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Abstract
In this paper, we develop an adaptive finite element method for the nonlinear steady-
state Poisson-Nernst-Planck equations, where the spatial adaptivity for geometrical
singularities and boundary layer effects are mainly considered. As a key contribu-
tion, the steady-state Poisson-Nernst-Planck equations are studied systematically and
rigorous analysis for a residual-based a posteriori error estimate of the nonlinear
system is presented. With the regularity of the linearized system derived by tak-
ing -derivatives of the nonlinear system, we show the robust relationship between
the error of solution and the a posteriori error estimator. Numerical experiments are
given to validate the efficiency of the a posteriori error estimator and demonstrate
the expected rate of convergence. In further tests, adaptive mesh refinements for
geometrical singularities and boundary layer effects are successfully observed.
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1 Introduction

In this work, we consider the steady-state Poisson-Nernst-Planck (PNP) equations

1 ...

0
1

(1)

which describe the nonlinear coupling of the electric potential and the ionic con-
centration of the th species. The first equation is called the Nernst-Planck equation
for species and the second one is the named the Poisson’s equation. Here, and

are the diffusivity and valence, respectively. 1 , with the Boltz-
mann constant and the absolute temperature. is the elementary charge, and

0 are the relative and vacuum dielectric permittivities, denotes the reaction source
term, and is generally due to the fixed charges. The Debye length is then defined
as 0 1

2 2 1 2 with the th bulk concentration. Further-
more, the boundary layer effects can be described by the dimensionless parameter

2 0
2 with 0 the characteristic length of the considered domain.

Despite the fact that the PNP system has been well known and widely studied for
over a century because of its physical applications such as semiconductor studies [11,
24, 47] and electrodiffusion problems [20, 34, 45], it is attracting more attentions as
being used to describe the dynamics of ion transport in biological membrane channels
[43, 55, 60, 65]. Recently, modified models beyond mean field theory such as incor-
porating ionic steric effects, correlation effects and inhomogeneous dielectric effects
have been extensively studied with great interests [32, 37, 38, 44, 66]. For early theo-
retical analysis, Jerome [35] and Hayeck et al. [28] proved the existence of solutions
for steady-state PNP according to Schauder fixed point theorem, while Mock [49],
Brezzi et al. [10], and Gajewski [23] gave out the conclusion of uniqueness under
some local constraints. Due to the strong coupling and high nonlinearity, the ana-
lytical or asymptotic solutions of PNP equations have been only studied for simple
1-D [27] or single-ion-species cases [51]. More analytical results for steady-state
PNP equations are referred to [5, 26, 42, 52] where only 1-D cases are considered.
As a result, the steady or unsteady PNP equations are in general solved numerically
with regular computational domains.

A variety of numerical methods have been used extensively for solving PNP equa-
tions, which can be broadly categorized as using finite difference method [7, 13, 19,
33, 41, 71], finite element method [25, 29, 36, 43, 53, 54, 72], finite volume method
[46, 61], the boundary element method [72], and the spectrum method [30]. Among
those numerical approaches, finite element methods have been known to perform
well for more irregular geometries and complicated boundaries. With the increas-
ing computing capabilities and numerical improvements, the PNP model has been
applied recently in simulating large systems such as practical biophysical system;
nevertheless, the computational costs of classical methods with uniform meshes are
still expensive. Additionally, the boundary layer effect due to thin Debye layer, the
singularity of Dirac charge distribution sources, and geometrical singularities cause
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significant difficulties in obtaining required numerical accuracy when standard meth-
ods are used. Although singular perturbation treatments have been applied to the PNP
system for thin Debye layer limit [42], very few efficient numerical analysis aiming
at overcoming those singularities has been proposed to the best of our knowledge.
As a special equilibrium state of PNP equation, the nonlinear Poisson-Boltzmann
(PB) equation with Dirac charge distribution has been systematically discussed and
adaptive finite element approximations have been developed in previous works [16,
31]. Later on, a parallel adaptive finite element algorithm of the steady-state PNP
has been developed with using an a posteriori error estimator which is similar to
that in PB [62]. However, PB has reduced the strongly coupled system into a sin-
gle equation and simplified the nonlinear difficulties of PNP system itself. Besides,
the above-mentioned singularities and boundary layer effects require more general
adaptive numerical analysis for PNP equations.

