
https://doi.org/10.1007/s10444-021-09913-3

The role of mesh quality andmesh quality indicators
in the virtual element method

T. Sorgente1 ·S. Biasotti1 ·G. Manzini1 ·M. Spagnuolo1

Received: 28 January 2021 / Accepted: 11 November 2021 /
© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2021

Abstract
Since its introduction, the virtual element method (VEM) was shown to be able to
deal with a large variety of polygons, while achieving good convergence rates. The
regularity assumptions proposed in the VEM literature to guarantee the convergence
on a theoretical basis are therefore quite general. They have been deduced in anal-
ogy to the similar conditions developed in the finite element method (FEM) analysis.
In this work, we experimentally show that the VEM still converges, with almost
optimal rates and low errors in the L2, H 1 and L∞ norms, even if we significantly
break the regularity assumptions that are used in the literature. These results sug-
gest that the regularity assumptions proposed so far might be overestimated. We also
exhibit examples on which the VEM sub-optimally converges or diverges. Finally,
we introduce a mesh quality indicator that experimentally correlates the entity of the
violation of the regularity assumptions and the performance of the VEM solution,
thus predicting if a mesh is potentially critical for VEM.
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1 Introduction

Finite element methods are very successful in the numerical treatment of partial dif-
ferential equations (PDEs), but their formulation requires an explicit knowledge of
the basis functions. Consequently, they are mostly restricted to meshes with elements
having a simple geometrical shape, such as triangles or quadrilaterals. This restric-
tion is overcome by polytopal element methods such as the VEM, which are designed
to provide arbitrary order of accuracy on more generally shaped elements. In the
VEM setting, we partition the computational domain into polytopal elements and the
explicit knowledge of the basis functions is not required, since the VEM formulation
and its practical implementation is based on suitable polynomial projections that are
always computable from a careful choice of the degrees of freedom.

The VEM was originally formulated in [23] as a conforming FEM for the Pois-
son problem by rewriting in a variational setting the nodal mimetic finite difference
(MFD) method [8, 16, 26, 31] for solving diffusion problems on unstructured polyg-
onal meshes. A survey on the MFD method can be found in the review paper [14]
and the research monograph [27]. The VEM scheme inherits the flexibility of
the MFD method with respect to the admissible meshes and this feature is well
reflected in the many significant applications that have been developed so far, see,
for example, [4, 25, 29, 30, 33]. Because of its origins, the VEM is intimately con-
nected with other finite element approaches. The connection between the VEM and
finite elements on polygonal/polyhedral meshes is thoroughly investigated in [17],
between the VEM and the BEM-based FEM in [10]. The VEM has been extended to
convection-reaction-diffusion problems with variable coefficients in [25].

Optimal convergence rates for the virtual element approximations of the Poisson
equation were proved in H 1 and L2 norms, see for instance [2, 6, 7, 11, 23, 28, 32].
The theoretical results behind the VEM convergence rate involve an estimate of the
approximation error, which is due to both analytical assumptions (interpolation and
polynomial projections of the virtual element functions) and geometrical assump-
tions (the geometrical shape of the mesh elements). There is a general concordance
in the literature about the analytical assumptions, but the understanding of which
geometrical features of the mesh elements influence the most on the approximation
error and the convergence rate, is still an open issue. Various geometrical (or regu-
larity) assumptions have been proposed to ensure that all elements of any mesh of a
given mesh family in the refinement process are sufficiently regular. These assump-
tions guarantee the VEM convergence and optimal estimates of the approximation
error with respect to different norms. However, as already observed from the very
first papers, cf. [2], the VEM seems to maintain its optimal convergence rates also
when we use mesh families that do not satisfy the usual geometrical assumptions.

As a first contribution of this paper, we overview the geometrical assumptions
introduced in the literature of the conforming VEM for the Poisson equation to guar-
antee the convergence. Other geometrical assumptions can be found, either for other
formulations of the method (see [5] for the non-conforming VEM) or for specific
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types of elements (see [11] for anisotropic elements). Then, we define a mesh gen-
eration framework that allows us to build sequences of meshes (datasets) gradually
introducing several pathologies. The so-generated datasets systematically violate the
geometrical assumptions, and enhance a correlation analysis between such assump-
tions and the VEM performance. We experimentally show how the VEM presents
a good convergence rate on most examples and only fails in very few situations.
We also provide an indicator of the violation of the geometrical assumptions, which
depends uniquely on the geometry of the mesh elements. We show a correspondence
between this indicator and the performance of the VEM on a given mesh, or mesh
family, in terms of approximation error and convergence rate. Our work is focused
on developing a strategy to evaluate if a given sequence of meshes is suited to the
virtual element discretization, and possibly to predict the behavior of the numerical
discretization before applying the method. In this sense, we can consider the approach
that we present in this work as more in an a priori than an a posteriori setting.

The paper is organized as follows. In Section 2, we present the VEM and the
convergence results for the Poisson equation with Dirichlet boundary conditions. In
Section 3, we detail the geometrical assumptions on the mesh elements that are used
in the literature to guarantee the convergence of the VEM. In Section 4, we present
a number of datasets which do not satisfy these assumptions, and experimentally
investigate the convergence of the VEM over them. In Section 5, we propose a mesh
quality indicator to predict the behavior of the VEM over a given dataset. In Section 6,
we offer our concluding remarks and discuss future developments and work. In the
Appendix we present the algorithmic procedures that we used to build the datasets.
All the meshes used in this work are available for download at https://github.com/
TommasoSorgente/vem-quality-dataset.

1.1 Notation and technicalities

We use the standard definition and notation of Sobolev spaces, norms and seminorms,
cf. [1]. Let k be a nonnegative integer number. The Sobolev space Hk(ω) consists
of all square integrable functions with all square integrable weak derivatives up to
order k that are defined on the open, bounded, connected subset ω of Rd , d = 1, 2.
As usual, if k = 0, we prefer the notation L2(ω). Norm and seminorm in Hk(ω) are
denoted by || · ||k,ω and | · |k,ω, while for the inner product in L2(ω) we prefer the
integral notation. We denote the space of polynomials of degree less than or equal
to k ≥ 0 on ω by Pk(ω) and conventionally assume that P−1(ω) = {0}. In our
implementation, we consider the orthogonal basis on every mesh edge through the
univariate Legendre polynomials and inside every mesh cell provided by the Gram-
Schmidt algorithm applied to the standard monomial basis.

Finally, throughout the paper we use the letter C in the error inequalities to denote
a real, positive constant that can have a different value at any occurrence. This con-
stant may depend on the model and on some discretization parameters, such as the
coercivity and stability constants of the bilinear form and of the linear functional
used in the variational formulation, the mesh regularity constants used when defining
the properties of the mesh families to which the numerical method is suitable, and
the polynomial order of the method. Nevertheless, this constant is always assumed to
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be independent of the mesh size parameter h that characterizes the mesh and will be
introduced in the next section.

2 The virtual element method

We investigate the performance of the VEM on the elliptic model problem pro-
vided by the Poisson equation with Dirichlet boundary conditions. In this section, we
briefly review the model equations in strong and weak form and the formulation of
the virtual element approximation.

The Poisson equation and the virtual element approximation Let Ω be an open,
bounded, connected subset of R2 with polygonal boundary �. Consider the Poisson
equation with homogeneous Dirichlet boundary conditions in strong from:

− Δu = f in Ω, (1)

u = 0 on �. (2)

The variational formulation of problem (1)–(2) reads as: Find u ∈ H 1
0 (Ω) such that

a(u, v) = F(v) ∀v ∈ H 1
0 (Ω), (3)

where the bilinear form a(·, ·) : H 1(Ω) × H 1(Ω) → R is given by

a(u, v) =
∫

Ω

∇u · ∇v dx (4)

and the right-hand side linear functional F : L2(Ω) → R is given by

F(v) =
∫

Ω

f v dx, (5)

with the (implicit) assumption that f ∈ L2(Ω). The well-posedness of the discrete
formulation (3) stems from the coercivity and continuity of the bilinear form a(·, ·),
the continuity of the right-hand side linear functional F(·), and the application of the
Lax-Milgram theorem [19, Section 2.7].

The numerical method that we consider in this paper is mainly based on Refer-
ences [2, 23], and provides an optimal approximation on polygonal meshes when
the diffusion coefficient is variable in space. To ease the presentation, we consider
the case of homogeneous Dirichlet boundary conditions, the extension to the non-
homogeneous case being deemed as straightforward. Such a case is also considered
in the numerical experiments carried out in this paper.

