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Abstract
This paper deals with the numerical approximation of solutions of Stokes and Brinkman
systems using meshless methods. The aim is to solve a problem containing a nonzero
body force, starting from the well known decomposition in terms of a particular solu-
tion and the solution of a homogeneous force problem. We propose two methods
for the numerical construction of a particular solution. One method is based on the
Neuber-Papkovich potentials, which we extend to nonhomogeneous Brinkman prob-
lems. A second method relies on a Helmholtz-type decomposition for the body force
and enables the construction of divergence-free basis functions. Such basis func-
tions are obtained from Hänkel functions and justified by new density results for the
space H 1(�). Several 2D numerical experiments are presented in order to discuss
the feasibility and accuracy of both methods.
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Lisbon, Portugal

2 Department of Mathematics, FCT-NOVA, Almada, Portugal

(2022)  84 :Adv Comput Math

/ Published online: 2 July 2022

44

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-022-09937-3&domain=pdf
http://orcid.org/0000-0001-6188-1911
mailto: nfm@fct.unl.pt
mailto: carlos.alves@math.tecnico.ulisboa.pt
mailto: ana.silvestre@math.tecnico.ulisboa.pt


1 Introduction

Fundamental solutions methods and singularity methods [21] for boundary value
problems involving PDEs became popular due to their easy computational imple-
mentation and the fact that they allow a smooth representation of the solution inside
the domain of interest. Compared to other methods, elaborate discretizations on the
boundary and numerical integrations are avoided, and the evaluation of the approx-
imate solution and its derivatives at interior points of the domain can be carried
out directly. Moreover, a posteriori error estimates can be computed based on the
estimates for the continuous problem. The drawback of such methods is the require-
ment of fundamental solutions adapted to a linear PDE, and ultimately, the numerical
resolution of linear systems which can be severely ill-conditioned (e.g. [7] for an
overview).

The application of the method of fundamental solutions (MFS) to linear homo-
geneous source/force problems is well known (e.g. [5]). When solving nonhomoge-
neous source/force problems, nonlinear or time-dependent problems, it is necessary
to find a particular solution and then, the problem can be reduced to the application
of the MFS. Several approaches have been proposed for deriving approximate parti-
cular solutions, among them, the so-called domain method of fundamental solutions
(MFS-D) [2]. This method is based on a set of frequencies and point-sources that
lead to an extended MFS that approximates a L2-function in a bounded domain. For
a general overview of state of the art of meshless methods, we refer to [18]. Con-
vergence results are available for Laplace’s and Poisson’s equation in R

2 in specific
geometries, like disks [10, 13, 19]. The stability and convergence of the MFS for
Helmholtz problems are studied in [4].

MFS techniques have been partially applied for the computational approximation
of solutions of the Stokes equations (e.g. [23, 25]), and of Navier-Stokes equations
(e.g. [16, 27]). For a recent application of the MFS to the Oseen equations see [11].

In this paper we consider nonhomogeneous Stokes/Brinkman problems and pro-
vide a mathematical justification for MFS approaches based on density results that
justify the approximation on the boundary data and in the domain for L2 body forces.
This work extends previous different results [3, 14] on the application of the MFS to
Stokes and Brinkman equations [6, 12].

Let � ⊂ R
d , d = 2, 3 be an open, bounded, simply connected set with Lips-

chitz boundary � = ∂� and consider the following Stokes/Brinkman system with
Dirichlet boundary condition

⎧
⎨

⎩

−(� − κ)u + ∇p = f in �, κ ≥ 0,

∇ · u = 0 in �

u = g on �

(1)

with body force f ∈ L2(�) = (L2(�))d and boundary data g ∈ H
1
2
n (�), where

H
1
2
n (�) =

{

g ∈ H
1
2 (�)d :

∫

�

g(x) · n(x)dSx = 0

}
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and n(x) is the normal vector field at x ∈ �, pointing outwards with respect to �.
Under these conditions, there exists a velocity and pressure (u, p) ∈ H1(�)×L2(�)

solving problem (1), unique up to a constant for the pressure. The constant is uniquely
determined by considering

p ∈ L2
0(�) =

{

p ∈ L2(�) :
∫

�

p(x)dx = 0

}

.

The solution (u, p) of problem (1) will be decomposed as

(u, p) = (upart, ppart) + (uhom, phom)

where (upart, ppart) is a particular solution,
{−(� − κ)upart + ∇ppart = f in �

∇ · upart = 0 in �
(2)

and (uhom, phom) satisfies the homogeneous boundary value problem
⎧
⎨

⎩

−(� − κ)uhom + ∇phom = 0 in �

∇ · uhom = 0 in �

uhom = g − upart on �.
(3)

The first method that we propose is based on the Neuber-Papkovich potentials
[17, 20, 24], which we extend to nonhomogeneous Brinkman problems (2). Such
potentials can be numerically computed using the approach of [2] for Helmholtz and
Poisson problems.

Starting from a new theoretical density result for the space H 1(�), namely
Theorem 1, another method is proposed for (upart, ppart) which relies on a Helmholtz-
type decomposition for the forcing term f and has the advantage of yielding
divergence-free basis functions, see Propositions 1 and 2.

