
https://doi.org/10.1007/s10444-021-09915-1

Multifrequency inverse obstacle scattering
with unknown impedance boundary conditions
using recursive linearization

Carlos Borges1 ·Manas Rachh2

Received: 23 April 2021 / Accepted: 15 November 2021 /
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2021

Abstract
In this paper, we consider the reconstruction of the shape and the impedance function
of an obstacle from measurements of the scattered field at a collection of receivers
outside the object. The data is assumed to be generated by plane waves imping-
ing on the unknown obstacle from multiple directions and at multiple frequencies.
This inverse problem can be reformulated as an optimization problem: that of find-
ing band-limited shape and impedance functions which minimize the L2 distance
between the computed value of the scattered field at the receivers and the given
measurement data. The optimization problem is highly non-linear, non-convex, and
ill-posed. Moreover, the objective function is computationally expensive to evaluate
(since a large number of Helmholtz boundary value problems need to be solved at
every iteration in the optimization loop). The recursive linearization approach (RLA)
proposed by Chen has been successful in addressing these issues in the context of
recovering the sound speed of an inhomogeneous object or the shape of a sound-soft
obstacle. We present an extension of the RLA for the recovery of both the shape and
impedance functions of the object. The RLA is, in essence, a continuation method
in frequency where a sequence of single frequency inverse problems is solved. At
each higher frequency, one attempts to recover incrementally higher resolution fea-
tures using a step assumed to be small enough to ensure that the initial guess obtained
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at the preceding frequency lies in the basin of attraction for Newton’s method at
the new frequency. We demonstrate the effectiveness of this approach with several
numerical examples. Surprisingly, we find that one can recover the shape with high
accuracy even when the measurements are generated by sound-hard or sound-soft
objects, eliminating the need to know the precise boundary conditions appropriate
for modeling the object under consideration. While the method is effective in obtain-
ing high-quality reconstructions for many complicated geometries and impedance
functions, a number of interesting open questions remain regarding the convergence
behavior of the approach. We present numerical experiments that suggest underlying
mechanisms of success and failure, pointing out areas where improvements could
help lead to robust and automatic tools for the solution of inverse obstacle scattering
problems.

Keywords Inverse obstacle problem · Impedance boundary condition · Helmholtz
equation · Boundary integral equations · Recursive linearization

Mathematics Subject Classification (2010) 65N21 · 31A10 · 45Q05

1 Introduction

Scattering problems arise naturally in multiple applications including medical imag-
ing [56], non-destructive testing [33, 37], remote sensing [65], ocean acoustics [28,
32], sonar and radar [31]. In many of these applications, a typical inverse problem
is finding the shape ∂� of an obstacle � given far-field or distant measurements of
the scattered field. In order to formulate a well-posed forward problem, the obstacle
is often assumed to satisfy impedance or Fourier-Robin-type boundary conditions.
These can model complicated wave/surface interactions such as thin coatings [2],
corrugated or rough surfaces [49, 57], or highly absorbing media [43, 44, 60]. In the
time harmonic setting, the forward problem for the scattered field uscat is given by

⎧
⎪⎪⎨

⎪⎪⎩

�uscat + k2uscat = 0, in �,
∂uscat

∂ν
+ ikλuscat = −

(
∂uinc

∂ν
+ ikλuinc

)
on ∂� ,

lim
r→∞ r1/2

(
∂uscat

∂r
− ikuscat

)
= 0 ,

(1.1)

where k is the wave number, λ is the impedance function, ν is the normal to the
boundary ∂�, and uinc is the incident field. In this work, without loss of generality, we
will consider uinc = eikx·d , a plane wave with wavenumber k and incident direction
d.

Given a collection of receivers {rj }, j = 1, 2 . . . Nr , we define the forward scatter-
ing operator, Fk,d : (∂�, λ) → C

Nr , as the scattered field evaluated at the receivers,
i.e.,

Fk,d(∂�, λ) = umeas
k,d (1.2)

where the j th component of umeas
k,d is given by uscat

k,d (rj ). The inverse problem cor-
responding to the forward scattering problem (1.2) is to obtain reconstructions of
the shape � and impedance function λ, given measurements of the scattered field
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at the receivers from one or more incident waves at possibly multiple frequencies,
see Fig. 1. In particular, given a collection of wavenumbers kj , j = 1, 2 . . .M , with
kj > kj−1, incident directions d�, � = 1, 2, Nd , and the corresponding far field data
umeas

kj ,d�
, the inverse scattering problem seeks the optimum shape �, and impedance

function λ which minimize the following objective function

[�̃, λ̃] = argmin
�,λ

M∑

m=1

Nd∑

�=1

‖umeas
km,d�

− Fkm,d�
(�, λ)‖2 . (1.3)

For the case where M = 1, and k1 = k, we have the single frequency inverse
scattering problem given by

[�̃k, λ̃k] = argmin
�,λ

Nd∑

�=1

‖umeas
k,d�

− Fk,d�
(�, λ)‖2 . (1.4)

When the scattered field measurements are made at Helmholtz wavenumbers ≤ k

(for the multifrequency problem k = kM ), the inverse problems (1.3) and (1.4) have
the following features. They are inherently ill-posed—that is, one can expect to sta-
bly recover at most O(k) Fourier components of the shape and impedance function
due to a version of Heisenberg’s uncertainty principle for waves; the stable recovery
of these features typically requires measurements at O(k) receivers of the scattered
field due to incident waves from O(k) directions; and the objective function becomes
increasingly non-convex with increasing k, with the size of the local set of convex-
ity in the vicinity of the global minimum shrinking as O(1/k) (this phenomenon is
shown in Section 2.2). Moreover, at each iteration in the optimization loop, the eval-
uation of the objective function requires the solution of M boundary value problems
for the Helmholtz equation with Nd boundary conditions, where M is the number of
frequencies at which the scattered field data is measured and Nd is the number of
incident plane wave directions. This can be prohibitively expensive, particularly for
the multifrequency inverse problem.

In [29, 30], Chen proposed a recursive linearization approach (RLA) to address
similar issues that arise in a related multifrequency inverse problem: that of recov-
ering smoothly varying sound speed profiles of inhomogeneous objects. The RLA
addresses these issues by reformulating the multifrequency inverse problem as a
sequence of constrained single frequency inverse problems and works as a continua-
tion method on the Helmholtz wavenumber, i.e., at wavenumber kj , the reconstruc-
tion from the previous frequency kj−1 serves as an initial guess. The constraints are
chosen in order to make the corresponding single frequency problems well-posed.
By using a continuation method in frequency, the RLA attempts to ensure that suf-
ficiently many features of the unknown sound profile are recovered such that the
iterates remain in the local set of convexity of the exact solution for all k. This leads
to a significant reduction in the number of iterates required to find minimizers of the
single frequency inverse problems. The combination of a small number of iterates
required for each optimization problem, and the objective function requiring the solu-
tion of Nd boundary value problems at a single frequency instead of NdM boundary
value problems at multiple frequencies allows for the efficient reconstruction of the
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Fig. 1 Scattering from obstacles. In the forward scattering problem with classical impedance boundary
condition, the shape of the obstacle ∂� and the Impedance function λ are given and we want to evaluate
the scattered field uscat given the incident field uinc, as shown in Fig. 1a. Finally, in the inverse scattering
problem with classical impedance boundary condition, one wants to recover the shape and impedance
function for the obstacle given measurements of the scattered field at receivers place around the obstacle,
see Fig. 1b

unknown sound speed. The RLA has been subsequently coupled with fast algorithms
for recovering more complicated sound speed profiles in [14, 15], for shape recov-
ery of sound-soft scatters in [16], and for shape recovery of axisymmetric sound-soft
scatters in [17].