The virtual element approximation of (3) reads as: Find uh ∈ V h
k such that

ah(uh, vh) = Fh(vh) vh ∈ V h
k , (6)

where uh, V h
k , ah(·, ·), Fh(·) are the virtual element approximations of u, H 1

0 (Ω),
a(·, ·), and F(·). We review the construction of these mathematical objects in the rest
of this section.
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Mesh notation Let T = {Ωh}h∈H be a set of decompositions Ωh of the computa-
tional domain Ω into a finite set of nonoverlapping polygonal elements E. We refer
to T as the mesh family and to each one of its members Ωh as the mesh. The subindex
label h, indicating the mesh size, is the maximum of the diameters of the mesh ele-
ments, defined by hE = supx,y∈E |x − y|. We assume that the mesh sizes of the
mesh family T are in a countable subset H of the real line (0, +∞) having 0 as its
unique accumulation point. Each element E has a nonintersecting polygonal bound-
ary ∂E formed by straight edges e, center of gravity xE = (xE, yE) and area |E|. We
denote the edge mid-point xe = (xe, ye) and its length |e|, and with a small abuse
of notation, we write e ∈ ∂E to indicate that edge e is running throughout the set
of edges forming the elemental boundary ∂E. The convergence analysis of the VEM
and the derivation of the error estimates in the L2 and H 1 norms require a few suit-
able assumptions on the mesh family T . Such assumptions are discussed in detail in
the next section. On every mesh Ωh, given an integer k ≥ 0, we define the space of
piecewise discontinuous polynomials of degree k, Pk(Ωh), containing the functions
q such that q|E ∈ Pk(E) for every E ∈ Ωh.

The virtual element spaces Let k ≥ 1 be an integer number and E ∈ Ωh a generic
mesh element. The conforming virtual element space V h

k of order k built on mesh
Ωh is obtained by gluing together the elemental approximation spaces denoted by
V h

k (E), so that

V h
k :=

{
vh ∈ H 1

0 (Ω) : vh|E ∈ V h
k (E) ∀E ∈ Ωh

}
. (7)

The local virtual element space V h
k (E) is defined in accordance with the enhance-

ment strategy introduced in [2]:

V h
k (E) =

{
vh ∈ H 1(E) : vh|∂E ∈ C0(∂E), vh|e ∈ Pk(e)∀e ∈ ∂E,

Δvh ∈ Pk(E), and∫
E

(vh − Π
∇,E
k vh) q dV = 0 ∀q ∈ Pk(E)\Pk−2(E)

}
, (8)

where Π
∇,E
k is the elliptic projection that will be discussed in the next section and

Pk(E)\Pk−2(E) is the space of polynomials of degree equal to k−1 and k. We recall
that Pk(E) and Pk(e) are the linear spaces Pk respectively defined over an element
E or an edge e according to our notation. By definition, the space V h

k (E) contains
Pk(E) and the global space V h

k is a conforming subspace of H 1(Ω).

The elliptic projection operators The definition in (8) requires the elliptic projection
operator Π

∇,E
k : H 1(E) → Pk(E), which, for any vh ∈ V h

k (E), is given by:∫
E

∇Π
∇,E
k vh · ∇q dV =

∫
E

∇vh · ∇q dV ∀q ∈ Pk(E), (9)

∫
∂E

(
Π

∇,E
k vh − vh

)
dS = 0. (10)
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Equation (10) allows us to remove the kernel of the gradient operator from the
definition of Π

∇,E
k , so that the k-degree polynomial Π

∇,E
k vh is uniquely defined

for every virtual element function vh ∈ V h
k (E). Moreover, projector Π

∇,E
k is a

polynomial-preserving operator, i.e., Π
∇,E
k q = q for every q ∈ Pk(E). We can also

define a global projection operator Π∇
k : H 1(Ω) → Pk(Ωh), which is such that

Π∇
k vh|E = Π

∇,E
k (vh|E) ∀E ∈ Ωh. A major property of the elliptic projection oper-

ator is that every projection Π
∇,E
k vh of a virtual element function vh ∈ V h

k (E) is
computable from the degrees of freedom of vh associated with element E that are
defined as follows.

The degrees of freedom. The degrees of freedom of a virtual element function vh ∈
V h

k (E) are given by the following set of values [23]:

(D1) for k ≥ 1, the values of vh at the vertices of E;
(D2) for k ≥ 2, the values of vh at the k − 1 internal points of the (k + 1)-point
Gauss-Lobatto quadrature rule on every edge e ∈ ∂E;
(D3) for k ≥ 2, the cell moments of vh of order up to k − 2 on element E:

1

|E|
∫

E

vh q dV ∀q in a basis of Pk−2(E). (11)

These set of values are unisolvent in V h
k (E), cf. [23]; hence, every virtual element

function is uniquely identified by them. The degrees of freedom of a virtual ele-
ment function in the global space V h

k are given by collecting the elemental degrees
of freedom (D1)-(D3). Their unisolvence in V h

k is an immediate consequence of
their unisolvence in every elemental space V h

k (E). In our implementation of the
VEM we considered the standard basis of the scaled monomials and the orthogonal
polynomials, and we used the monomials in the numerical experiments.

Orthogonal projections From the degrees of freedom of a virtual element function
vh ∈ V h

k (E) we can also compute the orthogonal projections Π
0,E
k vh ∈ Pk(E),

cf. [2]. In fact, the orthogonal projection Π
0,E
k vh of a function vh ∈ V h

k (E) is the
solution of the variational problem:∫

E

Π
0,E
k vh q dV =

∫
E

vh q dV ∀q ∈ Pk(E). (12)

The right-hand side is the integral of vh against the polynomial q, and is computable
from the degrees of freedom (D3) of vh when q is a polynomial of degree up to
k − 2, and from the moments of Π

∇,E
k vh when q is a polynomial of degree k − 1

and k, cf. (8). Clearly, the orthogonal projection Π
0,E
k−1vh is also computable. As we

have done for the elliptic projection, we can also define a global projection operator
Π0

k : L2(Ω) → Pk(Ωh), which projects the virtual element functions on the space
of discontinuous polynomials of degree at most k built on mesh Ωh. This operator
is given by taking the elemental L2-orthogonal projection Π

0,E
k vh in every mesh

element E, so that
(
Π0

k vh

)
|E = Π

0,E
k (vh|E), which is computable from the degrees

of freedom of vh associated with element E.
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Approximation properties in the virtual element space Under a suitable regularity
assumption on the mesh family used in the formulation of the VEM (assumption G1
that will be the topic of the next section), we can prove the following estimates on
the projection and interpolation operators:

1. for every s with 1 ≤ s ≤ k + 1 and for every w ∈ Hs(E) there exists a wπ ∈
Pk(E) such that

|w − wπ |0,E + hE |w − wπ |1,E ≤ Chs
E |w|s,E ; (13)

2. for every s with 2 ≤ s ≤ k + 1, for every h, for all E ∈ Ωh and for every
w ∈ Hs(E) there exists a wI ∈ V h

k (E) such that

|w − wI |0,E + hE |w − wI |1,E ≤ Chs
E |w|s,E . (14)

In these inequalities, C is a real positive constant depending only on the polynomial
degree k and on some mesh regularity constants that we will introduce and discuss in
the next section.

The virtual element bilinear forms The elliptic and orthogonal projections are needed
to define the virtual element bilinear form ah(·, ·) : V h

k × V h
k → R, and the forcing

term Fh : V h
k → R. Following the “VEM gospel,” we write the discrete bilinear

form ah(·, ·) as the sum of elemental contributions

ah(uh, vh) =
∑

E∈Ωh

aE
h (uh, vh), (15)

where every elemental contribution is a bilinear form aE
h (·, ·) : V h

k (E) × V h
k (E) →

R designed to approximate the corresponding elemental bilinear form aE(·, ·) :
H 1(E) × H 1(E) → R

aE(v, w) =
∫

E

∇v · ∇w dV, ∀v, w ∈ H 1(E).

The bilinear form aE
h (·, ·) on each element E is given by

aE
h (uh, vh) =

∫
E

∇Π
∇,E
k uh · ∇Π

∇,E
k vh dV + SE

h

((
I − Π

∇,E
k

)
uh,

(
I − Π

∇,E
k

)
vh

)
. (16)

The bilinear form SE
h (·, ·) in the definition of aE

h (·, ·) provides the stability term and
can be any computable, symmetric, positive definite bilinear form defined on V h

k (E)

for which there exist two positive constants c∗ and c∗ such that

c∗aE(vh, vh) ≤ SE
h (vh, vh) ≤ c∗aE(vh, vh) ∀vh ∈ V h

k (E) ∩ ker
(
Π

∇,E
k

)
. (17)

The inequalities in (17) implies that SE
h (·, ·) scales like aE(·, ·) with respect to hE .

