
https://doi.org/10.1007/s10444-021-09888-1

An O (N) algorithm for computing expectation
of N -dimensional truncated multi-variate normal
distribution I: fundamentals

Jingfang Huang1 · Jian Cao2 ·Fuhui Fang1 ·Marc G. Genton2 ·

David E. Keyes2 ·George Turkiyyah3

Received: 29 December 2020 / Accepted: 22 July 2021 /

© The Author(s), under exclusive licence to Springer Science+BusinessMedia, LLC, part of Springer Nature 2021

Abstract

In this paper, we present the fundamentals of a hierarchical algorithm for comput-

ing the N -dimensional integral φ(a, b; A) =
∫ b

a
H(x)f (x|A)dx representing the

expectation of a function H(X) where f (x|A) is the truncated multi-variate normal

(TMVN) distribution with zero mean, x is the vector of integration variables for the

N -dimensional random vector X, A is the inverse of the covariance matrix Σ , and

a and b are constant vectors. The algorithm assumes that H(x) is “low-rank” and is

designed for properly clustered X so that the matrix A has “low-rank” blocks and

“low-dimensional” features. We demonstrate the divide-and-conquer idea when A is

a symmetric positive definite tridiagonal matrix and present the necessary building

blocks and rigorous potential theory–based algorithm analysis when A is given by

the exponential covariance model. The algorithm overall complexity is O(N) for N -

dimensional problems, with a prefactor determined by the rank of the off-diagonal

matrix blocks and number of effective variables. Very high accuracy results for N

as large as 2048 are obtained on a desktop computer with 16G memory using the

fast Fourier transform (FFT) and non-uniform FFT to validate the analysis. The cur-

rent paper focuses on the ideas using the simple yet representative examples where

the off-diagonal matrix blocks are rank 1 and the number of effective variables is

bounded by 2, to allow concise notations and easier explanation. In a subsequent

paper, we discuss the generalization of current scheme using the sparse grid tech-

nique for higher rank problems and demonstrate how all the moments of kth order or

less (a total of O(Nk) integrals) can be computed using O(Nk) operations for k ≥ 2

and O(N log N) operations for k = 1.

Communicated by: Leslie Greengard

* Jingfang Huang

huang@email.unc.edu

Extended author information available on the last page of the article.

Published online: 1 September 2021

Adv Comput Math (2021) 47: 65

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-021-09888-1&domain=pdf
http://orcid.org/0000-0002-6720-8389
mailto: huang@email.unc.edu

Keywords Exponential covariance model · Fourier transform · Hierarchical

algorithm · Low-dimensional structure · Low-rank structure · Truncated

multi-variate normal distribution

Mathematics Subject Classification (2010) 03D20 · 34B27 · 62H10 · 65C60 ·
65D30 · 65T40

1 Introduction

In this paper, we study the efficient computation of the expectation of a function

H(X) given by

φ(a, b; A) =
∫ b

a

H(x)f (x|A)dx

=
∫ b1

a1

· · ·
∫ bN

aN

H(x)|Σ|−1/2(2π)−N/2e− 1
2

xT AxdxN · · · dx1, (1)

where the N -dimensional random vector X = (X1, . . . , XN)T follows the truncated

multivariate normal distribution (TMVN), f (x|A) is the N -dimensional multivari-

ate Gaussian probability density function with zero mean and covariance matrix Σ ,

A is the inverse of the symmetric positive definite (SPD) N × N covariance matrix

Σ , x is the integration variable, and the integration limits are a = (a1, . . . , aN)T

and b = (b1, . . . , bN)T which form a hyper-rectangle in R
N . The efficient compu-

tation of φ is very important for many applications, including those in spatial and

temporal statistics and in the study of other high-dimensional random datasets where

the Gaussian distribution is commonly used; see [1–9] and references therein. Due

to the “curse of dimensionality,” direct evaluation of this N -dimensional integral

using standard quadrature rules is computationally demanding (and impossible for

many settings using today’s supercomputers). Classical Newton-Cotes or Gaussian

quadrature schemes work well when N ≤ 4 ∼ 6. Under proper assumptions of the

integrand, the sparse grid techniques [10–12] can accurately integrate a function with

N ≤ 10 ∼ 20 variables. In practical applications, as N can be as large as several

thousands, most existing schemes either assume simple models (e.g., Σ is tridiago-

nal), or rely on the Monte Carlo methods. A good review of existing techniques can

be found in [13]; also see [14–30].

The purpose of this paper is to present a new algorithm for the fast evaluation of

a more general class of the N -dimensional integrals when there exist special struc-

tures in H and A (or equivalently in Σ). In many applications, the function H(x)

is “low-rank” and when the physical distance or pseudo-distance is defined in the

model, the correlations between well-separated datasets are often low-rank and low-

dimensional, i.e., if the data is properly clustered, the corresponding matrix A has

hierarchical low-rank blocks with “low-dimensional” singular vectors in their singu-

lar value decompositions. Finding and computing these properties in A have been

extensively studied: Classical re-ordering algorithms often perform well when the

65 Page 2 of 34 Adv Comput Math (2021) 47: 65

number of variables N is in the order of several thousands. There exist efficient clus-

tering and pre-processing algorithms for compressing the symmetric positive definite

matrices to reveal their low-rank and low-dimension structures for much larger N

values [31, 32]. The classical matrix decomposition algorithms (e.g., SVD or rank-

revealing QR decompositions) in numerical linear algebra can easily handle a matrix

when N ≤ 1000 ∼ 10, 000, and when Σ has low-rank properties, |Σ|−1/2 can

be evaluated efficiently using existing low-rank linear algebra techniques [33–36].

Therefore in this paper, we ignore the details of the data clustering, computation of

|Σ|−1/2, and decomposition of the matrices to simplify our discussions. We focus

on the high-dimensional (very large N) integration problem when both the rank K

of the off-diagonal matrix blocks and number P (P ≥ K) of the effective variables

are bounded by a constant independent of N . The main contribution of this paper

is a new hierarchical algorithm which achieves asymptotically optimal O(N) com-

plexity, by utilizing the compact features and efficiently processing them “locally”

on a hierarchical tree structure. We leave the mathematical rigorous definitions of the

“low-rank” and “low-dimensional” concepts to later sections.

This paper presents the ideas, algorithm analysis, and implementation details for

two representative matrices: (a) when A is a tridiagonal SPD matrix; and (b) when A

has the same form as the covariance matrix in the exponential covariance model in

the one dimensional setting. In case (b) when A is the exponential covariance matrix,

the original covariance matrix Σ = A−1 is approximately a tridiagonal system. Case

(a) can be generalized to a banded matrix with bandwidth 2K + 1, and case (b) can

be considered a hierarchical generalization of the diagonal and reduced rank correla-

tion matrices (see p. 16 in [13]). Both matrices in (a) and (b) are special cases of the

H-matrices [34, 35]. In the new algorithm, a downward pass is first performed on a

hierarchical tree structure, by introducing a number K = rank (off-diagonal matrix)

of t-variables to divide the parent problem (involving a function with P “effective”

variables) into two child problems, each involving a function with no more than P

“effective” variables. The relation coefficients between the parent’s effective vari-

ables, new t-variables, and children’s effective variables are constructed and stored

for each tree node. At the leaf level, as the tree leaf node only contains one xj -

variable, the one-dimensional integral is evaluated either analytically or numerically,

and then approximated numerically by a proper function of the effective variables.

An upward pass is then performed, recursively forming the approximating function

of the parent with P effective variables from its two children’s functions. The func-

tion value φ in Eq. (1) is simply given by the constant function (with “null variables”)

at the root level of the tree structure. The presented hierarchical algorithm shares

many similar features as many existing fast hierarchical algorithms in scientific com-

puting, including the classical fast Fourier transform (FFT) [37], multigrid method

(MG) [38, 39], fast multipole method (FMM) [40, 41], and fast direct solvers (FDS)

and hierarchical matrix (H-matrix) algorithms [33–36].

As the new algorithm requires the approximation, interpolation, and integration

of a function with both the t- and (compressed) effective variables for each tree

node, the prefactor of the O(N) algorithm complexity grows rapidly when K + P

increases. Therefore, the application of the new scheme is limited by the current

capability in scientific computing to handle K + P dimensional functions. We have

Page 3 of 34 65Adv Comput Math (2021) 47: 65

K = 1 and P = 2 for the two cases (a) and (b), which allow the efficient applications

of existing FFT [42] and non-uniform FFT (NUFFT) solvers [43–45] for function

manipulations when the dimension is 4 or less. These two cases are sufficient for

presenting the ideas, revealing the internal connections of the algorithm with tra-

ditional elliptic partial differential equation theory, demonstrating the accuracy and

efficiency of the algorithm, and identifying any numerical stability issues. We focus

on these two cases in this paper, and present more technical and optimal implemen-

tation details in a subsequent paper, where we introduce the sparse grid technique for

K + P ≤ 10 ∼ 20.

This paper is organized as follows. In Section 2, we introduce the mathematical

definitions of the “low-rank” and “low-dimensional” concepts and discuss a class of

targeted application problems. In Section 3, we present a hierarchical algorithm for

computing the expectations of the TMVN distributions with compressible features.

In particular, in Section 3.1, we present the details when A is a tridiagonal matrix

which is a representative case of banded matrices. In Section 3.2, we show how the

algorithm can be generalized to the case when A has the same form as the exponential

covariance matrix in a one-dimensional setting which is a representative case of the

more general H-matrices with low-rank and low-dimensional structures. We present

the rigorous analysis using potential theory from ordinary and partial differential

equation analysis, as many covariance models are closely related with the Green

functions and integral equation solutions of the boundary value elliptic differential

equations. The parent’s and children’s “effective” variables and their relations in the

banded matrix cases are explicitly available, while they have to be analyzed through

a downward pass for the exponential covariance matrix and more general H-matrix

cases. We also discuss how the algorithm can be generalized to more complicated

cases as well as its current limitations. In particular, our algorithm implementa-

tion relies heavily on existing numerical tools and software packages for accurately

processing multi-variable functions, and many of these tools are unfortunately still

unavailable even when the number of independent variables is approximately 5 ∼ 20,

e.g., high-dimensional non-uniform FFT is currently only available when the number

is ≤ 3 and existing sparse grid solvers need revisions to better handle the numerical

stability issues for large N values. We leave the detailed discussions of these topics in

a subsequent paper. In Section 4, numerical results are presented to demonstrate the

accuracy, stability, and O(N) complexity of the new hierarchical algorithm for the

tridiagonal and exponential cases. Finally, in Section 5, we summarize our results.

