constants C′′
app

 and C′′
dim

 depend only on κ, Ω, and the γ-shape regularity 
of the quasi-uniform triangulation Th . Furthermore,

	 (iv)	 if h ≥ H or h/R ≥ ε/4, one may actually take �H,m = Hc,h(BR ∩�)  and  E1,h 
may be taken as �1,h = �h|BR∩�

.

Proof  Step 1: (reduction to h < H) As a preliminary step, we show (iv) so that after-
wards we may restrict our attention to the case h < H together with h/R < ε/4. If  
h ≥ H or h/R ≥ ε/4, we take �H,m ∶= Hc,h(BR ∩�) , which implies that the choice 
�1,h = �h|BR∩�

 is admissible so that Eh −E1,h = 0. Since either h ≥ H or h/R ≥ ε/4, 
we have

which shows that the complexity bound in (iii) is satisfied. We have thus shown (iv) 
and will assume h < H and h/R < ε/4 for the remainder of the proof.

Step 2: (reduction to H/R ≤ ε/4) For H
R
> 𝜀

4
 , we may take the space constructed below 

with the choice H
R
=

�

4
 since then, the approximation property (ii) and the complexity 

estimate (iii) are still satisfied. Therefore, we assume in the remainder that H
R
≤ �

4
.

Step 3: (Scott-Zhang approximation on ℝ
3 ) Let MH be a quasi-uni-

form infinite triangulation of ℝ
3 with mesh width H. Define further 

�
1,1(MH) ∶= {�H ∈ �

1(ℝ3)∶ �H|M ∈ (P1(M))3 ∀M ∈ MH} . We will use the 
Scott–Zhang projection operator �SZ

H
∶ �

1(ℝ3) → �
1,1(MH) introduced in [38]. 

Denoting by ωM the element patch of M ∈ M
H

 , this operator has the local approxi-
mation property

(4.20)�BR
∶ (�(curl,BR ∩�), |||⋅|||c,h,R) → (Hc,h(BR ∩�), |||⋅|||c,h,R),

(4.21)dimHc,h(BR ∩𝛺) ≲
(

R

h

)3

≲
(

R

H

)3

+ 𝜀−3 ≲
(

R

H

)3

+ (𝜀q)−3,
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with a constant C depending only on Ω and the γ-shape regularity of the quasi-uni-
form triangulation MH . Let E∶ �

1(�) → �
1(ℝ3) be an H1-stable extension opera-

tor such as the one from [37, Chap. VI, Sec. 3, Thm. 5’].
Step 4: Let Th(B(1+2�)R ∩�) and B̃(1+2�)R be given according to Assumption 3.4. 

Let � ∈ C∞(�) be a cut-off function with supp𝜂 ⊆ B(1+3𝜀)R ∩𝛺 , η ≡ 1 on B̃(1+2�)R ,  
0 ≤ η ≤ 1 and ‖‖∇�𝜂‖‖L∞(𝛺)

≲ 1

(𝜀R)�
  for ℓ ∈  {0,1,2}. Note that ηEh ∈  H0(curl,Ω). 

Decompose ηEh ∈  H0(curl,Ω) as ηEh = z + ∇p with  � ∈ �
1
0
(�) and p ∈ H1

0
(�) 

according to Lemma 3.1. Let φz be given by (3.1) taking �̃ = � there. Select repre-
senters ph, ��,h ∈ S

1,1

0
(Th) such that ∇ph = �∇

B̃(1+2�)R

∇p and ∇�
�,h = �∇

B̃(1+2�)R

∇�
�
 on 

B̃(1+2�)R . By Lemma 4.6, we have that ∇(ph + φz,h) is discrete divergence-free 
on B̃(1+2�)R so that (ph + �

�,h) ∈ Hg,h(B(1+2�)R ∩�) . We apply Corollary 4.5 with the 
pair (R,ε) replaced with  (R̃, �̃) = (R(1 + �), �

2(1+�)
)  to get a subspace 

Wm ⊂ Hg,h(B(1+𝜀)R ∩𝛺) for the box B(1+ε)R ∩Ω and an wm ∈ Wm such that

Step 5: Define �H ∶= (�SZ
H
E�)|B(1+4�)R∩�

 . Using Definition 3.6 and with the function 
�
�H

 given by (3.1) (again, with �̃ = � there) we have the representation

Of these 6 terms, the first three terms are shown to be small, the next two terms 
are from a low-dimensional space, and the last term is exponentially (in m) close to 
∇wm by (4.23), which is also from a low-dimensional space, namely, ∇Wm. As the 
approximation of Eh, we thus take

with the |||⋅|||c,h,R-orthogonal projection �BR
 of (4.20). Property (i) is then satisfied by 

construction. In order to prove (ii), we compute

(4.22)���� − �
SZ
H
�
���
2

�2(M)
≤ CH2‖�‖2

�1(�M)
∀� ∈ �

1(�M)