Also, the stabilization term in the definition of aE
h (·, ·) is zero if at least one of its two

entries is a polynomial of degree (at most) k, since Π
∇,E
k is a polynomial preserving

operator.
In our implementation of the VEM, we consider the stabilization proposed in [18]:

SE
h (vh, wh) =

Ndofs∑
i=1

σiDOFi (vh)DOFi (wh), (18)
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where σi = max{AE
ii , 1} and AE = (

AE
ij

)
is the matrix resulting from the imple-

mentation of the first term in the bilinear form aE
h (·, ·). Let φi be the i-th “canonical”

basis functions generating the virtual element space, which is the function in V h
k (E)

whose i-th degree of freedom for i = 1, . . . , Ndofs (according to a suitable renum-
bering of the degrees of freedom in (D1), (D2), and (D3)), has value equal to 1 and all
other degrees of freedom are zero. These basis functions are unknown in the virtual
element framework, but their projections Π

0,E
k−1∇φi (and ∇Π

∇,E
k φi) are computable

from their degrees of freedom. With this notation, the i, j -th entry of matrix AE is
given by

AE
ij := aE

(
Π

∇,E
k φi, Π

∇,E
k φj

)
. (19)

The stabilization in (18) is sometimes called the “D-recipe stabilization” in the virtual
element literature, and contains the so-called dofi-dofi (dd) stabilization originally
proposed in [23] as the special case with Aii = 1:

S
E,dd
h (vh, wh) =

Ndofs∑
i=1

DOFi (vh)DOFi (wh). (20)

Another possible choice for the stability term, well studied in the literature, is the
“trace stabilization” proposed in [33] both in the original “H 1−version”:

S
∂E,H 1

h (vh, wh) = hE

∫
∂E

∂svh∂swhds, (21)

where ∂svh denotes the tangential derivative of vh along ∂E, and in the
“L2−version”:

S
∂E,L2

h (vh, wh) =
∑
e∈∂E

h−1
e

∫
e

vhwhds. (22)

We explicitly mention other types of stabilization bilinear forms because in
Section 4.2 their influence on the performance of the method will be discussed.

The stabilization term, and, in particular, condition (17), is designed so that
aE
h (·, ·) satisfies the two fundamental properties:

– k-consistency: for all vh ∈ V h
k (E) and for all q ∈ Pk(E) it holds that

aE
h (vh, q) = aE(vh, q); (23)

– stability: there exist two positive constants α∗, α∗, independent of h and E, such
that

α∗aE(vh, vh) ≤ aE
h (vh, vh) ≤ α∗aE(vh, vh) ∀vh ∈ V h

k (E). (24)

The virtual element forcing term To approximate the right-hand side of (6), we
split it into the sum of elemental contributions and every local linear functional is
approximated by using the orthogonal projection Π

0,E
k vh:

F(vh) =
∑

E∈Ωh

(
f, Π

0,E
k vh

)
E
, where

(
f, Π

0,E
k vh

)
E

=
∫

E

f Π
0,E
k vh dV . (25)
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Main convergence properties The well-posedness of the discrete formulation (6)
stems from the coercivity of the bilinear form ah(·, ·), the continuity of the right-
hand side linear functional

(
f, Π0

k · )
and the application of the Lax-Milgram

theorem [19, Section 2.7].
In this work, we are interested in checking whether the VEM mantains optimal

convergence rates on different mesh families that may display some pathological
situations. From a theoretical viewpoint, the convergence estimates hold under some
constraints on the shapes of the elements forming the mesh, called mesh geometrical
(or regularity) assumptions. A summary of the major findings from the literature is
available in [22, Section 3.2]; in the next sections we will investigate how breaking
such constraints may affect these results.

Let u ∈ Hk+1(Ω) be the solution to the variational problem (3) on a convex
domain Ω with f ∈ Hk(Ω). Let uh ∈ V h

k be the solution of the virtual element
method (6) on every mesh of a mesh family T = {Ωh} satisfying a suitable set of
mesh geometrical assumptions. Then, a strictly positive constant C exists such that

– the H 1-error estimate holds:

||u − uh||1,Ω ≤ Chk
(||u||k+1,Ω + |f |k,Ω

) ; (26)

– the L2-error estimate holds:

||u − uh||0,Ω ≤ Chk+1 (||u||k+1,Ω + |f |k,Ω

)
. (27)

Constant C may depend on the stability constants α∗ and α∗, on mesh regularity
constants which we will introduce in the next section, on the size of the computational
domain |Ω|, and on the approximation degree k. Constant C is normally independent
of h, but for the most extreme meshes it may depend on the ratio between the longest
and shortest edge lengths, cf. [22, Section 3.2].

Finally, we note that the approximate solution uh is not explicitly known inside
the elements. Consequently, in the numerical experiments of Section 4.2, we approx-
imate the error in the L2-norm as follows:

||u − uh||0,Ω ≈ ||u − Π0
k uh||0,Ω, (28)

where Π0
k uh is the global L2-orthogonal projection of the virtual element approx-

imation uh to u. On its turn, we approximate the error in the energy norm as
follows:

|u − uh|1,Ω ≈ ||∇u − Π0
k−1∇uh||0,Ω, (29)

where Π0
k−1 is extended component-wisely to the vector fields.

3 Geometrical assumptions

In this section, we review the geometrical assumptions appeared in the VEM litera-
ture since their definition in [23]. All the assumptions are defined for a single mesh
Ωh, but the conditions contained in them are required to hold independently of h.
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Therefore, when considering a mesh family T = {Ωh}h, these assumptions have to
be verified simultaneously by every Ωh ∈ T .

It is well-known from the FEM literature that the approximation properties depend
on specific assumptions on the geometry of the elements. For example, classi-
cal geometrical assumptions for a family of triangulations (Ωh)h→0, are the ones
respectively introduced in [12] and [34]:

(a) Shape regularity condition: there exists a real number γ ∈ (0, 1), independent
of h, such that ∀E ∈ Ωh we have

γ hE ≤ rE,

where hE and rE are, respectively, the longest edge in E and its inradius;
(b) Minimum angle condition: there exists α0 > 0, independent of h, such that

∀E ∈ Ωh we have
αE ≥ α0,

where αE is the minimal angle of E.

Similarly, in the VEM we need a set of geometrical assumptions to ensure approx-
imation properties. The first pair of assumptions were proposed in [23] and remained
untouched also in [2] and [6]. In these papers, the authors assume that a real constant
ρ ∈ (0, 1) exists, independent of h, such that two conditions hold:

Assumption G1 Every polygonal cell E ∈ Ωh is star-shaped with respect to a disk
with radius ρhE .

Assumption G2 For every polygonal cell E ∈ Ωh, the length |e| of every edge
e ∈ ∂E satisfies |e| ≥ ρhE .

Constant ρ is often referred to as mesh regularity constant or parameter. Condition
G1 can be weakened in the following way, as specified in [23] and more accurately
in [6]:

Assumption G1 - weak Every polygonal cell E ∈ Ωh is the union of a finite
number N of disjoint polygonal subcells E1, . . . , EN such that, for j = 1, . . . , N ,

(a) element Ej is star-shaped with respect to a disk with radius ρhEj ;
(b) elements Ej and Ej+1 share a common edge.

Assumption G1 (or G1 - weak) is the polygonal extension of the classical condi-
tions for triangular meshes, with hE indicating the elemental diameter instead of the
longest edge. Under assumption G1 - weak, and therefore also under G1, it can be
proved [6] that the simplicial triangulation of E determined by the star-centers (the
centers of the disks in G1 and G1 - weak) of E1, . . . , EN satisfies the shape regu-
larity and the minimum angle conditions. Moreover, for 1 ≤ j, k ≤ N it holds that
hEj

/hEk
≤ ρ−|j−k|.

These assumptions are more restrictive than necessary, but at the same time they
are not particularly demanding, since they allow the method to work on very gen-
eral decompositions. This fact was already mentioned in the very first papers. For
example, in [2, Ahmad et al.] the authors say that:
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Actually, we could get away with even more general assumptions, but then it
would be long and boring to make precise (among many possible crazy decom-
positions that nobody will ever use) the ones that are allowed and the ones that
are not.