2 Low-rank low-dimensional properties in high-dimensional datasets

2.1 Definitions of low-rank and low-dimensional properties

Our algorithm can be applied to a function H(x) with the following structure,

H(x) =
K

∑

k=1

uk,1(x1)uk,2(x2) · · · uk,N (xN) =
K

∑

k=1

N
∏

n=1

uk,n(xn), (2)

65 Page 4 of 34 Adv Comput Math (2021) 47: 65

where K is assumed to be a small constant independent of N , and each function uk,n

is a univariate and not necessarily continuous function. As the separation of variables

H(x, y) =
K

∑

k=1

uk(x)vk(y)

can be considered as the non-orthogonalized function version of the singular value

matrix decomposition

Hm×n = Um×K3K×KV T
K×n,

we refer to a function H with a representation in Eq. (2) as a low-rank (rank-K)

function. Practical determination of the rank of a given multi-variable function H(x)

(or the discretized tensor) and finding its canonical decomposition are still consid-

ered open problems in multilinear algebra. Plugging Eq. (2) into Eq. (1), the original

problem of evaluating φ now becomes the evaluations of K integrals; each has the

form

φk(a, b; A) = c

∫ b1

a1

· · ·
∫ bN

aN

N
∏

n=1

uk,n(xn) exp

(

−
1

2
xT Ax

)

dxN · · · dx1. (3)

We focus on φk in the following discussions, and simply denote φk as φ.

For the inverse A of the covariance matrix Σ , we assume it belongs to a class

of hierarchical matrices (H-matrices) [34, 35] with low-rank off-diagonal blocks.

A sample hierarchical matrix after 2 (left) and 3 (right) divisions is demonstrated

in Fig. 1, where the blue square block represents the self-correlation within each

cluster of random variables Xn, and the green block shows the correlation between

two different clusters. We define a cluster in the original domain as a set of indices

of the column vectors, and a cluster in the target space as a set of indices of the row

vectors. The correlation between the cluster S of the original domain and cluster T

of the target space is described by the matrix block formed by only extracting the

T -entries from the S-columns. We consider H-matrices with low-rank off-diagonal

blocks, by assuming that the ranks of all the off-diagonal blocks are bounded by a

constant K , which is independent of the block matrix size. We use K to represent

the rank of a function or matrix in this paper, and the rank K of the off-diagonal

blocks can be different from the rank K in Eq. (2). In numerical linear algebra, “low-

rank off-diagonal block” means that the off-diagonal block Ai,j of size n × n has the

following singular value decomposition

Ai,j ≈ Ui,j3i,jV
T
i,j ,

where U and V are of size n×K (K << n) and respectively contain the orthonormal

vectors in the target space and original domain, and 3 is a size K×K diagonal matrix

with ordered and non-negative diagonal entries. A more general low-rank definition

can be found in [46], which requires K to satisfy both a preset approximation error

tolerance for ||A − U3V T || and the condition K ≤ n
2

. As the random variables

{Xn, n = 1, . . . , N} are clustered hierarchically, we index the block matrices Ai,j

differently from those commonly used in matrix theory to emphasize this hierarchical

structure in the H-matrix, where i represents the level of the matrix block, and j

is its index in that particular level. The original matrix A is defined as the level 0

Page 5 of 34 65Adv Comput Math (2021) 47: 65

matrix. After the 1st division, the 4 matrix blocks are indexed (1, 1), (1, 2), (1, 3),

and (1, 4). The diagonal matrix blocks will be further divided and the off-diagonal

matrices become leaf nodes to form an adaptive quad-tree structure. In the left of

Fig. 1, the matrix A1,2 denotes the second matrix block at level 1, representing the

correlations between the second cluster in the original domain and first cluster in the

target space. For the covariance matrix, as the target space and original domain are

one and the same, the indices of the random variables X (and integration variables

x) will be used to cluster the indices of both the target space and original domain, to

form a uniform binary tree structure. In the following, we focus on the integration

variables {xn, n = 1, . . . , N}, which are referred to as the x-variables.

Next, we consider the “low-dimensional” concept, by studying a function with M

t-variables t1, t2, . . ., tM of the form

F(t1u1 + t2u2 + · · · + tMuM).

When the dimension P of the vector space span{u1, u2, . . . , uM } is much less than

M , P << M , we say F is a “low-dimensional” function. Assuming the basis for

the vector space span{u1, u2, . . . , uM } is given by {v1, v2, . . . , vP }, the function F

can be considered an “effective” P -variable function, where the new w-variables

{w1, w2, . . . , wP } are combinations of the t-variables and satisfy the relation

w1v1 + w2v2 + · · · + wP vP = t1u1 + t2u2 + · · · + tMuM .

A similar low-dimensional concept was used in the field of multivariate statis-

tics, i.e., the effective dimension reducing space (EDR-space) in the “sliced inverse

regression” (SIR) technique; see [47] and references therein.

2.2 Low-rank and low-dimensional features in applications

The low-rank and low-dimensional structures exist in many practical systems. The

well studied low-rank concept measures the rank of a matrix block and is closely

related with the principal component analysis in statistics and singular value decom-

position (SVD) in numerical linear algebra. When the data are properly clustered,

Fig. 1 H-matrix after 2 (left) and 3 (right) divisions, with low-rank off-diagonal blocks (green)

65 Page 6 of 34 Adv Comput Math (2021) 47: 65

e.g., by using the physical location or pseudo-distance of the data points, the “inter-

actions” between well-separated data blocks are often “smooth” and the covariance

matrix block describing the relations between the two clusters becomes low-rank.

Both the storage of a low-rank matrix block and related operations can be reduced

significantly using today’s low-rank linear algebra techniques.

The low-dimensional property in this paper considers the special structures in

the singular vectors of the SVD decomposition of the low-rank off-diagonal blocks.

Consider two clusters of x-variables and the space formed by extracting all the corre-

sponding sub-vectors describing the relations of these two clusters from the singular

vectors in the SVD decompositions of all the off-diagonal matrices. When the covari-

ance matrix is defined by a covariance function using the spatial or temporal locations

(or pseudo-locations) zs and zt of the corresponding random “source” variables Xs

and “target” variables Xt , the covariance function is often “smooth” and only con-

tains “low-frequency” information when s 6= t , it can be well approximated by a

few terms of truncated Taylor expansion (or other basis functions) when a separation

of variables is performed on the covariance function determined by the two location

variables zs and zt . In this case, all the singular vectors are the discretized versions

of the polynomial basis functions at locations corresponding to the cluster index sets.

The dimension of the space formed by these singular vectors is therefore determined

by the highest degree of the polynomial basis functions. When the ui vectors are

extracted from these singular vectors, the function F(t1u1 + t2u2 + · · · + tMuM)

will be low-dimensional and the number of effective variables is also determined by

the highest degree of the polynomial basis functions. The special structures in the

singular vectors were also used in [36, 48, 49]. The low-rank and low-dimensional

concepts will be further studied in the next section.

Finding, extracting, and computing the low-rank and low-dimensional features in

A have been extensively studied. Classical clustering algorithms often perform well

when the number of variables N is in the order of several thousands. For larger N

values, there exist efficient pre-processing algorithms for compressing the symmetric

positive definite matrices to reveal its compressible features [31, 32]. The classi-

cal rank-revealing matrix decomposition algorithms (e.g., SVD or rank-revealing

QR decompositions) in numerical linear algebra can easily handle a matrix when

N ≤ 1000 ∼ 10, 000, and there exist randomized algorithms [50] or analysis-based

techniques (e.g., separation of variables) to more efficiently extract the compressible

features for larger N values. When Σ has low-rank properties, algebraic operations

on Σ (e.g., Σ−1 and |Σ|−1/2) can be computed efficiently using existing low-rank

linear algebra techniques [33–36]. Therefore, in this paper, we ignore the details of

the well-studied data clustering, computation of |Σ|−1/2, and decomposition of the

matrices in the pre-processing step. We assume the entries in the matrix A are opti-

mally clustered to reveal the low-rank and low-dimensional features in the underlying

model, and both the extracted rank K of the off-diagonal matrix blocks and num-

ber P of the effective variables are bounded by a constant independent of N . We

focus on one of the main challenges in today’s high-dimensional data analysis —

the integration of high-dimensional functions with compressible features. Without

Page 7 of 34 65Adv Comput Math (2021) 47: 65

these compressible features, computation is simply impossible due to the “curse of

dimensionality”.

3 A fast hierarchical algorithm for computing TMVN expectations

In this section, we study two systems with low-rank and low-dimensional features:

(a) when A is tridiagonal and (b) when A is the dense exponential covariance matrix

in one-dimension. Case (a) is a representative example of banded matrices and the

matrices in both cases are special H-matrices with low-rank off-diagonal blocks. In

Section 3.3, we discuss the algorithm for more general H-matrices.

3.1 Case I: Tridiagonal system

We demonstrate the basic ideas of the hierarchical algorithm for a simple symmetric

positive definite tridiagonal system

A =





















a1,1 a1,2 0 . . . 0

a2,1 a2,2 a2,3 0 . . 0

0 a3,2 a3,3 a3,4 0 . 0

.

.

.

0 . . . 0 aN,N−1 aN,N





















N×N

(4)

where ai,j = aj,i . We assume N = 2L and first consider a constant function H(x)

to simplify the notations and discussions. The algorithm for more general low-rank

H(x) in Eq. (3) only requires a slight change in the code for the leaf nodes, which

will become clear after we present the algorithm details for the simplified integration

problem

φ(a, b; A) =
∫ b1

a1
· · ·

∫ bN

aN
e− 1

2
xT AxdxN · · · dx1

=
∫ b

a e
− 1

2

(

a1,1x
2
1+···ak,kx

2
k +2ak,k+1xkxk+1+ak+1,k+1x

2
k+1+···+aN,N x2

N

)

dx,
(5)

where k = 2L−1 = N/2. The tridiagonal matrix is a very special H-matrix, where

each off-diagonal matrix block only contains one non-zero number either at the

lower-left or upper-right corner of the matrix block and is rank 1. The singular vec-

tors are either ui = [1, 0, 0, . . . , 0]T or ui = [0, 0, . . . , 0, 1]T . For any given cluster

of indices, the number of effective variables in t1u1 + t2u2 +· · ·+ tMuM is therefore

no more than 2, and the only non-zero numbers are located either at the first or last

entry in the singular vectors u1, u2, . . ., uM .