(4.23)������ph + 𝜑
�,h − wm

������g,h,(1+𝜀)R ≲ qm𝜀−2‖∇(ph + 𝜑
�,h)‖�2(B(1+2𝜀)R∩𝛺).

�h|B̃(1+2�)R
= �h +�∇

B̃(1+2�)R

∇p = (�h − �) + � −�∇

B̃(1+2�)R

∇�
�
+�∇

B̃(1+2�)R

∇(�
�
+ p)

= (�h − �) + (� − �H) −�∇

B̃(1+2�)R

(∇�
�
− ∇�

�H
)

−�∇

B̃(1+2�)R

∇�
�H

+ �H +�∇

B̃(1+2�)R

∇(�
�
+ p).

(4.24)�1,h ∶= �BR

(
−�∇

B̃(1+2�)R

∇�
�H

+ �H + ∇wm

)
,

(4.25)

||||||�h − �1,h
||||||c,h,R =

|||||

|||||

|||||
�BR

(
�h +�∇

B̃(1+2�)R

∇�
�H

− �H − ∇wm

)|||||

|||||

|||||c,h,R
≤ ||||

||||
||||
�h +�∇

B̃(1+2�)R

∇�
�H

− �H − ∇wm

||||
||||
||||c,h,R

≤ ||||||�h − �||||||c,h,R + ||||||� − �H
||||||c,h,R +

||||
||||
||||
�∇

B̃(1+2�)R

(∇�
�
− ∇�

�H
)
||||
||||
||||c,h,R

+
||||
||||
||||
�∇

B̃(1+2�)R

∇(p + �
�
) − ∇wm

||||
||||
||||c,h,R

.
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Step 6: (stability estimates) The stability estimate (3.7) for ph in the local discrete 
regular decomposition implies together with Lemma 3.1

By Lemma 3.11 and the Caccioppoli-type estimate of Lemma 4.1 (replacing the 
pairs (R,ε) there with suitably adjusted (R̃, �̃) as needed), we have

Finally, combining Lemmas 3.1, 3.2, and estimate (3.7) leads to

as well as

Step 7: (controlling z −zh) By Lemma 3.11 and (4.27), we have

Noting ∇ × z = ∇ × (ηEh) together with the definition of |||⋅|||c,h,R and the estimate 
(4.30), we obtain

Combining this with Lemma 4.1 and the stability estimate (4.27) leads to

Step 8: (controlling z −zH and ∇(�
�
− �

�H
) ) For �H = (�SZ

H
E�)|B(1+4�)R∩�

 , we have by 
the approximation result (4.22), the assumption H/R ≤ ε/4, and the stability proper-
ties of �SZ

H

(4.26)

��∇ph���2(�B(1+2𝜀)R)
+ ‖�‖

�2(𝛺) + ‖∇p‖
�2(𝛺)

(3.7)

≲ ‖�‖
�2(𝛺) + ‖∇p‖

�2(𝛺) ≲ ‖𝜂�‖
�2(𝛺).

(4.27)

���h���(curl,BR)
+ ‖�‖

�
1
0
(𝛺) ≲ ��∇ × �h

���2(B(1+3𝜀)R∩𝛺)
+

1

𝜀R
���h

���2(B(1+3𝜀)R∩𝛺)

Lem. 4.1

≲ 𝜀−1�������h
������c,h,(1+4𝜀)R.

(4.28)��∇𝜑�
���2(𝛺)

+ ��∇𝜑�,h
���2(�B(1+2𝜀)R)

≲ ‖�‖
�2(B(1+3𝜀)R∩𝛺) ≲ ‖𝜂�‖

�2(𝛺)

(4.29)
‖‖‖∇(��

− �
�H
)
‖‖‖�2(�)

≤ ‖‖� − �H
‖‖�2(B(1+3�)R∩�)

.

(4.30)1

R
‖‖� − �h

‖‖�2(BR∩𝛺)
≲ h

R
𝜀−1||||||�h

||||||c,h,(1+4𝜀)R.