In this work, we present an extension of this approach for the solution of the
multifrequency inverse problem to recover the shape and impedance, and investigate
its behavior for the reconstruction of complicated boundaries for objects greater than
100 wavelengths in perimeter, and non-smooth impedance functions. The RLA has
largely been investigated in the regime where either the number of sensors is O(k)

and/or the number of incident directions is O(k). In practice however, measurements
are typically made at a fixed number of sensors and a fixed numberO(1) of directions
of the incident field, and we restrict our attention to this setup.

Related work There are several algorithms for the solution of the inverse problem
with classical impedance boundary condition using single frequency data. See, for
example, [46, 50, 54, 55, 58, 61, 62, 64, 66]. Similarly, the inverse problem with
generalized impedance boundary conditions has been studied in great detail. See, for
example [3, 20–22, 24, 41, 52, 53, 66, 67]. For the use of multifrequency data to
recover high-resolution reconstructions of the shape and sound velocity of a medium,
we refer the reader to [4, 5, 11, 15, 16, 25, 29, 30, 38, 42, 45, 63]. In particular, a
complete review of inverse scattering problems based on multiple frequency data was
given in [6]. The recursive linearization approach for multifrequency acoustic inverse
source problems has been analyzed in [7–10]. To the best of our knowledge, we are
not aware of previous work on using multifrequency data and recursive linearization
to simultaneously find the shape and impedance of an obstacle.

Contributions The main contribution of this paper is the extension of the RLA to
recover the boundary and impedance function of an obstacle with generic bound-
aries (not necessarily restricted to star-shaped objects) with high resolution, given
multifrequency measurements of its scattered field. This framework can be used
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for recovering complicated shape and impedance functions and we demonstrate the
effectiveness of this approach through several numerical examples. One of the main
advantages of this framework is that we do not need to assume any knowledge of
the boundary condition. It can be used with scattered data coming from sound-hard
obstacles, and with minor modifications for sound-soft obstacles as well. While the
RLA tends to obtain high-quality reconstructions for most inverse problems, there
are still some open questions regarding its convergence behavior which we explore
through additional numerical experiments intended to highlight the mechanism by
which the RLA appears to achieve high-quality reconstructions when successful.
Based on these experiments, we also present a collection of open problems whose res-
olution could lead to robust and automated tools for the solution of inverse obstacle
scattering problems.

Notation We present the most common symbols used in this paper in Table 1. When-
ever we want to refer to a quantity at a wavenumber k and Nd directions, we use the

subscript k, e.g., Fk :=
[
Fk,d1; · · · ;Fk,dNd

]
. Furthermore, uinc refers to the vector

with coordinates
(
uinc
)

j
= uinc

k,d(xj ).

Article outline In Section 2, we present the extension of the RLA for the inverse
problem of recovering both shape and impedance. In Section 3, we present a Gauss-
Newton algorithm for the single frequency inverse scattering problem. In Section 4,
we discuss an integral equation formulation for the solution of the forward scattering
problem and its numerical solution. In Section 5, numerical examples are presented
to illustrate the performance of the method. We present a discussion of known open
problems in Section 6. Concluding remarks are made in Section 7.

2 Recursive linearization approach (RLA)

The recursive linearization approach was introduced in [30] for the recovery of sound
speed profiles of inhomogeneous objects given far-field/distant measurements of the
scattered field at multiple frequencies from multiple incident directions. Without get-
ting into too many details, this problem also requires solving an optimization problem
of the form (1.3), where the unknown function is the sound speed inside the object.

In the RLA, the multifrequency inverse problem is reformulated as a sequence of
constrained single frequency inverse problems, where the initial guess for each single
frequency minimization problem is the reconstruction of the solution at the previous
frequency. There are three key components to this approach—at each frequency, the
optimization problems need to be appropriately constrained for stable recovery; using
a continuation approach in frequency enables more efficient minimization of increas-
ingly non-convex objective functions; and finally, at each frequency, one just needs
to optimize the corresponding single frequency inverse problem which improves the
computational efficiency of the method.
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Table 1 List of main symbols used in this article

Symbol Description

� Closed set representing the impenetrable obstacle

∂� Boundary of the obstacle �

γ Parameterization of the curve approximating the boundary ∂�

� Curve approximating the boundary ∂�

k Wavenumber (or frequency) of the incident plane wave uinc
k,d

d Incident direction of plane wave uinc
k,d (x) (‖d‖ = 1)

r Receivers’ locations

uinc
k,d

Incident plane wave with wavenumber k and incident direction d

uscat
k,d Scattered field of the obstacle ∂� generated by uinc

k,d

umeas
k,d Vector with coordinates being uscat

k,d measured at the receivers

λ impedance boundary function

Fk,d Forward scattering operator mapping ∂� to uscat
k,d (for given uinc

k,d )

∂�Fk,d Frechét derivative of Fk,d with respect to the boundary represented by �

∂λFk,d Frechét derivative of Fk,d with respect to the impedance function λ

Aλ Space of curves with curvature nearly bandlimited by �c�k�
A� Space of bandlimited functions with maximum Fourier content �cλk�
δγ Update step for the shape in the single frequency inverse problem

δλ Update step for the impedance function in the single frequency inverse problem

Sk Single layer potential at wavenumber k

Dk Double layer potential at wavenumber k

Kk Derivative in the normal direction of the single layer potential at wavenumber k

Tk Derivative in the normal direction of the double layer potential at wavenumber k

Gk Free space Green’s function for the 2D Helmholtz equation at wavenumber k

2.1 Constraints on shape and impedance for stable recovery

First, we set up the constraints on the shape and the impedance of the unknown
obstacle in order to obtain a well-posed formulation of the multifrequency problem
Equation (1.3). Let k = kM denote the maximum frequency which appears in the
objective function. In [30], Chen observed that for the inverse problem of recover-
ing the sound speed of an inhomogeneous object, one can stably expect to recover
O(k) Fourier modes of the sound speed in each direction. This effect is a direct
consequence of Heisenberg’s uncertainty principle for waves—sub-wavelength fea-
tures of the scatterer are present in the evanescent modes of the scattered field and
consequently cannot be stably recovered in finite precision arithmetic. Typically, the
unknown sound speed of the inhomogeneous object is a smooth compactly supported
function in R2, and thus one can directly impose such a constraint on the coefficients
of the sine series of the unknown sound speed.

We would like to impose a similar constraint on the impedance function and the
shape of the obstacle for Equation (1.3). Let γ (t) : [0, L] → � ⊂ R

2 denote an
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arclength parametrization of a simple closed C3 curve �. Let H(t) denote the curva-
ture at γ (t) on �. Since H(t) is a periodic function with period L, it can be expressed
as a Fourier series of the form

H(t) =
∞∑

j=−∞
e
2πij t

L Ĥj . (2.1)

One possible approach to restricting the Fourier content of the curve
would be through bandlimiting the curvature. However, this requirement turns
out to be too restrictive. For example, any star-shaped domain of the form
(r(θ) cos(θ), r(θ) sin(θ)), 0 ≤ θ < 2π , which is not a circle does not have ban-
dlimited curvature for any bandlimit. The stringent restrictiveness of bandlimiting
the curvature for representing closed curves can in part be explained by the obser-
vation made in [13]. Suppose � is an analytic curve. The Fourier coefficients of the
associated curvature decay exponentially. For any ε > 0, we can find an appropriate
N , such that the bandlimited projection of H(t) onto Fourier modes [−N, N] ⊂ Z,
denoted by HN(t) satisfies ‖HN − H‖L2[0,L] < ε. However, the resulting curve with
curvature HN(t) need not be closed. This issue can be addressed by adding an O(ε)

correction to the curve using the procedure described in [13]. However, the updated
closed curve no longer has bandlimited curvature with the �2 norm of the Fourier
coefficients in Z \ [−N, N] being O(ε). With this in mind, we restrict the Fourier
content of the curve by constraining � ∈ A�(k), where the set A�(k) is given by

A�(k) =
⎧
⎨

⎩
� | � non-intersecting, closed C3 curve and

√
√
√
√

∑
|j |>�c�k� |Ĥj |2
∑∞

j=−∞ |Ĥj |2
< εH

⎫
⎬

⎭
.