Divide and conquer on a hierarchical tree Note that the x-variables [x1, . . . , xk]
and [xk+1, . . . , xN] are coupled in the integrand only through the term (ak,k+1 +
ak+1,k)xkxk+1 = 2ak,k+1xkxk+1. If this “weak coupling” term had not been there,

65 Page 8 of 34 Adv Comput Math (2021) 47: 65

then we would have two completely decoupled “child problems,” and the integral

could be evaluated as

∫ b
a e

− 1
2

(

a1,1x
2
1+···ak,kx

2
k+ak+1,k+1x

2
k+1+···+aN,Nx2

N

)

dx

=
(

∫ b1

a1
· · ·

∫ bk

ak
e− 1

2

(

a1,1x
2
1
+···+ak,kx

2
k

)

dxk · · · dx1

)

·
(

∫ bk+1

ak+1
· · ·

∫ bN

aN
e
− 1

2

(

ak+1,k+1x
2
k+1

+···+aN,Nx2
N

)

dxN · · · dxk+1

)

.

If the same assumptions could be made to each “child problem,” then the high-

dimensional integral would become the product of N one-dimensional integrals.

A convenient tool to decouple the x-variables in order to have two child problems

is to use the Fourier transform formula for the Gaussian distribution as

e− 1
2
(x+y)2 = c

∫ ∞

−∞
eit (x+y)e− 1

2
t2

dt = c

∫ ∞

−∞
eitxeitye− 1

2
t2

dt (6)

where i =
√

−1 and c = 1√
2π

. Equation (6) presents the key idea of our algorithm:

By introducing one additional t-variable, the xy coupling on the left-hand side is

decoupled on the right-hand side. Completing the square in Eq. (5) and applying the

key observation in Eq. (6) to the resulting (
ak,k+1

γ
xk + γ xk+1)

2 term (in red) in the

integral, we get

φ(a, b; A) =
∫ b

a
e
− 1

2

(

a1,1x
2
1+···+ak,kx

2
k +2ak,k+1xkxk+1+ak+1,k+1x

2
k+1+···+aN,Nx2

N

)

dx

=
∫ b

a e
− 1

2

(

···+(ak,k−(
ak,k+1

γ)2)x2
k+(

ak,k+1
γ xk+γ ·xk+1)

2+(ak+1,k+1−γ 2)x2
k+1+···

)

dx

= c
∫ ∞
−∞ e−t2

h1,1(t)h1,2(t)dt

where h1,1(t) and h1,2(t) are both single t-variable functions given by

h1,1(t) =
∫ b1

a1
· · ·

∫ bk

ak
e
− 1

2

(

a1,1x
2
1+···(ak,k−(

ak,k+1
γ)2)x2

k +2i
ak,k+1

γ xk t
)

dxk · · · dx1,

h1,2(t) =
∫ bk+1

ak+1
· · ·

∫ bN

aN
e
− 1

2

(

2iγ xk+1t+(ak+1,k+1−γ 2)x2
k+1+···+aN,Nx2

N

)

dxN · · · dxk+1,

the blue and red terms are where completing the square is applied, and γ is a number

to be determined by the algorithm so that the children’s matrices representing the

quadratic forms of

a1,1x
2
1 + · · ·

(

ak,k −
(

ak,k+1

γ

)2
)

x2
k and (ak+1,k+1 − γ 2)x2

k+1 + · · · + aN,Nx2
N

are also positive definite, respectively. The existence of γ is guaranteed by Theorem 4

in the Appendix; however, its solution is not unique. One strategy is to choose γ

so that the positive definiteness of the two children’s problems is “balanced”. The

optimal choice of this parameter will be further studied in subsequent papers. Note

that the x-variables in the original problem (associated with a root node at level 0

of a binary tree structure) are divided into two subsets of the same size, each set is

associated with a “child node” and a single t-variable function h1,k(t), k = 1 or

k = 2.

Page 9 of 34 65Adv Comput Math (2021) 47: 65

By introducing two new t-variables t1,1 and t1,2 for the functions h1,1 and

h1,2, respectively, the same technique can be applied to decouple the x-variables

[x1, . . . , x k
2
] and [x k

2
+1, . . . , xk] in h1,1(t) and x-variables [xk+1, . . . , x 3k

2
] and

[x 3k
2 +1

, . . . , xN] in h1,2(t), to derive

h1,1(t) = c

∫ ∞

−∞
e
−t2

1,1h2,1(t1,1)h2,2(t1,1, t)dt1,1

h1,2(t) = c

∫ ∞

−∞
e
−t2

1,2h2,3(t, t1,2)h2,4(t1,2)dt1,2.

Repeating this procedure recursively on the hierarchical tree structure derived by

recursively dividing the parent’s x-variable set into two child subsets of the same size,

an h-function hl,k will be defined for each tree node, where {l, k} is the index of the

tree node defined in the same way as that of the x-variable sets. One can show that

for a parent node with index p, its h-function hp(tl, tr) (with at most two t-variables

tl and tr) can be computed from the two child functions hc1
(tl , tm) and hc2

(tm, tr)

(each with at most two t-variables) by integrating the t-variable tm used to decouple

the parent problem using Eq. (6) as

hp(tl, tr) = c

∫ ∞

−∞
e−t2

mhc1
(tl, tm)hc2

(tm, tr)dtm. (7)

At the finest level when the x-variable set only contains one x-variable xj , the two

t-variable function is given by

hleafxj
(tl, tr) = c

∫ bj

aj

e
−ηx2

j −ixj (αtl−βtr)dxj

where η ≥ 0 and α and β are constants. For each boundary node in the tree structure,

its associated h-function only involves one t-variable as the other becomes a null

variable. In Fig. 2, we show the detailed decoupling procedure and the functions hj,k

when N = 8 where the matrix A entries are ai,i = 4 and ai−1,i = ai,i+1 = −2. In

the formulas, the first index j of tj,k indicates the level at which the new t-variable is

introduced, and the second index k is its index at this level, ordered from bottom (left

boundary of x-variables) to top (right boundary). The parameter γ (used to separate

Fig. 2 A three-level partition that decomposes the original N -dimensional (N = 8) integral

65 Page 10 of 34 Adv Comput Math (2021) 47: 65

the parent’s problem into two child problems) is chosen so that η = 0 for all interior

leaf nodes and η = 1 for the two boundary nodes. Note that the positive definiteness

is not balanced for this particular simple choice.

Remark: Each parent’s h-function has no more than two t-variables, and it can

be computed using the two children’s h-functions, each with no more than two t-

variables, as shown in Eq. (7). Note that the decoupling process is performed on

a hierarchical binary tree structure, by introducing one new t-variable and dividing

parent’s x-variable set into two children’s subsets of the same size. As there are a

total number of O(N) tree nodes and one new t-variable is introduced for each node,

so the total number of t-variables is also O(N). However, as the depth of the tree

is O(log N), so a total number of O(log N) t-variables will be introduced for each

tree branch from the root to leaf level. More importantly, as the singular vectors are

either ui = [1, 0, 0, . . . , 0]T or ui = [0, 0, . . . , 0, 1]T , for a tree node containing a

particular set of x-variable indices from xj+1 to xj+k , there are at most two non-zero

vectors in the vector set {u1, u2, . . . , uM}, with the non-zero entry located either at

the first or the last entry in one of the two non-zero singular vectors of size k. The

number of effective variables in t1u1 + t2u2 + · · · + tMuM is therefore no more than

2, and

[xj+1, xj+2, . . . , xj+k] · (t1u1 + t2u2 + · · · + tMuM) = i(αxj+1tl + βxj+k tr)

for some constants α and β. Therefore, all the h-functions in the hierarchical tree

structure have no more than two effective variables (explicitly given by the t-variables

in the tridiagonal case) and are “low-dimensional” functions.

Algorithm details. Notice that in Eq. (7) because of the rapid decay of the weight

function e−t2
, one only needs to accurately approximate the function h(tl , tr) in the

region [−7, 7]2. In our algorithm implementation, we define a filter function

filter(x, ǫ) =
1

2

(

erf(
x/7 + 1.5

ǫ
) − erf(

x/7 − 1.5

ǫ
)

)

where we set ǫ = 1
14

so that the function is approximately filter ≈ 1 when −7 <

x < 7 (1 − filter(7, 1
14

) = 2.09e − 23), and smoothly decays to filter ≈ 0 at ±14

(filter(14, 1
14

) = 2.09e − 23) , as shown in Fig. 3.

Fig. 3 Filter function in −14 < x < 14

Page 11 of 34 65Adv Comput Math (2021) 47: 65

This filter function is a particular smoothed “top-hat” function which is also

referred to as a “bell” function in wavelet and local Fourier basis theory; see [51] and

references therein. At a leaf node, the integral is computed analytically either using

∫ b

a

e−x2−2ixtdx =
1

2

√
π

(

Fadd(ia − t)e−a2−2iat − Fadd(ib − t)e−b2−2ibt
)

when η > 0 or
∫ b

a

e−2ixtdx =
i

2t

(

e−2ibt − e−2iat
)

when η = 0, and then evaluated at a set of uniformly distributed (2M)2 sample

points in [−14, 14]2 for the two t-variables. The function values are then filtered by

the pointwise multiplication with the filter function for each variable. The Fourier

series of the leaf node function, when needed, can be derived by a 2D FFT using

the filtered function values. In the formula, we use the Faddeeva function [52–55]

defined as Fadd(z) = e−z2
erfc(−iz) for a complex number z, to avoid the possible

overflow/underflow when computing small e−t2
times large erf(a + it) values. An

upward pass is then performed to recursively compute the parent’s filtered function

hp values at the Fourier interpolation points using its children’s filtered function

values at different tl , tm, and tr interpolation points through 5 steps: (i) multiplying

two children’s values at each sample point; (ii) point-wise multiplication with the

filter function; (iii) applying the 1D fast Fourier transform (FFT) to the tm variable

in the region [−14, 14] to get the 2M Fourier coefficients from the filtered function

values at each tl, tr interpolation point; (iv) the parent’s h-function value at each tl
and tr interpolation point is derived by applying the formula

1
√

π

∫ ∞

−∞
e−t2

eikπt/Ldt = e
− k2π2

4L2

to integrate the Fourier series expansion of tm variable from (iii) analytically; and (v)

the function values will be further filtered. If needed, a 2D FFT can be performed to

derive the parent’s Fourier series expansion coefficients. Note that the Fourier series

in the region [−14, 14]2 can be extended periodically to the whole space (−∞, ∞)2

as such extension will only introduce an error within machine precision when eval-

uating the integral in Eq. (7). At the root node, its h-function returns the φ value we

are searching for.