The analysis of adaptive finite element methods has made important progress in
understanding the basic principles in recent years. Typical adaptive algorithms pro-
vide an automatic feedback routine with successive loops of the structure: SOLVE
ESTIMATE MARK REFINE, of which “ESTIMATE” is to find out where
correction is needed through the a posteriori error estimator , so as to prepare for
grid-marking and mesh refinement. The adaptive finite element method is able to
drive local refinement by a posteriori error estimation and achieve the mesh adap-
tation, which can well resolve the geometrical singularities, boundary layer effects,
and so on. Meanwhile, the a posteriori error estimates determine the error control that
depends on the numerical solutions only. A posteriori error estimation varies for dif-
ferent equations [14, 22, 56] and multiple a posteriori error estimates can exist even
for the same problem [3].

In this work, a posteriori error estimates are mainly considered for analyzing the
PNP equations, however, the nonlinearity and strong coupling of the system lead
to great difficulties in obtaining the estimates as following the classical a posteriori
error estimation of the residual type [58] where the a posteriori error estimates can
be achieved by considering the original equation system directly. Fortunately, a gen-
eral solution for the a posteriori error estimates of nonlinear elliptic equations was
developed by Verfürth [57] decades ago and was further discussed by Ainsworth and
Oden in Ref. [3]. Solving PNP equations becomes a singular perturbation problem
with the small dimensionless parameter that describes the boundary layer effects.
Although there are many studies on the a posterior estimation of linear singular per-
turbation problems with considering the boundary layer effects [2, 4, 15, 18, 69, 70],
to solve corresponding cases with nonlinear and strongly coupling problems is chal-
lenging as satisfying the robustness of the estimation. Here, the robustness means the
estimators yield upper and lower bounds on the error such that the ratio of the upper
and lower bounds is bounded from below and from above by constants which are
independent of any mesh size and the small perturbation parameter [59]. The cur-
rent work proposes the a posteriori error estimate of PNP equations and proves both
its reliability and efficiency. Furthermore, the robustness of the estimator is demon-
strated with defining an improved -dependent norm of error inspired by the coupling
between unknowns in PNP equations.
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The paper is organized as follows. We begin in Section 2 by defining the PNP
system, its variational form, and the finite element spaces to be used. In Section 3,
we develop the a posteriori error estimate with demonstrating its reliability and effi-
ciency. In Section 4, numerical experiments are reported to show the accuracy of
the adaptive method and agreements to theorems of the a posteriori error estimation.
Conclusion remarks are finally made in Section 5.

2 Preliminary

Let 2 be a bounded convex Lipschitz domain. We use standard notations for
Sobolev spaces 1 2 1 , and the associated norms and seminorms. Here,

1
0

1 0 and 1 1
0 which means the

dual space of 1
0 . In all proofs, means where is a constant.

2.1 PNP system and its variational form

For simplicity, the 1:1 symmetric system is considered in this work, i.e., 2,
1 2 1 and 1 2, with 1 and 2 denoting the positive and neg-

ative ionic concentration, respectively. The general steady-state PNP is then reduced
to the dimensionless form as follows:

1

2

3

(2)

with being defined below Eq. (1). In this work, we take 0 1 where small
values correspond to cases with boundary layer effects, or namely thin Debye layer
effects. Alternatively, the system (2) can be written as a general system 0
with , , and is satisfied by and 1

on the two dimensional domain considered in current work, i.e., .
Let 1 2 3

2 3. For simplicity, we consider the following
homogeneous Dirichlet boundary conditions,

0 on . (3)

Hence, the weak formulation of system (2) is,

1 2 3 1 2 3

1

2

3

(4)

then, 1
0

3 is the weak solution of (2) if and only if

1 2 3
1
0

3, satisfies,

1 1 2 2 3

3 3 1 1 2 2 3 3

0. (5)
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Note that is a nonlinear operator here from 1
0

3 to 1 3.
Next, we propose the linear problem by introducing the -derivative (

derivative [68]) operator at as follows,

lim
0

1
0

3 (6)

which leads to the following linear problem:
To find 1 2 3

1
0

3, 2 3, such that,

1
0

3 (7)

where satisfies (5). The well-posedness of the linear problem (7) has been verified
in [8].

2.2 Finite element discretization

Let the regular partition of be with the mesh size 0 1 [9] and the
corresponding finite element space be 1

0 1 .
We define 3.