(2.2)
Here, Ĥj are the Fourier coefficients of the curvature defined above, and εH and

c� are constants.
The task of restricting the Fourier content of the impedance function is much more

straightforward. λ(t) is also a periodic function with period L. Let λ̂j , j ∈ Z denote
the Fourier coefficients of λ(t),

λ(t) =
∞∑

j=−∞
e
2πij t

L λ̂j . (2.3)

We restrict the Fourier content of λ by restricting λ ∈ Aλ(k) ⊂ L
2[0, L], where

Aλ(k) is the space of bandlimited functions with maximum Fourier content �cλk�,
given by

Aλ(k) =
{
f ∈ L

2[0, L]| , f̂j = 0 , ∀|j | > �cλk�
}

, (2.4)

and cλ is a constant. Given these constraints for the shape of the obstacle and it’s
impedance, we now seek to solve the constrained multifrequency inverse problem
given by

[�̃, λ̃] = argmin
�∈A�(kM)
λ∈Aλ(kM)

M∑

m=1

Nd∑

�=1

‖umeas
km,d�

− Fkm,d�
(�, λ)‖2 . (2.5)
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Fig. 2 Values of the objective function fk(γ0, λ0) = ‖umeask − Fk(γ0, λ0)‖ for (a) k = 1, (b) k = 15 and
(c) k = 30. As the frequency increases, more local minima can be seen near the global minimum of the
objective function

Remark 2.1 The inverse problem of recovering the sound speed of an inhomoge-
neous object is far more amenable to analysis than corresponding inverse obstacle
scattering problems. Due to the non-trivial geometry of the set of closed non-
intersecting and approximately bandlimited curves, it is extremely difficult to prove
similar results for inverse obstacle scattering problems, and show that Equation (2.5)
is well-posed for some A�(k),Aλ(k).

2.2 Continuation in frequency

In order to demonstrate the necessity of using a continuation approach in frequency,
we examine the behavior of the objective function in a simple setting. Consider the
single frequency objective function f (γ0, λ0) = ‖umeas

k − Fk,d�
(�, λ)‖, where � is

the boundary of a circle with radius γ0 and the impedance is a constant denoted by
λ0. For the forward scattering operator F , we assume that the scattered data is col-
lected from Nd = 16 incoming incident waves with angles of incidence dj = πj/8,
j = 0, . . . , 15 and measured at 100 receivers rl = 10 (cos(lπ/50), sin(lπ/50)),
l = 0, . . . , 99. The measured data umeas

k is generated for (γ0, λ0) = (1, 0.5). In Fig. 2,
we present the contour plot of the objective function f as we vary γ0, and λ0. In each
of the plots, we present 20 contour lines representing equispaced values of the objec-
tive functional. The values of the contour lines are between 0.14 and 2.79 in Fig. 2a,
0.12 and 2.41 in Fig. 2b, and 0.11 and 2.20 in Fig. 2c. As can be seen from the figure,
the objective function has several local minima, and spacing between the local min-
ima scales as O(1/k). The multifrequency objective function behaves similarly to
the single frequency objective function at the highest frequency.

It follows that the objective function has a large local set of convexity near the
solution at low frequencies, while it has a smaller set of convexity near the solution
and increasingly many local minima as the frequency is increased. A similar observa-
tion was demonstrated for the recovery of three dimension axis-symmetric obstacles
in [17]. Thus, it is essential to have a good initial guess particularly when the mea-
surements are made at high frequencies. One way to obtain a good initial guess is to
use multifrequency scattering data and a continuation method in frequency.
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A continuation method in k for the constrained inverse problem Equation (2.5) is
given by

[�̃, λ̃] = argmin
�∈A�(kM)
λ∈Aλ(kM)

nk∑

j=1

Nd∑

�=1

‖umeas
kj ,d�

− Fkj ,d�
(�, λ)‖2 = [�̃M, λ̃M ] . (2.6)

Here, [�̃j , λ̃j ], j = 1, 2, . . .M are the solutions of the constrained multifrequency
problem up to frequencies k ≤ kj given by

[�̃j , λ̃j ] = argmin
�∈A�(kj )

λ∈Aλ(kj )

j∑

m=1

Nd∑

�=1

‖umeas
km,d�

− Fkm,d�
(�, λ)‖2 , (2.7)

with initial guess [�̃0
j , λ̃

0
j ] = [�̃j−1, λ̃j−1].

By using a continuation method in frequency, the hope is that the minimizer
[�̃j−1, λ̃j−1] of the inverse problem with k ≤ kj−1 lies in the basin of attraction for
the inverse problem with k ≤ kj . Thus, the minimizer for the highly oscillatory loss
function associated with the multifrequency problem Equation (2.5) is constructed in
an incremental manner by solving increasingly difficult multifrequency optimization
problems, but with increasingly better initial guesses for the minimizers.

Remark 2.2 For the initial guess [�̃0, λ̃0] at the lowest frequency k0, a very crude
approximation of the obstacle and impedance which is close to the location of the
true obstacle would be good enough particularly if k0 is small. Alternate strate-
gies for obtaining an initial guess at k0 include using multiple signal classification
(MUSIC) [4], Born approximations [36], linear sampling methods [34], and factor-
ization methods [51] to name a few. For the impedance function λ̃0, a good initial
guess at a low frequencies is a constant function between 0 and 1.

2.3 Reduction to single frequency problems

Recall that evaluating the objective function in Equation (2.7) at the highest fre-
quency kM requires the solution of M partial differential equations (PDEs) with Nd

different boundary conditions for each PDE. Using a large number of frequencies is
essential when high-resolution features of the unknown obstacles are desired. In this
setting, evaluating the objective function can be prohibitively expensive. In principle,
it is well known that one could recover both the shape and the impedance of the object
from sufficient measurements of the far-field data at a single frequency [30, 54]. In
particular, at frequency k, O(k) measurements of the scattered field from O(1) inci-
dent directions are often sufficient for inverse obstacle scattering problems as was
demonstrated in [16, 17]. Thus, one can improve the computational performance of
the method significantly by replacing the multifrequency inverse problem for k ≤ kj
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in Equation (2.7), with the corresponding single frequency inverse problem at k = kj

given by

[�̃j , λ̃j ] = argmin
�∈A�(kj )

λ∈Aλ(kj )

Nd∑

�=1

‖umeas
kj ,d�

− Fkj ,d�
(�, λ)‖2 . (2.8)

The benefit of such a reduction from a computational standpoint is evident since
the objective function Equation (2.7) requires the solution of Nd · j boundary value
problems at j different frequencies, while Equation (2.8) requires the solution of just
Nd boundary value problems at a single frequency.

3 Gauss Newtonmethods for the single frequency inverse
problem (2.8)

In the following section, we turn our attention to solving the constrained version of
the single frequency inverse problem (2.8). In an optimization loop, for each guess
[�, λ], evaluating the loss function requires the solution of a boundary value problem
with Nd different boundary conditions. Given the high computation cost of evalu-
ating the objective function, it is imperative to use an optimization method which
minimizes the number of function evaluations required. Moreover, using the RLA,
we have a good initial guess for the minimizer of (2.8) given by the solution of the
single frequency problem at the immediately lowest frequency. Finally, derivatives
of the objective function can be easily computed at marginal additional cost using
the already computed solution operator for the forward problem. In this environment,
Gauss-Newton methods are a natural choice for solving the minimization problem.