The algorithm for efficiently evaluating Eq. (5) can be summarized as the follow-

ing two passes. In the downward pass, the parent problem is explicitly decoupled by

applying the Fourier transform to the coupling term, to obtain two child problems. At

the finest level, a function with two t-variables is created for each leaf node followed

by an upward pass to obtain each parent’s function values at the Fourier interpolation

points from those of its two children’s functions. At the root level, the constant func-

tion (with null t-variables) gives the result of the integral in Eq. (5). The recursively

implemented Matlab code for the upward pass is presented in Algorithm 1 (Table 1).

65 Page 12 of 34 Adv Comput Math (2021) 47: 65

Table 1 Algorithm 1: Recursive Matlab function for evaluating Eq. (5): upward pass

Generalization to banded matrices. The algorithm for the tridiagonal matrix (with

rank = 1 off-diagonal matrix blocks) can be generalized to a more general banded

matrix with bandwidth 2K + 1 (with rank = K off-diagonal matrix blocks) after

the following modifications. First, instead of introducing one t-variable, a length K

of t-variable vector has to be introduced to separate the parent’s problem into two

children’s problems. Second, the parameter γ becomes a K × K matrix transla-

tion operator, which can be computed numerically. Third, the number of effective

variables in the function for each tree node may become as large as P = 2K . Con-

sequently, the transformation to get parent’s function from its two children requires a

mapping from two functions each with P ≤ 2K effective variables to a new function

of P ≤ 2K effective variables. We denote this children-to-parent mapping as C2P ,

which is the most time-consuming part in the algorithm.

Although each C2P translation only requires a constant number of operations,

the constant grows rapidly when the parameters K and P increase. Note that the

classical fast Fourier transform is mostly designed for problems in ≤ 4 dimensions;

therefore, when P ≈ 5 ∼ 10, FFT is no longer applicable and the sparse grid

or sparse Fourier transform needs to be applied [10–12, 56]. We present the sparse

grid-based algorithm analysis and numerical implementation details in a subsequent

paper.

Page 13 of 34 65Adv Comput Math (2021) 47: 65

3.2 Case II: Exponential matrix

We demonstrate the ideas for a more general H-matrix with low-rank and low-

dimensional features by considering a matrix A defined by the exponential covari-

ance function

Ai,j = e−|zi−zj |/β , β > 0. (8)

To simplify the discussions, we consider a simple 1D setting from spatial or temporal

statistics and assume that the rate of decay β = 1 and each random number Xj

is observed at a location zj ∈ [0, bz]. We assume the z-locations {zj ∈ [0, bz],
j = 1, . . . , N = 2L} are ordered from smallest to largest and the matrix entries are

ordered accordingly. We demonstrate how to evaluate the N -dimensional integral

φ(a, b; A) =
∫ b

a

f (x|A)dx =
∫ b1

a1

· · ·
∫ bN

aN

exp

(

−
1

2
xT Ax

)

dxN · · · dx1 (9)

for the given constant vectors a and b using O(N) operations. Results for different

β values can be derived by rescaling the z-locations and x-variables. The presented

algorithm can be easily generalized to
∫ b

a H(x)f (x|A)dx when H(x) is a low-rank

function.

Similar to the tridiagonal matrix case, we generate a binary tree by recursively

dividing the parent’s z-location set (or equivalently the x-variable set) into two child

subsets, each containing exactly half of its parent’s points. The hierarchical binary

tree is then reflected as a hierarchical matrix as demonstrated in Fig. 1. Unlike the

(uniform) binary tree generated for the z-location set, the corresponding structure in

the matrix sub-division process can be considered as an adaptive quad-tree, where

only the diagonal blocks of the matrix are subdivided. Once an off-diagonal block is

generated, it becomes a leaf node and no further division is required. Because of the

hierarchical structure of the matrix and low-rank properties of the off-diagonal blocks

(which will be discussed next), the exponential matrix is a representative H-matrix.

Divide and conquer on a hierarchical tree Unlike the tridiagonal system, each off-

diagonal matrix in this case is a dense matrix. For this exponential matrix, all the

off-diagonal matrices are rank-1 matrices, which can be seen from the separation of

variables

e−|z−y| =
{

e−zey , z ≥ y

eze−y , z < y

In matrix language, the off-diagonal block A1,3 can be written as

[A1,3(yi, zj)] = [e−yN/2+1, . . . , e−yN]T [ez1, . . . , ezN/2] (10)

for i = N/2 + 1, . . . , N and j = 1, . . . , N/2. The singular value decomposition of

A1,3 can be easily derived using Eq. (10) as

A1,3 = uλvT

where the left and right singular vectors u and v are of size N
2

× 1 and are the

normalized vectors of the discretized functions e−y and ez, respectively.

65 Page 14 of 34 Adv Comput Math (2021) 47: 65

When the x-variables are divided into 2 subsets x1,1 and x1,2, the root matrix A

can be subdivided accordingly into 4 blocks

A =
[

A1,1 A1,2 = vλuT

A1,3 = uλvT A1,4

]

, x =
[

x1,1

x1,2

]

,

where the first index of Ai,j is the current level of the block matrix and the second

index is its order in this level. The same indexing rules are used for the z-locations

and x-variables. Completing the square, the quadratic form in the integrand can be

reformulated as

where the first two green terms are the child problems to be processed recursively

at finer levels in the divide-and-conquer strategy, γ is a constant to be determined,

and the last red term shows how the two child problems are coupled. Similar to the

tridiagonal case, by introducing a single t-variable and applying the Fourier transform

formula in Eq. (6) to the coupling term (in red), we get

∫ b

a
e− 1

2
xT Axdx = c

∫ ∞
−∞ e−t2

h1,1(t)h1,2(t)dt

where h1,1(t) and h1,2(t) are the single t-variable functions for the two child nodes

given by

h1,1(t) =
∫ b1

a1
· · ·

∫ bk

ak
e
− 1

2 xT
1,1(A1,1− λ

γ 2
vvT)x1,1+it

√
2λ
γ vT x1,1

dx1,1,

h1,2(t) =
∫ bk+1

ak+1
· · ·

∫ bN

aN
e
− 1

2 xT
1,2(A1,4−γ 2λuuT)x1,2−it

√
2λγ uT x1,2dx1,2.

(11)

Note that the x-variables are completely decoupled in the two child problems, and

the coupling is now through the single t-variable.

In order to have a divide-and-conquer algorithm on the hierarchical tree structure,

the two child problems should have the following properties:

– By properly choosing the parameter γ , the new matrices A1,1− λ

γ 2 vvT and A1,4−
γ 2λuuT should be symmetric positive definite.

– The off-diagonal blocks of these new matrices should be low-rank.

The choice of γ is not unique, and there exist a range of γ values for the child

problems to have these properties. We use γ̃ to represent the “optimal” γ . The choice

of γ̃ and potential theory–based rigorous analysis are presented in the Appendix.

Here we only point out that all the matrix blocks are the discretized Green’s functions

for certain ODE boundary value problems. These Green’s functions are always in the

form of

G(z, y) =
{

coef · gr (z) · gl(y), z ≥ y,

coef · gr (y) · gl(z), z < y.

Page 15 of 34 65Adv Comput Math (2021) 47: 65

For the root level, coef = 1
2
, gl(z) = ez−1 and gr (z) = e1−z.

Parent-children relations In the matrix form, for a general parent node at level l in

the hierarchical tree structure with left child 1 and right child 2, its h-function

hp(tp) =
∫ bp

ap

e− 1
2 xT

pApxpeitTpDpxpdxp (12)

can be decomposed into two child problems as

hp(tp) =
1

√
π

∫ ∞

−∞
e−t2

newh1(t1)h2(t2)dtnew,

where

h1(t1) =
∫ b1

a1
e− 1

2 xT
1 A1x1eitnewγ̃ gT

l (z1)·x1eitTpDp,1x1dx1 =
∫ b1

a1
e− 1

2 xT
1 A1x1eitT1 D1x1dx1,

h2(t2) =
∫ b2

a2
e− 1

2 xT
1 A2x1e

itnew
1
γ̃

gT
r (z2)·x2eitTpDp,2x2dx2 =

∫ b2

a2
e− 1

2 xT
2 A2x2eitT2 D2x2dx2.

In the formulas, tp is the vector containing all the t-variables introduced at coarser

levels to subdivide p’s parents’ h-functions. xp = [x1; x2], x1, and x2 are respectively

the vectors containing the x-variables of the parent p, child 1, and child 2. {ap, bp},
{a1, b1}, and {a2, b2} are respectively the lower and upper integration bounds of xp,

x1, and x2. Ap =
[

Al,1 Al,2

Al,3 Al,4

]

, A1, and A2 are respectively the matrices in the

quadratic forms (corresponding to certain discretized Green’s functions as discussed

in the Appendix) of the parent p, child 1, and child 2, which satisfy

A1 = Al,1 − γ̃ 2 · gl(z1) · gT
l (z1), A2 = Al,4 −

1

γ̃ 2
· gr (z2) · gT

r (z2),

zp = [z1; z2], z1, and z2 are respectively the z-location vectors of the parent p and

child 1 and 2, and gl(z1) and gr (z2) are the discrete function values of gl(z) and gr (z)

in the parent’s Green’s function evaluated at different z-locations. We use gl(z1) and

gr (z2) (instead of u and v) in the notations to emphasize the relations between the

matrices and discretized Green’s functions; see details in the Appendix. tTpDpxp is a

scalar term representing the linear combination of the tk · xj terms, and by separating

the x-variables, it can be written as

tTpDpxp = tTpDp,1x1 + tTpDp,2x2.

After introducing the new t-variable tnew to divide the parent’s problem to two sub-

problems of child 1 and child 2, each with half of the parent p’s x-variables, we have

t1 = [tp; tnew], t2 = [tp; tnew], and
{

tT1 D1x1 = tTpDp,1x1 + tnewγ̃ gT
l (z1) · x1,

tT2 D2x2 = tTpDp,2x2 + tnew
1
γ̃

gT
r (z2) · x2.