The plan of the paper is the following. In Section 2, we prove new density results
for the Sobolev space H 1(�), where � ⊂ R

d is a bounded domain. Concerning
(upart, ppart), the generalization of the Neuber-Papkovich potentials is presented in
Section 3. In Section 4, based on the results of Section 2, divergence-free basis func-
tions are given explicitly in dimensions d = 2 and d = 3, together with the algorithm
for the associated MFS-D. Section 5 recalls the MFS algorithm to find (uhom, phom).
Several numerical experiments to illustrate the proposed methods for the Brinkman
system are presented in Section 6. Conclusions are summarized in Section 7.

2 New density results

Here, we prove two density results for the space H 1(�) which will be used in the next
sections, namely to define the basis functions in the proposed numerical approaches.
In what follows, Sd−1 stands for the boundary of the hypersphere in dimension d .

Lemma 1 The set of trigonometric polynomials

S :=
{
eiκx·ξ |x∈� : ξ ∈ S

d−1, κ ∈ I =]a, b[⊆ R
+}
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spans a dense subspace in H 1(�).

Proof Set sκ(x) := eiκx·ξ . Suppose S ⊂ Ker(L) for some L ∈ H 1(�)′, that is

〈L, sκ 〉H 1(�)′,H 1(�)(ξ) = 0, ∀ξ ∈ S
d−1, ∀κ ∈ I .

Using the characterisations (see, for example [15] and [8, pg. 283, Theorem 1])

H 1(�)′ = H̃−1(�) = {U |� : U ∈ H−1(Rd), supp U ⊆ �},
and

H−1(Rd) = H 1
0 (Rd)′

=
{

U ∈ D′(Rd) : U = f0 +
d∑

i=1

∂fi

∂xi

, fi ∈ L2(Rd) (i = 0, 1, ..., d)

}

,

we take U ∈ H 1
0 (Rd)′ such that supp U ⊆ � and L = U |�. More specifically,

the functions f0, f1,..., fd ∈ L2(Rd) used for the representation of U have compact
support contained in �. Hence, U is a distribution of compact support, U ∈ E ′(Rd) ⊂
S ′(Rd), which satisfies (F here stands for the Fourier transform)

F(U)(−κξ) = 〈U, sκ 〉E ′(Rd ),E(Rd )(ξ)

= 〈L, sκ 〉H 1(�)′,H 1(�)(ξ) = 0, ∀ξ ∈ S
d−1, ∀κ ∈ I .

We conclude that F(U)(y) = 0 for all y ∈ B(0, b) \ B(0, a). Since the Fourier
transform of a compactly supported distribution is analytic, it follows that F(U) ≡ 0
and therefore, L ≡ 0.

Next, we deduce a density result for H 1(�) based on the fundamental solution of
the Helmholtz’s equation

−(� + κ)Hκ = δ, in R
d (κ > 0)

thus extending the result for L2(�) proved in [2]. Similar results can be proved based
on the fundamental solution of the modified Helmholtz’s equation.

It is convenient to recall a number of special functions, for which a classical refe-
rence is [1]. For α ∈ R, Jα and Yα represent the Bessel functions of the first kind and
second kind, respectively,

Jα(z) =
( z

2

)α
∞∑

k=0

(−1)k

k!
(

z
2

)2k

�(α + k + 1)
(z ∈ C),

where � denotes the gamma function, and

Yα(z) = Jα(z) cos(απ) − J−α(z)

sin(απ)
.

The Hankel functions of the first kind are defined as

H(1)
α (z) = Jα(z) + iYα(z),
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in particular, we have

H
(1)
1/2(z) =

√
2

πz

exp(iz)

i
.

The fundamental solution of the Helmholtz equation is given by

Hκ(x) = i

4

( √
k

2π |x|

)d/2−1

H
(1)
d/2−1(

√
k|x|), (4)

where |x| is the Euclidian norm of x ∈ R
d \ {0}. We will need the specific cases

Hκ(x) =
{

i
4H

(1)
0 (

√
k|x|), when d = 2

exp(−i
√

κ|x|)
4π |x| , when d = 3.

Before stating and proving the density result, we consider the problem

− κ

∫

�

uvdx +
∫

�

∇u · ∇vdx = 〈L, v〉H 1(�)′,H 1(�), ∀v ∈ H 1(�), (5)

where κ > 0 and recall that there exists an at most countable set C ⊂ R such that the
problem (5) has a unique solution for each L ∈ H 1(�)′ if and only if κ �∈ C.

Theorem 1 Let I =]a, b[⊆ R
+\C and �̂ = ∂�̂, with �̄ ⊂ �̂, an artificial boundary

of �. The set

W :=
{
Hκ(· − y)|� : y ∈ �̂, κ ∈ I

}

spans a dense subspace in H 1(�).

Proof Suppose W ⊂ Ker(L) for some L ∈ H 1(�)′, that is,

〈L, Hκ(· − y)〉H 1(�)′,H 1(�) = 0, ∀(y, κ) ∈ �̂ × I . (6)

For each κ ∈ I , let uint
κ ∈ H 1(�) be the unique solution of the interior problem

− κ

∫

�

uint
κ vdx +

∫

�

∇uint
κ · ∇vdx = 〈L, v〉H 1(�)′,H 1(�), ∀v ∈ H 1(�). (7)

If we take v = Hκ(· − y) (y ∈ �̂) in (7), it follows from (6) that

−κ

∫

�

uint
κ (x)Hκ(x − y)dx +

∫

�

∇uint
κ (x) · ∇Hκ(x − y)dx = 0, ∀(y, κ) ∈ �̂ × I .