In [28] and [7] assumption G1 is preserved, but assumption G2 is substituted by
the alternative version:

Assumption G3 There exists a positive integer N , independent of h, such that the
number of edges of every polygonal cell E ∈ Ωh is (uniformly) bounded by N .

Assumption G2 implies assumption G3. However, assumption G3 is weaker than
assumption G2, as it allows for edges arbitrarily small with respect to the element
diameter. Both assumption pairs G1+G2 and G1+G3 imply that the number of ver-
tices of E and the minimum angle of the simplicial triangulation of E given by
connecting the vertices of E and its star-center, are controlled by ρ.

Another step forward in the direction of refining the geometrical assumptions has
been made in [32]. In addition to assumption G1, the authors imagine to unwrap the
boundary ∂E of each polygon E ∈ Ωh onto an interval IE of the real line, obtaining
a one-dimensional mesh IE . The collection of the unwrapped boundaries of all ele-
ments in a mesh Ωh is denoted by {IE}E∈Ωh

. Moreover, each one-dimensional mesh
IE can be subdivided into a number of disjoint sub-meshes I1

E, . . . , IN
E , correspond-

ing to the edges of E (we consider each I i
E as a mesh as it may contain more than

one edge, see Fig. 1). Then, the following condition is assumed.

Assumption G4 For every polygonal cell E ∈ Ωh, the family {IE}E∈Ωh
is piecewise

quasi-uniform, that is:

(a) each mesh IE can be subdivided into at most N disjoint sub-meshes
I1

E, . . . , IN
E , for some N ∈ N;

(b) each sub-mesh I i
E , i = 1, . . . , N , is quasi-uniform: the ratio between the

largest and the smallest element in I i
E is bounded from above by some c ∈ R

+
independent of h.

Fig. 1 Examples of admissible elements according to assumption G4. Red dots indicate the vertices of the
element
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Each polygon E is in a one-to-one correspondence to a one-dimensional mesh IE ,
but a sub-mesh I i

E ⊂ IE might contain more than one edge of E. This implies that
assumption G4 does not require a uniform bound on the number of edges in each
element and does not exclude the presence of small edges, cf. Fig. 1. For instance, the
mesh families created by agglomeration, cracking, gluing, etc.. of existing meshes
are admissible according to G4.

According to the literature (see [22, Section 3.2]), possible assumption pairs
requested to guarantee the convergence of the VEM are given by combining G1 (or,
equivalently, G1 - weak) with either G2 or G3 or G4.

4 Breaking the geometrical assumptions

In this section, we test the behavior of the virtual element method on a number of
mesh “datasets,” to stress one or more of the geometrical assumptions discussed in
Section 3. We call a dataset a collection D := {Ωn}n=0,...,N of meshes Ωn covering
the domain Ω = (0, 1)2 such that

– the mesh Ωn+1 has smaller mesh size than Ωn for every n = 0, . . . , N − 1;
– the meshes Ωn follow a common refinement pattern, so that they contain similar

polygons organized in similar configurations.

Note that each mesh Ωn is uniquely identified by its size as Ωh, therefore we can
consider a dataset D as a subset of a mesh family: D = {Ωh}h∈H′ ⊂ T where H′ is
a finite subset of H.

In addition to the violation of the geometrical assumptions, we are also interested
in the behavior of the VEM when the measures of mesh elements and edges scale in
a nonuniform way in the refinement process. To this end, for each mesh Ωn ∈ D we
define the following quantities and study their trend for n → N :

An = maxE∈Ωn |E|
minE∈Ωn |E| and en = maxe∈Ωn |e|

mine∈Ωn |e| . (30)

We specifically designed six datasets in order to consider several possible combina-
tions of the geometrical assumptions of the previous section and the scaling indicators
An and en, as shown in Table 1. Note that most of the considered datasets do not ful-
fill any set of geometrical assumptions required by the convergence analysis found
in the literature (see [22, Section 3.2]).

4.1 Datasets definition

We now introduce the datasets, describing for each of them how they are built, which
geometrical assumptions they fulfill or violate, and how the indicators An and en

depend on n in the limit for n → N . Each dataset is built around (and often named
after) a particular polygonal element contained in it, which is meant to stress one or
more assumptions or indicators. The detailed construction algorithms, together with
the explicit computations of An and en for all datasets, can be found in the Appendix.
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Table 1 Summary of the geometrical conditions violated and the asymptotic trend of the indices An and
en for all datasets (a is a constant such that e < a < 3). Assumption G1-weak is not explicitly reported
because all the considered datasets that violate G1, also violate G1-weak

Dataset DTriangle DMaze DStar DJenga DSlices DUlike

G1 × × × × ×
G2 × × ×
G3 × × ×
G4 ×
An c an n 2n 2n c

en c n log(n) n 2n c 2n

All the meshes presented in this section are publicly accessible at https://github.com/
TommasoSorgente/vem-quality-dataset.

Reference dataset The first dataset, DTriangle, contains only triangular meshes that
are built by inserting a number of vertices in the domain through the Poisson Disk
Sampling algorithm [9], and connecting them in a Delaunay triangulation (see the
Appendix). The refinement is obtained by increasing the number of vertices gen-
erated by the Poisson algorithm. The meshes in this dataset do not violate any of
the geometrical assumptions and the indicators An and en are almost constant. We
use DTriangle as the reference dataset to evaluate the other datasets by comparing the
performance of the VEM over them.

Hybrid datasets Next, we consider some hybrid datasets, characterized by a progres-
sive insertion in Ω of one or more identical polygonal elements (called the initial
polygons), the rest of the domain being tessellated by triangles. These triangles are
created by the library Triangle [20], bounding the area of the triangular elements with
the area of the initial polygons. Steiner points [20] can be added, and the edges of the
initial polygons are split when necessary by the insertion of new vertices. The refine-
ment is iterative, with parameters to indicate size, shape and number of the initial
polygons; details on this process are provided in the Appendix.

The top and bottom panels of Fig. 2 respectively show the datasets DMaze and
DStar, which we selected as they violate different geometrical assumptions. Other
choices for the initial polygons are possible, for instance considering the ones in
Benchmark [3].

A “maze” is a 10-sided polygonal element E spiralling around an external point.
Progressively, each mesh in DMaze contains an increasing number of mazes E with
decreasing thickness as n → N . Every E is obviously not star-shaped, challenging
assumption G1. Moreover, the length of the shortest edge e of E decreases faster
than the diameter hE of the polygon. This fact implies, on the one side, that the ratio
|e|/hE of assumption G2 cannot be bounded from below by a constant ρ that is inde-
pendent of h, and, on the other side, that assumption G1-weak also fails. Indeed,
even splitting E into a finite number of rectangles, it is not possible to define a global
radius ρ, independent of h, with respect to which the union of these rectangles is
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Fig. 2 Meshes Ω0,Ω2,Ω4,Ω6 from datasets DMaze (top) and DStar (bottom)

star-shaped according to G1, if the shortest edge of E is constantly decreasing. Con-
cerning the scaling indicators, we have An ∼ an for a constant e < a < 3 and
en ∼ n log(n).

Dataset DStar is built by inserting star-like polygonal elements, still denoted by E.
As n → N , the number of spikes of each E increases and the inner vertices of the star
move towards the barycenter of the element. In this case, assumption G3 is not satis-
fied because the number of spikes in each E increases from mesh to mesh. Therefore,
the total number of vertices and edges in a single element cannot be bounded uni-
formly.
Last, each star E is star-shaped with respect to the maximum circle inscribed in it.
However, as shown in Fig. 3, the radius r of such circle decreases faster than the
elemental diameter hE , therefore it is not possible to define a global ρ > 0 able
to uniformly bound from below the quantity r/hE : this violates assumption G1. In
order to satisfy assumption G1-weak, we should split each E into a number of sub-
polygons that are star-shaped according to G1. Independently of the way we partition
E, the number of sub-polygons would always be bigger than or equal to the number
of spikes in E, which is constantly increasing. So, the number of sub-polygons would
tend to infinity violating condition G1-weak. Last, both An and en scale linearly.