In the following, we discuss the algorithm for a single incoming wave for
notational convenience. Let �(j), λ(j), j = 0, 1, . . ., denote the iterates of the
Gauss-Newton algorithm for the boundary �, and impedance function λ respec-
tively. As before, let γ (j)(t) denote an arc-length parameterization of �(j). Then, the
parameterization of the boundary and the impedance function are updated via the
formulae

γ (j+1) = γ (j) + δγ , λ(j+1) = λ(j) + δλ , (3.1)

where the updates δγ , δλ satisfy

∂�Fk,d

(
�(j), λ(j)

)
δγ +∂λFk,d

(
�(j), λ(j)

)
δλ = umeas

k,d −Fk,d(�(j), λ(j)) . (3.2)

Here, ∂�Fk,d

(
�(j), λ(j)

)
and ∂λFk,d

(
�(j), λ(j)

)
are the Frechét derivatives of

the forward operator with respect to the shape � and impedance function λ, evalu-
ated at �(j) and λ(j). The precise definition of the Frechét derivatives is deferred to
Section 3.1 below. The iterations are repeated until a stopping criteria is reached. The
stopping criteria can be the total number of iterations Nit , the size of the residual
‖umeas

k,d − Fk,d

(
�(j), λ(j)

) ‖ ≤ εr , the size of the update step for the shape ‖δγ ‖2 <

εs,γ , the size of the update step for the impedance function ‖δγ ‖2 < εs,λ, an increase
in the residue ‖umeas

k,d −Fk,d

(
�(j), λ(j)

) ‖ > ‖umeas
k,d −Fk,d(�(j−1), λ(j−1))‖ or if the

updated curve �(j+1) fails to be in the admissible set.
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3.1 Evaluating the Frechét derivatives

The Frechét derivatives of Fk,d

(
�(j), λ(j)

)
with respect to both the shape �(j) and

the impedance functions λ(j) are linear operators. The action of the Frechét deriva-
tives on given functions δγ or δλ requires the solution of the forward impedance
problem albeit with different boundary conditions (the boundary conditions do not
arise from point sources or incident plane waves). Explicit expressions for these
Frechét derivatives have been derived for related forward scattering operators on sur-
faces in three dimensions, and when the measured data are measurements of the far
field pattern of the scattered field [46, 47] (as opposed to the scattered field mea-
sured at receivers). The results extend in a straightforward manner for evaluating the
Frechèt derivatives of Fk,d

(
�(j), λ(j)

)
. In the following lemma, we state the result

for the Frechèt derivative with respect to the shape �. The proof is similar to the
results in [46, 47].

Lemma 3.1 Let � ∈ R
2 be a bounded domain with a C3 boundary �, i.e., the asso-

ciated parameterization has three continuous derivatives. Then, the forward problem
operator Fk,d is Fréchet differentiable at �, with derivative ∂�Fk,d(�, λ)δγ = v,
where v is the vector with measurements of the scattered field v at receivers r l and v

satisfies

⎧
⎨

⎩

�v + k2v = 0, in �,
∂v
∂ν

+ ikλv = k2δγνu + d
ds

(
δγν

du
ds

)− λδγν

(
∂u
∂ν

− Hu
)
on �,

lim
r→∞ r1/2

(
∂v
∂r

− ikv
) = 0,

(3.3)

where δγν = δγ · ν, u = uscat
k,d + uinc, uscat

k,d is the solution to equation (1.1), andH is
the curvature of �.

In the following lemma, we state the result for the Frechèt derivative with respect
to the impedance λ. The proof is similar to the results in [46, 47].

Lemma 3.2 Let � ∈ R
2 be a bounded domain with a C3 boundary �. Then,

the forward problem operator Fk,d is Fréchet differentiable at �, with derivative
∂λFk,d(�, λ)δλ = w, where w is the vector with measurements of the scattered field
w at receivers r l and w satisfies

⎧
⎪⎨

⎪⎩

�w + k2w = 0, in �,
∂w
∂ν

+ ikλw = −ikδλu on �,

lim
r→∞ r1/2

(
∂w
∂r

− ikw
) = 0 .

(3.4)

It follows that the marginal cost of computing the action of Frechèt derivatives
on given perturbations is comparable to the cost of evaluating the objective func-
tion, and this cost is significantly smaller if the solution operator is precomputed or
compressed.
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3.2 Computing the updates δγ and δλ

In order to compute the updates δγ and δλ, we need to solve equation (3.2) in an
appropriate basis for δγ and δλ. In the remainder of the manuscript, for ease of
notation, let N� = �c�k�, and Nλ = �cλk�. Since δλ ∈ Aλ(k), it is natural to express
δλ through it’s Fourier representation as

δλ(t) = δλ
(c)
0 +

Nλ∑

�=1

[

δλ
(c)
� cos

(
2π�t

L

)

+ δλ
(s)
� sin

(
2π�t

L

)]

,

where L is the length of the curve �(j), and δλ
(c)
0 , and δλ

(c)
� , δλ

(s)
� , � = 1, 2 . . . Nλ

are real constants.
The update associated with the boundary requires a little more care. Let τ denote

the unit tangent vector to the curve, the component δγ · τ does not change the shape
of the obstacle and only changes the parameterization of the curve. Moreover, as
is evident from the formula of the Frechèt derivative ∂�Fk,d , any tangential update
to the curve lies in the null space of ∂�Fk,d . Thus, we parametrize the update of
the shape as δγ = h(t)ν(j)(t), where ν(j)(t) is the normal to the curve at γ (j)(t),
and h(t) is a scalar function. However, unlike the impedance update, there doesn’t
exist a choice of h(t) which would guarantee that the curvature of the updated curve
γ (j+1) = γ (j) + h(t)νj (t) would be constrained to A�(k). This is partly due to
the curvature being a non-linear function of the update h(t), and also for generic
geometries which are not star shaped, it is difficult to guarantee that the updated
curve would not be self-intersecting. Even if the curvature of γ (j) is nearly 0, h(t)

must still be restricted to bandlimited functions on the curve with bandlimit N� in
order for γ (j+1)(t) ∈ A�(k). Thus, we assume that the update h takes the form

h(t) = δγ
(c)
0 +

Nγ∑

�=1

[

δγ
(c)
� cos

(
2π�t

L

)

+ δγ
(s)
� sin

(
2π�t

L

)]

, (3.5)

where δγ
(c)
0 , and δγ

(c)
j , δγ (s)

j , � = 1, 2, . . . N� are real constants.
For each basis element of δλ(t) = cos (2π�t/L), sin (2π�t/L), and of δγ (t) =

cos (2π�t/L)ν(j)(t), sin (2π�t/L)ν(j)(t), we compute the action of the respective
Frechèt derivative to form a discrete linear system. The unknown coefficients δλ

(c)
0 ,

δλ
(c,s)
� , � = 1, 2, . . . Nλ, δγ

(c)
0 , and δγ

(c,s)
� , � = 1, 2, . . . N� are then obtained by

solving the discrete linear system in a least square sense.
However, there is no guarantee that the updated curve satisfies the constraint

�(j+1)(t) ∈ A�(k). If h(t) results in �(j+1)(t) �∈ ANγ ,ε, we filter the update

coefficients δγ
(c)
� , and δγ

(s)
� using a Gaussian filter with variance σ as follows:

δγ
(c)
� → δγ

(c)
� e

− �2

N2
γ σ2 , δγ

(s)
� → δγ

(s)
� e

− �2

N2
γ σ2 , � = 1, 2, . . . Nγ . (3.6)

We repeatedly apply the filter with smaller values of σ until we obtain an updated
curve �(j+1) ∈ AN�,ε.
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Remark 3.1 From the perspective of the Gauss-Newton method, the filtering proce-
dure results in a change in the update direction used for computing

(
�(j+1), λ(j+1)

)
.

This could lead to potential issues for the optimization method. One could remedy
this issue by computing an additional update to the impedance while holding the
shape of the boundary fixed, if the boundary update is filtered. However, in prac-
tice, we observe that even though this additional step reduces the residual, there is a
marginal reduction in the quality of the reconstruction. and hence we do not include
the correction step in our algorithm.

We summarize the Gauss-Newton algorithm for the constrained single frequency
minimization problem below:

Algorithm 1 Gauss-Newton method for shape and impedance.