The finite element approximation of (5) is to find 3 satisfying,

0 1 2 3
3 (8)

which based on (5) gives

1 1 2 2

3 3 3 1 1 2 2 3 3 . (9)

3 The construction of an a posteriori error estimator

The -dependent norm, , is defined as referring to the energy norm, i.e.,
1 ,

2
2

2
1

1 2

and
2
1

2
1

2
1 2

.

See similar treatment in [59]. We further define

sup
0 1

0

sup
0 1

0
3

(10)

1 and 1
0

3 .
In order to obtain robust a posteriori estimate, we go one step further to define an

improved energy norm as follows,

1 .
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The key part of the process “ESTIMATE” in adaptive finite element algorithm is
to find an a posteriori error estimator and establish the relationship between and
the absolute error of solution, 1 2 3

1
0

3, as following:

(11)

with the constants and independent of and . Here, the lower and upper
bounds are called the efficiency and reliability of the a posteriori error estimator,
respectively.

In order to prove inequality (11), we split the process into two steps, which are
the a posteriori error analysis for upper and lower bounds on the error, respectively.
Furthermore, we show and do not depend on , that is, the error estimation is
robust.

3.1 Upper bounds of the error

Before illustrating the upper bounding relationship, we show the regularity of the
linear problem (7).

Lemma 1 If , , we have the regularity conclusion for Eq. (7) as follows,

1
2 3 (12)

where the constant 1 depends on the exact solution of system (2) but is independent
of , and .

Proof Eqs. (5) and (6) lead to the variational form of Eq. (7) as

1 1 3 1 1 1 2 2

3 2 2 2 3 3 1 3 2 3 . (13)

Based on the regularity of and embedded theorem [1, 40], we have
1 for 2, that is, 1 2 3 2 .

Owing to and inequality, we have

1 1 1 1 3 1 1 1 1 2 1 1

2 1 2 1 3 1 2 1 2 2 2 2

3 1 3 1 1 2 3 2 2 2 3 2

1 1 (14)

where the -dependence has been eliminated due to the assumption , .
Besides, we have the one-to-one mapping 1

0
3 2 3 due

to the conclusions in [8]. By the bounded inverse theorem there exists an inverse
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1 2 3 1
0

3, and by the Hahn-Banach theorem there exists
a linear extension 1 3 1

0
3 satisfying 2 3

1

and 1 . Moreover, 1
1 where the constant 1

depends on the exact solution of system (2) only and is independent of . Thus,
2 3 1 3,

1 1
1

1 1 1 . (15)

Then, with 1 and 1 , we have the inequality
(12).

Theorem 1 If , , and the error is small enough, that is 3

1 2 2 1 , then,

2 1 . (16)

Here, 1 is the same constant in Lemma 1.

Proof The definition of -derivative [68] indicates that, 1
0

3,

1

0
. (17)

By means of the fact that 0 1
0

3, we have

1

0
(18)

and thus,

DF
1

0
DF DF . (19)

We now define for convenience. The inequality (12)
now leads to 1 as taking .

Next, the integral part in (19) is estimated, i.e.,

2 1 3 1 2 3 2

2 2 3 1 2 1 2 1 2 2 2

2 2 3 (20)
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where the and inequality are used, and hence

1

1 sup
1

1

0

1 sup
1

2 3 1

2 1 3 1 . (21)

Notably, we shall have if 3 1 2 1 ,

however, we restrict the condition as 3 1 2 2 1 for convenience,
and obtain

2 1 . (22)

This proves the inequality (16).

To build the relationship between and the a posteriori error estimator ,
some notations are given as follows. For a regular triangle partition of ,
represents the set of all vertices divided in , represents all edges contained in

, and contains the inner edges of . We set ,
, and . diam denotes the

diameter of any set . Let be the shared edge of and , i.e., , and
represent the outward normal vector of in , we define the jump across the edge by

1
0 (23)

and , we set 0 for convenience.
Next, we define by, 1 2 3

1
0

3,

1 1 2 2

3 3 3 1 1 2 2 3 3 (24)

with the mean value of over being 1 2 3. Here,
denotes the area of .