Fig. 3 Ratio r/hE for datasets
DStar and DJenga
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Mirroring datasets Another possible strategy to build a sequence of meshes whose
elements are progressively smaller, is to adopt a mirroring technique. In practice, we
start with the first base mesh Ω̂0, which coincides with the first computational mesh
Ω0. At every step n ≥ 1, we build a new base mesh Ω̂n from the previous base
mesh Ω̂n−1. The computational mesh Ωn is then obtained by mirroring Ω̂n 4n times
and resizing everything to fit the domain Ω . This construction allows us to obtain a
number of vertices and degrees of freedom in each mesh that is comparable to that of
the meshes at the same refinement level in datasets DMaze and DStar.
Examples of meshes from mirrored datasets are presented in Fig. 4; examples of non-
mirrored base meshes are visible in the Appendix. Algorithms for the construction
of the following datasets, together with the mirroring algorithm are detailed in the
Appendix.

In the case of the dataset DJenga, we build the n-th base mesh Ω̂n as follows.
We start by drawing two horizontal edges that split the domain (0, 1)2 into three
horizontal rectangles with area equal to 1/4, 1/2 and 1/4 respectively. Then, we split
the rectangle with area 1/2 vertically, into two equally sized rectangles with area 1/4.
This provides us with base mesh Ω̂0, which coincides with mesh Ω0. At each next
refinement step n ≥ 1, we split the leftmost rectangle in the middle of the base mesh
Ω̂n−1 by adding a new vertical edge, and apply the mirroring technique to obtain Ωn.
This process is shown in the top panels of Fig. 4.

Fig. 4 Meshes Ω0,Ω1,Ω2,Ω3 from datasets DJenga (top), DSlices (middle) and DUlike (bottom)
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This mesh family breaks all assumptions G1 (and G1-weak), G2, G3, and G4. In
fact, the length of the radius r of the biggest possible disk inscribed into a rectangle
is equal to 1/2 of its shortest edge e. As shown in Fig. 3, the ratio |e|/hE , decreases
unboundedly in the left rectangle E every time we split it, and consequently r/hE

decreases at a similar rate. This implies that a lower bound with a uniform constant
ρ independent of h cannot exist for these ratios, thus breaking assumptions G1, G1-
weak and G2. In addition, the number of edges of the top and bottom rectangular
elements also grows unboundedly, against assumption G3. Last, the one-dimensional
mesh of assumption G4, which is built on the elemental boundary of the top and
bottom rectangular elements, cannot be subdivided into a finite number of quasi-
uniform sub-meshes. In fact, either we have infinite sub-meshes or an infinite edge
ratio. Finally, we note that both An and en scale like 2n.

In the case of the dataset DSlices (Fig. 4, middle), we build the n-th base mesh
Ω̂n as follows. First, we sample a collection of points along the diagonal (the one
connecting the vertices with coordinates (0, 1) and (1, 0)) of the reference square
[0, 1]2, and connect them to the vertices (0, 0) and (1, 1). In particular, at each step
n ≥ 0, the base mesh Ω̂n contains the vertices (0, 0) and (1, 1), plus the vertices with
coordinates (2−i , 1 − 2−i ) and (1 − 2−i , 2−i ) for i = 1, . . . , n + 2. Then, we apply
the mirroring technique.

The dataset DSlices violates assumptions G1 and G1-weak. In fact, up to a mul-
tiplicative scaling factor depending on h, the length of the radius of the biggest
inscribed disk in every element E is decreasing faster than the diameter of the ele-
ment, which is constantly equal to

√
2 times the same scaling factor, thus violating

G1. Furthermore, the dataset also breaks assumption G1-weak because any finite
subdivisions of its elements would suffer the same issue. Instead, the other geomet-
rical assumptions are satisfied. Since no edge is split, we find that en ∼ c, while
An ∼ 2n.

In DUlike (Fig. 4, bottom), we build Ω̂n at each step n ≥ 0 by inserting 2n equi-
spaced U -shaped continuous polylines inside the domain, creating as many U -like
polygons. Then, we apply the mirroring technique.

For arguments similar to the ones brought for DMaze, DUlike does not sat-
isfy assumptions G1, G1-weak and G2. For connectivity reasons, the lower
side of the outer U -shaped polygon of every base mesh must be split into
smaller segments when we apply the mirroring technique. Therefore, the num-
ber of edges of such cells cannot be limited from above, contradicting assump-
tion G3. Nonetheless, assumption G4 is satisfied because this subdivision is
uniform. Last, edge lengths scale exponentially and areas scale uniformly,
i.e., en ∼ 2n, An ∼ c.

Multiple mirroring datasets As a final test, we modified datasets DJenga, DSlices and
DUlike in order to stress the indicators An and en harder.
This is easily obtained by inserting four new elements at each step instead of one, as
explained in the Appendix. The resulting datasets, DJenga4, DSlices4 and DUlike4, are
qualitatively similar to the mirroring datasets above. These datasets fulfill the same
assumptions as their respective original versions, but the number of elements at each
refinement step now increases four times faster. The indicators An and en change
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from 2n to 24n, but An remains constant for DUlike4, and en remains constant for
DSlices4.

4.2 Performance analysis

We solved the discrete Poisson problem (3) with the VEM (6) described in Section 2
for k = 1, 2, 3 over each mesh of each of the datasets defined in Section 4.1, using
as groundtruth the function

u(x, y) = sin(πx) sin(πy)

2π2
, (x, y) ∈ Ω = (0, 1)2. (31)

This function has homogeneous Dirichlet boundary conditions, and this choice was
appositely made to prevent the boundary treatment from having an influence on the
approximation error. In Figs. 5 and 6 we plot the relative L2-norm and H 1-seminorm
as defined in (28), (29):

||u − uh||0,Ω/||u||0,Ω, |u − uh|1,Ω/|u|1,Ω,

and the relative L∞-norm

||u − uh||∞/||u||∞, where ||u||∞ = ess supx∈Ω |u(x)|,
of the approximation error u − uh as the number of DOFs increases (that is, as
n → N). We approximate the infinite norm by taking the maximum value of the
solution on the degrees of freedom.
The optimal convergence rate of the method, provided by the estimates (26) and
(27), is indicated for each k by the slope of the reference triangle. In the case of
the L∞-norm we do not have such theoretical results and we assume the rate of the
DTriangle dataset as a reference.

We also consider the condition numbers of matrices G and H (with the notation
adopted in [24]) as numerical indicators of the good behavior of the method, and
identities |Π∇

k D − I| = 0 and |Π0
kD − I| = 0 as an estimate of the approximation

error produced by projectors Π∇
k and Π0

k , represented by matrices Π∇
k and Π0

k ,
respectively. The computation of the projectors is obviously affected by the condi-
tion numbers of G and H, but the two indicators are not necessarily related. All of
these quantities are computed element-wise and the maximum value among all ele-
ments of the mesh is selected. Condition numbers and identity values for k = 1, 2, 3
are reported in Table 2 (for k < 3 we have Π0

k = Π∇
k ).

First, the reference dataset DTriangle guarantees for the correctness of the VEM, as
it performs perfectly according to the theoretical results both in L2 and in H 1 norms
for all k values, maintaining reasonable condition numbers and optimal errors on the
projectors Π0

k and Π∇
k .

For the hybrid datasets DStar and DMaze, errors decrease at the correct rate for
most of the meshes, and only start deflecting for very high numbers of DOFs and
very complicated meshes. These deflections are not due to numerical problems, as
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Fig. 5 L2-norm, H 1-seminorm and L∞-norm of the approximation errors of the reference, hybrid and
mirroring datasets for k = 1, 2, 3

in both datasets we have cond(G) < 106 and cond(H) < 109, which are still reason-
able values. Projectors seem to work properly: |Π∇

k D − I| remains below 10−8 and
|Π0

kD− I| below 10−7. In a preliminary stage of this work, we obtained similar plots
(not reported here) using other hybrid datasets built in the same way, with polygons
surrounded by triangles. In particular, we did not see big differences when starting
with the other initial polygons of Benchmark [3], cf. the construction discussed in
“Hybrid datasets” in Section 4.1.

On the meshes from “Mirroring datasets,” An or en may scale non-uniformly, as
reported in Table 1 (indeed, they can scale exponentially). This reflects to cond(G)
and cond(H), which grow up to 1010 and 1014 for DJenga in the case k = 3. Nonethe-
less, the discrepancy of the projectors identities remains below 10−5, which is not
far from what happened with DMaze and DStar. Dataset DJenga exhibits an almost
perfect convergence rate, even though the errors in the different norms are bigger
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Fig. 6 L2-norm and H 1-seminorm of the approximation errors of the reference and multiple mirroring
datasets for k = 1, 2, 3 (the L∞ error is omitted, being very similar to the other two)

in magnitude than the ones measured for hybrid datasets; DSlices shows even bigger
errors and a non-optimal convergence rate, and DUlike is the dataset with the poorest
performance, but still converges at a decent rate for k > 1.