1: Input: Scattered field measurements umeas
k , initial guesses γ (0) and λ(0), param-

eters α, σγ , σλ, Nit , εr , and εs .
2: Set j = 0, γ = γ (0), λ = λ(0), ‖δγ ‖ = 2εs and ‖δλ‖ = 2εs , r0 = min (2π/k, 1)
3: while j < Nit and ‖umeask − Fk(γ )‖ > εr and ‖δγ ‖ > εs and ‖δλ‖ > εs do
4: Calculate Fk

(
�(j), λ(j)

)
and the derivatives ∂�Fk

(
�(j), λ(j)

)
and

∂λFk

(
�(j), λ(j)

)
.

5: Solve ∂�Fk

(
�(j), λ(j)

)
δγ + ∂λFk

(
�(j), λ(j)

)
δλ = umeask −Fk

(
γ (j), λ(j)

)
.

6: σ = 1
7: γ (j+1) ← γ (j) + δγ

8: λ(j+1) ← γ (j) + δλ

9: while �j+1 �∈ A�(k) do
10: δ̃γ ← filter(δγ, σ )
11: σ ← σ/10
12: γ (j+1) ← γ (j) + δ̃γ

13: end while
14: j ← j + 1
15: end while

4 Forward scattering problem

At each Newton iteration, we need to solve the impedance boundary value prob-
lem (1.1) for a given boundary �, and impedance function λ to evaluate the objective
function Fk,d

(
�(j), λ(j)

)
and its Frechèt derivatives. Note that the boundary data

need not necessarily be of the form

−
(

∂uinc

∂ν
+ ikλuinc

)

and could be a generic smooth function. In this work, we use integral equation
methods to solve this boundary value problem.
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Let Gk(x, y) denote the Green’s function of the Helmholtz equation with wave
number k given by

Gk(x, y) = H
(1)
0 (k|x − y|) , (4.1)

where H
(1)
0 (z) is the Hankel function of the first kind of order 0. Let Sk[σ ](x), and

Dk[σ ](x) denote the corresponding single and double layer potentials given by

Sk[σ ](x) =
∫

�

Gk(x, y)σ (y)ds(y) , and Dk[σ ] =
∫

�

∇Gk(x, y) · ν(y)σ (y)ds(y) . (4.2)

We use the following regularized combined field integral equation representation
for the potential u

u = Sk[σ ] + ikDkSi|k|[σ ] , (4.3)

where σ is an unknown density. This representation was first used for sound-hard
scatterers in [23]. By construction, u satisfies the Helmholtz equation in R2 \ �, and
the Sommerfeld radiation condition. Applying the boundary condition −(∂u/∂n +
ikλu) = f along �, we get the following integral equation for the unknown density
σ ,
(

−1

2
I + S ′PV

k + ikTkSik + ikλ

(

Sk + ikDPV
k Si|k| + ik

2
Si|k|

))

σ = f , x ∈ � .

(4.4)
Here, S ′PV

k is the principal value of the normal derivative of the single layer potential
given by

S ′PV
k [σ ] = p.v.

(

ν(x) ·
∫

�

∇Gk(x, y)σ (y)ds(y)

)

, (4.5)

DPV
k is the principal value of the double layer potential given by

DPV
k [σ ] = p.v.

∫

�

∇Gk(x, y) · ν(y)σ (y)ds(y) , (4.6)

and Tk[σ ] is the finite part of the normal derivative of the double layer potential given
by

Tk[σ ] = f.p.

(

ν(x) ·
∫

�

∇Gk(x, y) · ν(y)σ (y)ds(y)

)

. (4.7)

Using Calderon identities, equation (4.4) can be further simplified to the following
second kind integral equation

[

−2 + ik

4
I + S ′PV

k + ik

(
(
Tk − Ti|k|

)
Si|k| +

(
S ′PV

i|k|
)2
)

+ikλ

(

Sk + ikDPV
k Si|k| + ik

2
Si|k|

)]

σ = f , x ∈ � , (4.8)

This integral equation can be viewed as the right preconditioned analog of the
corresponding left-preconditioned equation presented in [35], with the additional
observation of [23] that it is advantageous to use Si|k| as a preconditioner as opposed
to S0. The proofs discussed in [23, 35] can be extended to show that the integral
equation (4.8) is invertible as long as k, λ are real, and λ > 0.
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4.1 Discretization details and numerical solution of the integral equation

The updated curve after every Newton iteration will not have an arclength
parametrization and over time, this might result in a significant deterioration in the
quality of the parametrization. In order to avoid this situation, we reparameterize the
boundary and construct an arc-length parameterization at every iteration. Moreover,
since the curvature of the boundary � is nearly bandlimited, and the impedance is
bandlimited, where the constants c�, cλ are typically being chosen O(1), it suffices
to sample the geometry at 40 points per wavelength at each frequency to get a fairly
accurate solution. We use an equispaced discretization for representing the curve �,
and use Gauss-trapezoidal rule of order 16 proposed by Alpert [1] for discretizing the
operators Sk , Dk,S ′

k , and (Tk − Ti|k|). Recall that u = Sk[σ ] + ikDkSi|k|[σ ]. Thus,
once σ is available, we first evaluate σ̃ = Si|k|[σ ] using the appropriate discretized
matrix, and then the scattered field at the receivers can be evaluated by discretiz-
ing the single and double layer potentials (acting on σ and σ̃ respectively) using the
trapezoidal rule since the targets are not close to the boundary.

The same PDE needs to be solved for Nd × (N� + Nλ + 1) different boundary
conditions at each Newton iteration. In this work, for ease of implementation, we
form the dense matrices and invert it using an LU factorization. The computation
cost scales like O(N3) where N is the number of discretization points. However, one
could apply fast direct solvers to both form and apply the inverse in O(N) time [12,
18, 19, 26, 27, 39, 40, 48, 59] to accelerate the problem at higher frequencies if
needed.

5 Numerical experiments

We present three numerical examples to illustrate the performance of the RLA for
the recovery of shape and impedance given measurements of the scattered field. The
performance of the RLA is sensitive to the choice of N� = �c�k�, and Nλ = �cλk�
which define the subsets in which we solve the single frequency minimization prob-
lems. Setting c� , cλ too small can result in the algorithm not ending up in the
appropriate basin of attraction as we march in frequency and converging to a local
minimum. On the other hand, setting them to be too large can result in instabilities in
the Gauss-Newton iteration due to the inherent ill-posedness of the problem. More-
over, the amount of information that can be stably extracted from the data at a given
frequency is fixed, and needs to be appropriately distributed between recovering
modes of the shape and the impedance.

In Section 5.1, we present heuristics for choosing c�, cλ which address the con-
cern above. This is done by studying the performance of the algorithm in three
cases: reconstructing the obstacle assuming the impedance function is known; recon-
structing the impedance assuming the shape of the obstacle is known; and finally
reconstructing both the shape of the obstacle and the impedance function. Through
this experiment, we also study the behavior of the algorithm when the data is noisy,
but still in the high signal to noise regime.
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Table 2 List of figures with description of results and related section in the article

Example Description Figures

5.1 Recovering the: shape, the impedance function and 3–8

both shape and impedance function

5.2 Missing low frequency scattering data 9–11

5.3 Using Neumann and Dirichlet scattered data 12–13

5.4 Recovering high frequency information 14–21

In Section 5.2, we present the limitations of the recursive linearization algorithm
when low frequency measurements of the scattered field are not available. In par-
ticular, we show that a better approximation for the initial guess is required for the
algorithm to converge as the initial frequency used, k0, increases. In this regime, RLA
can be initialized using an approximation constructed using direct methods.

A remarkable and surprising feature of the approach is its ability to recover the
shape of the obstacle for both sound-soft and sound-hard scatterers. This feature
obviates the need for knowing appropriate boundary conditions for the object being
reconstructed and is demonstrated in Section 5.3. Finally, in Section 5.4, we demon-
strate the ability of the RLA to recover high frequency features of the shape and the
impedance function. A list of figures associated with these experiments is presented
in Table 2.