Using the relation (� + κ)Hκ(x − y) = 0, for x ∈ � and y ∈ �̂, and integration by
parts

−κ

∫

�

uint
κ (x)Hκ(x − y)dx =

∫

�

uint
κ (x)�Hκ(x − y)dx =

=
∫

∂�

uκ(x)
∂Hκ(x − y)

∂n
dSx −

∫

�

∇uint
κ (x)∇Hκ(x − y)dx

yields ∫

�

uint
κ (x)

∂Hκ(x − y)
∂n

dSx = 0, ∀(y, κ) ∈ �̂ × I .
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Now, consider the trace uκ(x) := uint
κ |�(x) in H 1/2(�) and the double layer

representation

wκ(y) := −
∫

�

uκ(x)
∂Hκ(x − y)

∂n
dSx (y ∈ R

d \ �). (8)

Define wext
κ := wκ |

�
c and wint

κ := wκ |�.
Since wext

κ satisfies
{−(� + κ)wext

κ = 0, in �
c
,

∂rw
ext
κ (y) − i

√
κwext

κ (y) = o(r(1−d)/2), r = |y|
and wext

κ (y) = 0, for y ∈ �̂, we have
⎧
⎪⎨

⎪⎩

−(� + κ)wext
κ = 0, in �̂

c

,

wext
κ = 0, on �̂,

∂rw
ext
κ (y) − i

√
κwext

κ (y) = o(r(1−d)/2).

By well-posedness of the exterior Dirichlet problem for the Helmholtz equation, we
conclude that wext

κ ≡ 0 in �̂c (the complementary set of �̂). By analytic continuation,
wext

κ can be extended to �
c

as wext
κ ≡ 0.

Now, the double layer representation (8) implies that the normal trace ∂wint
κ

∂n on �

is null and since −(� + κ)wint
κ = 0 in � and κ /∈ C then wint

κ = 0 in � and thus

wint
κ |∂� = uκ ≡ 0 on �. (9)

To complete the proof, take v(x) = s
√

κ(x) = ei
√

κξ ·x (with ξ ∈ S
d−1, κ ∈ I as in

Lemma 1) in the variational formulation (7):

−κ

∫

�

uint
κ s

√
κdx +

∫

�

∇uint
κ · ∇s

√
κdx = 〈L, s

√
κ 〉H 1(�)′,H 1(�).

Since (� + κ)s
√

κ = 0, we get, using (9),

−κ

∫

�

uint
κ s

√
κdx =

∫

�

uint
κ �s

√
κdx =

∫

�

uκ

∂s
√

κ

∂n
dS −

∫

�

∇uint
κ · ∇s

√
κdx = −

∫

�

∇uint
κ · ∇s

√
κdx.

From (7) and

−κ

∫

�

uint
κ s

√
κdx +

∫

�

∇uint
κ · ∇s

√
κdx = 0

it follows
〈L, s

√
κ 〉H 1(�)′,H 1(�) = 0, ∀κ ∈ I, ξ ∈ S

d−1,

and by the density result for H 1(�) of Lemma 1, we conclude that L ≡ 0. Therefore,
W is dense in H 1(�).

In the next section, the above density results will be used to tackle the numerical
computation of a particular solution.
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3 Numerical method based on Neuber-Papkovich potentials

In this section, we extend the Neuber-Papkovich decomposition to the Stokes and
Brinkman systems with nonhomogeneous forcing terms and use this tool to obtain
particular solutions (upart, ppart) for the such systems.

3.1 Neuber-Papkovich decomposition

For f ∈ L2(�), let (�, ψ) ∈ H2(�) × H 2(�) satisfy the following modified
Helmholtz and Poisson problems (the regularity is ensured by [8, pgs. 309,317], even-
tually taking a C2 domain larger than �̄ to solve a boundary value problem with an
L2-extension of f or using the whole space and an L2-extension of f)

{−(� − κ)� = 1
2 f,−�ψ = κx · � − 1

2x · f, in �
(10)

and define

upart = 2� − ∇(x · � + ψ), ppart = κ(x · � + ψ) − 2∇ · �. (11)

Then, upart is a solenoidal vector field,

∇ · upart = 2∇ · � − �(x · � + ψ) = 2∇ · � − x · �� − 2∇ · � − �ψ

= −(�ψ + x · ��) = 0 in �.

Furthermore,

∇ppart = κ∇ (x · � + ψ) − 2∇(∇ · �) = 2κ� − κupart − 2∇(∇ · �),

�upart = �(2� − ∇(x · � + ψ)) = 2�� − ∇(�(x · �)) + �ψ)

= 2�� − ∇(x · �� + �ψ) − 2∇(∇ · �) = 2�� − 2∇(∇ · �)

= 2κ� − f + ∇ppart + κupart − 2κ� = ∇ppart + κupart − f

so that

−�upart + κupart + ∇ppart = f in �.