(13)

For the root node, Ap is the given matrix A and tp is an empty set. At a leaf node,

we have

hleaf (tleaf) =
∫ bk

ak

e− 1
2 αkx

2
k e

i(tTleaf Dleaf)xkdxk

65 Page 16 of 34 Adv Comput Math (2021) 47: 65

where Dleaf is a column vector of the same size as tleaf (the size equals to the

number of levels in the hierarchical tree structure). Analytical formula is available

for evaluating hleaf (tleaf) using

∫ b

a

e−x2

e−2itx dx = 1

2

√
πe−t2

(erf(b + it) − erf(a + it)). (14)

Dimension reduction and effective variables Note that for a node at level l, its

h-function h(t) will contain as many as l t-variables introduced at parent levels.

Therefore for a N -dimensional problem, the number of t-variables for a leaf node can

be as many as log(N). However, inspecting the term (tTleaf Dleaf)xk for the function

hleaf (tleaf), if one introduces a new single variable w = tTleaf Dleaf , then hleaf is

effectively a single variable function of w. We therefore study the effective variables

and their properties next.

From Eq. (13), we see that when a new t-variable tnew is introduced to divide the

parent problem into two child problems, the additional terms added to the linear terms

of the x-variables in the exponent are tnew γ̃ gT
l (z1)·x1 for child 1 and tnew

1
γ̃

gT
r (z2)·x2

for child 2, where gl(z1) and gr(z2) are the discrete function values of gl(z) and gr (z)

in the Green functions evaluated at different z-locations. For all the Green functions,

gl(z) and gr (z) are always a combination of the basis functions ez and e−z. This can

be seen from the ODE problems or Green’s functions in the Appendix. Therefore,

switching the basis to ez and e−z, the term tT Dx can always be written as

tT Dx = (w1e
z + w2e

−z)T · x, (15)

where ez and e−z are the vectors derived by evaluating the functions ez and e−z at the

z-locations. Clearly, after this change of variables from t-variables to {w1, w2}, each

h-function is effectively a function with no more than 2 variables. We define w1 and

w2 as the effective w-variables.

Our numerical experiments show that at finer levels of the hierarchical tree struc-

ture when the interval size of the tree node becomes smaller, the two basis functions

ez and e−z are closer to linear dependent which will cause numerical stability issues.

For better stability properties, orthogonal or near-orthogonal basis functions are used.

A sample basis is {Φ1(z) = cosh(z − c), Φ2(z) = sinh(z−c)
b−a

} when the z-locations

of the x-variables are in the interval [a, b]. When c is the center of the interval, the

two functions are orthogonal to each other when measured using the standard L2

norm with a constant weight function. For a parent node with effective w-variables

{wp

1 , w
p

2 } and basis functions {8p

1 , 8
p

2 }, where the vector 8 represents the dis-

cretized Φ(z) at the z-locations, in the divide-and-conquer strategy, the effective

w-variables should satisfy the relations
{

w
p

1 Φ
p

1 + w
p

2 Φ
p

2 + tnew γ̃ gl(z) = w1
1Φ

1
1 + w1

2Φ1
2 ,

w
p

1 Φ
p

1 + w
p

2 Φ
p

2 + tnew
1
γ̃
gr (z) = w2

1Φ2
1 + w2

2Φ2
2 ,

(16)

where {Φp

1 , Φ
p

2 }, {Φ1
1 , Φ1

2 }, and {Φ2
1 , Φ2

2 } are respectively the continuous (or dis-

crete) basis for the parent, child 1, and child 2, and {w1
1, w1

2} and {w2
1, w2

2} are the

effective w-variables of child 1 and child 2, respectively. In the Appendix, we present

Page 17 of 34 65Adv Comput Math (2021) 47: 65

detailed formulas demonstrating the relations between parent p’s and children’s

effective w-variables for the basis choice {cosh(z − c), sinh(z−c)
b−a

}.
In the tridiagonal case discussed in Section 3.1, we only need to study the h-

functions when their t-variables satisfy |tj | < 7, as outside the interval the integrand

value is controlled by the factor e
−t2

j and hence can be neglected. Similar results can

be obtained for the exponential case, when a proper set of basis is chosen. Assuming

all the z-locations are approximately uniformly distributed in the interval [0, 1], we

have the following theorem for the effective w-variables w1 and w2.

Theorem 1 Assume the N × N matrix A is defined by the exponential covariance

function, the z-locations are uniformly distributed in the interval [0, 1], and all the t-

variables satisfy |tj | < 7. When the basis functions are chosen as {Φ1(z) = cosh(z−
c), Φ2(z) = sinh(z−c)

b−a
} for each tree node, then there exists a constant C independent

of N , such that the corresponding effective w-variables w1 and w2 (combination of

the t-variables) satisfy the conditions |w1| ≤ C and |w2| ≤ C.

The proof of this theorem is simply the leading order analysis of the parent-

children effective w-variable relations, and the fact that cos(h) = 1 + h2

2
+ O

(

h4
)

,
sinh(h)

2h
= 1

2
+ h2

12
+ O

(

h4
)

, sinh
(

h
2

) √
sinh(h)csch(2h)csch(h) =

√
h

2
√

2
− 7h5/2

48
√

2
+

O
(

h9/2
)

, and
∑L

k=0

√

1
2k <

√
2 + 2, where L is the number of levels in the tree

structure. We skip the proof details. Interested readers can request a copy of our

Mathematica file for further details. We point out that when the basis functions are

chosen as {ez, e−z}, the effective w-variables become unbounded.

Remark: In the numerical implementation, instead of using the upper bound C

for a tree node j , the ranges C
j

1 and C
j

2 of the effective w-variables w1 and w2 are

computed using the parent-children effective w-variable relations in Eq. (16) and

stored in the memory. Similar to the tridiagonal case, a filter function is applied to the

h-functions so that the filtered function smoothly decays to zero in the region |w1| ∈
[C1, 2C1] or |w2| ∈ [C2, 2C2]; see Fig. 3. Then, the Fourier series of the filtered

h-function is constructed in the region [−2C1, 2C1] × [−2C2, 2C2], and finally the

constructed Fourier series is expanded periodically to the whole space when deriving

parent’s h-function values. In the algorithm implementation, when the uniform FFT

[42] can no longer be applied, we use the open-source NUFFT packages developed

in [43–45] to accelerate the computation of the Fourier series.

Pseudo-algorithm. Similar to the tridiagonal case, the algorithm can be sum-

marized as the following two passes: In the downward pass, the parent problem is

decoupled by applying the Fourier transform to the coupling term, to obtain two

child problems. Six coefficients {c1, c2, c3, c4, c5, c6} are derived so that the effective

w-variables of the current node satisfy

w1 = c1w
p

1 + c2w
p

2 + c3tnew, w2 = c4w
p

1 + c5w
p

2 + c6tnew, (17)

where w
p

1 and w
p

2 are the parent’s effective w-variables. Also, the ranges C1 and C2

of the effective w-variables w1 and w2 are computed. A total of 8 numbers are stored

for each node. Note that both the storage and number of operations are constant for

65 Page 18 of 34 Adv Comput Math (2021) 47: 65

each tree node. The pseudo-algorithm is presented in Algorithm 2 (Table 2), where

the details of computing the 8 numbers for each node are presented in the Appendix.

At the finest level, a function with one effective variable is constructed analyti-

cally using Eq. (14). A numerically equivalent two-variable {wleaf

1 , w
leaf

2 } Fourier

series expansion is then constructed by evaluating the analytical solution at the inter-

polation points, applying the filter function, and then applying FFT to derive the 2D

Fourier series expansion which is considered valid in the whole space. An upward

pass is then performed, to obtains each parent’s Fourier coefficients from those of

its two children’s functions. For each parent node, we first replace the child’s effec-

tive w-variables with w
p

1 , w
p

2 , and tnew using Eq. (17) and the 6 numbers from the

downward pass, then evaluate each child’s global Fourier series at the uniform inter-

polation points of w
p

1 , w
p

2 , and tnew (determined by the ranges C1 and C2 from the

downward pass, we set the range of tnew to 7). In this step, we have to use the NUFFT

as the 8 numbers for different tree nodes are different so the uniform FFT is not

applicable. Multiplying the two children’s function values and filter function values

at each interpolation point, we then apply the FFT to the tnew variable and derive the

Fourier series of tnew at each w
p

1 and w
p

2 interpolation point. The integral

hp(w
p

1 , w
p

2) = 1
√

π

∫ ∞

−∞
e−t2

newh1h2dtnew

is then evaluated analytically at each w
p

1 and w
p

2 interpolation point. Finally, another

2D FFT is performed to derive the coefficients of hp . At the root level, the constant

function (with no t-variables) gives the result of the integral. In the implementa-

tion, as we use unified formulas for both the boundary nodes and interior nodes, the

two functions leftbdry and rightbdry become unnecessary; see Appendix for details.

Table 2 Algorithm 2: Recursive Matlab function for exponential case: downward pass

Page 19 of 34 65Adv Comput Math (2021) 47: 65

Except for the detailed implementations in the functions leafnode, root, and interiorn-

ode, the recursively implemented Matlab algorithm for the upward pass is identical

in structure as the presented Algorithm 1 for the tridiagonal case; we therefore skip

the pseudo-code.

The algorithm complexity can be computed as follows. In both the upward pass

and downward pass, constant numbers of operations and storage are required for each

tree node. The overall algorithm complexity and memory requirement are therefore

both asymptotically optimal O(N) for the N -dimensional integration problem. We

also mention that the storage for the Fourier coefficients of the h-function at a specific

node can be allocated only when necessary, and released right after the node sends the

information to its parent. Therefore, the storage required for the Fourier coefficients

is only a constant independent of N .

3.3 General H (x) andH-matrices with low-rank and low-dimensional features

In both the tridiagonal and exponential cases, we present the algorithm for the case

H(x) = constant . For a general H with low-rank properties, i.e.,

H(x) =
P

∑

p=1

N
∏

k=1

up,k(xk),

as P is a small number, we can evaluate the expectation of each p term
∏N

k=1 up,k(xk)

and then add up the results. As the x-variables are already separated in the repre-

sentation, the downward decoupling process can be performed the same as that in

the tridiagonal or exponential case. At the finest level, the leaf node’s function hleaf

becomes

hleaf (tleaf) =
∫ bk

ak

up,k(xk)e
− 1

2 αkx
2
k e

i(tTleaf Dleaf)xk dxk.