For each example, unless stated otherwise, we assume that scattered field measure-
ments are made forM frequencies, k� = k0+(�−1)δk, � = 1, . . .M , with δk = 0.25,
and k0 = 1. Let kmax = 1 + (M − 1)δk denote the maximum frequency for which
the data is available. At each frequency, the data is generated by Nd = 16 incident
waves, with angles of incidence dj = 2jπ/Nd , j = 1, . . . , Nd . The data is measured
at Nr = 100 receivers located at points rm = 10(cos(2πm/Nr), sin(2πm/Nr)), for
m = 1, . . . , Nr . The parameters associated with the stopping criterion for Gauss-
Newton algorithm (Algorithm 1) are set as follows: maximum number of iterations
Nit = 200; residual tolerance εr = 10−3; and tolerance of the size of the update step
for the impedance function εs,λ = 10−3. We do not impose any restriction on the
update step for the boundary. For defining the constraint set for curves A�(k), we
set the maximum allowed L2 energy of the high Fourier components of the curvature
denoted by εH in Equation (2.2) to 10−3. For k = 1, we initialize the domain to be
a unit circle centered at the origin, and the impedance to λ = 1. In a slight abuse of
notation, let εr also denote the relative residual

εr =
∥
∥
∥umeas

k − Fk(�̃k, λ̃k)

∥
∥
∥

∥
∥umeas

k

∥
∥

, (5.1)

where �̃k, λ̃k are the reconstructions for �, λ, when the Gauss Newton algorithm for
the single frequency minimization problem with frequency k is terminated. Let ελ

denote the error in the reconstructed λ. Note that even though the reconstruction is
not defined on the underlying obstacle, we can rescale the two functions to be defined
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on (0, 2π) and then compute the error on the interval (0, 2π). More precisely, let L

denote the length of the boundary of the obstacle ∂�, and let L̃ denote the length of
the curve �̃, then

ελ =

√
√
√
√
√

⎛

⎝

∫ 2π

0

∣
∣
∣
∣
∣
λ

(
Lt

2π

)

− λ̃

(
L̃t

2π

)∣
∣
∣
∣
∣

2

dt

⎞

⎠ (5.2)

In order to avoid inverse crimes, we solve the forward problem using a different
number of points than the inverse problem. To generate the scattered field mea-
surements, we solve the problem by discretizing the boundary using 50 points per
wavelength, while using 40 points per wavelength for the reconstruction. In practice,
we observe that solving the forward problem using a different representation (for
example, u = S[σ ]+ikD[σ ]) tends to have no impact on the reconstruction obtained.

Finally, in all the pictures showing reconstructions of the shape and impedance
function using the RLA, we also present the true values for the shape and impedance
function in light gray for comparison.

5.1 Selecting c� , cλ

In order to obtain heuristics for selecting c� , and cλ, we appeal to the existing heuris-
tics available for the two limiting problems: recovering the shape of the obstacle
when the impedance is known, and recovering the impedance of the obstacle when
the shape is known. The former is similar to using the RLA for inverse obstacle
scattering problem for sound-soft scatterers discussed in [16], while the latter is sim-
ilar to recovering the sound speed of an inhomogeneous object discussed in [30].
Both of those heuristics indicate that setting c� = cλ = 2 should result in good
reconstructions. We test this hypothesis for a star-shaped obstacle whose boundary is
parametrized as γ (t) = r(θ)(cos(θ), sin(θ)), 0 ≤ t < 2π , with

r(θ) = 1 + 0.2 cos(3θ) + 0.02 cos(4θ) + 0.1 cos(6θ) + 0.1 cos(8θ) ,

and the impedance function λ : [0, 2π ] → R is given by the trigonometric function

λ(t) = 1 + 0.1 cos(t) + 0.02 cos(9t) .

For all the experiments in this section, we add 2% noise to the scattered field
measurements and set

uscat = uscat + 0.02|uscat| �

|�| , (5.3)

where � = φ1 + iφ2, and φ1, φ2, are i.i.d Gaussians with mean 0 and standard
deviation 1.

First, we reconstruct the shape of the obstacle assuming the impedance to be
known using Algorithm 1 with c� = 2, c� = 3, and c� = 0.5, and kmax = 50. In this
example, we impose an additional stopping criterion on the step size for the shape
update, εs,γ = 10−3. In Fig. 3, we compare the reconstructions of the boundary of
the obstacle for these configurations at k = 5, k = 10, and k = 20, plot the rela-
tive residue εr , and plot the reconstruction of the shape as a function of frequency for
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Fig. 3 (Section 5.1) Results for the shape reconstruction at k = 5, 10 and 20 using c� = 0.5, 2 and 3
when recovering only the shape of the obstacle. In this case, the impedance function is known

c� = 2. Similar to the performance of the RLA for sound-soft obstacles in [16], we
observe that the method results in high-quality reconstructions for c� = 0.5, 2, while
it gets stuck in a local minimum for c� = 3. As expected, the rate of convergence of
the reconstruction is much slower for c� = 0.5 as compared to c� = 2.

Next, we reconstruct the impedance of the obstacle assuming that the shape of
the obstacle is known using Algorithm 1 with cλ = 0.5, 2, and 3, and kmax = 50.
This problem is significantly easier as compared to the inverse problems involving
the shape of the obstacle due to the simplicity of the function space and constraint
set for λ. In Fig. 4, we compare the reconstructions for these configurations at k = 5,
k = 10, and k = 20, plot the relative residue εr , the error in impedance ελ, and plot
the reconstruction of the impedance as a function of frequency for cλ = 2. Similar
to the reconstruction of the shape, we observe that the method gets stuck in a local
minimum for cλ = 3, but is able to recover the impedance function up to the level of
noise in the data with cλ = 0.5, 2.

Finally, we recover both the shape and the impedance using Algorithm 1 with
(c�, cλ) = (2, 2), (2, 0.5), (3, 0.5), and (0.5, 2), and kmax = 50. In Fig. 5, we
compare the reconstructions of the boundary of the obstacle for these configura-
tions at k = 5, k = 10, and k = 20. In Fig. 6, we compare the corresponding
reconstructions of the impedance. In Fig. 7, we plot the relative residual εr , and
the error in the impedance ελ. Finally, in Fig. 8, we plot the reconstruction of the
shape and impedance for (c�, cλ) = (3, 0.5), which was the best performing method
among the four choices above. We observe high-quality reconstructions for both
shape and impedance for (c�, cλ) = (2, 0.5), (3, 0.5), while method gets stuck in a
local minimum with excess oscillations in the reconstruction of the impedance for
(c�, cλ) = (2, 2), and even higher magnitude oscillations in the reconstruction of the
impedance for (c�, cλ) = (0.5, 2).
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Fig. 4 (Section 5.1) Results for the impedance function reconstruction at k = 5, 10 and 20 using cλ = 0.5,
2 and 3 when recovering only the impedance function. In this case, the shape of the obstacle is known

Note that when solving for both shape and impedance, more modes of the shape
can be stably recovered as compared to the problem where the impedance is assumed
to be known and fixed. The reason for this behavior can partly be attributed to the
fact that fixing the impedance ends up constraining the optimization problem further.
On the other hand, allowing the impedance to vary across iterates enables stable
reconstruction of a larger number of modes. Moreover, the algorithm is more stable
when recovering larger number of modes of the shape as compared to the impedance.
A similar observation was also made in [54].