Let ( 1 2 3) be the area coordinates of the reference element , we define
the bubble functions and as follows,

27 1 2 3

0
(25)

4 1 1 1

4 2 2 2

0

(26)

T. Hao et al.Page 8 of 2749



where and are the indices of ’s two vertexes associated with 1 while and are
those with 2, and 1 2. The space of vector bubble functions is then denoted
by 0 3 with 0 span 1 1

. Here, 1 and 1 are spaces of linear polynomials on and
respectively and is a continuation operator.

Two lemmas are now given before showing Theorem 2.

Lemma 2 (The estimation of interpolation [17, 59])
Let be the interpolation operator for a regular partition, then,

1
0 ,

2 2 1 (27)

2 3
1 2

1 (28)

2 4 (29)

2 5
1 4 1 2 (30)

where min 1 1 2 and represent the edge or element . The constants
2, ..., 5 only depend on the reference element and regular partition.

Proof Inequalities (27) and (28) can be found in [17] and [59]. The main steps for
the proof of inequalities (29) and (30) are briefly stated as following.

According to the definition of the interpolation operator, we have

2 2

and

2 1
1 2

which lead to inequality (29).
Additionally, we have

2

2

1

0

1 2
2

1 2
2

1 2
2

1 2 1 2 1 2 1 2
1

1 2 1 2 1 4

1 4 1 2 (31)

where 1 2 is the area coordinate corresponding to the two vertexes of and
. This proves the inequality (30). The second inequality in (31) is based on

trace inequality and scaling techniques.
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Lemma 3 (Bubble function space [3, 57]) 1 and 1 where
and ,

1 2 2 2 (32)

2 2 sup
1 2

2 (33)

3 2 sup
1 2

2 (34)

4
1

2 2 5
1

2 (35)

6
1

2 2 7
1

2 (36)

2 8
1

2 (37)

2 9
1 2

2 (38)

10 2
1 2

2 2 (39)

11 2
1 2

2 2 . (40)

where the constants 1 ... 11 depend on the reference element and regular partition
only.

Theorem 2 There exists a constant 6 depending on the reference element and
regular partition only, such that,

6 (41)

where the estimator 2 2

1 2

and the oscillation term

2

1 2

, with

2 2
1

2
2

2
2

2
2

2
3

2
2

2 2
2

2
2

1 2 2
2

2
2

1

2
2

2
3 3

2
2 .

Proof We define 1 2 3 , 1 2 3
1
0

3,
with a interpolation and have 1

0
3 3 . With

1
0

3, we denote by and Id the dual spaces of 3 and the
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dual operator of Id , respectively. is a Banach space of continuous
linear maps of in .

Let in Eq. (8), thus,

(42)

and,

Id Id (43)

with the two terms on the right-hand side (RHS) of the above inequality being
discussed one by one in the following.

The first one is

sup
1

1 1 1

2 2 2

3 3 3

1 1

2 2 3 3

sup
1

1 2 1 1

2 2 2 1

3 2 3

1 2
2 1 1

2 2 1

1 4 1 2
2 3

sup
1

1
2
1 2

2
1 3

2 1 2

1
2
1 2

2
1 3

2 1 2

(44)

where the first inequality here is shown by combining inner edges of any triangle
and using inequalities (27) and (28). Cauchy-Schwartz inequality is utilized for

giving the second and final inequalities.
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Similarly, the second term on the RHS of (43) is

sup
1

1 1 1 1 2 2 2 2

3 3 3 3

sup
1

1 1 2 1 1

2 2 2 2 1 3 3 2 3

. (45)

Therefore, the results with two terms lead to the conclusion

6 (46)

with 6 independent of , and .

Similarly to the analysis in inequalities (20) and (21),

1 1 1 2 1 3 1 1

2 1 3 1 . (47)

With Theorems 1 and 2, the following a posteriori error estimate is yielded for the
equation system (2).

Theorem 3 If , and satisfy the conditions in Thm. 1, then

7 (48)

8 (49)

where the constants 7 and 8 depend on the exact solution of (2) but are indepen-
dent of , , and the mesh size.

3.2 Lower bounds of the error

The special bubble function is defined before showing the lower bound in Theorem
4. Given any number 0 1 , we denote by 2 2 the transformation
which maps on . Let 1 , .
we set invertible affine map on reference element that

.
According to the above definitions about the transformations of coordinates, we

have the bubble function 1 1 .

for any , where is the edge bubble function on and
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. We set 0 on for simplicity and define the function on

1 2 with 1 as follows.