Note that analytical formula is in general not available for evaluating hleaf , a numer-

ical scheme has to be developed to compute the Fourier coefficients of hleaf . This is

clearly numerically feasible as the integral is one-dimensional and hleaf is effectively

a single-variable function.

Next, we consider more general A matrices. We restrict our attention to the

symmetric positive definite H-matrices, and discuss the required low-rank and low

-dimensional properties in order for our method to become asymptotically optimal

O(N). A minimal requirement from the algorithm is that the off-diagonal matrices

should be low rank. For example, the ranks of the off-diagonal matrices for both the

tridiagonal and exponential cases discussed in previous sections are one. More gener-

ally, consider a parent’s matrix A with low rank off-diagonals and the corresponding

x-variables,

A =
[

Al,1 Al,2 = V3UT

Al,3 = U3VT Al,4

]

, x =
[

xl,1

xl,2

]

,

65 Page 20 of 34 Adv Comput Math (2021) 47: 65

where the first index l is the current level of the block matrices and point sets, and

we assume rank(3) = K . Then we can rewrite the quadratic term in the exponent

of the integrand as

where the first two green terms are the child problems to be processed recursively at

finer levels after we use a number K of t-variables to decouple the xl,1 and xl,2 vari-

ables using Eq. (6). Clearly, the number of effective P variables cannot be smaller

than K . There are several issues that need to be addressed in this divide-and-conquer

strategy. First, the K × K constant matrix B should be chosen so that the resulting

children’s matrices are also symmetric positive definite. As the choice of B is not

unique, its computation is currently done numerically using numerical linear alge-

bra tools, and we are still searching for additional conditions so that we can have

uniqueness in B and better numerical stabilities in the algorithm. Second, consider

a covariance matrix of a general data set, compared with the original off-diagonal

matrix blocks in Al,1 and Al,4, the numerical rank of the off-diagonal blocks of the

new child matrices Al,1 − VB−13B−T VT and Al,4 − UBT 3BUT , may increase.

In the worst case, the new rank can be as high as the old rank plus K . When this

happens, the number of t-variables required will increase rapidly when decoupling

the finer level problems, and the number P of effective variables also increases

dramatically. Fortunately, for many problems of interest today, the singular vectors

U and V also have special structures. For example, the singular vectors are either

ui = [1, 0, 0, . . . , 0]T or ui = [0, 0, . . . , 0, 1]T for the tridiagonal case, or are com-

binations of the discretized basis functions ez and e−z for the exponential case. The

number P of effective variables for both cases are therefore no more than two. More

generally, when the off-diagonal covariance function can be well-approximated by a

low-degree polynomial expansion using the separation of variables, then the singu-

lar vectors are just the discretized versions of these polynomials, therefore the rank

of all the old and new off-diagonal matrix blocks cannot be higher than the num-

ber of the polynomial basis functions, and the number P of effective variables is

also bounded by this number. In numerical linear algebra language, this means that

all the left (or right) singular vectors of the off-diagonal blocks belong to the same

low-dimensional subspace, so that the singular vectors of the new child matrices

Al,1 −VB−13B−T VT and Al,4 −UBT 3BUT can be represented by the same set of

basis vectors in the subspace. For problems with this property, our algorithm can be

generalized, by numerically finding the relations between the effective variables in

the downward pass, and finding the parent’s function coefficients using its children’s

in the upward pass. The numerical complexity of the resulting algorithm remains

asymptotically optimal O(N).

Page 21 of 34 65Adv Comput Math (2021) 47: 65

The presented algorithm can be applied to very large-dimension N problems as

long as the transformation from the two children’s functions to the parent’s (each

function has P effective variables and the transformation also involves K t-variables)

can be computed using existing multi-variable function manipulating tools. When

both K and P (P ≥ K) are bounded by a constant independent of N , the algorithm

achieves O(N) complexity. However, the prefactor grows rapidly when the rank K

of the off-diagonal blocks and number P of the effective variables increase. We pre-

sented the results when P ≤ 2 in this paper and apply the fast algorithms such as the

FFT and NUFFT to accelerate the computation. However, due to the curse of dimen-

sionality, the complexity of the FFT grows exponentially when K and P increase,

and as far as we know, existing NUFFT tools are only available in 1, 2, and 3 dimen-

sions. In a subsequent paper, we apply the sparse grid ideas [10–12, 57] to further

compress the approximation, interpolation, and integration operators of the multi-

variable h-functions when P + K increases to 5 ∼ 20. The prefactor in a sparse grid

implementation heavily depends on the compressibility properties of the h-function

and accuracy requirement. When P + K > 20, as far as we know, current direct

integration techniques become impractical. Finally, as the condition number of the

problem increases exponentially as N increases in any direct evaluation technique,

it is important to have very accurate representations of the h-functions for the hier-

archical tree nodes so reasonable accurate results are possible in higher dimensions.

We are currently studying possible strategies to overcome these hurdles, by studying

smaller matrix blocks so the rank can be lower, and more promisingly, by coupling

the Monte Carlo approach with our divide-and-conquer strategy [8]. Results along

these directions will be reported in subsequent papers.

4 Preliminary numerical results

We present some preliminary results to demonstrate the accuracy and efficiency of

the numerical algorithm for the tridiagonal system in Eq. (5) and exponential case

in Eq. (8). All numerical tests are performed on a desktop computer with Intel Xeon

CPU E3-1225 v6 @3.30GHz and 16.00G RAM.

4.1 Tridiagonal case

In the numerical experiment, we consider the matrix with ai,i = 4 and off-

diagonal entries ai−1,i = ai+1,i = −2. The integration interval parameters a′
is

are set to −1, b1 = 0.5, b2 = 2, and all other b′
is to +1. We first study the

accuracy of the algorithm. For N = 4, we compute a reference solution using

Mathematica with PrecisionGoal → 30 and WorkingP recision → 60, the

result is φ = 2.2893342150887782603. For N = 8, Mathematica returns the

result φ = 6.6242487478171897 with an estimated error 4.25e − 5, even though

PrecisionGoal → 20 and WorkingP recision → 40 are requested. For N > 8,

direct computation using Mathematica simply becomes impossible. In Table 3, we

show the Matlab results for different dimensions N and numbers of terms 2M in

the Fourier series expansion. For all cases, our results converge when M increases.

65 Page 22 of 34 Adv Comput Math (2021) 47: 65

Table 3 Computed φ values for different dimensions and number of Fourier terms

4 8 16

16 2.326607912389401 6.736597967982384 56.44481808043047

32 2.289334215119377 6.624246691958165 55.44625398858155

64 2.289334215088778 6.624246691490006 55.44625397830180

128 2.289334215088779 6.624246691490009 55.44625397830178

256 2.289334215088778 6.624246691490005 55.44625397830176

512 2.289334215088778 6.624246691490003 55.44625397830172

Mathematica 2.289334215088778 6.6242487±4.25e-5 N/A

32 64 1024

16 3962.697712673563 19531008.87334120 1.182324449792241e+118

32 3884.575992952042 19067179.07844248 1.019931849681238e+118

64 3884.575991340509 19067179.06178229 1.019931834748418e+118

128 3884.575991340506 19067179.06178229 1.019931834748411e+118

256 3884.575991340500 19067179.06178224 1.019931834748369e+118

512 3884.575991340498 19067179.06178220 1.019931834748320e+118

For N = 4, our result matches Mathematica result to machine precision as soon as

enough Fourier terms are used. For N = 8, our converged results agree with Math-

ematica result in the first 10 digits, and we strongly believe our results are more

accurate.

We demonstrate the efficiency of our algorithm by presenting the Matlab simula-

tion time for different dimensions. In the experiment, we present the CPU times for

different M and N values, and the unit is in seconds. Clearly, the CPU time grows

approximately linearly as the dimension N increases. As a 3-variable {tl , tm, and tr }
function has to be processed in the current implementation when finding the parent’s

values at the Fourier interpolation points, the CPU time grows approximately by a

factor of 8 as M doubles (Table 4).

Our algorithm requires O(N) memory storage with a prefactor only depending

on K and P (at most quadratically). For the tridiagonal system, the required stor-

age is approximately 12N + 4(2M + 1)2, where the 12N stores the generated tree

structure and 4(2M + 1)2 stores the parent and its two children’s Fourier expansion

coefficients.

4.2 Exponential case

The N z-location points are randomly chosen in [0, 1] and sorted. A uniform tree

is then generated by recursively subdividing the z-locations and corresponding x-

variables, and the same settings of a and b are used as in the tridiagonal case. We first

study the accuracy of the algorithm. For N = 4, we compute a reference solution

φ = 9.63128791560604001 using Mathematica, with an estimated error 5.99e − 8.

For N = 8, Mathematica returns the result φ = 1.16750673314578e + 02 with an

Page 23 of 34 65Adv Comput Math (2021) 47: 65

Table 4 CPU time (in seconds) for different N and M values

4 8 16 32 64

32 0.01 0.02 0.05 0.11 0.27

64 0.02 0.08 0.26 0.63 1.52

128 0.02 0.59 2.25 6.05 14.6

256 0.05 6.31 20.3 54.2 114

128 256 512 1024 2048

32 0.58 0.92 2.26 4.75 9.44

64 3.33 6.69 13.3 26.6 54.1

128 29.4 62.8 127 255 531

256 249 516 1084 2170 4401

estimated error 0.064. For N > 8, direct computation using Mathematica becomes

impossible. In Table 5, we show the Matlab results for different dimensions N when

2M Fourier series terms are used in the approximation. The error tolerance for the

NUFFT solver is set to 1e−12. For all cases, our results converge when M increases.

For both N = 4 and N = 8, our converged results match those from Mathematica

within the estimated error from Mathematica.