3.2 Numerical method using Neuber-Papkovich potentials

In order to obtain a particular solution based on the Neuber-Papkovich decomposition
(11), we will use system (10) or

{−(� − κ)� = 1
2 f,−�ψ = x · ��, in �.

along with the density result of Lemma 1.
In the first step of the method, we consider the following approximation for the

vector potential �:

�̃(x) =
M∑

k=1

N∑

l=1

α(k,l)

λ2
k + κ

eiλkx·d(l)

, κ �= λk ∈ � ⊂ R
+, d(l) ∈ S ⊂ S

d−1, (12)
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where � is a set of frequencies, S a set of directions and α(k,l) = (α
(k,l)
1 , . . . , α

(k,l)
d ) ∈

C
d are k × l vector coefficients which will be computed by imposing

− (� − κ)�̃(x(j)) =
M∑

k=1

N∑

l=1

α(k,l)eiλkx(j)·d(l) = 1

2
f(x(j)) (13)

where x(j) ∈ �̃, j = 1, . . . , K , are collocation points placed at a domain �̃ contain-
ing �. After solving this problem for �̃, we consider the following approximation
for the scalar potential ψ

ψ̃(x) =
M∑

k=1

N∑

l=1

β(k,l)

λ2
k

eiλkx·d(l)

, (14)

where, for simplicity, we have considered the same set of frequencies � and
directions S used in (12). Analogously, we compute the coefficients β(k,l) by
imposing

− �ψ̃(x(j)) =
M∑

k=1

N∑

l=1

β(k,l)eiλkx(j)·d(l) = x(j) · ��̃(x(j)), (15)

with the same collocation points x(j) considered above in (13).
Concerning the computation of the coefficients α(k,l) and β(k,l) of �̃ and ψ̃ , we

define

A =

⎡

⎢
⎢
⎣

eiλ1x(1)·d(1)
. . . eiλMx(1)·d(N)

...
. . .

...

eiλ1x(K)·d(1)
. . . eiλMx(K)·d(N)

⎤

⎥
⎥
⎦

K×(M×N)

and the equations corresponding to the second identities in (13) and (15) can be
written as

AXi = Bi, ı = 1, . . . , d, AY = C, (16)
where

Xi =
[

α
(k,l)
i

]

(M×N)×1
, Bi = 1

2

⎡

⎢
⎣

fi(x(1))
...

fi(x(K))

⎤

⎥
⎦

K×1

, i = 1, ..., d,

Y = [
β(k,l)

]

(M×N)×1 , C =
⎡

⎢
⎣

x(1) · ��̃(x(1))
...

x(K) · ��̃(x(K))

⎤

⎥
⎦

K×1

.

Note that, by considering the same basis functions in (12) and (14), the same colloca-
tion points, directions and frequencies, this method requires the construction of only
one matrix, the matrix A, leading to a more efficient scheme.

Once system (16) is solved and the coefficients α
(k,l)
i , i = 1, ..., d , and β(k,l) of

�̃ and ψ̃ are available, based on (11), we obtain the following approximation for the
particular solution

ũpart = 2�̃ − ∇(x · �̃ + ψ̃), p̃part = κ(x · �̃ + ψ̃) − 2∇ · �̃.
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Remark 1 We write the approximating vector potential �̃ as

−(� − κ)�̃ = 1

2
(f + ε),

and the scalar potential ψ̃ as

−�ψ̃ = x · ��̃ + η,

for some functions ε and η. Then,
{ −(� − κ)ũpart + ∇p̃part = f + ∇η + ε

∇ · ũpart = −�ψ̃ − x · ��̃ = η

and in, particular, the divergence error is

‖∇ · ũpart‖L2(�) = ‖η‖L2(�). (17)

Hence:

a) The function ũpart is not divergence free.
b) If f has low regularity then the error ‖ε‖L2(�) may be high because �̃ is a super-

position of smooth functions. However, the term x · ��̃ is smooth so the error
(17) should be small, meaning that we should obtain low divergence error even
when f is nonsmooth.

4 Numerical method based on divergence-free functions

In this section, we use Theorem 1 to construct a set of basis functions for the approx-
imation of the velocity term which satisfy exactly the divergence-free condition.

Recall the set C ⊂ R such that the problem (5) has a unique solution for each
L ∈ H 1(�)′ if and only if κ �∈ C. We will also use the following rule

H
(1)
0

′ = −H
(1)
1

for the derivative of the Hankel function.

4.1 Divergence free basis functions in dimension d = 2

Consider a 2D regular stream function φ satisfying

�φ + κφ = 0 (18)

in �. Then, the vector function
u = ∇⊥φ

where ∇⊥φ = (−∂2φ, ∂1φ), satisfies the system
{

�u + κu = 0 in �,
∇ · u = 0 in �,

(19)

For instance, if we take a fundamental solution for the Helmholtz equation,

φ(x) = i

4
H

(1)
0 (

√
κ|x|),

Numerical methods with particular solutions... Page 9 of 23 44



then this stream function satisfies (18) in R
2 \ {0} and

u(x) = ∇⊥φ(x) = − i

4

√
κ
x⊥

|x|H
(1)
1 (

√
κ|x|), x⊥ = (−x2, x1), (20)

satisfies (19) in � = R
2 \ {0}. We now show that functions of the type (20) span a

dense subspace in the space of divergence-free functions

ker(∇·) =
{
u ∈ L2(�) : ∇ · u = 0 in �

}
.

Proposition 1 Let I =]a, b[⊂ R
+ \ C. The set

{

κ
(x − y)⊥

|x − y| H
(1)
1 (κ|x − y|)|x∈� : κ ∈ I, y ∈ �̂

}

(21)

where �̂ = ∂�̂, with �̂ an open set containing�, spans a dense subspace in ker(∇·).

Proof From (20) and the identity (see, e.g. [9])

ker(∇·) = ∇⊥H 1(�),

it is sufficient to recall (see Theorem 1) that the set
{
H

(1)
0 (κ|x − y|)|x∈� : κ ∈ I =]a, b[, y ∈ �̂

}
(22)

spans a dense subspace in H 1(�).