(4.31)

������� − �h
������c,h,R ≤ h

R

�
���h���(curl,BR)

+ ‖∇ × �‖
�2(BR∩�)

�
+

1

R
��� − �h

���2(BR∩�)

≤ h

R

�
���h���(curl,BR)

+
1

�R
���h

���2(B(1+�)R∩�)
+ ���∇ × �h

���2(B(1+�)R∩�)

�

+
h

R
�−1�������h

������c,h,(1+4�)R.

(4.32)||||||� − �h
||||||c,h,R ≲

h

R
𝜀−1||||||�h

||||||c,h,(1+4𝜀)R.

(4.33)
1

R
��� − �H

���2(B(1+j𝜀)R∩𝛺)
≲ H

R
‖E�‖

�1(B(1+(j+1)𝜀)R)
, j = 0,… , 3,

(4.34)
h

R
��� − �H

���1(B(1+j𝜀)R∩𝛺)
≲ h

R
‖E�‖

�1(B(1+(j+1)𝜀)R)
, j = 0,… , 3,
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so that, using ‖E�‖
�1(B(1+4𝜀)R)

≲ ‖�‖
�1(𝛺) , we obtain for j = 0,…,3

By the stability properties of the operator �∇

B̃(1+2�)R

 given in (3.7) and (4.29), we infer

Step 9: (Estimate of �∇

B̃(1+2�)R

∇(p + �
�
) − ∇wm ) By Step 4, we have 

ph + �
�,h − wm ∈ Hg,h(B(1+�)R ∩�).  

Noting  �∇

B̃(1+2�)R

∇(p + �
�
) − ∇wm = ∇(ph + �

�,h − wm) on B(1+ε)R ∩Ω, we get

Substituting (4.32), (4.35), (4.36) and (4.37) into (4.25) concludes the proof of (ii).
Step 10: By construction, the approximation E1,h of (4.24) is from the space

By the linearity of the maps �BR
 , �∇

B̃(1+2�)R

 , and z↦φz, the space VH,m is a linear 

space. In view of dimWm ≲ (𝜀q)−3m4 from Corollary 4.5 
and dim �

SZ
H
E(�1(Ω))|B(1+4E)R∩Ω

≲
(

(1+4E)R

H

)3

  we get (iii). 	�  ◻ 

Lemma 4.8 (multi‑step approximation)  Let ζ ∈ (0,1), q� ∈ (0, 1) , R ∈ (0,Rmax∕2] . 
Then, for each k ∈ ℕ , there exists a subspace Vk of Hc,h(BR ∩�) of dimension

such that for �h ∈ Hc,h(B(1+� )R ∩�) there holds

Here, C′′′
dim

 depends only on κ, Ω, and the γ-shape regularity of the quasi-uniform 
triangulation Th.

(4.35)

������� − �H
������c,h,(1+j𝜀)R ≲

�
h

R
+

H

R

�
‖E�‖

�1(B(1+(j+1)𝜀)R)

(4.27)

≲
�
h

R
+

H

R

�
𝜀−1�������h

������c,h,(1+4𝜀)R.

(4.36)

||||
||||
||||
𝛱∇

�B(1+2𝜀)R

∇(𝜑
�
− 𝜑

�
H

)
||||
||||
||||c,h,R

≤ 1

R

‖‖‖∇(𝜑�
− 𝜑

�
H

)
‖‖‖�2(�B(1+2𝜀)R)

(4.29)≤ 1

R

‖‖� − �
H

‖‖�2(B(1+3𝜀)R∩𝛺)

(4.35)

≲
(

h

R
+

H

R

)
𝜀−1||||||�h

||||||c,h,(1+4𝜀)R.

(4.37)

||||
||||
||||
𝛱∇

�B(1+2𝜀)R

∇(p + 𝜑
�
) − ∇wm

||||
||||
||||c,h,R

=
1

R
‖‖∇(ph + 𝜑

�,h − wm)
‖‖�2(BR∩𝛺)

Lem. 4.2

≲ 1+𝜀

𝜀R
||||||(ph + 𝜑

�,h) − wm
||||||g,h,(1+𝜀)R

(4.23)

≲
qm𝜀−2(1+𝜀)

𝜀R
‖‖∇(ph + 𝜑

�,h)
‖‖�2(B(1+2𝜀)R∩𝛺)

(4.26),(4.28)

≲
qm𝜀−2

𝜀R
‖‖𝜂�h

‖‖�2(𝛺)
≲

qm𝜀−2

𝜀R
‖‖�h

‖‖�2(B(1+3𝜀)R∩𝛺)

≲ qm𝜀−3||||||�h
||||||c,h,(1+3𝜀)R.