In the setting of “Multiple mirroring datasets,” all datasets diverge badly (see
Fig. 6), and this is principally due to very poor conditioning in the matrices involved
in the calculations (see Table 2). In Fig. 6, for a more compact visualization, we omit
the L∞ error, being it very similar to the other two (as already visible in Fig. 5).
Dataset DJenga4 and DSlices4 maintain a similar trend to the ones in Fig. 5 until numer-
ical problems cause cond(G) and cond(H) to explode up to over 1030 for DJenga4 and
1018 for DSlices4. In these conditions, projection matrices Π∇

k and Π0
k become mean-

ingless and the method diverges. The situation slightly improves for DUlike4: cond(H)
is still 1016, but the discrepancy of Π∇

k and Π0
k remain acceptable. As a result, DUlike4

does not properly explode, but the approximation error and the convergence rate are
much worse than those seen in Fig. 5.

As a preliminary conclusion, by simply looking at the previous plots we observe
that the relationship is not particularly strong between the geometrical assumptions
respected by a certain dataset and the performance of the VEM. In fact, we obtained
reasonable results with meshes violating several assumptions.

Analysis of the stability term In order to investigate the impact of the choice of the
stability term on the performance of the method, we compare the results obtained
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Table 2 Summary of numerical performance for all datasets. We report the log10 of the original values for
the condition number of G and H and the discrepancy of projection matrices Π∇

k and Π0
k . Note that for

k < 3 we have Π0
k = Π∇

k

Dataset DTriangle DMaze DStar DJenga DSlices DUlike

k 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

cond(G) 0 2 5 2 3 6 1 3 6 1 5 10 2 4 6 1 4 7

cond(H) 2 5 7 2 5 8 3 6 9 4 9 14 2 8 10 3 7 10

|Π∇
k D − I| −13 −11 −9 −12 −10 −8 −12 −10 −8 −12 −8 −5 −12 −10 −9 −13 −10 −8

|Π0
kD − I| −10 −8 −7 −5 −5 −7

Dataset DJenga4 DSlices4 DUlike4

k 1 2 3 1 2 3 1 2 3

cond(G) 6 18 31 6 8 10 2 6 11

cond(H) 13 26 39 2 15 18 5 10 16

|Π∇
k D − I| −9 3 13 −8 −6 −5 −13 −8 −5

|Π0
kD − I| 20 8 −4

with four different formulations of SE
h (·, ·). The results shown in Figs. 5 and 6 were

relative to the D-recipe stabilization (18). In addition to this, we consider the particu-
lar case of dofi-dofi stabilization (20), as well as the L2 and H 1 trace forms (21), (22).
In Fig. 7 we exhibit two representative cases relative to DSlices and DMaze datasets,
the others being very similar.

The stability term, at least the considered ones, seem to have a very small impact
on the convergence of the method as long as the convergence rate remains optimal.
This is the case of DSlices (Fig. 7a) and of the first meshes of DMaze (Fig. 7b). On
the other side, when the method does not work properly, all types of stabilization
lead to similar misbehavior, as happens for the last meshes of DMaze. Analogous
results were obtained for all datasets: whenever the method works, all stabilizations
lead to equally accurate approximations; when the method does not work, there is
not a particular stabilization providing better results than the others. For example, in
the case of DSlices the L2 trace stabilization seems to be more problematic than the
others, while for DMaze the H 1 trace seems the least reliable, and in general the worst
stabilization varies from datasets to dataset.

5 Mesh quality indicator

We now aim at defining a mesh quality indicator, that is, a scalar function capable of
providing insights on the behavior of the VEM over a particular sequence of meshes,
before actually computing the approximated solutions.
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Fig. 7 L2-norm and H 1-seminorm of the approximation errors relative to DSlices (a) and DMaze (b)
datasets, with different stability terms

5.1 Definition

We start from the geometrical assumptions defined in Section 3. Even if we proved
them not to be strictly necessary for the convergence of the method, they can still be
good indicators for the general quality of a sequence of meshes. From each geomet-
rical assumption Gi, i = 1, . . . , 4, we derived a scalar function �i : {E ⊂ Ωh} →
[0, 1] defined element-wise, which measures how well a polygon E ∈ Ωh meets the
requirements of Gi from 0 (E does not respect Gi) to 1 (E fully respects Gi).

�1(E) = k(E)

|E| =

⎧⎪⎨
⎪⎩

1 if E is convex

∈ (0, 1) if E is concave and star-shaped

0 if E is not star-shaped

(32)

�2(E) = min(
√|E|, mine∈∂E |e|)

max(
√|E|, hE)

(33)

�3(E) = 3

# {e ∈ ∂E} =
{

1 if E is a triangle

∈ (0, 1) otherwise
(34)

�4(E) = min
i

mine∈Ii
E

|e|
maxe∈Ii

E
|e| (35)
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The operator k(E) in �1 measures the area of the kernel of a polygon E, defined as
the set of points in E from which the whole polygon is visible. Therefore, �1(E)

can be interpreted as an estimate of the value of the constant ρ from assumption G1
on the polygon E. Similarly, the function �2 returns an estimate of the constant ρ

introduced in G2, expressed trough the ratio |e|/hE , with the insertion of the quantity√|E| in order to avoid pathological situations. Function �3 is a simple counter of the
number of edges of a polygon, which penalizes elements with numerous edges as
required by G3. Last, we recall from Section 3 that the boundary of a polygon E can
be considered as a one-dimensional mesh IE , which can be subdivided into a number
of disjoint sub-meshes I1

E, . . . , IN
E , each one containing possibly more than one edge

of E. In practice, we consider as a sub-mesh the collection of all edges whose vertices
lie on the same line. For example, as shown in Fig. 8, the boundary of the top bar E

in the base mesh of DJenga is represented by a mesh IE = {I1
E, I2

E, I3
E, I4

E}, where
I1

E, I2
E and I3

E contain, respectively, the left, top and right edge of E, while I4
E

contains all the aligned edges in the bottom of E. Function �4 returns the minimum
ratio between the smallest and the largest element in every IE , that is a measure of
the quasi-uniformity of IE imposed by G4.

Combining together �1, �2, �3 and �4, we define a global function � : {Ωh}h →
[0, 1] which measures the overall quality of a mesh Ωh. Given a dataset D, we
can study the behavior of �(Ωh) for Ωh ∈ D and determine the quality of the
dataset through the refinement process. In particular, we chose the formula �1�2 +
�1�3 + �1�4 as it reflects the way in which the relative assumptions are typically
imposed: G1 and G2, G1 and G3 or G1 and G4 (but not, for instance, G2 and G3
simultaneously):

�(Ωh) =
√

1

# {E ∈ Ωh}
∑
E∈Ω

�1(E)�2(E) + �1(E)�3(E) + �1(E)�4(E)

3
. (36)

We have �(Ωh) = 1 if and only if Ωh is made only of equilateral triangles,
�(Ωh) = 0 if and only if Ωh is made only of non star-shaped polygons, and
0 < �(Ωh) < 1 otherwise. All indicators �1, �2, �3 and �4, and consequently �, only
depend on the geometrical properties of the mesh elements; therefore their values can
be computed before applying the VEM, or any other numerical scheme.

Fig. 8 One-dimensional mesh
IE = {I1

E,I2
E,I3

E,I4
E} for the

top bar E of a DJenga base mesh
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We point out that this approach is easily upgradeable to future developments: when-
ever new assumptions on the features of a mesh should come up, one simply needs to
introduce in our framework a new function �i that measures the violation of the new
assumption and insert it into the formulation of the general indicator � in (36).

5.2 Results

We evaluated the indicator � over the datasets defined for this work; results are shown
in Fig. 9.

If we compare Fig. 9a and b with Figs. 5 and 6 respectively, we can look for a
correspondence between the behavior of � on a dataset, computed before solving the
problem, and the approximation error actually produced by that dataset. Clearly, as �

does not depend on the polynomial degree k nor on the type of norm used, we will com
pare it to an average of the plots for the different k values and for the different norms.

We preliminarily observe that, for an ideal dataset made by meshes containing
only equilateral triangles, � would be constantly equal to 1. We assume this value as
a reference for the other datasets: the closer is � on a dataset to the line y = 1, the
smaller is the approximation error that we expect that dataset to produce. Similarly,
the more negative is the � slope, the worse is the convergence rate that we expect
over that dataset.