4.2 Divergence free basis functions in dimension d = 3

When d = 3, we can consider the stream function

φ(x) = ei
√

κ|x|

4π |x| , x ∈ R
3 \ {0},

fundamental solution for the three dimensional Helmholtz equation, and define the
following vector valued functions

u(j)(x) = ∇ × (
φ(x)ej

) =
(
i
√

κ|x| − 1
)
ei

√
κ|x|

4π |x|3
(
x × ej

)
(23)

with {e1, e2, e3} the standard basis for R3. These functions satisfy

�u(j) + κu(j) = 0, ∇ · u(j) = 0, in R
3 \ {0}.

Furthermore, the following density result holds.

Proposition 2 Let I and �̃ be as in Proposition 1. The set
{

(iκ|x − y| − 1) eiκ|x−y|

4π |x − y|3 (x − y) × ej |x∈� : κ ∈ I, j = 1, 2, 3, y ∈ �̂

}

spans a dense subspace in ker(∇·).
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Proof From Theorem 1, the set

span
{
ϕκ(x − y)ej : κ ∈ I, y ∈ �̂, j = 1, 2, 3

}
, ϕκ(x) = eiκ|x|

4π |x| ,

is dense in H1(�). Then, by (23),

U := span
{
u(j)

κ (x − y) : κ ∈ I, y ∈ �̂, j = 1, 2, 3
}

, u(j)
κ (x) = ∇ × (

ϕκ(x)ej

)

is dense in ker(∇·). Since, in 3D, we have (see, e.g. [9]) ker(∇·) = ∇ × H1(�), we
conclude that U is dense in ∇ × H1(�).

4.3 Numerical method using divergence free basis functions

We consider the divergence free functions (21) for the approximation of the
solenoidal part of a two dimensional body force f ∈ L2(�).

When a potential function q ∈ H 1(�) such that

�q = ∇ · f, in �,

is known, then f + ∇q ∈ ker(∇·) and, using Proposition 1, we can consider an
approximation

f(x) − ∇q(x) ≈
O∑

n=1

P∑

k=1

α(n,k)λn

(x − y(k))⊥

|x − y(k)| H
(1)
1 (λn|x − y(k)|), y(k) ∈ �̂, (24)

with the corresponding approximation for the particular solution (ũpart, p̃part) given by

ũpart(x) =
O∑

n=1

P∑

k=1

α(n,k)

λ2
n + κ

λn

(x − y(k))⊥

|x − y(k)| H
(1)
1 (λn|x − y(k)|)

p̃part = q.

(25)

For a more general function, some extra basis functions must be added in order to
approximate the conservative part of the source.

Based on the density result of Lemma 1, the pressure ppart will be approximated by

p̃part(x) = −i
Q∑

l=1

T∑

m=1

β(l,m)

μl

eiμlx·d(m)

. (26)

The unknown coefficients α(n,k), β(l,m) in (25) and (26) are computed by imposing
collocation conditions

f̃(x(j)) = −(� − κ)ũpart(x(j)) + ∇p̃part(x(j))

=
O∑

n=1

P∑

k=1

α(j,k)λn

(x(j) − y(k))⊥

|x(j) − y(k)| H
(1)
1 (λn|x(j) − y(k)|)

+
Q∑

l=1

T∑

m=1

β(l,m)d(m)eiμlx(j)·d(m)

= f(x(j)), x(j) ∈ �. (27)
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In order to give a matrix formulation for the computation of the coefficients of the
approximation (ũpart, p̃part), we define the matrices

D=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1
−(x

(1)
2 −y

(1)
2 )

|x(1)−y(1)| H
(1)
1 (λ1|x(1)−y(1)|) . . . λO

−(x
(1)
2 −y

(P )
2 )

|x(1)−y(P )| H
(1)
1 (λO |x(1)−y(P )|)

...
. . .

...

λ1
−(x

(K)
2 −y

(1)
2 )

|x(K)−y(1)| H
(1)
1 (λ1|x(K)−y(1)|) . . . λO

−(x
(K)
2 −y

(P )
2 )

|x(K)−y(P)| H
(1)
1 (λO |x(K)−y(P )|)

λ1
(x

(1)
1 −y

(1)
1 )

|x(1)−y(1)| H
(1)
1 (λ1|x(1)−y(1)|) . . . λO

(x
(1)
1 −y

(P )
1 )

|x(1)−y(P )| H
(1)
1 (λO |x(1)−y(P )|)

...
. . .

...

λ1
(x

(K)
1 −y

(1)
1 )

|x(K)−y(1)| H
(1)
1 (λ1|x(K)−y(1)|) . . . λO

(x
(K)
1 −y

(P )
1 )

|x(K)−y(P)| H
(1)
1 (λO |x(K)−y(P )|)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2K×(Ox×P)

,

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d
(1)
1 eiμ1x(1)·d(1)

. . . d
(T )
1 eiμQx(1)·d(T )

...
. . .

...

d
(1)
1 eiμ1x(K)·d(1)

. . . d
(T )
1 eiμQx(K)·d(T )

d
(1)
2 eiμ1x(1)·d(1)

. . . d
(T )
2 eiμQx(1)·d(T )

...
. . .

...

d
(1)
2 eiμ1x(K)·d(1)

. . . d
(T )
2 eiμQx(K)·d(T )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2K×(Q×T )

,

X =
[

α(j,k)

β(l,m)

]

(O×P+Q×T )×1
, G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1(x(1))
...

f1(x(K))

f2(x(1))
...

f2(x(K))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

2K×1

,

and the corresponding linear system, which imposes f̃(x(j)) = f(x(j)), j = 1, ..., K ,
namely, the last identity in (27), is

[D|E]2K×(O×P+Q×T ) X = G. (28)

5 Themethod of fundamental solutions for Stokes and Brinkman
systems

In this section, we recall the MFS for solving Stokes and Brinkman systems with
body force f = 0 and Dirichlet boundary conditions.