1 1

2 2
(50)

and 1 2 .

Lemma 4 (Special bubble function [59]) For any , is one of its edge, then
1 ,

2 9
1 2 1 2 (51)

2 10
1 2 1 2 (52)

where the constants 9 and 10 depend on the reference element and regular
partition only.

Proof On the reference element ,

2 2
1 2

2

1 2 1 2
2

1 2
2 (53)

and

2 2
1 2

2

1 2 1
2

1 2
2 . (54)

Based on the scaling techniques and the regularity of , inequalities (51) and (52)
are proved.

Theorem 4 There exist constants 11 and 12 depending on the reference element
and regular partition only, such that

11 sup
1

(55)

and

12 sup
1

(56)

where 2

1 2

.

Adaptive finite element approximation for steady-state... Page 13 of 27 49



Proof The inequality with is considered first, i.e., we have

1 2

1 2

sup
1 0

1
1
2

sup
1 0

1
1

1

sup
1 0 1 1

0 0

sup
1

(57)

where (33) is applied for obtaining the first inequality, and inequalities (32) and (35)
are used for getting the second inequality.

Analogously, we have

2 2 sup
1

. (58)

Denoting 3 , we have

1 2
3

2
2

3 3

2 2 2 2

2 2 3 3 2 2

2 3 3 2 2 3 2

1
2 3 2

where the last inequality is obtained by inequalities (32) and (37). Together with the
inequality (39) and 1 1 2, it reads

3 2

2 3 3 2 2
1 2

2

3 3 2 . (59)

Thus, the inequality (55) is proved with the definition of and .
On the side of , , we have

1 2
2

1 2 sup
1 0

1
2

1 2 1 2 sup
1 0

1
2
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sup
1 0

1
2 0 0

1

sup
1

1 2

sup
1

(60)

where represents the maximal diameter of in . Inequalities (34) and (38) are
applied for showing the first and second inequality, respectively, and (36) is used to
have the fourth inequality here.

Similarly, we derive

1 2
2

sup
1

. (61)

Let with the constant to be determined later, with Green
formulation, Lemma (4) we have

3 3 3

1 2
2

1 2
2 2 2

3 3 2 2 3 2 2

2

1

1 2
2

1 2 1 2 1 2
2

2 2

3 3 2
1 2 1 2

2

3 2
1 2 1 2

2 . (62)
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We then choose 1 2 1 1 and have

1 4 1 2
2

1 2
2

1 4
2 2

3 3 2 3 2

3 3 2 (63)

where the regular mesh, inequalities (40) and (59) are used. Now, inequality (56) is
proved with the definition of and .

Theorem 5 If , and satisfy the conditions in Thm. 1,

sup
1

14 (64)

where 2 2
3

1

2
2 , and 14 depends on the exact solution of (2)

but is independent of , , and the mesh size.

Proof We rewrite inequalities (14) and (18) as

1 1 13 (65)

and
1

0
. (66)

When 3 1 2 2 1 ,

sup
1

13 2 3

1 13 1 2 1 . (67)

Then

sup
1

(68)

sup
1

1 1 1 2 2 2 3 3 3

sup
1

1 1 2 1 1 2 2 2 2 1

3 3 2 3 1

.
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Here, 1 2 3 . To prove the first inequality in (68), the following inequal-
ities are used.

2 2 2 1 1 2 3. (69)

Furthermore,

sup
1

sup
1

sup
1

(70)

thus, inequality (64) is proved.

According to the above analysis, we have the robust lower bound of error as
follows.

Theorem 6 If , and satisfy the conditions in Thm. 1,

15 (71)

and

16 (72)

where 15 and 16 depend on the exact solution of (2) but are independent of , ,
and the mesh size.

Remark 1 Together with the left inequality in (16) as taking the domain to be ,
inequalities (71) and (72) lead to the conclusion that where

2 1 2. On the other hand, inequality (49) gives .

As is piecewise 0 1 over , the oscillation term 1

[50], i.e., a higher order term of . Specifically, 2 1 ,
1 , and 2 0 when is a piecewise-constant function on

. Thus, we have the desired result at the leading order as inequality (11) shows, i.e.,
with constants and independent of , , and the mesh

size. However, more thorough discussions need to be done carefully for the general
case with 2 .