In the current implementation, as the exponential case involves operations on a

3-variable function f un(w
p

1 , w
p

2 , tnew) for each child when forming the parent’s

Fourier series expansion, while both the storage and operations for the tridiagonal

case can be compressed so one only works on 2-variable functions (variables {tl, tm}
for child 1 and {tm, tr } for child 2); the exponential solver therefore requires more

Table 5 Computed φ values for different dimensions and numbers of Fourier terms, exponential case

4 8 16

16 9.646301617204299 118.8260790816760 21594.43676761628

32 9.631244805483258 116.7475848966488 17592.18271523017

64 9.631287915305332 116.7505122381643 17591.75082916860

128 9.631287915311097 116.7505122544810 17591.75095515863

256 9.631287915311061 116.7505122544801 17591.75095515877

Mathematica 9.6312879156±6e-8 116.7506733±0.064 N/A

32 64 128

16 1131582930.741270 4.332761307147880e+18 7.074841023044070e+37

32 550963842.9679267 1.046292247268069e+18 9.380354831605098e+36

64 540456718.9698794 8.163524406713720e+17 3.432262767034514e+36

128 540456737.4129881 8.163182314210313e+17 3.394537652388589e+36

256 540456737.4129064 8.163182314206217e+17 3.394537652164628e+36

65 Page 24 of 34 Adv Comput Math (2021) 47: 65

Table 6 CPU time (in seconds) for different M and N values, exponential case

4 8 16 32 64

M = 32 1.03 2.96 6.67 14.1 29.2

M = 64 8.06 23.4 53.8 115 238

M = 128 65.2 191 445 949 1965

128 256 512 1024 2048

M = 32 59.4 119 244 471 951

M = 64 491 988 1924 3889 7766

M = 128 4049 8029 16068 32465 65073

operations and memory than the tridiagonal case. When 2048 Fourier terms are used

for the w
p

1 , w
p

2 , and tnew variables in the exponential case, the required storage for

f un(w
p

1 , w
p

2 , tnew) becomes 2048 × 2048 × 2048 which is approximately 64G.

Remark: We explain the large errors when M = 16 (and M = 32) for large

N values. When the dimension of the problem increases, its condition number also

increases exponentially. For each leaf node, if we assume the numerical solution has

a relative error ǫ in each leaf node function hleaf , in the worst case, the relative error

for the N -dimensional integral can be approximated by (1+ǫ)N−1 as the N leaf node

functions will be “multiplied” together in the upward pass to get the final integral

value. Clearly, the condition number of the analytical problem grows exponentially as

N increases. In our current implementation, we set the error tolerance of the NUFFT

solver to 10−12 relative error. Therefore, a very rough estimate for the error when

N = 128, assuming M is large enough so the leaf node function hleaf is resolved to

machine precision, is given by (1 +10−12)128 ≈ 1 +10−10, i.e., at most 10 digits are

correct if the worst case happens. Our numerical results show that for the same N

value, all the converged results match at least in the first 10 significant digits in Table 5.

We demonstrate the efficiency of our algorithm by presenting the Matlab simula-

tion time for different M and N values, and the unit for the CPU time is in seconds.

The current Matlab code has not been fully vectorized or parallelized, and significant

performance improvement in the prefactor of the O(N) algorithm is expected from

a future optimized code. However, the numerical results in Table 6 using our exist-

ing code sufficiently and clearly show the asymptotic algorithm complexity: the CPU

time grows approximately linearly as the dimension N increases, and it increases by

a factor of approximately 8 as M doubles.

5 Conclusions

The main contribution of this paper is an asymptotically optimal O(N) algorithm for

evaluating the expectation of a function H(X)

φ(a, b; A) =
∫ b

a

H(x)f (x|A)dx,

Page 25 of 34 65Adv Comput Math (2021) 47: 65

where f (x|A) is the truncated multi-variate normal distribution with zero mean for

the N -dimensional random vector X, when the off-diagonal blocks of A are “low-

rank” with “low-dimensional” features and H(x) is “low-rank”. In the algorithm, a

downward pass is performed to obtain the relations between the parent’s and chil-

dren’s effective variables, followed by an upward pass to construct the h-functions

for each node on the hierarchical tree structure. The function at the tree root returns

the desired expectation. Numerical results are presented to demonstrate the accuracy

and efficiency of the algorithm. In a subsequent paper, we demonstrate how the cur-

rent algorithm structure allows very efficient computation of the expectations of all

the 0th, 1st, and 2nd moments, as well as the generalization of current scheme using

the sparse grid techniques for higher off-diagonal matrix rank and larger number of

effective variables.

Appendix: Potential theory–based analysis

The covariance matrix and covariance functions are often related to the solutions of

elliptic partial differential equations. In the following, we apply the potential theory

from the analysis of ordinary and partial differential equations and show how the

divide-and-conquer strategy can be successfully performed on the hierarchical tree

structure when A is the exponential matrix. A statistical analysis–based approach

for a general H-matrix with rank 1 off-diagonals is presented in Theorem 4. Purely

numerical linear algebra–based approaches for more general cases will be addressed

in subsequent papers.

Green’s functions: We present the results for bz = 1 to simplify the notations and

assume zj ∈ [0, 1]. We start from the observation that

G(z, y) =
1

2
e−|z−y| =

{

coef · gr (z) · gl(y), z ≥ y,

coef · gr (y) · gl(z), z < y

is the domain Green’s function of the ordinary differential equation (ODE) two-point

boundary value problem

{

u(z) − u′′(z) = f (z), z ∈ [0, 1],
u(0) = u′(0), u(1) = −u′(1),

(18)

where coef = 1
2

, gl(z) = ez−1 and gr (z) = e1−z. The proof is a straightfor-

ward validation that u(z) =
∫ 1

0 G(z, y)f (y)dy satisfies both the ODE and boundary

conditions.

In the following discussions, we consider the continuous version of the original

matrix problem, where the matrix A is the discretized Green’s function G(z, y), the

two off-diagonal submatrices A1,2 and A1,3 are the discretized gr (z)·gl(y) and gr (y)·
gl(z), respectively. Some simple algebra manipulations show that the submatrices

A1,1 − λ

γ 2 vvT and A1,4 − γ 2λuuT can be considered as the discretized G(z, y) −

γ̃ 2 · gl(z) · gl(y) and G(z, y) − 1
γ̃ 2 · gr (z) · gr (y), and the coefficients it

√
2λ
γ

vT and

65 Page 26 of 34 Adv Comput Math (2021) 47: 65

it
√

2λγ uT for the linear terms of the x-variables x1,1 and x1,2 in Eq. (11) are the

discretized it γ̃ gl(z) and it 1
γ̃
gr (z), respectively.

Remark: The observation also allows easy proof of the positive definiteness of the

matrix A, which is the discretized Green’s function G(z, y). In order to show that for

any vector f 6= 0, the quadratic form satisfies 1
2

fT Af > 0, we consider its continuous

version defined as
∫ 1

0

f (z)

(

∫ 1

0

G(z, y)f (y)dy

)

dz =
∫ 1

0

f (z)u(z)dz

where u(z) =
∫ 1

0 G(z, y)f (y)dy and f (y) is the continuous version of the (dis-

cretized) vector f. As f (z) = u(z) − u′′(z), applying the integration by parts, we

have
∫ 1

0

f (z)u(z)dz =
∫ 1

0

(

u2(z) + (u′(z))2
)

dz − u′(1) · u(1) + u′(0) · u(0).

As f (z) 6= 0, therefore u(z) 6= 0, and applying the boundary conditions of the

ODE, we have
∫ 1

0 f (z)u(z)dz > 0. We refer to the two-variable function G(z, y) as

a positive definite function. The positive definiteness of the matrix A can be proved

in a similar way using the discretized integration by parts.

A particular choice of γ can be determined by considering the corresponding child

ODE problems as follows. We first study the root problem and define its two children

as the left child and right child, and the locations zi of the left child and zj of the

right child satisfy the condition zi < zj as the z-locations of the x-variables in the

two child problems are separated and ordered. We pick a location ζ between the two

clusters of z-locations. Note that the choice of ζ is not unique, and a particular choice

is the midpoint of the two sets. We have the following results for the root node.

Theorem 2 If we choose γ̃ = e−ζ
√

2
, then

1. For the left child, the new function Gl(z, y) = G(z, y) − γ̃ 2 · gl(z) · gl(y) is the

Green function of the ODE problem
{

u1(z) − u′′
1(z) = f (z), z ∈ [0, ζ],

u1(0) = u′
1(0), u1(ζ) = 0.

(19)

The function Gl(z, y) is positive definite.

2. For the right child, the new function Gr (z, y) = G(z, y) − 1
γ̃ 2 · gr (z) · gr (y) is

the Green function of the ODE problem
{

u2(z) − u′′
2(z) = f (z), z ∈ [ζ, 1],

u2(ζ) = 0, u2(1) = −u′
2(1).

(20)

The function Gr (z, y) is positive definite.

3. The two child ODE problem solutions u1(z) and u2(z) can be derived by sub-

tracting a single-layer potential defined at z = ζ from the parent’s solution u(z)

of Eq. (18), so that solutions u1(z) and u2(z) satisfy the zero interface condition

at z = ζ . The other boundary condition for each child ODE problem is the same

as its parent’s boundary condition.

Page 27 of 34 65Adv Comput Math (2021) 47: 65

These results can be easily validated by plugging in the functions to the ODE

problems. The positive definiteness of the child Green’s function can be proved using

the same integration by part technique as we did for the parent’s Green’s function.

For a general parent node on the tree structure, we have the following generalized

results.

Theorem 3 Consider a parent node with the corresponding function Gp(z, y)

defined on the interval [a, b], and ζ is a point separating the two children’s

z-locations. Then there exists a number γ̃ which depends on ζ , such that

1. For the left child, the new function Gl(z, y) = G(z, y) − γ̃ 2 · gl(z) · gl(y) is the

Green function of the ODE problem
{

u1(z) − u′′
1(z) = f (z), z ∈ [a, ζ],

same boundary condition as parent at x = a, and u1(ζ) = 0.
(21)

The function Gl(z, y) is positive definite.

2. For the right child, the new function Gr (z, y) = G(z, y) − 1
γ̃ 2 · gr (z) · gr (y) is

the Green function of the ODE problem
{

u2(z) − u′′
2(z) = f (z), z ∈ [ζ, b],

u2(ζ) = 0, and same boundary condition as parent at x = b.
(22)

The function Gr (z, y) is positive definite.

3. The two child ODE problem solutions u1(z) and u2(z) can be derived by sub-

tracting a single-layer potential defined at z = ζ from the parent’s solution u(z)

of Eq. (18), so that solutions u1(z) and u2(z) satisfy the zero interface condition

at z = ζ . The other boundary condition for each child ODE problem is the same

as its parent’s boundary condition.