The fundamental solution of the modified Helmholtz’s equation,

−�Eκ + κEκ = δ, in R
d , (κ > 0)

can be written in terms of the modified Bessel functions of the second kind (see [8])

Eκ(x) = 1

2π

( √
κ

2π |x|
)d/2−1

Kd/2−1(
√

κ|x|). (29)
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where the relation

Kα(z) = π iα+1

2
H(1)

α (iz)

can be used if z ∈ R. When d = 2 and d = 3, (29) takes the form

Eκ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K0(
√

κ|x|)
2π

= i

4
H

(1)
0 (i

√
κ|x|), when d = 2

exp(−√
κ|x|)

4π |x| , when d = 3.

We now apply the method of fundamental solutions for solving the homogeneous
problem (3). A fundamental solution (Uκ ,Pκ) for the Brinkman system satisfies

{ −(� − κ)Uκ + ∇Pκ = δI in �

∇ · Uκ = 0 in �

or, for each j = 1, ..., d ,
{ −(� − κ)(Uκej ) + ∇(Pκ · ej ) = δej in �

∇ · (Uκej ) = 0 in �

where {e1, . . . , ed} is the standard basis in R
d and δ the Dirac delta function. When

κ = 0, we recover the Stokes problem and the fundamental solution is given by a
tensor velocity component

U0(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

4π

(

−I log |x| + x ⊗ x
|x|2

)

, when d = 2

1

8π

(

I
1

|x| + x ⊗ x
|x|3

)

, when d = 3

(here, ⊗ stands for the dyadic product) and a pressure vector

P0(x) = P(x) = 1

2(d − 1)π

x
|x|d , d = 2, 3.

When κ > 0, the pressure is the same as above, Pk(x) = P(x), but the Brinkman
velocity tensor is (see, e.g. [26])

Uκ(x)=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

K0(
√

κ|x|)
2π

(

I− x ⊗ x
|x|2

)

+
K1(

√
κ|x|)− 1√

k|x|
2π

√
κ|x|

(

I−2
x ⊗ x
|x|2

)

, when d =2,

e−√
κ|x|

4π |x|
(

I− x ⊗ x
|x|2

)

+ (1+√
κ|x|)e−√

κ|x|−1

4πκ|x|3
(

I−3
x ⊗ x
|x|2

)

, when d =3.

The following result concerning density of Stokeslets functions is well known (see
[3] for the case κ = 0 and [14] for κ > 0) and justifies the approximation of boundary

velocities in H
1
2
n (�) using the method of fundamental solutions.
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Proposition 3 Let �̂ be an open, simply connected domain containing � with
regular boundary �̂ = ∂�̂. The set

{
Uκ(x − y)ej |x∈� : y ∈ �̂, j = 1, . . . , d

}
(30)

spans a dense subspace in H
1
2
n (�) when κ ≥ 0 and d = 3. The same result holds for

the two dimensional Brinkman tensor (κ > 0) whilst for the two dimensional Stokes
tensor we must add constants c ∈ R

2 to the set (30).

The solution of the homogeneous problem is approximated by a superposition of
fundamental solutions,

uhom(x) ≈ ũhom(x) =
d∑

j=1

N∑

k=1

γ (j,k)U(x − y(k))ej ,

phom(x) ≈ p̃hom(x) =
d∑

j=1

N∑

k=1

γ (j,k)Pj (x − y(k)),

where Pj = P · ej , y(1), . . . , y(N) ∈ �̂ are source points and the coefficients γ (j,k)

are computed by imposing the boundary condition

ũhom(xl) = g(x(l)) − ũpart(x(l))

on some boundary collocation points x(1), . . . , x(M) ∈ �.

6 Numerical experiments

We present three numerical examples in order to illustrate the proposed methods for
2D Brinkman problems.

Example 1 Let � = B(0, 1) = {
x = (x1, x2) ∈ R

2 : |x| < 1
}

and consider the body
force

f(x) =
(

2x1 − e−x2
1+cos(x2) sin(x2)(−4 + 4x2

1 − 3 cos(x2) + sin(x2)
2)
)
e1

−
(

1 + e−x2
1+cos(x2)x1(13 − 8x2

1 + 2 cos(x2) + cos(2x2))
)
e2, (31)

with {e1, e2} the standard basis of R2. Consider the boundary data

g(x) = sin(x2)e
−x2

1+cos(x2)e1 − 2x1e
−x2

1+cos(x2)e2

and let κ = 1. The solution for the corresponding Brinkman system is

u(x) = sin(x2)e
−x2

1+cos(x2)e1 − 2x1e
−x2

1+cos(x2)e2, p(x) = x2
1 − x2 + c.

We consider the Neuber-Papkovich approximation for the body force with directions

S =
{(

cos
( π

31
j
)

, sin
( π

31
j
))

, j = 0, . . . , 61
}
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and frequencies

� = {0.9 × j, j = 1, . . . , 15} ,

meaning M × N = 945 sources. In order to avoid oscillations near the boundary for
the approximation of the body force, we considered collocation in the larger domain
�̃ = B(0, 1.5). Here, 945 collocation points were selected from points x(j) on an
uniform mesh in [−1.5, 1.5]2 such that x(j) ∈ B(0, 1.5).

