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Abstract
In this work, we consider a continuous dynamical system associated with the fixed
point set of a nonexpansive operator which was originally studied by Boţ and Csetnek
(J. Dyn. Diff. Equat. 29(1), pp. 155–168, 2017). Our main results establish conver-
gence rates for the system’s trajectories when the nonexpansive operator satisfies an
additional regularity property. This setting is the natural continuous-time analogue
to discrete-time results obtained in Bauschke, Noll and Phan (J. Math. Anal. Appl.
421(1), pp. 1–20, 2015) and Borwein, Li and Tam (SIAM J. Optim. 27(1), pp. 1–
33, 2017) by using the same regularity properties. Closure properties of the class
of Hölder regular operators under taking convex combinations and compositions are
also derived.
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1 Introduction

Let H denote a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖.
In this work, we consider the continuous-time dynamical system with initial point
x0 ∈ H given by

ẋ(t) = λ(t) (T (x(t)) − x(t)) , x(0) = x0, (1)

where T : H → H is nonexpansive and λ : [0, +∞) → [0, 1] is Lebesgue measur-
able. We remark that the parameter function λ has an interpretation as a time-scaling
factor, through which Eq. 1 can be shown equivalent to the case with λ(t) = 1 for all
t ≥ 0. For details, see [12, Section 4].

We shall investigate the behaviour of trajectories of Eq. 1 which are understood in
the sense of strong global solutions.

Definition 1 (Strong global solution) A trajectory x : [0, +∞) → H is a strong
global solution of Eq. 1 if the following properties are satisfied:

(i) x is absolutely continuous on each interval [0, b] for 0 < b < +∞.
(ii) ẋ(t) = λ(t) (T (x(t)) − x(t)) for almost all t ∈ [0, +∞).

(iii) x(0) = x0.

Here, absolute continuity of the trajectory x on [0, b] is understood in the vector-
valued sense (see, for instance, [4, Definition 2.1]) which implies

x(t) = x(0) +
∫ t

0
ẋ(s) ds ∀t ∈ [0, b].

The existence and uniqueness of a strong global solution for each x0 ∈ H follows
as a consequence of the Cauchy–Lipschitz theorem. The detailed argument can be
found in [12, Section 2].

Convergence of these trajectories (without rates) was established by Boţ and
Csetnek [12].

Theorem 1 [12, Theorem 6] Suppose T : H → H is nonexpansive with Fix T 
= ∅
and λ : [0, +∞) → [0, 1] be Lebesgue measurable with either

∫ +∞

0
λ(t) (1 − λ(t)) dt = +∞ or inf

t≥0
λ(t) > 0.

Let x denote the unique strong global solution of Eq. 1. Then, the following
assertions hold.

(i) The trajectory x is bounded and
∫ +∞

0 ‖ẋ(t)‖2dt < +∞.
(ii) limt→+∞ (T (x(t)) − x(t)) = 0.

(iii) limt→+∞ ẋ(t) = 0.
(iv) x(t) converges weakly to a point x̄ ∈ Fix T as t → +∞.
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The dynamical system (1) can be viewed as a continuous-time analogue to the
discrete-time system given by

xk+1 = (1 − λk)xk + λkT (xk). (2)

More precisely, the sequence (xk) in Eq. 2 can be viewed as a discretisation of the
trajectory x(t) in Eq. 1 along unit stepsizes. In other words, for k ∈ N, we take
λk ≈ λ(k) and xk ≈ x(k) together with the forward discretisation ẋ(k) ≈ xk+1 − xk .
In the literature, the discrete system (2) is well-known as the Krasnoselskii–Mann
iteration [15] corresponding to T . By choosing the operator T appropriately, many
iterative algorithms can be understood within this framework (see, for instance, [8,
Section 26]).

In analogue with Theorem 1, it can be shown that the sequence (xk)k∈N gen-
erated by Eq. 2 converges weakly to a point in Fix T provided that (λk) satisfies∑∞

k=1 λk(1 − λk) = +∞ [8, Theorem 5.15]. Furthermore, when T satisfies appro-
priate regularity conditions, information about the rate of convergence of (xk) can
also be provided—it converges R-linearly when T is boundedly linearly regular, and
sublinearly when T is boundedly Hölder regular. Although we defer formally defin-
ing these regularity notions until Section 2, we will nevertheless state the following
result for completeness.

Theorem 2 Let T : H → H be an nonexpansive operator with Fix T 
= ∅. Let
x0 ∈ H and consider the sequence (xk) given by Eq. 2 with (λk) ⊆ [0, 1] such that
infk∈N λk(1 − λk) > 0. Then there exists a point x̄ ∈ Fix T such that the following
assertions hold.

(i) If T is boundedly linearly regular, then xk → x̄ with at least R-linear rate, that
is, with at least rate O(rk) for some r ∈ [0, 1).

(ii) If T is boundedly Hölder regular, then xk → x̄ with at least rate O(k−ρ) for
some ρ > 0.

Proof (i): See [9, Theorem 6.1]. (ii): See [11, Corollary 3.9]. For generalisations,
see [22].