�H,m ∶=

{
�BR

(
−�∇

B̃(1+2�)R

∇�
�H

+ �H + ∇wm

)
∶ �H ∈

(
�
SZ
H
�

1(ℝ3)
)
|B(1+4�)R∩�

,wm ∈ ∇Wm

}
.

(4.38)dim�k ≤ C���
dim

k
(

k

�

)3(
q�−3 + ln4

k

�

)
,

(4.39)min
�̃k∈�k

|||
|||
|||�h − �̃k

|||
|||
|||c,h,R ≤ q�

k||||||�h
||||||h,(1+� )R.
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Proof  The proof relies on iterating the approximation result of Lemma 4.7 on boxes 
B(1+�j)R

 , where �j = �(1 −
j

k
) for j = 0,…,k. We note that ζ = ε0 > ε1 > ⋯ > εk = 0. 

Define

and note the relationship B(1+4�̃j)R̃j
= B

R̃j−1
= BR(1+�j−1)

 as well as B
R̃k

= BR and 
B
R̃0

= BR(1+�) . Also note

 Select q ∈ (0,1). With the constant C′′
app

 of Lemma 4.7 choose

These constants are chosen such that

Moreover, the assumption R ≤ Rmax∕2 implies that (1 + 4�̃j)R̃j = R(1 + �j−1) ≤ Rmax . 
Therefore, Lemma 4.7 provides a space �1

H,m
⊂ Hc,h(B�R1

∩ Ω)   and an approxima-
tion �1,h ∈ �

1
H,m

 with

where the constant C > 0 is independent of j  ∈  {0,…,k}, ζ, k, and q′ . 
Since �h − �1,h ∈ Hc,h(BR̃1

∩�) , we may apply Lemma 4.7 again to find 
a space �

2
H,m

⊂ Hc,h(B�R2
∩𝛺) and an approximation �h ∈ �

2
H,m

 with 
dim�

2
H,m

≤ C(k∕�)3
(
q�−3 + ln4(k∕�)

)
 such that

Repeating this process k − 2 times leads to the approximation �̃k =
∑k

i=1
�i,h in the 

space �k ∶=
∑k

i=1
�

i
H,m

 of dimension

which concludes the proof. 	�  ◻ 

�Rj ∶= R(1 + 𝜀j), �𝜀j ∶=
𝜁

4k(1 + 𝜀j)
<

1

4

�

8k
≤ �

4k(1 + �)
≤ �̃j ≤ �

4k
, R ≤ R̃j ≤ (1 + �)R, j = 0,… , k.

H ∶=
q�R�

8kmax{1,C��
app

}
, m ∶=

⌈
3 ln(�∕(4k))−lnmax{1,C��

app
}+ln(q�∕2)

ln q

⌉
.

(4.40)C��
app

H

�̃jR̃j

≤ 1

2
q� and C��

app
�̃−3
j
qm ≤ 1

2
q�.

(4.41)

||||||�h − �1,h
||||||c,h,�R1

≤ C��
app

(
H

�𝜀1�R1

+ �𝜀−3
1
qm

)
||||||�h

||||||c,h,�R0

(4.40)≤ q�||||||�h
||||||c,h,�R0

,

dim�
1
H,m

≲
(

�R1

H

)3

+
(
�𝜀1q

)−3
m4 ≤ C

(
k

𝜁

)3(
q�−3 + ln4(k∕𝜁)

)
,

||||||�h − �1,h − �2,h
||||||c,h,R̃2

≤ q�||||||�h − �1,h
||||||c,h,R̃1

≤ q�2||||||�h
||||||c,h,R̃0

.

dim�k ≤ Ck(k∕�)3
(
q�−3 + ln4(k∕�)

)
,
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5 � Proof of main results

The results of the preceding Section 4 allow us to show that the Galerkin approxi-
mation Eh of (2.7) can be approximated from low-dimensional spaces in regions 
BR�

 away from the support of the right-hand side F.