For solving the homogeneous problem with the MFS, we considered 315 colloca-
tion points on the boundary � = ∂B(0, 1) and the same amount of source points on
the artificial boundary �̂ = ∂B(0, 1.1). In Fig. 1 we plot the absolute error |u1 − ũ1|
(on the left) and |u2 − ũ2| (on the right). In Fig. 2 we plot the absolute error for the
pressure.

Note that the body force f defined in (31) satisfies

∇ · f = 2 in �.

Hence, in order to apply the second method for this problem we can consider

p̃part(x) = x2
1

because this function satisfies �p̃part = ∇ · f. The respective particular velocity is
given by (25) with coefficients such that (24) is enforced on the same 945 domain
collocations points x(j) ∈ B(0, 1.5). The source points were

y(k) ∈ {1.8 (cos (0.04j) , sin (0.04j)) , j = 0, . . . , 157}
and the frequencies

λn ∈ {0.02 + 0.9j, j = 0, . . . , 38} .

For the homogeneous problem we used the same collocation and source points of the
previous method. In Figs. 3 and 4, we present the absolute errors for each coordinate
of the velocity and the pressure. As we can see, the approximation obtained with
this method is also in good agreement with the solution, although with slightly worst
errors and some small oscillations near the boundary. In order to investigate this

Fig. 1 Absolute errors for the coordinates of the velocity (Example 1)

Numerical methods with particular solutions... Page 15 of 23 44



Fig. 2 Same as above but for the pressure (Example 1)

behaviour we computed relative errors in B(0, 1)\B(0, 0.7) using L2 and H 1 norms,
with values

||u − ũ||L2

||u||L2
≈ 10−10,

||u − ũ||H1

||u||H1
≈ 8 × 10−9

for the velocity and
||p − p̃||L2

||p||L2
≈ 3 × 10−8

for the pressure.

Example 2 In this example, we present some numerical tests in order to study the
influence of the frequencies on the approximation of the particular solution. We
consider the same domain � = B(0, 1) and the body force

f(x) = − exp

(

−11

2
|x|2

)

e1 − cosh(x2
1 − x2

2)e2. (32)

Fig. 3 Absolute error for the velocity field applying method 2. Left—first coordinate. Right—second
coordinate (Example 1)
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Fig. 4 Same as in the previous figure but for the pressure

Define the RMS error for the force approximation with J = 2000

RMSf =
√
∑J

j=1 |f1(z(j)) − f̃1(z(j))|2 + |f2(z(j)) − f̃2(z(j))|2
4000

at J randomly generated points z(j) ∈ � and also

RMSdiv =
√
∑J

j=1 |∂1ũ1(z(j)) + ∂2ũ2(z(j))|2
2000

for the divergence error.
We start by computing the above errors as function of κ ∈ {0, 1, 5, 10} for the

Neuber-Papkovich method. We obtained similar error values for these frequencies
κ (see Table 1). Furthermore, the divergence error (column 4 of the same table) is
smaller than the RMSf error and thus consistent with Remark 1.

Next tests concerns the computation of the L2 errors and condition numbers as
a function of the number of basis functions. We considered κ = 0 and 50 equally
distributed directions on ∂B(0, 1) with frequencies λn belonging to

�s = {0.1 + j, j = 0, . . . , s} .

Table 1 RMS and maximum
errors as function of κ . Domain
collocation points, frequencies
and directions were borrowed
from the previous example

RMSf ‖f̃ − f‖∞ RMSdiv ‖∇ · ũpar‖∞

κ = 0 1.6 × 10−9 2.0 × 10−8 8.4 × 10−11 8.0 × 10−10

κ = 1 1.4 × 10−9 1.5 × 10−8 7.6 × 10−11 8 × 10−10

κ = 5 1.2 × 10−9 1.5 × 10−8 6.7 × 10−11 7.2 × 10−10

κ = 10 1.2 × 10−9 1. × 10−8 6.1 × 10−11 6.5 × 10−10
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Therefore, the number of plane waves basis functions is (s + 1) × 50. In order to
obtain square systems, we considered (s + 1) × 50 uniformly distributed collocation
points in B(0, 1.5). The corresponding results are presented in Table 2.

We can have large condition numbers for the system and yet good error results.
This is a common feature of some meshless methods and is an example of the so
called Schaback’s uncertainty principle (cf. [22]). Better conditioned systems can be
obtained by using, for instance, the Tikhonov regularization method. This can be seen
in Table 3 where we applied regularization to (16) using frequencies in �29, meaning
that we solved (recall (16))

(αI + A∗A)Xi = A∗Bi, (αI + A∗A)Y = A∗C (33)

where α > 0 is the regularization parameter and A∗ denotes the conjugate transpose.
For each parameter, the total computational time for the 1500 × 1500 systems (33)
was 70s.

Next tests concerns the computation of the L2 error and condition number using
the second method. Note that, for the body force (32), it is not clear how to obtain a
potential function satisfying �q = ∇ · f. Hence, we consider the expansions (25) for
ũpart and (26) for p̃part. Source points y(k) for the velocity were 50 equally distributed
points on �̂ = ∂B(0, 1.8) with frequencies λn belonging to

�s = {0.1 + j, j = 0, . . . , s}
for several values of s and thus the number of solenoidal basis functions is (s + 1) ×
50. For the plane wave basis functions in (26), 50 directions were considered, with
frequencies μl ∈ �s . In order to obtain square systems, we considered (s + 1) × 50
uniformly distributed collocation points in B(0, 1.5). The corresponding error results
are presented in Table 4.