In this work, we show that the analogue statements about convergence rates given
in Theorem 2 also hold in the continuous-time setting. From the perspective of
iterative algorithms in optimisation, understanding the interplay between the corre-
sponding discrete and continuous-time systems provides insight into the conditions
required convergence as well as a technology for deriving new schemes. For specific
examples, see [19, 26]. For other recent works which study the interplay between
discrete and continuous-time systems, the reader is referred to [1, 3, 6, 25, 29].

The remainder of this work is structured as follows. In Section 2, we review
notions of bounded regularity for operators. These notions are then used in Section 3
to prove convergence rates for the strong global trajectories of Eq. 1. Closure prop-
erties of the classes of boundedly regular operators are studied in Section 4. These
properties are of interest in their own right and complement the results in [17].
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Finally, Section 5 uses these closure properties to deduce several extensions of the
results from Section 3.

2 Boundedly regular operators

In this section, we recall two notions of boundedly regular operators as well as pro-
viding examples of each. These notions are a kind of error bound in that, when
satisfied, they bound the distance to the fixed point set of an operator in terms of its
residual.

The first notion, based on linear regularity, was proposed for projection opera-
tors by Bauschke and Borwein [7] and for the general case by Bauschke, Noll, and
Phan [9].

Definition 2 (Linearly regular operators) An operator T : H → H is linearly regular
on U ⊆ H if there exists a constant κ > 0 such that

d(y, Fix T ) ≤ κ‖y − T (y)‖ ∀y ∈ U .

If T is linearly regular on every bounded subset of H, it is said to be boundedly
linearly regular.

Recall that a set is polyhedral if it can be expressed as the intersection of finitely
many closed half-spaces and/or hyperplanes, and that an operator is polyhedral if its
graph is the union of finitely many polyhedral sets. For remarks on this terminology,
see [27, p. 76].

Proposition 1 Let H = R
n. If T : H → H is polyhedral with Fix T 
= ∅, then T is

boundedly linearly regular.

Proof Since Id and T are polyhedral and the class of polyhedral operators is closed
under addition [28, p. 206], the operator F := Id −T is also polyhedral. By [28,
Corollary] applied to F , there exist κ1 > 0 and ε > 0 such that

d(x, Fix T ) = d(x, F−1(0)) ≤ κ1 d(0, F (x)) = κ1‖x − T (x)‖ (3)

for all x ∈ H with ‖x − T (x)‖ < ε. Let U ⊆ H be a nonempty bounded set. Then
κ2 := supx∈U d(x, Fix T ) < +∞. Thus, for all x ∈ U with ‖x−T (x)‖ ≥ ε, we have

d(x, Fix T )

‖x − T (x)‖ ≤ d(x, Fix T )

ε
≤ κ2

ε
. (4)

By combining (3) and (4), we deduce

d(x, Fix T ) ≤ max
{
κ1,

κ2

ε

}
‖x − T (x)‖ ∀x ∈ U,

which establishes the claimed result.

One drawback of linear regularity is that is often too restrictive to hold or too
difficult to verify in practice (i.e., beyond polyhedral settings such as Example 1).
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For further examples, see [9, Section 2]. To overcome this shortcoming, the following
Hölder counterpart of Definition 2 was introduced in [11, Definition 2.7].

Definition 3 (Hölder regular operators) An operator T : H → H is Hölder regular
on U ⊆ H if there exists a constant κ > 0 and γ ∈ (0, 1) such that

d(y, Fix T ) ≤ κ‖y − T (y)‖γ ∀y ∈ U .

If T is Hölder regular on every bounded subset of H, it is said to be boundedly
Hölder regular.

Recall that a set is semi-algebraic if it can be expressed as the union of finitely
many sets, each of which can be defined by finitely many polynomial equalities and
inequalities. An operator is semi-algebraic if its graph is a semi-algebraic set.

Proposition 2 Let H = R
n. If T : H → H is continuous and semi-algebraic with

Fix T 
= ∅, then T is boundedly Hölder regular.

Proof Let U be a nonempty bounded set. Then there exists an R > 0 such that

U ⊆ B(0, R) := {x ∈ H : ‖x‖ ≤ R}
where we note that B(0, R) is semi-algebraic. Consider the continuous functions

φ(y) := ‖y − T (y)‖ and ψ(y) := d(y, Fix T ).

Since ‖ · ‖ and Id −T are semi-algebraic as, their composition, the function φ

is also semi-algebraic [10, Proposition 2.2.6(i)]. Since Fix T = φ−1(0) and φ is
semi-algebraic, the set Fix T is also semi-algebraic by [10, Proposition 2.2.7]. By
[10, Proposition 2.2.8(i)], it then follows that d(·, Fix T ) is semi-algebraic. Thus,
since φ and ψ are continuous semi-algebraic functions with ψ−1(0) = φ−1(0) =
Fix T 
= ∅, Łojasiewicz’s inequality [10, Corollary 2.6.7] implies that there exist
constants κ > 0 and γ ∈ (0, 1) such that

d(x, Fix T ) = |ψ(x)| ≤ κ|φ(x)|γ = κ‖x − T (x)‖γ ∀x ∈ B(0, R),

and the claimed result follows.