For meshes belonging to DTriangle, � is almost constant and very close to 1, thus
foreseeing the excellent convergence rates and the low errors seen in every sub-figure
of Fig. 5. The plots for DMaze and DStar in Fig. 9a are close to DTriangle, hence we
expect them to behave similarly. This is confirmed by Fig. 5: DMaze and DStar are
almost coincident and very close to DTriangle until the very last meshes.

The DJenga plot in Fig. 9a anticipates a perfect convergence rate but greater error
values with respect to the previous three, and again this behavior is respected in

Fig. 9 Indicator � for the reference, hybrid and mirroring datasets (a) and for the reference and multiple
mirroring datasets (b)
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Fig. 5. The curve relative to DSlices in Fig. 9a is quite distant from the ideal value
of 1. Importantly, it keeps decreasing from mesh to mesh, but the plot allows us
to assume that it may flatten within a couple more meshes. Looking at Fig. 5, we
notice that this dataset produces an error significantly higher than the previous ones
(DTriangle,DMaze,DStar,DJenga), but the convergence rates are very similar to the the-
oretical estimates. Last, the � values in Fig. 9 predict huge errors and a completely
wrong convergence rate for DUlike. This dataset is actually the one with the worst
performance in Fig. 5, where it exhibits incorrect convergence rates for all values of
k and all types of norm (see in particular the case k = 1 with H 1 or L∞ errors).

As far as multiply refined datasets are concerned, we notice that, since it only
depends on the geometry of the elements, � is not affected by numerical errors. The
� plot for DJenga4 in Fig. 9b is very similar to the plot obtained for DJenga in 9a,
therefore we should expect DJenga4 in Fig. 6 to perform similarly to DJenga in Fig. 5.
This is actually the case at least until the last mesh for k = 3, when numerical
problems appear which � is not able to predict. Also dataset DSlices4 has a similar
trend to DSlices but decreases faster, reaching a � value of ∼ 0.2 instead of ∼ 0.34
within a smaller number of meshes. As above, DSlices4 performs similarly to DSlices
until condition numbers explode, in the last two meshes for every value of k. Last, the
� plot of DUlike4 is significantly worse than the one of DUlike (and than any other),
both in terms of distance from y = 1 and slope. In Fig. 6 we can observe how, even
if DUlike4 does not properly explode (as it suffers less from numerical problems, cf.
Table 2), the approximation error and the convergence rate are the worse among all
the considered datasets.

Summing up these results, we conclude that indicator � is able, up to a certain
accuracy, to predict the behavior of the VEM over the considered datasets, both in
terms of error magnitude and convergence rate. The prediction may be inaccurate in
presence of very similar performance (the case of DMaze and DStar), or in extreme
situations in which the numerical problems become so significant to overcome any
influence that the geometrical features of the mesh could have on the performance
(the last meshes of DJenga4 and DSlices4).

5.3 Error localization

As a further investigation on the quality indicator, we analyze the distribution of
the approximation errors across the elements of a mesh. In Fig. 10 we consider two
examples from datasets DMaze and DJenga: we only report the H 1 error because the
L2 and the L∞ errors produce very similar results.
First, we color each element of the mesh with respect to the value of the elemental
quality indicator:

�(E) =
√

�1(E)�2(E) + �1(E)�3(E) + �1(E)�4(E)

3
, ∀E ∈ Ωh.

Then we visually compare this colored mesh with the same mesh colored with respect
to the H 1 error, for k = 1, 2, 3, produced by the VEM on it:

ε(E) = − log
|u − uh|1,E

|u|1,Ω

, ∀E ∈ Ωh,
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Fig. 10 Localization of the quality indicator � and H 1 error ε in meshes from DMaze (top) and DJenga
(bottom) datasets

where the negative sign is introduced so that high error values correspond in color
to low quality elements (remember that �(E) is 1 if E is an equilateral trian-
gle and 0 if E is not star shaped). Moreover, ε values are re-scaled in the range
(minE∈Ωh

ε(E), maxE∈Ωh
ε(E)) in order to highlight differences between the ele-

ments. In particular, this means that there is no relationship between a certain color
in the figure for k = 1 and the same color in the case k = 2 or 3.

In the first column of Fig. 10 we can observe how the quality indicator perfectly
“recognizes” the pathological elements, assigning them a deep blue color. Regarding
the error, we can see similar color patterns across the columns, which depend on
the function we are approximating. Being the groundtruth (31) a sinusoidal function,
the error is naturally distributed along “waves” which vary with the order of the
method. Besides this, it is still appreciable how poor quality elements produce higher
errors than their neighbors, highlighting once again a correlation between the quality
indicator and the performance of the VEM.

6 Conclusions

In this work, we collected the regularity assumptions that are used in the literature to
guarantee the convergence and the error estimates in the L2 and H 1 norms for the
VEM. These conditions allow a great flexibility for the type and variety of polygons
to be used in a mesh, but they still seem overestimated. Experimentally, we verified
that the VEM works, with a good convergence rate, also on meshes and datasets that
strongly violate these assumptions. We also built examples of datasets for which, vio-
lating significantly the regularity assumptions, the VEM shows a convergence rate
suboptimal or diverges. Finally, we introduced new indicators to represent how much
the regularity hypothesis are violated by a tessellation and combined these indicators
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in a single score, aimed at estimating how a dataset can be expected to be performing
in the solution of the VEM. The results obtained are encouraging, showing a satis-
factory correlation between the errors and this indicator. Consequently, our approach
provides an experimental score that is able to predict if a tessellation of a domain can
be critical for the VEM.

As possible future developments, we are interested in refining the regularity indi-
cator here proposed, for example, to deduce new decomposition rules of a domain
with possible applications to mesh generators, or to adaptive coarsening/refinement
algorithms. We are also experimenting similar indicators to evaluate the properties
of polyhedral meshes, taking advantage of the 3D extension of the geometric kernel
computation presented in [21].

Appendix: Dataset generation

In this appendix, we take a closer look at how the datasets presented in Section 4.1
are built and how to compute the quantities An and en defined in (30). All algo-
rithms have been written using CinoLib [15]. We recall that a dataset is a finite mesh
sequence D = {Ωn}n=0,...,N , ordered decreasingly with respect to the mesh size.

Reference dataset The first dataset, DTriangle, contains only triangular meshes that
are built by inserting a number of points in the domain, and connecting them in a
Delaunay triangulation. The point set is defined through the Poisson Disk Sampling
algorithm proposed in [9], empirically adjusting the distance between points (called
radius in the original paper) in order to generate meshes with the desired number of
vertices. Points are then connected in a Delaunay triangulation using the well known
Triangle library [20], with the default parameters configuration. In DTriangle, An and
en are almost constant, as no constraints are imposed to the triangulation process.

Hybrid datasets The construction of hybrid datasets is characterized by the insertion
in Ω of one or more polygonal elements, and by a tessellation algorithm. Each hybrid
dataset is built around (and named after) an initial polygon E = E(tn) depending
on a deformation parameter tn ∈ [0, 1), which is used to deform E. This parameter
directly depends on the mesh number (i.e., tn → 1 as n → N), and it can be
adjusted to improve or worsen the quality of the polygon E (the higher, the worse).
At refinement step n, mesh Ωn is created by inserting a number of identical copies of
the deformed polygon E(tn) (opportunely resized) in the domain Ω , and tessellating
the rest of Ω using the Triangle library. Note that, a whole family of other datasets
may be generated by simply defining a new initial polygon. More examples can be
found in [3].

The initial polygon E(tn) for dataset DMaze is the 10-sided element shown
in Fig. 11a, with vertices (0,1), (0,0), (1,0), (1,0.75), (0.5,0.75),

(
0.5, 0.5 + tn

4

)
,(

0.75 + tn
4 , 0.5 + tn

4

)
,
(
0.75 + tn

4 , 0.25 − tn
4

)
,
(
0.25 − tn

4 , 0.25 − tn
4

)
,
(
0.25 − tn

4 , 1
)
.

As tn → 1, the length of the shortest edge (the one with vertices (0, 1) and
(0.25 − tn/4, 1)) goes to zero, and so does the area of E(tn).
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Fig. 11 Initial polygons E(t0),
E(t2), E(t4), E(t6) from
datasets DMaze (a) and DStar (b)

For building the initial polygon E(tn) of dataset DStar (Fig. 11b), we first build a ī-
sided regular polygon, with ī = 8(1+�10tn�) and vertices v0 = (1, 0), vi = σ(vi−1)

for i = 1, . . . , ī, being σ(v) the rotation centered at (0, 0) of vertex v by an angle
of 2π/ī. Then we project every odd-indexed vertex towards the barycenter of E(tn):
v′

2j+1 = s v2j+1, for j = 0, . . . , ī−1
2 , where the projection factor s ∈ (0, 1) is

gradually decreased until the angles at the even-indexed vertices become smaller than
(1 − tn)π/3. As tn → 1 we have an increasing number of edges (from 8 to almost
90), the minimum angle and the area decrease to zero while the length of every edge
increases.