4 Numerical experiments

During the numerical procedure, we involve the well-known cycle of the adaptive
method, that is “SOLVE ESTIMATE MARK REFINE.” The details of the
four steps are stated as follows.

Adaptive finite element approximation for steady-state... Page 17 of 27 49



SOLVE: An adaptive two-grid finite element method [39, 67] is applied to solve the
nonlinear system, see pseudocode in Table 1. In the process of finite element dis-
cretizations, we use the edge-averaged finite element (EAFE) scheme in [64] which
was discussed later in [8, 48] for the PNP system.

ESTIMATE: The a posteriori error estimator introduced in Section 3 is applied to
estimate the error.

MARK: The maximum marking strategy [12, 21] is utilized for remarking the grid.

REFINE: The newest vertex bisection method [6] is used to refine the marked grid.
Simultaneously, the new grid is created.

We run the above loops to produce adaptive meshes until the criterion for the fixed
maximal degree of freedom is arrived, i.e., 105 . All examples are in two
dimensions and simulations are performed with the finite element software IFEM.
The first and second examples with 1 are aimed to validate the a posteriori error

Table 1 Algorithm of the two-grid method for solving the steady-state PNP equations

Algorithm 1 Solve the steady-state PNP equations

Let be the th level of grid in the adaptive cycle, be the corresponding finite element

space, and be the finite element solutions on , 0. 0 and 1 are given

and 0 0 0.

Step 1: On the th level of grid, .

Set 0 0 .

(1) Run the iteration:

For 0, find 1 1 1 such that 1 2 3 ,
1

3 3 3 3 3 ,

and
1

1
1 1

1 1 1
1

2
1 1

2 2 2 .

(2) Examine the stop criterion:

If 1
2 , (here we set 10 5),

1 1 1 , break.

Else,

set 1, continue with the iteration.

Step 2: Prolong the solution on the grid to 1.

Construct the prolong operator based on and 1[63].

Prolong to grid 1, and set the prolong result as .

Step 3: To find 1 1 1 such that 1 1 2 1 3 1 1 ,

1 3 1 3 1 3 1 3 3 1 .;

and

1 1 1 1 1 1 1 1 1

1 2 1 1 2 1 2 2 1 .
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estimation theory and show the application of the adaptive method for geometrical
singularities, respectively. The third example discusses the boundary layer effects
with 1.

Example 1 We take
sin 2 sin 2
sin 3 sin 3
sin sin

(73)

as an exact solution of the PNP equation system (2) with 1 in the L-shaped
domain, 1 1 1 1 0 1 1 0 , with homogeneous boundary
conditions. Consequently, functions 1 2 and 3 on the RHS are determined by the
exact solution.

The problem is solved by the adaptive algorithm and Fig. 1 shows the result with
the degree of freedom 951 and the error 2 7 10 2. Panels (a-c)
show the numerical solutions of , and , and panel (d) shows the correspond-
ing adaptive mesh refinements. The nonuniform grids illustrate the fact that the a
posteriori error estimate works here; nevertheless, we do not observe obvious adap-
tivity, which is caused by the fact that the synthetic solution we choose is sufficiently
regular, i.e., the adaptive algorithm is not highly required for solving it efficiently.

Furthermore, we run the algorithm until 2 105 and test the a posteriori
error estimation theory by the exact solution. With increased adaptively, the error
analysis is shown in Fig. 2 where both 1 and 2 errors of the solution and the
a posteriori error estimator are presented. For 102, the 1 and 2 errors
converge to 1 2 and 1 , respectively, which are as expected for linear
finite element interpolations. For large number of , i.e., 103, converges to

1 2 , embodying that the error of the numerical solution is well controlled by
the a posteriori error estimator of which the reliability and efficiency are hence
numerically shown.

Example 2 In order to demonstrate the adaptive performance of the estimator for
geometrical singularities, we choose 1 2 3 1 and rewrite the problem (2)
with 1 as follows,

1
1

1
(74)

by which we need find 1
0 with the same computational

domain as in Example 1.