Example 1 (Forward-backward operator) Let H = R
n and consider the monotone

inclusion
0 ∈ (A + B)(x), (5)

where A : H ⇒ H is maximally monotone and B : H → H is monotone and
continuous. This problem arises, for instance, as the optimality conditions of the
minimisation problem

min
x∈H

g(x) + f (x), (6)

where g : H → (−∞, +∞] is proper, lsc, convex, and f : H → R is convex and
differentiable. More precisely, by setting A = ∂g (i.e. the convex subdifferential of
g) and B = ∇f .
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The forward-backward operator T : H → H for Eq. 5 with stepsize λ > 0 is
given by

T := (Id +λA)−1 ◦ (Id −λB),

where the resolvent operator (Id +λA)−1 is single-valued and continuous with full
domain [8, Proposition 23.10]. Then, T is continuous and Fix T = (A + B)−1(0).
Moreover, T is semi-algebraic, and hence boundedly Hölder regular by Proposition 2,
whenever A and B are semi-algebraic. Indeed, if A and B are semi-algebraic, then
so are Id +λA and Id −λB. And, since (u, v) ∈ gra(Id +λA) if and only if (v, u) ∈
gra(Id +λA)−1, the resolvent operator is also semi-algebraic. As the composition of
two semi-algebraic operators, T is therefore also semi-algebraic.

Since the subdifferential of a convex semi-algebraic function is again semi-
algebraic (see, for instance, [20, 21]), we also note that, in particular, the forward-
backward operator applied to Eq. 6 is boundedly Hölder regular when f and g are
semi-algebraic.

Remark 1 Let T : H → H and let z ∈ H. Then, it is immediate from the respective
definitions, that T is boundedly linearly (resp. Hölder) regular if and only if T is
boundedly linearly (resp. Hölder) regular on B(z, R) for all R > 0.

3 Convergence of trajectories with regularity

In this section, we show a refinement of Theorem 1. Namely, that the convergence
rate of the trajectories in Eq. 1 can be given when the operator T is boundedly regular.
Although it will not always be explicitly stated within this section’s proofs to avoid
repetition, identities will sometimes be understood to hold for almost all t ∈ [0, +∞)

due the identity for ẋ in Definition 1(ii).
We shall require the following lemmata as well as the well-known identity:

‖(1 − α)u + αv‖2 + α(1 − α)‖u − v‖2 = (1 − α)‖u‖2 + α‖v‖2

∀α ∈ R, ∀u, v ∈ H. (7)

Lemma 1 Let x be the unique strong global solution of Eq. 1, let x∗ ∈ Fix T and
suppose inft≥0 λ(t) > 0. For almost all t ∈ [0, +∞), we have

‖ẋ(t) + x(t) − x∗‖2 + 1 − λ(t)

λ(t)
‖ẋ(t)‖2 ≤ ‖x(t) − x∗‖2.

Proof By applying (7) followed by nonexpansivity of T , we obtain

‖ẋ(t) + x(t) − x∗‖2 = ‖(1 − λ(t))(x(t) − x∗) + λ(t)(T (x(t)) − x∗)‖2

= (1 − λ(t))‖x(t) − x∗‖2 + λ(t)‖T (x(t)) − x∗‖2

−λ(t)(1 − λ(t))‖x(t) − T (x(t))‖2

≤ ‖x(t) − x∗‖2 − 1 − λ(t)

λ(t)
‖ẋ(t)‖2,

which completes the proof of the result.
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Proposition 3 [8, Corollary 12.31] Let C ⊆ H be a nonempty closed convex set.
Then x �→ d2(x, C) is Fréchet differentiable on H with ∇ d2(·, C) = 2(Id −PC).

Lemma 2 Let x be the unique strong global solution of Eq. 1. Suppose Fix T 
= ∅
and inft≥0 λ(t) > 0. Then, for almost all t ∈ [0, +∞), we have

(i)
d

dt
d2(x(t), Fix T ) ≤ −λ(t)‖x(t) − T (x(t))‖2, and

(ii)
d

dt
‖x(t)−x∗‖2 ≤−λ(t)(1−λ(t))‖x(t)−T (x(t))‖2−‖ẋ(t)‖2 for all x∗ ∈ Fix T .

Proof (i): Since T is nonexpansive, F := Fix T is nonempty, closed, and convex
[8, Proposition 4.13]. The chain-rule together with Proposition 3 therefore implies

d

dt
d2(x(t), F ) = 〈ẋ(t), ∇ d2(·, F )(x(t))〉

= 2〈ẋ(t), x(t) − PF (x(t))〉
= ‖ẋ(t) + x(t) − PF (x(t))‖2 − ‖ẋ(t)‖2 − ‖x(t) − PF (x(t))‖2

= ‖ẋ(t) + x(t) − PF (x(t))‖2 − λ(t)2‖x(t) − T (x(t))‖2

−‖x(t) − PF (x(t))‖2.

Since PF (x(t)) ∈ F = Fix T , Lemma 1 then gives

‖ẋ(t)+x(t)−PF (x(t))‖2 ≤ ‖x(t)−PF (x(t))‖2−λ(t) (1 − λ(t)) ‖x(t)−T (x(t))‖2.