Theorem  5.1  Let h0 > 0 be given by Lemma 2.2, and let Th be a quasi-uniform 
mesh with mesh size h ≤ h0. Fix q ∈ (0,1) and η > 0. Set ζ = 1/(1 + η). For every 
cluster pair (τ,σ) with bounding boxes BR�

 and BR�
 with �dist(BR�

,BR�
) ≥ diam(BR�

) 
and each k ∈ ℕ , there exists a space �k ⊂ �

2(BR𝜏
∩𝛺) with

such that for an arbitrary right-hand side F ∈ L2(Ω) with supp � ⊂ BR𝜎
∩𝛺 , the cor-

responding Galerkin solution Eh of (2.7) can be approximated from Vk such that

Here, �L2

h
 is the L2-orthogonal projection onto �h(Th,�) and Cbox, C̃dim are con-

stants depending only on κ, Ω, and the shape regularity of Th.

Proof  From Lemma 2.2, we have the a priori estimate

 From dist(BR�
,BR�

) ≥ �−1 diamBR�
 , the choice ζ = 1/(1 + η) implies

Hence, the Galerkin solution Eh satisfies �h|B(1+� )R�
∩� ∈ Hc,h(B(1+� )R�

∩�) . Since 
h

R𝜏

≲ 1 , it is immediate that

In the following, we employ Lemma 4.8. In order to do so, boxes have to have side 
length smaller than Rmax∕2 , which may not hold for general bounding boxes BR�

 . 
However, as bounding boxes can always be chosen to satisfy Rτ < 2 diam(Ω), there 
exists a constant L ∈ ℕ independent of Rτ such that R�∕L ≤ Rmax∕2 with Rmax given 

in Definition 3.10. Consequently, we can decompose a box BR�
= int

�
⋃CL

�=1
BR��

�
 

into CL ∈ ℕ subboxes 
{
BR��

}CL

�=1
 of side length R�

�
 such that R�

�
≤ Rmax∕2 , where 

CL does only depend on L. Then, for each BR��
, Lemma 4.8 provides a space 

�k,� ⊂ Hc,h(BR𝜏�
∩𝛺) , whose dimension is bounded by (4.38) such that

(5.1)dim�k ≤ C̃dimk(k∕�)
3
(
q−3 + ln4(k∕�)

)
,

min
�̃k∈�k

����h − �̃k
����2(BR�

∩�)
≤ Cboxq

k����
L2

h
�
����2(�)

≤ Cboxq
k‖�‖

�2(BR�
∩�).

‖�h‖�(curl,�) ≤ C‖�L2

h
�‖

�2(�) ≤ C‖�‖
�2(�) = C‖�‖

�2(B�∩�).

dist(B(1+𝜁 )R𝜏
,BR𝜎

) ≥ dist(BR𝜏
,BR𝜎

) − 𝜁R𝜏

√
3 ≥ √

3R𝜏(𝜂
−1 − 𝜁) =

√
3R𝜏

1

𝜂(𝜂+1)
> 0.

(5.2)||||||�h
||||||h,(1+𝜁 )R ≲

(
1 +

1

R𝜏

)
‖‖�h

‖‖�(curl,𝛺)
≲
(
1 +

1

R𝜏

)‖‖‖�
L2

h
�
‖‖‖�2(𝛺)

.
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Now, we define the space Vk as a subspace of �2(BR�
∩�) by simply combining all 

the spaces Vk,ℓ of the subboxes, i.e., we extend functions in Vk,ℓ by zero to the larger 
box BR�

 and write �̂k,� for this space. Then, we can define �k ∶=
∑CL

�=1
�̂k,� and set 

�̃k|BR��

∶= �̃k,� ∈ �k,� for �̃k ∈ �k . This gives

The dimension of Vk is bounded by

which concludes the proof. 	�  ◻ 

The following result allows us to transfer the approximation result of Theo-
rem 5.1 to the matrix level. We recall that the system matrix A is given by (2.8).

Lemma 5.2  Let h ≤ h0 with h0 given by Lemma 2.2. Then, there are constants 
C̃dim , Ĉapp that depend only on κ, Ω, and the γ-shape regularity of the quasi-uni-
form triangulation Th such that for η > 0, q ∈  (0,1), k ∈ ℕ , and η-admissible 
cluster pairs (τ,σ) there exist matrices ��� ∈ ℂ

�×r , ��� ∈ ℂ
�×r of rank 

r ≤ C̃dim(1 + �)3k4
(
q−3 + ln4(k(1 + �))

)
 such that

Proof  As a preliminary step, we show that we can reduce the consideration to the 
case diamBR�

≤ � dist(BR�
,BR�

) . Indeed, as A is symmetric also A− 1 is symmetric 
so that �−1|�×� = �

−1|�×� and one may approximate either �−1|�×� or �−1|�×� by a 
low-rank matrix. In view of the definition of the admissibility condition (2.10), we 
may therefore assume diamBR�

≤ � dist(BR�
,BR�

).
The matrices Xτσ and Yτσ will be constructed with the aid of Theorem 5.1. In par-

ticular, let the constant C̃dim be given from Theorem 5.1. We distinguish between the 
cases of “small” blocks and “large” blocks.