Once we defined the initial polygon E(tn), we can build the corresponding dataset
through Algorithm 1. We have some initial parameters, which are set a priori and
remain untouched: the number of meshes in the dataset N , the area of the initial
polygon at the first step d0 and the deformation range T = [tmin, tmax]. In this work
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we set N = 10, d0 = 0.03, which corresponds to 3% of the domain, and T =
[0, 0.95].

Then we have three main parameters, en ∈ N, tn ∈ T and dn ∈ (0, d0), which
respectively regulate the number of initial polygons inserted, the deformation of these
polygons and their area. In particular, en increases inversely to dn (Ωn+1 has twice as
polygons as Ωn, with halved areas), so that the percentage of the domain covered by
polygons (not triangles) is preserved all across the dataset. Due to the complicated
shapes of some initial polygons, it may be hard to ask for exactly |E(tn)| = dn,
therefore we only impose |E(tn)| ≤ dn.

Several options are possible for setting en, tn and dn, and the speeds at which
these quantities vary, strongly affect the geometrical qualities of the meshes in the
dataset. In our datasets, en increases exponentially, tn increases linearly inside T and
dn decreases exponentially. The exponential increase of the number of initial poly-
gons inserted in the domain may lead to intersections between them, or with the
domain boundaries. To avoid this phenomenon, we inserted a while loop in Algo-
rithm 1 which decreases dn until no intersections occur: this ensures stability to the
algorithm, but in practice it activates only for very dense meshes and it typically runs
only few iterations.

Last, when all polygons have been inserted in Ω , the Triangle algorithm is used
to generate a Delaunay triangulation. The already inserted polygons are considered
as holes in the domain, and we set no limitations on the number of Steiner points
that may appear in the triangulation process. We also impose to have no angles
smaller than 20 degrees and set a maximum triangle area constraint equal to dn. Due
to the freedom left to the Triangle algorithm, it is not possible to estimate An and
en precisely; hence, the relative values reported in Table 1 have been measured a
posteriori.

Mirroring datasets The construction of DJenga, DSlices and DUlike, at every step
n ≥ 1, consists in a first algorithm for iteratively generating a base mesh Ω̂n from
the previous base mesh Ω̂n−1, followed by a mirroring technique which returns the
computational mesh Ωn. The base mesh generation algorithm is different for each
dataset (Algorithms 2, 3 and 4), while the mirroring algorithm (Algorithm 5) is com-
mon to all three datasets. Algorithms 2, 3 and 4 depend on two initial parameters: N

indicates the number of meshes in the dataset and Nel indicates the number of ele-
ments to insert at each step. For mirroring datasets we set Nel = 1, while for multiple
mirroring datasets (described in the next section) we will set Nel = 4.

In the DJenga base mesh shown in Fig. 12 (top) we have a top bar, a bottom bar
and a right square which are fixed independently of n, and n + 1 rectangles in the
left part of the domain. At each refinement step n ≥ 1, a new rectangular element is
created by splitting in two equal parts the leftmost rectangular element in the previous
base mesh, and consequently updating the top and the bottom bars with new vertices
and edges. Therefore, all elements in Ω̂n, except for the top and the bottom bars, are
rectangles with height equal to 1/2 and basis ranging from 1/2 to 1/2n+1. Once that
the base mesh Ω̂n is generated, the mirroring algorithm is recursively applied for n

times to generate the computational mesh Ωn, as described in Algorithm 2. When
computing An and en, we can restrict our calculations to the base mesh, because these
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Fig. 12 Non-mirrored base meshes Ω̂0, Ω̂1, Ω̂2, Ω̂3 from datasets DJenga (top), DSlices (middle) and
DUlike (bottom)

ratios are not affected by the mirroring algorithm. In particular, the longest edge in
the base mesh is the upper edge of the top bar, which is never split, while the shortest
edge is the basis of the leftmost rectangle, which halves at each step: this causes
en ∼ 2n. The top bar is also the element with the greatest area (together with the
bottom bar and the right square), which is constantly equal to 1/4, while the leftmost
rectangle has area 1/2 ∗ 1/2n+1 = 1/2n+2, therefore An ∼ 2n.

In the DSlices base meshes shown in Fig. 12 (middle), at each step n ≥ 0, we add
the vertices with coordinates (2−i , 1 − 2−i ) and (1 − 2−i , 2−i ) for i = 1, . . . , n + 2,
and we connect them to the vertices (0, 0) and (1, 1). As a result, at each iteration
we create a couple of new polygons, called upper slice and lower slice, symmetrical
with respect to the diagonal, and we add them to the base mesh. The area of the two
inner triangles (the biggest polygons in the base mesh) is constantly equal to 1/4. For
evaluating the area of the two most external polygons, we consider them as the union
of the two identical triangles obtained by splitting the polygons along the diagonal
(the one connecting the vertices with coordinates (0, 1) and (1, 0)). Then the smallest
area in the base mesh is the sum of the areas of two equal triangles with basis

√
2/2

and height 2−n/
√

2, and simple calculations lead to An ∼ 2n. Last, we notice that all
the edges in the base mesh have lengths between 1 and

√
2, because no edge is ever

split, hence en ∼ c.
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In the DUlike base meshes shown in Fig. 12 (bottom), at each step n ≥ 0 we insert
2n U -shaped continuous polylines inside the domain. We have an internal rectan-
gle and a sequence of concentric equispaced U-like polygons culminating with the
external U. This last element is not different from the other U -like polygons, but
is created separately, because we need to split its lower edge in order to match the
base mesh that will appear below it during the mirroring algorithm. In every base
mesh, the shortest edge is the one corresponding to the width of each U -like poly-
gon, which measures 2−(n+1), and the longest edges are the left and right boundaries
of the domain. This causes en ∼ 2n. Said e the shortest edge, the smallest area is the
one of the internal rectangle, equal to 2e(1/2 + e), and the biggest area is the one
relative to the external U , equal to 3e − 2e2. We have

An = 3 − 2e

1 + 2e
= 3 − 2(2−(n+1))

1 + 2(2−(n+1))
= 3 − 2−n

1 + 2−n
∼ c.
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Multiple mirroring datasets Multiple mirroring datasets are built with the exactly
same algorithms of the mirroring datasets, changing the parameter Nel . This param-
eter regulates the number of elements generated in each base mesh of the dataset.
In particular, datasets DJenga4, DSlices4 and DUlike4 are defined setting Nel = 4.
An example of a multiple mirroring dataset with Nel = 4 is shown in Fig. 13,
where the first three base meshes of DUlike4 are presented. The Nel value influences
ratios An and en: if An, en ∼ 2n for Nel = 1, these quantities become asymp-
totic to 24n when Nel = 4, except for the cases in which the ratios were constant
(see Table 1).

Themirroring algorithm The mirroring algorithm (Algorithm 5) generates four adja-
cent copies of any polygonal mesh M defined over the domain Ω = [0, 1]2. In
CinoLib [15], a polygonal mesh can be defined by a vector verts containing all
its vertices and a vector polys containing all its polygons. The result of the algo-
rithm is therefore a polygonal mesh M′, generated by some vectors new-verts and
new-polys, containing four times the number of vertices and polygons of M. When

Fig. 13 Non-mirrored base
meshes Ω̂0, Ω̂1 and Ω̂2 from
datasets DUlike4
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iterated a sufficient number of times, this construction allows us to obtain a num-
ber of vertices and degrees of freedom in each mesh of the mirroring datasets that
is comparable to that of the meshes at the same refinement level in hybrid datasets.
Vector new-verts contains all vertices v ∈ verts copied four times and translated
by vectors (0, 0), (1, 0), (1, 1) and (0, 1) respectively. The coordinates of all ver-
tices in new vertices are divided by 2, so that all new points lie in the same domain
as the input mesh. Vector new-polys is simply vector polys repeated four times. A
final cleaning step is required to remove duplicated vertices and edges that may arise
in the mirroring process, for example if the initial mesh M has vertices along its
boundary.
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