The claimed inequality follows by combining the previous two equations.
(ii): For any x̄ ∈ Fix T , we have

d

dt
‖x(t) − x̄‖2 = 2〈ẋ(t), x(t) − x̄〉

= ‖ẋ(t) + x(t) − x̄‖2 − ‖ẋ(t)‖2 − ‖x(t) − x̄‖2.

The result then follows by combining this equality with Lemma 1.

We shall also require the following well-known, classical result.

Lemma 3 (Grönwall’s inequality) Let u : [0, +∞) → [0, +∞) be absolutely con-
tinuous. Suppose there exists α > 0 such that, for almost all t ∈ [0, +∞), we
have

d

dt
u(t) ≤ −αu(t).

Then u(t) ≤ exp(−αt)u(0) for all t ∈ [0, +∞).

The following theorem is our first main result. It shows that the dynamical system
Eq. (1) is exponentially stable when T is boundedly linearly regular.

Theorem 3 Suppose T : H → H is nonexpansive with Fix T 
= ∅ and
λ : [0, +∞) → [0, 1] is Lebesgue measurable with λ∗ := inft≥0 λ(t) > 0. Let x be
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the unique strong global solution of Eq. 1. If T is boundedly linearly regular, then
there exists x̄ ∈ Fix T and κ > 0 such that, for almost all t ∈ [0, +∞), we have

‖x(t) − x̄‖ ≤ 2 exp

(
− λ∗

2κ2
t

)
d(x0, Fix T ).

That is, the trajectory x(t) converges exponentially to x̄ as t → +∞.

Proof By Theorem 1, the trajectory x is bounded and x(t) converges weakly to a
point x̄ ∈ Fix T as t → +∞. Thus, since T is boundedly linearly regular, there exists
κ > 0 such that

d(x(t), Fix T ) ≤ κ‖x(t) − T (x(t)) ‖.

Combining this with Lemma 2(i) yields

d

dt
d2(x(t), Fix T ) ≤ −λ(t)‖x(t) − T (x(t))‖2 ≤ −λ∗

κ2
d2(x(t), Fix T ).

By applying Grönwall’s inequality (Lemma 3) to the function t �→ d2(x(t), Fix T ),
we obtain

d2(x(t), Fix T ) ≤ exp

(
−λ∗

κ2
t

)
d2(x0, Fix T ). (8)

Let x∗ ∈ Fix T be arbitrary. By Lemma 2(ii), we have d
dt

‖x(t)−x∗‖2 ≤ 0 and hence
the function t �→ ‖x(t) − x∗‖2 is nonincreasing. Assuming that s > t , we deduce

‖x(t) − x(s)‖ ≤ ‖x(t) − x∗‖ + ‖x(s) − x∗‖ ≤ 2‖x(t) − x∗‖.

Using weak lower semicontinuity of the norm and setting x∗ = PFix T (x(t)) then
gives

‖x(t) − x̄‖ ≤ lim inf
s→+∞ ‖x(t) − x(s)‖ ≤ 2 d(x(t), Fix T ). (9)

The result then follows by combining (8) and (9).

In the following theorem, we make use of the following generalisation of
Grönwall’s inequality.

Lemma 4 (Bihari–LaSalle inequality) Let u : [0, +∞) → [0, +∞) be absolutely
continuous. Suppose there exists α > 0 and γ ∈ (0, 1) such that, for almost all
t ∈ [0, +∞), we have

d

dt
u(t) ≤ −αu(t)

1
γ . (10)

Then there exists a constant M > 0 such that u(t) ≤ Mt
− γ

1−γ for all t ∈ [0, +∞).

Proof If there exists t0 ≥ 0 such that u(t0) = 0, then (10) implies that u(t) = 0 for
all t ≥ t0 and the result trivially holds. Thus, we suppose that u > 0. In this case,
since 1 − 1/γ < 0, we have

d

dt

(
u(t)

1− 1
γ +

(
1 − 1

γ

)
αt

)
=

(
1 − 1

γ

)
u(t)

− 1
γ

(
d
dt

u(t) + αu(t)
1
γ

)
≥ 0.

62   Page 8 of 18 Adv Comput Math (2021) 47: 62



Thus, since t �→ u(t)
1− 1

γ +
(

1 − 1
γ

)
αt is non-decreasing and absolutely continuous,

we have

u(t)
1− 1

γ +
(

1 − 1

γ

)
αt ≥ u(0)

1− 1
γ ≥ 0,

which implies

u(t) ≤
(

γ

α(1 − γ )

) γ
1−γ

t
− γ

1−γ .

This establishes the result and completes the proof.

The following theorem is the Hölder regular analogue of Theorem 3. It is our
second main result.

Theorem 4 Suppose T : H → H is nonexpansive with Fix T 
= ∅ and
λ : [0, +∞) → [0, 1] is Lebesgue measurable with λ∗ := inft≥0 λ(t) > 0. Let x be
the unique strong global solution of Eq. 1. If T is boundedly Hölder regular, then
there exists x̄ ∈ Fix T , M > 0 and γ ∈ (0, 1) such that, for almost all t ∈ [0, +∞),
we have

‖x(t) − x̄‖ ≤ M t
− γ

2(1−γ ) .