Case 1. If C̃dim(1 + �)3k4
(
q−3 + ln4(k(1 + �))

) ≥ min(|�|, |�|) , we use the exact 
matrix block ��� = �

−1|�×� and we put ��� = �|�×� with � ∈ ℂ
N×N being the iden-

tity matrix.
Case 2. If �Cdim(1 + 𝜂)3k4

(
q−3 + ln4(k(1 + 𝜂))

)
< min(|𝜏|, |𝜎|) , let Vk be the 

space constructed in Theorem 5.1. From Vk we construct Xτσ and Yτσ in the follow-
ing two steps.

Step 1. Let functions �i ∈ �
2(�) , i = 1,…,N, satisfy

min
��k,�∈�k,�

‖‖‖�h −
��k,�

‖‖‖�2(BR𝜏�
∩𝛺)

≤ R𝜏
�

min
��k,�∈�k,�

|||
|||
|||�h −

��k,�
|||
|||
|||c,h,R𝜏�

≤ Cqk(R𝜏
�
+ 1)

‖‖‖�
L2

h
�
‖‖‖�2(𝛺)

≲ diam(𝛺)qk
‖‖‖�

L2

h
�
‖‖‖�2(𝛺)

.

min
��k∈�k

����h −
��k
����2(BR𝜏

∩𝛺)
≤ CL∑

�=1

min
��k,�∈�k,�

����h −
��k,�

����2(BR𝜏�
∩𝛺)

≲ CLq
k����

L2

h
�
����2(𝛺)

.

dim�k ≤ CLC
���
dim

k
(

k

�

)3(
q�−3 + ln4

k

�

)
,

‖‖�−1|�×� − ����
H
��
‖‖2 ≤ Ĉapph

−1qk.
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Such a dual basis of {Ψi: i = 1,…,N} can be constructed as (discontinuous) piece-
wise polynomials of degree 1 as described in, e.g., [11, Sec. 4.8] for classical 
Lagrange elements. In fact, suppλi can be taken to be a single tetrahedron in suppΨi. 
The constant C depends solely on the γ-shape regularity of Th . We emphasize that 
our choice of scaling of the functions Ψi is responsible for the factor h− 1/2.

For clusters �′ , define the mappings

where ��′ is the characteristic function of �′ . For v ∈ L2(Ω) and a cluster �′ with 
bounding box BR�′

 , we observe for the ℓ2-norm ∥⋅∥2 on ℂ�′ that

We observe that, for �h ∈ �h,0(Th,�) expanded as �h =
∑

i∈I�i�i , we have 
�i = (�I(�h))i . In particular, we have for the coefficients μi with i ∈ ��

Step 2: Let Vk be the space given by Theorem 5.1 for the boxes BR�
 , BR�

 . For 
arbitrary � ∈ ℂ

� , define the function �
�
∶=

∑
i∈��i�i and observe:

Let �h ∈ �h,0(Th,�) be the Galerkin solution corresponding to the right-hand side 
fb and �̃h ∈ �k be the approximation to Eh asserted in Theorem 5.1. Then,

We define the low-rank factor Xτσ as an orthogonal basis of the space 
V� ∶= {��(�̃k)∶ �̃k ∈ �k} and set ��� ∶= �

−1|H
�×�

��� . Then, the rank of Xτσ is 

(5.3a)supp�i ⊂ supp𝛹i, i = 1,… ,N,

(5.3b)⟨�i,�j⟩�2(�) = �ij, i, j = 1,… ,N,

(5.3c)‖�i‖�2(�) ≤ Ch−1∕2, i = 1,… ,N.

��� ∶ �
2(�) → ℂ

�� , � ↦

�
��� (i)⟨�i, �⟩�2(�)

�
i∈I

,

(5.4)

‖𝛬𝜏��‖22 =
∑
i∈𝜏�

�⟨�i, �⟩�2(𝛺)�2 ≤ ∑
i∈𝜏�

‖�i‖2�2(𝛺)
‖�‖2

�2(supp�i)

(5.3c)

≲ h−1‖�‖2
�2(BR𝜏� ∩𝛺

)
.