To illustrate the adaptive mesh refinements clearly, we report the mesh grid for
1243 in Fig. 3 (panel (d)). The corresponding numerical results for , and

presented in panels (a, b, c) are quite smooth, however, it is evident to observe
the adaptive mesh refinements near the corner point 0 0 , which indicates the well
performance of the a posteriori error estimator proposed in current work. More
specifically, we calculate the numerical value of the indicator versus and present
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Fig. 1 The numerical solution of , , (a, b, c), and the final mesh grid (d) for Example 1 with 951
and 2 7 10 2

Fig. 2 The numerical errors are compared with analytical results. The 1 error of the solution (diamond)
and the a posteriori error estimator (circle) both converge to 1 2 for large . The 2 error of the
solution (cross) converges to 1
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Fig. 3 The numerical solution of , and (a, b, c) and the mesh grid (d) of Example 2 for 1243
and 7 10 3

it in Fig. 4. No 1 or 2 errors are shown because we have no analytical solution
here. As expected, the a posteriori error estimator converges to the optimal order from
the related theory, i.e., 1 2 .

Example 3 In this example, we consider the effect of boundary layer or the thin
Debye layer thickness, i.e., the general steady-state PNP (2) as follows: to find

1
0 , such that

1

2

3

(75)

with 0 1, and 0 1 0 1 . We take

3 3 (76)

as an exact solution of (75) and typically choose 10 1, 10 3 and 10 5. The
functions 1, 2 and 3 on the RHS are determined by the exact solution.
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Fig. 4 The a posteriori error estimator for Example 2 which converges to 1 2

For small values of , the exact solutions (76) shall predict obvious boundary layer
effects near 0 and 0. We run the adaptive algorithm for 10 1, 10 3 and
10 5 and show the results in Fig. 5. In panels (a, b, c), the consistent convergence of

Fig. 5 (a, b, c) The a posteriori error estimator and errors for Example 3 which converge to 1 2 .
(d) The corresponding efficiency indexes
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the -dependent error and for each case is observed as increasing , i.e., 1 2 .
As well known, an error estimator is considered to be efficient if the efficiency index

and its inverse remain bounded for all mesh sizes. Panel (d) here
indicates that the error estimator is always efficient as the parameter gets smaller
and smaller. Additionally, 1 for all three cases, which shall
demonstrate the robustness of our error estimator.

In order to illustrate the adaptivity of the mesh refinements, the corresponding
mesh grids for typical degrees of freedom are presented in Fig. 6. Through panels (a,
b, c) where degrees of freedom are close to each other, the adaptivity can be demon-
strated as more condensed grids near the boundaries are visualized as is decreasing.
In panel (c), we observed the much more condensed grids near the origin point (bot-
tom left) than other parts of the boundaries, i.e., 0 and 0. This is attributed
to the limited number of total grids ( 632) and the priority of refinement near

0 0 . As is increased to be large enough, the mesh refinements are well
observed near both 0 and 0, as shown in panel (d).

Fig. 6 The adaptive mesh grids for cases with different in Example 3
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5 Conclusions

In this paper, the residual-based a posteriori error estimator has been adopted for the
adaptive analysis of steady-state PNP equations where the nonlinearity and strong
coupling are focused. During the theoretical study of the a posteriori error estimation,
we have established the robust relationship between the a posteriori error estimator
and the error of solution with the help of the regularity of the linearized system that
is derived by taking G-derivatives of the nonlinear system, so as to demonstrate the
efficiency and reliability of the error estimator.

We have successfully shown the rationality of theoretical conclusions by numer-
ical results. The efficiency and reliability of the a posteriori error estimator are
confirmed numerically in Examples 1 and 3. The adaptive performances with treating
geometrical singularities and boundary layer effects are given in Examples 2 and 3,
respectively. Nevertheless, in view of more thorough investigations that have not been
done here, we only consider this work as a very starting point of adaptive methods
for the PNP system. On the numerical side, to the authors’ best knowledge, the con-
vergence and stability of the entire adaptive algorithm for steady-state PNP has not
been studied systematically, despite some of the existed methods [39, 67]. Last but
not least, the general estimation analysis and the adaptive method for time-dependent
PNP are of many more interests. Notably, the general adaptive method that includes
the temporal adaptivity is more challenging and is our ongoing work.
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2. Ainsworth, M., Babuška, I.: Reliable and robust a posteriori error estimation for singularly perturbed

reaction-diffusion problems. SIAM J. Numer. Anal. 36(2), 331–353 (1999)
3. Ainsworth, M., Oden, J.T.: A posteriori error estimation in finite element analysis. Wiley, New York

(2000)
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