That is, the trajectory x(t) converges with order ρ := γ
2(1−γ )

> 0 to x̄ as t → +∞.

Proof By Theorem 1, x(t) converges weakly to a point x̄ ∈ Fix T . In particular, the
trajectory x is bounded and hence, as T is boundedly Hölder regular, there exists
κ > 0 and γ ∈ (0, 1) such that

d(x(t), Fix T ) ≤ κ‖x(t) − T (x(t)) ‖γ .

Combining this with Lemma 2(i) yields

d

dt
d2(x(t), Fix T ) ≤ −λ(t)‖x(t) − T (x(t))‖2 ≤ − λ∗

κ2/γ
d2/γ (x(t), Fix T ).

By applying the Bihari–LaSalle inequality (Lemma 4) to the function t �→
d2(x(t), Fix T ), we deduce the existence of a constant M0 > 0 such that

d(x(t), Fix T ) ≤ M0 t
− γ

2(1−γ ) .

Let x∗ ∈ Fix T be arbitrary. By using the same argument as used in Theorem 3 to
obtain (9), we deduce

‖x(t) − x̄‖ ≤ 2 d(x(t), Fix T ).

Combining the previous two inequalities gives

‖x(t) − x̄‖ ≤ M t
− γ

2(1−γ ) where M := 2M0,

which completes the proof.
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An interesting direction for further investigation would be to study convergence
rates under regularity properties for T for second-order dynamical systems. Specially,
given initial points u0, v0 ∈ H, it is natural to consider the system

{
ẍ(t) + γ ẋ(t) + λ(t) (x(t) − T (x(t))) = 0
x(0) = u0, ẋ(0) = v0

(11)

where γ > 0 and λ > 0 is as considered above.
The motivation for studying (11) is that its time discretisation leads to iterative

schemes involving inertial effects, which have had a great impact in the research com-
munity due to the works of Polyak [14], Nesterov [23, 24], etc. In the particular case
when λ(t) = 1 for all t ∈ [0, +∞), the dynamical system (11) has been investigated
in [2, Theorem 3.2] (see also [13]).

4 Further properties of regular operators

In this section, we study closure properties of the classes of boundedly lin-
early/Hölder regular operators under convex combinations and compositions. In
order to establish these properties, we shall work with the following class which
includes averaged nonexpansive operators as a special cases.

Definition 4 (Strongly quasinonexpansive operators) An operator T : H → H is
ρ-strongly quasinonexpansive (ρ-SQNE) if ρ > 0 and

‖T (x) − x∗‖2 + ρ‖x − T (x)‖2 ≤ ‖x − x∗‖2 ∀x ∈ H, ∀x∗ ∈ Fix T .

Remark 2 Although this paper will only use the results from this section applied
to averaged-nonexpansive operators, our motivation for studying SQNE operators
is twofold. Firstly, as every averaged-nonexpansive operator is also SNQE, there is
no loss of generality in considering SNQE operators. Secondly, many of the results
in this section can be seen as extensions of those in [17] which considered SNQE
operators. Thus, it is natural for us to consider the same setting.

The fixed points of SQNE operators satisfy the following properties.

Proposition 4 [16, Theorem 2.1.26] Let Ti : H → H be SQNE with a common fixed
point. Then, the identity

Fix T = ∩n
i=1 Fix Ti

holds provided that T has one of the following forms:

(i) T = ∑n
i=1 ωiTi with

∑n
i=1 ωi = 1 and ωi > 0 for all i ∈ {1, . . . , n}.

(ii) T = Tn . . . T2T1

We also require the following regularity notion for collections of sets.
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Definition 5 (Linearly regular collections of sets) A collection of sets {C1, . . . , Cn}
is linearly regular on U if there exists τ > 0 such that

d(x, ∩n
i=1Ci) ≤ τ max

i=1,...,n
d(x, Ci) ∀x ∈ U .

If the collection {C1, . . . , Cn} is linearly regular on every bounded subset of H, it is
said to be boundedly linearly regular.

Theorem 5 [17, Corollary 5.3] Let Ti : H → H be ρi-SQNE for all i ∈ {1, . . . , n}.
Assume mini=1,...,n ωi > 0,

∑n
i=1 ωi = 1 and ∩n

i=1 Fix Ti 
= ∅. Suppose the
following assertions hold.

(i) The operator Ti is boundedly linearly regular for all i ∈ {1, . . . , n}.
(ii) The collection {Fix Ti}ni=1 is boundedly linearly regular.

Then T := ∑n
i=1 ωiTi is boundedly linearly regular.

Theorem 6 [17, Corollary 5.6] Let Ti : H → H be ρi-SQNE for all i ∈ {1, . . . , n}.
Assume ∩n

i=1 Fix Ti 
= ∅ and denoteU := B(z, R) where z ∈ ∩n
i=1 Fix Ti andR > 0.

Suppose the following assertions hold.

(i) The operator Ti is linearly regular on U for all i ∈ {1, . . . , n}.
(ii) The collection {Fix Ti}ni=1 is linearly regular on U .