(5.5)�i = (��� (�h))i ∀i ∈ ��.

(5.6a)supp �
�

(5.3a)

⊂ BR𝜎
,

(5.6b)‖�
�
‖
�2(𝛺)

(5.4)

≲ h−1∕2‖�‖2,

(5.6c)⟨�
�
,�i⟩�2(�)

(5.3b)
= �i, i = 1,… ,N.

���𝛬𝜏�h − 𝛬𝜏
��k
���2

(5.4)

≲ h−1∕2
����h −

��h
����2(BR𝜏

∩𝛺)

Thm. 5.1

≲ h−1∕2qk �������2(𝛺)

(5.6b)

≲ h−1qk‖�‖2.
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bounded by dim�k ≤ C̃dim(1 + �)3k4
(
q−3 + ln4(k(1 + �))

)
 . Since ����

H
��

 is the 
orthogonal projection from ℂN onto V� , we conclude that � ∶= ����

H
��
(���h) is the 

∥⋅∥2-best approximation of the Galerkin solution in V� , which results in

By (5.5) and � ∈ ℂ
� , we have

Since � = ����
H
��
� , we conclude

As b was arbitrary, we obtain the stated norm bound. 	� ◻ 

Proof (Proof of Theorem 2.8)  For each admissible cluster pair (τ,σ), let the matrices 
Xτσ, Yτσ be given by Lemma 5.2. Define the H-matrix approximation �H by the 
conditions

The blockwise estimate of Lemma 5.2 for q ∈ (0,1) and [10, Lemma 6] yield

We next relate k to the blockwise rank r. For y ≥ 0, the unique (positive) solution 
k of k ln k = y has the form

by, e.g., [36, Ex. 5.7, Chap. 1]. In passing, we mention that even higher order 
asymptotics can directly be inferred from the asymptotics of Lambert’s W-function 
as described in [13, p. 25–27] or [15, Eq. (4.13.10)]. The asymptotics (5.7) implies 
that the solution k of k4 ln4 k = y satisfies k = y1∕4∕ ln(y1∕4)(1 + o(1)) as y → ∞.

From Lemma 5.2 we have the rank bound r ≤ C̃dim(1 + �)3k4
(
q−3 + ln

4(k(1 + �))
)

≤ C̃dim

(
(1 + �)q−1

)3
k4 ln4 k , so that, for suitable b, C > 0 independent of r, we get 

qk ≤ C exp(−br1∕4∕ ln r) . Consequently, we have

which concludes the proof. 	�  ◻ 

��𝛬𝜏�h − ���2 ≲
���𝛬𝜏�h − 𝛬𝜏

��h
���2 ≲ h−1qk‖�‖2.

���h

(5.5)
= (�I�h)|� = (�−1

�)|�
�∈ℂ�

= (�−1|�×�)�.

���
�
�

−1�𝜏×𝜎 − �𝜏𝜎�
H
𝜏𝜎

�
�
���2 =

��𝛬𝜏�h − ���2 ≲ h−1qk‖�‖2.

�H|�×� = ����
H
��

if (�, �) ∈ Pfar, �H|�×� = �
−1|�×� if (�, �) ∈ Pnear.

���−1 − �H
��2 ≤ Csp

�
∞∑
�=0

max
���(�−1 − �H)��×���2 ∶ (�, �) ∈ P, level(�) = �

��

≤ ĈappCspdepth(�I)h
−1qk.

(5.7)k =
y

log y
(1 + o(1)) as y → ∞

‖‖�−1 − �H
‖‖2 ≤ CapxCspdepth(�I)h

−1e−b(r
1∕4∕ ln r),
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Appendix: Regular decompositions

The following lemma follows from the seminal paper [12]. The notation follows [12] 
in that Hs

�
(ℝ3) , s ∈ ℝ denotes the spaces of distributions in Hs(ℝ3) supported by � , 

and that C∞

�
(ℝ3) is the space of C∞(ℝ3)-functions supported by �.

We introduce the space

 equipped with the norm ‖�‖
�

s

�
(curl) ∶= ‖�‖

�
s

�
(ℝ3) + ‖∇ × �‖

�
s

�
(ℝ3).