5.2 Missing low frequency data

In many physical experiments, far-field measurements of the scattered data are
unavailable at low frequencies due to limitations of the experimental setup or the
type of sensors being used for measurement. In this section, we explore the effect of

Fig. 5 (Section 5.1) Comparison of the shape reconstruction at k = 5, 10 and 20 using (c�, cλ) = (0.5, 2),
(2, 2), (2, 0.5), and (3, 0.5) when the shape and impedance function are not known

Page 19 of 32    2Adv Comput Math (2022) 48: 2



Fig. 6 (Section 5.1) Comparison of the impedance function reconstruction at k = 5, 10 and 20 using
(c�, cλ) = (0.5, 2), (2, 2), (2, 0.5), and (3, 0.5) when the shape and impedance function are not known

missing low frequency measurements of the scattered field in the recursive lineariza-
tion algorithm. Consider the obstacle and the corresponding impedance function
described in Section 5.1. In a slight abuse of notation, suppose that far-field mea-
surements are available for k ≥ k0, with k0 = 1, 5, 10. For each of these setups, we
set our initial guess of the domain to be the unit disk centered at the origin. For the
experiments in this section, we add 2% noise to the scattered field measurements as
discussed in Equation (5.3).

In Fig. 9, we compare the reconstructions of the boundary of the obstacle using
Algorithm 1 with (c�, cλ) = (2, 0.5) at k = 10, k = 15, and k = 20. In Fig. 10, we
compare the corresponding reconstructions of the impedance. Finally, in Fig. 11, we
plot the relative residual εr , and the error in the impedance function ελ. The algorithm
is able to recover the shape and impedance of the obstacle if data for k0 ≤ 5 is
missing, while failing to recover either the shape or the impedance function when
data is missing for k0 ≤ 10. This behavior is to be expected since, as k0 increases,
the inverse problem becomes increasingly difficult (owing to the narrowing local set
of convexity) and requires a better initial guess for the algorithm to stay within the
basin of attraction of the local minimum. The performance of the algorithm could
be significantly improved by using a direct method to obtain an initial guess for
Algorithm 1. Some examples of direct methods include, but are not limited to, the

Fig. 7 (Section 5.1) Relative residual and error in the reconstructed λ using (c�, cλ) = (0.5, 2), (2, 2),
(2, 0.5), and (3, 0.5) for the case where both the shape and impedance function are not known

2   Page 20 of 32 Adv Comput Math (2022) 48: 2



Fig. 8 (Section 5.1) Reconstruction of the shape and impedance function at k = 5, 10, and 20 using
(c�, cλ) = (3, 0.5) for the case where both the shape and impedance function are not known

multiple signal classification method, the Born approximation, the enclosure method,
the factorization method and the linear sampling method.

5.3 Recovering the shapes of sound-soft and sound-hard scatterers

In this section, we discuss the behavior of the RLA for reconstructing shapes of
sound-soft and sound-hard obstacles. To illustrate its performance, consider the star-
shaped obstacle described in Section 5.1. For all the experiments in this section as
well, we add 2% noise to the scattered field measurements as discussed in Equation
(5.3). First, suppose that the obstacle is a sound-hard scatterer and that the data umeas

is generated by imposing the Neumann data corresponding to the total field is 0
on the boundary. Sound-hard scatterers are just a special case of the scatterers with
impedance boundary conditions with the impedance function set to 0. In Fig. 12, we
plot the reconstruction of the shape of the obstacle; the impedance at k = 5, 10, and
15; and the error in the computed impedance with (c�, cλ) = (3, 0.5). Note that the
method is able to recover an impedance that tends to zero as k increases.

Next, suppose that the obstacle is a sound-soft scatterer and that the data umeas

is generated by imposing the Dirichlet data corresponding to the total field is 0 on

Fig. 9 (Section 5.2) Comparison of the shape reconstruction at k = 10, 15, and 20 using (c�, cλ) =
(2, 0.5) when the shape and impedance function are not known and the scattered data is missing for k ≤ k0
with k0 = 1, 5, and 10
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Fig. 10 (Section 5.2) Comparison of the impedance function reconstruction at k = 10, 15, and 20 using
(c�, cλ) = (2, 0.5)when the shape and impedance function are not known and the scattered data is missing
for k ≤ k0 with k0 = 1, 5, and 10

the boundary. Sound-soft scatterers are also a special case of the scatterers with
impedance boundary condition with the impedance function set to ±∞. In Fig. 13,
we plot the reconstruction of the shape of the obstacle, and the impedance at k =
5, 10, and 15, with (c�, cλ) = (3, 0.5).

When recovering the shape of a sound-soft scatterer, we observe the expected
behavior of the impedance function diverging to ∞. At some Gauss-Newton iterate,
the least square system comprising of the Frechét derivatives ∂γF , and ∂λF is rank
deficient. In fact, the Frechét derivative ∂λF approaches the 0 matrix. The boundary
data associated with the measured scattered field for the true unknown obstacle is
u ≡ 0 on �. As the reconstruction of the obstacle approaches the exact solution,
the Frechét derivative ∂λF · δλ would be the solution to a homogeneous impedance
boundary value problem independent of δλ since u → 0. By uniqueness of solutions
to the impedance boundary value problem, we conclude that the Frechét derivative
must be identically zero. Thus, the rank of ∂λF can be used as a monitor function for
determining if the object is in fact a sound-soft obstacle. Even though the impedance
function diverges due to the rank deficiency of the Frechét derivative, the algorithm
is still able to recover the shape of the obstacle to high fidelity.

Fig. 11 (Section 5.2) Relative residual and error in the reconstructed λ using (c�, cλ) = (2, 0.5) when the
shape and impedance function are not known and the scattered data is missing for k ≤ k0 with k0 = 1, 5,
and 10
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Fig. 12 (Section 5.3) Shape and impedance function reconstructions at k = 5, 10 and 20 with (c�, cλ) =
(3, 0.5) when using Neumann data. We also present the error in the reconstructed λ

5.4 Recovering high-resolution features

In this section, we turn our attention to recovering high-frequency contents of both the
shape of the obstacle and the impedance function. To test this, we consider two plane
like geometries which we denote by �1, and �2, where the boundary �2 has higher
frequency features as compared to �1. The impedance function λ : [0, 2π ] → R

2 is
given by

λ(t) =
{

−0.1t/π + 0.6, t ≤ π,

0.1t/π + 0.4, t > π .

The impedance function is merely continuous with corners at π and the origin,
with a discontinuity in the first derivative at those points. The scattered field data
is generated up to kmax = 80. At this frequency, the domain �1 is contained in a
bounding box which is 33.8�0 × 25.3�0, where �0 = 2π/kmax is the corresponding
wavelength. The perimeter of the obstacle is 258.2�0. Similarly, the domain �2 is
contained in a bounding box which is 33.8�0 × 25.1�0, and it’s perimeter is 365.2�0.

In Fig. 14, we compare the reconstructions of the boundary of the obstacle �1 at
k = 15, k = 30, and k = 60, with (c�, cλ) = (2, 2), (2, 0.5), and (3, 0.5). In Fig. 15,
we compare the corresponding reconstructions of the impedance. In Fig. 16, we plot

Fig. 13 (Section 5.3) Shape and impedance function reconstructions at k = 5, 10, and 20 with (c�, cλ) =
(3, 0.5) when using Dirichlet data
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Fig. 14 (Section 5.4) Comparison of the shape reconstruction at k = 15, 30 and 60 for (c�, cλ) = (2, 2),
(2, 0.5), and (3, 0.5) for the shape �1 and the impedance function in Section 5.4

the relative residual εr , and the error in impedance ελ, and finally in Fig. 17, we plot
the reconstruction of the shape and impedance for (c�, cλ) = (3, 0.5), which was the
best performing method among the three choices above. Figures 18, 19, 20, 21 are
the corresponding results for �2.

We observe high-quality reconstructions for both shape and impedance for
(c�, cλ) = (3, 0.5) for both �1, and �2. With (c�, cλ) = (2, 0.5), we observe
high-quality reconstructions for both the shape and impedance for �1; however, the
algorithm is unable to recover the deeper cavities in �2. This results in the method
being unable to resolve the impedance in the vicinity of the cavities due to getting
stuck in a local minimum. As before for the example in Section 5.1, we are unable to
stably recover the shape or impedance for either �1 or �2 with (c�, cλ) = (2, 2).