Then T := Tn . . . T2T1 is linearly regular on U .

The following is immediate from the definitions.

Corollary 1 Let Ti : H → H be ρi-SQNE for all i ∈ {1, . . . , n}. Assume
∩n

i=1 Fix Ti 
= ∅. Suppose the following assertions hold.
(i) The operator Ti is boundedly linearly regular for all i ∈ {1, . . . , n}.

(ii) The collection {Fix Ti}ni=1 is boundedly linearly regular.

Then T := Tn . . . T2T1 is boundedly linearly regular.

Proof Follows by combining Theorem 6 with Remark 1.

The following regularity notion is the Hölder analogue of Definition 5.

Definition 6 (Hölder regular collections of sets) A collection of sets {C1, . . . , Cn} is
Hölder regular on U if there exists τ > 0 and θ ∈ (0, 1) such that

d(x, ∩n
i=1Ci) ≤ τ max

i=1,...,n
d(x, Ci)

θ ∀x ∈ U .

If the collection {C1, . . . , Cn} is Hölder regular on every bounded subset of H, it is
said to be boundedly Hölder regular.

Lemma 5 Let 0 < γ ≤ θ and b > 0. There exists M > 0 such that αθ ≤ Mαγ for
all α ∈ [0, b].
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Proof Since θ − γ > 0 by assumption, we have αθ−γ ≤ bθ−γ . Thus, for all
α ∈ [0, b], we have αθ = αθ−γ αγ ≤ Mαγ with M = bθ−γ .

The following lemma is due to Cegielski and Zalas [18]. Since we need a slightly
different version result to one which appears in [18, Proposition 4.5], we include its
proof.

Lemma 6 Suppose Ti : H → H is ρi-SQNE for all i ∈ {1, . . . , n} and denote
T := ∑n

i=1 ωiTi where
∑n

i=1 ωi = 1 and ωi > 0 for all i ∈ {1, . . . , n}. Assume that
Fix T = ∩n

i=1 Fix Ti 
= ∅. Then
n∑

i=1

ωiρi‖x − Ti(x)‖2 ≤ 2 d(x, Fix T )‖x − T (x)‖ ∀x ∈ H.

Proof Let z = PFix T (x). Since Ti is ρi-SQNE, we have

‖T (x) − z‖2 ≤
n∑

i=1

ωi‖Ti(x) − z‖2 ≤ ‖x − z‖2 −
n∑

i=1

ωiρi‖x − Ti(x)‖2.

Using the Cauchy–Schwarz inequality, we deduce

‖T (x) − z‖2 = ‖T (x) − x‖2 + ‖x − z‖2 + 2〈T (x) − x, x − z〉
≥ ‖T (x) − x‖2 + ‖x − z‖2 − 2 d(x, Fix T )‖T (x) − x‖.

The claimed result follows by combining the previous two inequalities.

Theorem 7 Let Ti : H → H be ρi-SQNE for all i ∈ {1, . . . , n} and assume
Fix T = ∩n

i=1 Fix Ti 
= ∅. Suppose that the following assertions hold.
(i) The operator Ti is boundedly Hölder regular.

(ii) The collection {Fix Ti}ni=1 is boundedly Hölder regular.

Then T := ∑n
i=1 ωiTi is boundedly Hölder regular whenever

∑n
i=1 ωi = 1 and

ωi > 0 for all i ∈ {1, . . . , n}.

Proof Let U be a nonempty bounded set. Since Ti is boundedly Hölder regular, there
exist constants κi > 0 and γi ∈ (0, 1) such that

d(x, Fix Ti) ≤ κi‖x − Ti(x)‖γi ∀x ∈ U .

Denote γ = mini=1,...,n γi ∈ (0, 1). Since U is bounded and γ ≤ γi , Lemma 5
implies the existence of constants Mi > 0 such that

‖x − Ti(x)‖γi ≤ Mi‖x − Ti(x)‖γ ∀x ∈ U .

Denote κ = maxi=1,...,n κiMi . Then, combining the previous two inequalities gives

d(x, Fix Ti) ≤ κiMi‖x − Ti(x)‖γ ≤ κ‖x − Ti(x)‖γ ∀x ∈ U .
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Let x ∈ U and z ∈ Fix T . Set ω = minj=1,...,n ωj and set ρ = minj=1,...,n ρj . Then

ωi d(x, Fix Ti) ≤
n∑

j=1

ωj d(x, Fix Tj ) ≤ κ

n∑
j=1

ωj‖x − Tjx‖γ ,

and so convexity of t �→ t2/γ together with Lemma 6 implies

ω2/γ d2/γ (x, Fix Ti) ≤ κ2/γ
n∑

j=1

ωj‖x − Tjx‖2 ≤ 2κ2/γ

ρ
d(x, Fix T )‖x − T (x)‖. (12)

Thus, using the fact that the collection {Fix Ti}ni=1 is Hölder regular on U together
with Eq. 12, we deduce the existence of a τ > 0 and a θ ∈ (0, 1) such that

d
2

γ θ (x, Fix T ) ≤ τ
2

γ θ max
i=1,...,n

d2/γ (x, Fix Ti) ≤ τ
2

γ θ
2κ2/γ

ρω2/γ
d(x, Fix T )‖x − T (x)‖,

from which the result follows.