Total computation time for the 1500 × 1500 system (D|E)X = G with set of
frequencies �14 was 100s. Again, we obtained low error values but with high con-
dition numbers. Furthermore, note that the Neuber–Papkovich approximations lead
to linear systems for scalar potentials whilst using divergence free functions we are
solving vector valued equations. Thus, when using Neuber-Papkovich with frequen-
cies in �29 the linear system with the same order in method 2 is for frequencies in
�14. Comparing the corresponding results from Tables 2 and 4, we see better results
for both error and conditioning using the first method. However, for the same set of
frequencies, method 2 gives better results.

Table 2 L2 error and condition
number as function of the
number of basis functions using
the Neuber–Papkovich
potentials

Set of frequencies ||f − f̃||L2 cond2(A)

�9 5.6 × 10−2 1.6 × 1019

�14 4.2 × 10−6 1.4 × 1019

�19 1.4 × 10−7 2.2 × 1019

�24 1.2 × 10−7 3.2 × 1019

�29 2.3 × 10−7 5.3 × 1019
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Table 3 L2 error and condition
number as function of the
regularization parameter

Regularization parameter ||f − f̃||L2 cond2(αI + A∗A)

10−9 1.4 × 10−5 1.1 × 1014

10−10 4.1 × 10−6 1.2 × 1015

10−11 1.9 × 10−6 9.4 × 1016

10−12 2.8 × 10−5 2.2 × 1019

10−13 1.8 × 10−5 2.3 × 1019

Table 4 L2 error and condition
number as function of the
number of basis functions

Set of frequencies ||f − f̃||L2 cond2(D|E)

�9 0.7 × 10−4 5.0 × 1020

�14 9.7 × 10−6 1.7 × 1021

�19 5.9 × 10−10 1.2 × 1021

�24 3.5 × 10−10 1.2 × 1021

�29 2.04 × 10−9 4.1 × 1021

Table 5 L2 error for the
approximation of a conservative
body force

Set of frequencies ||f − f̃||L2

�9 1.3 × 10−7

�14 8.6 × 10−8

�19 1.3 × 10−8

Fig. 5 L2 error as function of the number of collocation points. Set of source frequencies was �9
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Fig. 6 First coordinate of the body force (Example 3)

When the source is conservative, we can take ũpart = 0 and use only (26) for the
approximation of f. For instance, if

f(x) = −exp(x1x2)x2 sin (5x2)e1 − (5 cos (5x2) + x1 sin (5x2))exp(x1x2)e2

= −∇(exp(x1x2) sin (5x2))

then, using the same scheme for collocation and source points, we obtained the results
presented in Table 5.

Changing the number of collocation points did not decreased the L2 error. For
instance, considering nested sets of collocation points and �9 as the set of source
frequencies error was of the order 10−7 except when considering 100 collocation
points. In this case the error was 6.3 × 10−4. Error results for 200, 600, 1000, 1500
and 2000 collocation points are presented in Fig. 5.

Fig. 7 Absolute error for the approximation of the body force using the Neuber potentials. On the left, for
the first coordinate. On the right, for the second coordinate
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Fig. 8 Absolute error for the divergence

Example 3 For this last example, a square domain � =] − 0.5, 0.5[2 was considered
and the force term was (|x|∞ stands for the maximum vector norm)

f(x) = exp

(

− 1

10 + |x|∞
)

e1 − log(1 + |x|2)e2

(see Fig. 6 for a picture of the nonsmooth coordinate function f1) with κ = 5. On the
boundary, � = ∂�, the null condition u|� = 0 was considered.

Regarding the Neuber-Papkovich method, we considered 1200 source points and
the same amount of collocation points, placed on an uniform grid in the larger domain
B(0, 1). For the homogeneous problem we considered 400 collocation points and the
same amount of points on the artificial boundary �̂ = ∂B(0, 1).

Figure 7 shows plots for the componentwise body force error. Here, we obtained
the RMS error 5.6 × 10−5. In Fig. 8 we show the absolute error for the divergence.
The corresponding RMS error was 1.9 × 10−6.

On the boundary we obtained the RMS error 1.2 × 10−5 and in Fig. 9 we show
the componentwise absolute boundary error on the right side wall of the boundary,
{0.5} × [−0.5, 0.5].

Fig. 9 Absolute boundary error on {0.5}× [−0.5, 0.5]. Same as above for the first and second coordinates
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For the divergence-free method we considered the same scheme for the homo-
geneous problem and used the same domain points for the particular solution
approximation. Overall the results were similar to the Neuber-Papkovich method
with RMSf ≈ 3.1 × 10−5 and maximum absolute errors 3 × 10−4 and 6 × 10−5 for
the first and second coordinate approximation, respectively.

7 Conclusions

Two meshless methods for the numerical approximation of nonhomogeneous Stokes
and Brinkman systems in two- and three- dimensional domains were presented. The
first method is based on a new class of Neuber-Papkovich potentials representa-
tion for the particular solution. The second method relies on a new construction
of divergence-free basis functions, based on a Helmholtz decomposition. Particu-
lar solutions for such constructions in two- and three-dimensional problems were
provided and density results were established. These density results prove that the
approximation of the force term is feasible using these basis functions. Numerical
simulations illustrate the good performance of both developed methods.
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