6 Open problems

While the RLA is very effective for the solution of inverse obstacle scattering prob-
lems, the behavior of the residue εr for various configurations point to several open
questions that require further investigation. The lack of improvement in reconstruc-
tion at some of the frequencies, particularly for k ≤ 10 in Fig. 3 seems to indicate
that the Gauss-Newton algorithm for the single frequency minimization problem is
not converging to a local minimum for those frequencies. We can show that the result
does not converge to a global minimum of the single frequency problem by using a

Fig. 15 (Section 5.4) Comparison of the impedance function reconstruction at k = 15, 30 and 60 for
(c�, cλ) = (2, 2), (2, 0.5), and (3, 0.5) for the shape �1 and the impedance function in Section 5.4
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Fig. 16 (Section 5.4) Relative residual and error in the reconstructed λ for the shape�1 and the impedance
function in Section 5.4

Fig. 17 (Section 5.4) Best reconstruction of the shape and impedance impedance for the shape �1 and the
impedance function in Section 5.4

Fig. 18 (Section 5.4) Comparison of the shape reconstruction at k = 15, 30 and 60 for (c�, cλ) = (2, 2),
(2, 0.5), and (3, 0.5) for the shape �2 and the impedance function in Section 5.4
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Fig. 19 (Section 5.4) Comparison of the impedance function reconstruction at k = 15, 30, and 60 for
(c�, cλ) = (2, 2), (2, 0.5), and (3, 0.5) for the shape �2 and the impedance function in Section 5.4

different optimization method for minimizing the single frequency problem. A con-
venient choice for this purpose is to use a damped Gauss-Newton algorithmwhere the
step size is chosen to be min(csπ/k, 1), with cs = 1, 2. In a slight abuse of notation,
let cs = 0 denote the case where no step size control is implemented. The intuition
for the particular scaling of the step size control stems from the fact that we expect
the objective function ‖umeas − Fk‖ to oscillate at the wavelength of the underlying
Helmholtz problem which is 2π/k.

Consider the recovery of the shape of the obstacle assuming the impedance known
where the scattered field measurements are generated using the domain � and the
impedance λ defined in Section 5.1. We use c� = 2 for all the reconstructions. In
Fig. 22, we plot the reconstructions using cs = 0, 1 and 2 at k = 5, 10, 15, along
with the relative residues εr , and the reconstruction as a function of frequency for no
step size control.

Referring to Fig. 22, note that for 6 ≤ k ≤ 8, εr for cs = 1 is lower as compared to
cs = 0 or cs = 2. This indicates that Algorithm 1 (corresponding to cs = 0) has not
converged to a global minimum of the loss function. However, the final reconstruc-
tion obtained using cs = 1 is much poorer as compared to cs = 0, or cs = 2, due to
the solution being stuck in a local minimum at low frequencies. The termination of
the single frequency optimization problem due to an increase in residue seems to play
an important role in indicating if the reconstruction at that frequency is moving out

Fig. 20 (Section 5.4) Relative residual and error in the reconstructed λ for the shape�2 and the impedance
function in Section 5.4
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Fig. 21 (Section 5.4) Best reconstruction of the shape and impedance impedance for the shape �2 and the
impedance function in Section 5.4

of the global basin of attraction of the exact solution. Thus, one might need to strike
a balance between finding the global minimum of the single frequency optimization
problem with trying to stay in the basin of attraction for the multifrequency problem.

We investigate this issue further and examine if this issue is a result of the reduc-
tion of the multifrequency problem to a collection of single frequency problems. To
answer this question, we use the cumulative loss function given by Equation (2.7),
for k ≤ kc and then switch to a sequence of single frequency minimization problems.
While this improves the final reconstruction marginally as compared to using the
single frequency loss function, the solution still seems to be stuck in a similar local
minimum. Thus, the above behavior is not due to the reduction of the multifrequency

Fig. 22 (Section 6) Shape reconstructions using the control steps cs = 0, 1, and 2 at k = 5, 10, 15. We
also present the shape reconstruction using multiple frequency data, kc = 10, with step size control cs = 1.
The relative residues εr , and the reconstruction as a function of frequency for no step size control. In these
experiments, we assume the impedance function is known
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problem to a sequence of single frequency problems. An outstanding question is what
optimization algorithm and what termination criterion/monitor functions should be
used for minimizing ‖umeas −Fk‖, such that the sequence of minimizers in k stay in
the basin of attraction of the true minimizer for the multifrequency problem?

It is unclear from these experiments whether the issue lies in the choice of the
optimization method or the optimization problem itself. There are several open prob-
lems along this line of investigation, particularly for non star-shaped domains. Under
what hypotheses, does the single frequency optimization problem have a unique min-
imizer which can be stably recovered in finite precision arithmetic? In particular,
what constraints need to be put on the spaces/subsets for recovering the shape of
the obstacle and the impedance? How many measurements of the scattered field are
required? What is the impact of noise in measurements of the scattered data on the
reconstruction? Similar questions need to be addressed for the multifrequency prob-
lem as well. An additional consideration would be whether a sequence of minimizers
for the single frequency problem converge in some appropriate sense to the obsta-
cle and impedance from which the data is generated. The last question is particularly
essential for an approach like the RLA to work effectively for such inverse problems.
The ability to separate out the well-posedness of the optimization problem and its
behavior in the multifrequency regime will help tremendously in the construction of
robust algorithms for inverse obstacle problems.

7 Conclusions

In this paper, we presented an extension of the RLA for the solution of the inverse
scattering problem of recovering the shape and impedance boundary function of
an impenetrable obstacle using multifrequency measurements of the scattered field.
In this approach, the multifrequency inverse problem is reduced to the solution
of a sequence of constrained single frequency inverse problems with increasing
wavenumber, wherein each single frequency inverse problem is optimized using a
Gauss-Newton method with a bandlimited representation of the variables.

Using this approach, we were able to obtain high fidelity reconstruction of obsta-
cles for which both the shape and the impedance functions had high frequency
features. Similar to the conclusions made in [54], we observe that when recovering
the shape and impedance function of an obstacle simultaneously, it is more beneficial
to recover more modes of the shape than the impedance function. Moreover, using
this approach, we were also able to recover the shape of sound-soft and sound-hard
obstacles. When recovering sound-soft obstacles, the rank of the Frechét derivative
with respect to the impedance can be used as a monitor function for detecting whether
the scattered data was generated by a sound-soft obstacle.

Even though the RLA performed well in recovering the shape and impedance in
the examples presented, there are several open questions regarding this approach. Is
it possible to guarantee that the algorithm converges to a global minimum? What is
the best way to constrain the shape of the obstacle? What is the effect of the noise to
the multifrequency scheme?
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The approach outlined in this paper extends almost immediately to the case of
higher-order impedance operators. Impedance boundary conditions are also often
used for approximating thin surface coatings where the impedance function is propor-
tional to the depth of the coating. A natural extension would be to recover the depth of
the coating from far-field measurements of the scattered field. Impedance boundary
conditions/generalized impedance boundary conditions are also often used in appli-
cations where the unknown obstacle has some dissipation and a different but constant
wave speed from its surrounding medium. In this setup, one could compare the solu-
tion of the inverse problem using one of three approaches: recovering the unknown
sound speed (which in this case is discontinuous); solve an inverse obstacle problem
to recover the shape and impedance or generalized impedance; and finally solve an
inverse obstacle problem where the sound speed inside the obstacle is treated as an
additional unknown. This line of inquiry along with the open problems presented in
Section 6 are currently being vigorously pursued and will be reported at a later date.

Finally, while most of the RLA extends naturally to the recovery of obstacles
in three dimensions, handling the geometry of space of surfaces is particularly
challenging. The ability to specify and update complicated bandlimited surfaces in
the optimization loop will play a critical role for many inverse obstacle scattering
problems in three dimensions.
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