The following lemma is due to Cegielski and Zalas [18]. Since we need a slightly
different version result to one which appears in [18, Proposition 4.6], we include its
proof.

Lemma 7 Suppose Ti : H → H is ρi-SQNE for all i ∈ {1, . . . , n} and denote
T := Tn . . . T2T1. Assume that Fix T = ∩n

i=1 Fix Ti 
= ∅. Then
n∑

i=1

ρi‖Qi−1(x) − Qi(x)‖2 ≤ 2 d(x, Fix T )‖x − T (x)‖ ∀x ∈ H,

where we denote Q0 := Id and Qi := Ti . . . T1 for all i ∈ {1, . . . , n}.

Proof Let z = PFix T (x). Since Ti is ρi-SQNE, we have

‖T (x) − z‖2 ≤ ‖x − z‖2 −
n∑

i=1

ρi‖Qi−1(x) − Qi(x)‖2.

Using the Cauchy–Schwarz inequality, we have

‖T (x) − z‖2 = ‖T (x) − x‖2 + ‖x − z‖2 + 2〈T (x) − x, x − z〉
≥ ‖T (x) − x‖2 + ‖x − z‖2 − 2 d(x, Fix T )‖T (x) − x‖.

The claimed result follows by combining the previous two inequalities.

Theorem 8 Let Ti : H → H be ρi-SQNE for i ∈ {1, . . . , n} and let T :=
Tn . . . T2T1. Assume that Fix T = ∩n

i=1 Fix Ti 
= ∅ and denote U = B(z, R) for some
z ∈ Fix T and R > 0. Suppose that the following assertions hold.

(i) The operator Ti is Hölder regular on U for all i ∈ {1, . . . , n}.
(ii) The collection {Fix Ti}ni=1 is Hölder regular on U .

Then T is Hölder regular on U .
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Proof Denote Q0 = Id and Qi = Ti . . . T2T1 for all i ∈ {1, . . . , n}. Since Ti is
Hölder regular on U , there exist constants κi > 0 and γi ∈ (0, 1) such that

d(x, Fix Ti) ≤ κi‖x − Ti(x)‖γi ∀x ∈ U .

Denote γ = mini=1,...,n γi ∈ (0, 1). By using the same argument as in Theorem 7,
we deduce the existence of κ > 0 such that, for all i ∈ {1, . . . , n}, we have

d(x, Fix Ti) ≤ κ‖x − Ti(x)‖γ ∀x ∈ U . (13)

Let x ∈ U . Then, since Ti is ρi-SQNE for all i ∈ {1, . . . , n}, we have that

R2 ≥ ‖x − z‖2 ≥ ‖Q1(x) − z‖2 + ρ1‖Q0(x) − Q1(x)‖2

≥ ‖Q2(x) − z‖2 + ρ2‖Q1(x) − Q2(x)‖2 + ρ1‖Q0(x) − Q1(x)‖2

...

≥ ‖T (x) − z‖2 +
n∑

i=1

ρi‖Qi−1(x) − Qi(x)‖2.

From this, it follows that Qi(x) ∈ U for all i ∈ {1, . . . , n} and that

max
i=1,...,n

‖Qi−1(x) − Qi(x)‖ ∈
[

0,
R√
ρ

]
where ρ = min

i=1,...,n
ρi .

By Lemma 5, there exists a constant μ > 0 such that, for all i ∈ {1, . . . , n}, we have

‖Qi−1(x) − Qi(x)‖ ≤ μ‖Qi−1(x) − Qi(x)‖γ for all x ∈ U . (14)

Set M := max{μ, κ} and j ∈ {1, . . . , n}. Applying the triangle inequality,
followed by Eqs. 13 and 14, gives

d(x, Fix Tj ) ≤ ‖x − PFix Tj
(Qj−1(x))‖

≤ ‖x − Q1(x)‖ + ‖Q1(x) − Q2(x)‖ + . . .

+ ‖Qj−1(x) − PFix Tj
(Qj−1(x))‖

≤ ‖x − Q1(x)‖ + ‖Q1(x) − Q2(x)‖ + · · · + κ‖Qj−1(x) − Qj(x)‖γj

≤ M

n∑
i=1

‖Qi−1(x) − Qi(x)‖γ .

Set ρ := mini=1,...,n ρi . Using convexity of t �→ t2/γ followed by Lemma 7, we
deduce

d2/γ (x, Fix Tj ) ≤ n(γ/2−1)M2/γ
n∑

i=1

‖Qi−1(x) − Qi(x)‖2

≤ 2n(γ/2−1)M2/γ

ρ
d(x, Fix T )‖x − T (x)‖. (15)

Thus, using the fact that the collection {Fix Tj }nj=1 is Hölder regular on U together
with (15), we deduce the existence of a τ > 0 and a θ ∈ (0, 1) such that
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d
2

γ θ (x, Fix T ) ≤ τ
2

γ θ max
j=1,...,n

d2/γ (x, Fix Tj )

≤ 2n(γ/2−1)M2/γ τ
2

γ θ

ρ
d(x, Fix T )‖x − T (x)‖.