Remark A.1  From [12, p. 301], for any s ∈ ℝ , the space �s

�
(ℝ3) is naturally isomor-

phic to the dual space of H−s(Ω). Hence, for s ≥ 0, we have the alternative norm 
equivalence ‖�‖

�
s

𝛺
(ℝ3) ∼ ‖�‖��s(𝛺) = ‖�⋆‖

�s(ℝ3) , where v⋆ is the zero extension of a 
function v defined on Ω.

Lemma A.2  Let Ω be a bounded Lipschitz domain. There exist pseudodifferential 
operators T1 and T2 of order − 1 and a pseudodifferential operator L of order −∞ on 
ℝ

3 with the following properties: For each s ∈ ℝ , they have the mapping properties 
T1 ∶ �

s

�
(ℝ3) → Hs+1

�

(
ℝ

3
)
 , �2 ∶ �

s

�
(ℝ3) → �

s+1

�

(
ℝ

3
)
 , and � ∶ �

s

�
(ℝ3) → �

∞

�

(
ℝ

3
)
 

and for any � ∈ �
s

�
(curl) , there holds the representation

Proof  In [12, Theorem 4.6], operators T1, T2, T3, L1, L2 with the mapping properties

are defined, and it is shown that

Taking � = � − �2(∇ × �) in (A.2a), we obtain

Since ∇×u is divergence-free, we obtain from (A.2b) with the choice v = ∇×u

�
s

�
(curl) ∶=

{
� ∈ �

s

�
(ℝ3)∶ ∇ × � ∈ �

s

�
(ℝ3)

}

(A.1)� = ∇T1
(
� − �2(∇ × �)

)
+ �2(∇ × �) + ��.

T1 ∶ �
s

�

(
ℝ

3
)
→ Hs+1

�

(
ℝ

3
)
,

�2 ∶ �
s

�

(
ℝ

3
)
→ �

s+1

�

(
ℝ

3
)
,

�3 ∶ Hs

�
(ℝ3) → �

s+1

�

(
ℝ

3
)
,

�
�
∶ �

s

�

(
ℝ

3
)
→ �

∞

�

(
ℝ

3
)
, � = 1, 2,

(A.2a)∇T1� + �2(∇ × �) = � − �1�,

(A.2b)∇ × �2� + �3(∇ ⋅ �) = � − �2�.

(A.3)
∇T1

(
� − �2(∇ × �)

)
+ �2

(
∇ ×

(
� − �2(∇ × �)

))
= � − �2(∇ × �) − �1

(
� − �2(∇ × �)

)
.
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where, again, L3 is a smoothing operator of order −∞ mapping into �∞

�
(ℝ3) . Insert-

ing this into (A.3) leads to

 Choosing �� ∶=
(
�1

(
� − �2∇ × �

))
+ �3� , we arrive at the representation (A.1). 	

� ◻ 

Corollary A.3  Let 𝛺 ⊂ ℝ
3 be a bounded Lipschitz domain. Then, for every s ≥ 0, 

there is a constant C (depending only on Ω and s) such that every � ∈ �
s
0
(curl,�) 

can be decomposed as u = z + ∇p with � ∈ �
s+1

�
(ℝ3) and p ∈ Hs+1

�
(ℝ3) together 

with

Proof  From Lemma A.2 we can write u = z + ∇p with

The stability estimate for z follows from the mapping properties of the operators 
T2 and L. The mapping properties of T1 yield

where the last step follows from the mapping property ∇× ∶ �
s

�
(ℝ3) → �

s−1

�
(ℝ3). 	

� ◻ 
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(
∇ ×

(
� − �2(∇ × �)

))
= �2(∇ × �) − �2

(
∇ × � − �2∇ × �

)

= �2

(
�2(∇ × �)

)
=∶ �3�,

∇T1
(
� − �2(∇ × �)

)
+ �2(∇ × �) = � − �1

(
� − �2(∇ × �)

)
− �3�.

(A.4)‖�‖
�

s+1

�
(ℝ3) ≤ C‖�‖

�
s

�
(curl), ‖∇p‖

�
s

�
(ℝ3) ≤ C‖�‖

�
s

�
(ℝ3).

� ∶= �2(∇ × �) + ��, p ∶= T1
(
� − �2(∇ × �)

)
.

‖∇p‖
�

s

𝛺
(ℝ3) ≲ ‖� − �2(∇ × �)‖

�
s

𝛺
(ℝ3) ≲ ‖�‖

�
s

𝛺
(ℝ3) + ‖∇ × �‖

�
s−1

𝛺
(ℝ3) ≲ ‖�‖

�
s

𝛺
(ℝ3),
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