The result then follows on observing that γ θ
2−γ θ

< 1 as γ, θ ∈ (0, 1).

Corollary 2 Let Ti : H → H be ρi-SQNE for all i ∈ {1, . . . , n}. Assume
∩n

i=1 Fix Ti 
= ∅. Suppose the following assertions hold.

(i) The operator Ti is boundedly Hölder regular for all i ∈ {1, . . . , n}.
(ii) The collection {Fix Ti}ni=1 is boundedly Hölder regular.

Then T := Tn . . . T2T1 is boundedly Hölder regular.

Proof Follows by combining Theorem 8 with Remark 1.

5 Convergence rates for combinations and compositions

In this section, we further refine the results from Section 3. More precisely, we con-
sider the dynamical system (1) in the setting when the operator T can be expressed
in terms of a convex combination or a composition of operators Ti : H → H for
i ∈ {1, . . . , n} with ∩n

i=1 Fix Ti 
= ∅. In other words, we consider the system

ẋ(t) = λ(t) (T (x(t)) − x(t)) , (16)

where T is given by ether:

(i) T = ∑n
i=1 ωiTi with

∑
i=1 ωi = 1 and ωi > 0 for all i ∈ {1, . . . , n}, or

(ii) T = Tn . . . T2T1.

Situations of this kind naturally arise in the study of continuous-time projection
algorithms for solving the feasibility problem. This problem asks for a point in the
intersection of closed, convex constraints C1, . . . , Cn. In the simplest such algo-
rithm, the method of cyclic projections, Ti = PCi

where PC denotes the nearest point
projector onto a set C given by

PC(x) = {c ∈ C : ‖x − c‖ ≤ ‖x − z‖ ∀z ∈ C},
and T = PCn . . . PC2PC1 is the cyclic projections operator. Another example is
provided by Douglas–Rachford methods in which each operator Ti is a Douglas–
Rachford operator of the form

Id +(2PCj
− Id)(2PCl

− Id)

2
= Id +PCj

(2PCl
− Id) − PCl

for pair indices j, l ∈ {1, . . . , n}. For further details on projection algorithms (with
H potentially infinite dimensional) in linearly regular settings, see [9, 17], and in
Hölder regular settings, see [11].
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We obtain the results in this section by combining the results from the previous
two sections. To do so, we require the following class of operators which are both
nonexpansive and strongly quasinonexpansive.

Definition 7 (Averaged nonexpansive [5]) An operator T : H → H is α-averaged
nonexpansive if α ∈ (0, 1) such that one of the following two equivalent properties
holds.

(i) There exists a nonexpansive operator R : H → H such that T = (1−α) Id +αR.
(ii) For all x, y ∈ H, we have

‖T (x) − T (y)‖2 + 1 − α

α
‖(Id −T )(x) − (Id −T )(y)‖2 ≤ ‖x − y‖2.

Note that it is immediate from the respective definitions that an α-averaged
operator is ρ-SQNE with ρ = (1 − α)/α.

Corollary 3 Let Ti : H → H be αi-averaged nonexpansive with ∩n
i=1 Fix Ti 
= ∅.

Suppose λ : [0, +∞) → [0, 1] is Lebesgue measurable with inft≥0 λ(t) (1 − λ(t)) >

0. Let x be the unique strong global solution of Eq. 16. Furthermore, suppose that
the following assertions hold.

(i) The operator Ti is boundedly linearly regular for i ∈ {1, . . . , n}.
(ii) The collection {Fix Ti}ni=1 is boundedly linearly regular.

Then there exist x̄ ∈ ∩n
i=1 Fix Ti and constants M, r > 0 such that, for almost all

t ∈ [0, +∞), we have

‖x(t) − x̄‖ ≤ M exp(−rt).

In particular, the trajectory x(t) converges strongly to x̄ as t → +∞.

Proof By either Theorem 5 or Corollary 1, the operator T is boundedly Hölder
regular. The result then follows by Theorem 3.

Corollary 4 Let Ti : H → H be αi-averaged nonexpansive with ∩n
i=1 Fix Ti 
= ∅.

Suppose λ : [0, +∞) → [0, 1] is Lebesgue measurable with inft≥0 λ(t) (1 − λ(t)) >

0. Let x be the unique strong global solution of Eq. 16. Furthermore, suppose that
the following assertions hold.

(i) The operator Ti is boundedly Hölder regular for all i ∈ {1, . . . , n}.
(ii) The collection {Fix Ti}ni=1 is boundedly Hölder regular.

Then there exists x̄ ∈ ∩n
i=1 Fix Ti , M > 0 and γ ∈ (0, 1) such that, for almost all

t ∈ [0, +∞), we have

‖x(t) − x̄‖ ≤ M t
− γ

2(1−γ ) .

In particular, the trajectory x(t) converges strongly to x̄ as t → +∞.
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Proof By either Theorem 7 or Corollary 2, the operator T is boundedly Hölder
regular. The result then follows by Theorem 4.
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