The detailed formulas for the number γ̃ and Green’s functions are presented next.

The proof of the theorem is simply validations of the formulas.

The Green function Gp(z, y) of a parent node p and the functions G1(z, y) and

G2(z, y) of p’s left child 1 and right child 2 are defined as

Gp(z, y) =
{

coef p · g
p
r (z) · g

p

l (y), y < z,

coef p · g
p
l (z) · g

p
r (y), y > z,

G1(z, y) =
{

coef 1 · g1
r (z) · g1

l (y), y < z,

coef 1 · g1
l (z) · g1

r (y), y > z,

G2(z, y) =
{

coef 2 · g2
r (z) · g

p

2 (y), y < z,

coef 2 · g2
l (z) · g

p

2 (y), y > z.

We assume parent’s z-locations satisfy z ∈ [a, b]. We choose ζ = c to separate the

parent’s locations, and the child intervals are therefore [a, c] and [c, b], respectively.

Case 1: p is the root node (a = 0, b = 1): The functions are

g
p
l (z) = ez−1, g

p
r (z) = e1−z, coef p = 1

2
;

g1
l (z) = ez−c, g1

r (z) = sinh(c − z), coef 1 = 1;
g2

l (z) = sinh(z − c), g2
r (z) = ec−z, coef 2 = 1;

(23)

65 Page 28 of 34 Adv Comput Math (2021) 47: 65

Case 2: p is a left boundary node(a = 0): The functions are

g
p
l (z) = ez−b, g

p
r (z) = sinh(b − z), coef p = 1;

g1
l (z) = ez−c, g1

r (z) = sinh(c − z), coef 1 = 1;
g2

l (z) = sinh(z − c), g2
r (z) = sinh(b − z), coef 2 = 2eb+c

e2b−e2c ;
(24)

Case 3: p is a right boundary node(b = 1): The functions are

g
p
l (z) = sinh(z − a), g

p
r (z) = ea−z, coef p = 1;

g1
l (z) = sinh(z − a), g1

r (z) = sinh(c − z), coef 1 = 2ea+c

e2c−e2a ;
g2

l (z) = sinh(z − c), g2
r (z) = ec−z, coef 2 = 1;

(25)

Case 4: p is an interior node: The functions are

g
p

l (z) = sinh(z − a), g
p
r (z) = sinh(b − z), coef p = 2ea+b

e2b−e2a ;
g1

l (z) = sinh(z − a), g1
r (z) = sinh(c − z), coef 1 = 2ea+c

e2c−e2a ;
g2

l (z) = sinh(z − c), g2
r (z) = sinh(b − z), coef 2 = 2eb+c

e2b−e2c ;
(26)

Next, we present the relations of the parent p’s two w-variables w
p

1 and w
p

2 with

the left child 1’s two w-variables {w1
1 , w1

2} and right child 2’s two w-variables {w2
1 ,

w2
2}. We use tnew to represent the new t-variable introduced to divide the parent

problem into two sub-problems of child 1 and child 2. We use a unified set of basis

functions for each node on the hierarchical tree structure. For the parent node, the

basis functions are {Φp

1 = cosh(z − c), Φ
p

2 = sinh(z−c)
b−a

}. The basis functions for

the left and right children are {Φ1
1 = cosh(z − p), Φ1

2 = sinh(z−p)
c−a

} and {Φ2
1 =

cosh(z − q), Φ2
2 = sinh(z−q)

b−c
}, respectively, where p and q are either the interface ζ

points when further subdividing the two child problems, or the mid-point of the child

intervals when they become leaf nodes.

Case 1: p is the root node (a = 0, b = 1): Parent has no effective w-variables.

w1
1 = tnewep−c

√
2

, w1
2 = − tnew(a−c)ep−c

√
2

;
w2

1 = tnewec−q
√

2
, w2

2 = − tnew(b−c)ec−q
√

2
.

(27)

Case 2: p is a left boundary node(a = 0):

w1
1 = w

p
2 sinh(c−p)

a−b
+ eptnew

√
e−2c−e−2b
√

2
+ w

p

1 cosh(c − p),

w1
2 = (a − c)

(

w
p
2 cosh(c−p)

a−b
+ w

p

1 sinh(c − p)

)

− ep tnew(a−c)
√

e−2c−e−2b
√

2
;

w2
1 = w

p
2 sinh(c−q)

a−b
+ tnew

√
coth(b − c) − 1 sinh(b − q) + w

p

1 cosh(c − q),

w2
2 = (b−c)(w

p
1 (b−a) sinh(c−q)−w

p
2 cosh(c−q))

a−b
+ tnew(c−b)

√
coth(b−c)−1 cosh(b−q).

(28)

Page 29 of 34 65Adv Comput Math (2021) 47: 65

Case 3: p is a right boundary node(b = 1):

w1
1 = w

p

2 sinh(c−p)

a−b
+ tnew

√
− coth(a − c) − 1 sinh(p − a) + w

p

1 cosh(c − p),

w1
2 = (a − c)

(

w
p
2 cosh(c−p)

a−b
+ w

p

1 sinh(c − p)

)

+tnew(c − a)
√

− coth(a − c) − 1 cosh(a − p);
w2

1 = w
p

2
sinh(c−q)

a−b
+ e−q tnew

√
e2c−e2a

√
2

+ w
p

1 cosh(c − q),

w2
2 = e−q tnew

√
e2c−e2a(c−b)√

2
+ (b−c)(w

p

1
(b−a) sinh(c−q)−w

p

2
cosh(c−q))

a−b
.

(29)

Case 4: p is an interior node:

w1
1 = tnew sinh(p − a)

√
csch(a − b)csch(a − c) sinh(b − c)

+w
p
2 sinh(c−p)

a−b
+ w

p

1 cosh(c − p),

w1
2 = tnew(c − a) cosh(a − p)

√
csch(a − b)csch(a − c) sinh(b − c)

+(a − c)

(

w
p
2 cosh(c−p)

a−b
+ w

p

1 sinh(c − p)

)

;

w2
1 = tnew sinh(b − q)

√
csch(a − b) sinh(a − c)csch(b − c)

+w
p

2 sinh(c−q)

a−b
+ w

p

1 cosh(c − q),

w2
2 = tnew(c − b) cosh(b − q)

√
csch(a − b) sinh(a − c)csch(b − c)

+ (b−c)(w
p
1 (b−a) sinh(c−q)−w

p
2 cosh(c−q))

a−b
.

(30)

Mathematica files for computing these formulas are available.

Finally, we present a theorem which guarantees the positive definiteness of the

child problems when a proper parameter is chosen in the divide-and-conquer scheme

for a H-matrix with rank 1 off-diagonal blocks. The theorem applies to both the

tridiagonal and exponential cases.

Theorem 4 Consider a positive definite covariance matrix of two random vectors X

and Y with rank one off-diagonal blocks in the form

Σ{X,Y } =
(

ΣXX ΣXY

ΣYX ΣYY

)

=





















λ2
1 0

. . .

0 λ2
n

cvtu

cutv

σ 2
1 0

. . .

0 σ 2
n





















(31)

where c is a constant and u = [u1, u2, · · · , un] and v = [v1, v2, · · · , vn] are row

vectors. Then, there exists an interval of γ values such that the matrices






λ2
1 0

. . .

0 λ2
n






− cγ vtv and







σ 2
1 0

. . .

0 σ 2
n






− c

1

γ
utu (32)

are both symmetric positive definite.

65 Page 30 of 34 Adv Comput Math (2021) 47: 65

Proof Without loss of generality, we assume c > 0. Note that any symmetric positive

definite matrix

(

A1,1 A1,2

A2,1 A2,2

)

can be reduced to the standard form in Eq. (31) using

an orthogonal transformation

(

U 0

0 V

)

where U and V are the normalized eigenvec-

tors for A1,1 and A2,2, respectively. Apply Lemma 2.2 from [58], we need to find γ

such that

0 ≤ cγ ≤ 1

∑n
k=1

v2
i

λ2
i

and 0 ≤ c
1

γ
≤ 1

∑n
k=1

u2
i

σ 2
i

. (33)

We consider the conditional variance

ΣY |X = ΣYY − ΣYXΣ−1
XXΣXY

=







σ 2
1 0

. . .

0 σ 2
n






− cut









v









1

λ2
1

0

. . .

0 1
λ2

n









cvt









u

=







σ 2
1 0

. . .

0 σ 2
n






− c2

(

∑n
k=1

v2
i

λ2
i

)

utu

which is symmetric positive definite from statistics theory (or linear algebra).

Therefore using Lemma 2.2 from [58], we have

0 ≤ c2

(

n
∑

k=1

v2
i

λ2
i

)

≤ 1
(

∑n
k=1

u2
i

σ 2
i

)

which is equivalent to c
∑n

k=1

u2
i

σ 2
i

≤ 1

c
∑n

k=1

v2
i

λ2
i

. Clearly, any γ value in the interval

[c
∑n

k=1

u2
i

σ 2
i

, 1

c
∑n

k=1

v2
i

λ2
i

] will satisfy the conditions in Eqs. (33), e.g., one can choose

the mid-point of this interval to “balance” the positive definiteness of the two child

problems. This completes the proof.

Acknowledgements J. Huang was supported by the NSF grant DMS1821093, and the work was finished

while he was a visiting professor at the King Abdullah University of Science and Technology, National

Center for Theoretical Sciences (NCTS) in Taiwan, Mathematical Center for Interdisciplinary Research of

Soochow University, and Institute for Mathematical Sciences of the National University of Singapore.

References

1. Arellano-Valle, R.B., Azzalini, A.: On the unification of families of skew-normal distributions. Scand.

J. Stat. 33(3), 561–574 (2006)

2. Arellano-Valle, R.B., Branco, M.D., Genton, M.G.: A unified view on skewed distributions arising

from selections. Canadian Journal of Statistics 34(4), 581–601 (2006)

Page 31 of 34 65Adv Comput Math (2021) 47: 65

3. Arellano-Valle, R.B., Genton, M.G.: On the exact distribution of the maximum of absolutely

continuous dependent random variables. Statistics & Probability Letters 78(1), 27–35 (2008)

4. Azzalini, A., Capitanio, A.: The skew-normal and related families, vol. 3. Cambridge University Press,

Cambridge (2014)

5. Castruccio, S., Huser, R., Genton, M.G.: High-order composite likelihood inference for max-stable

distributions and processes. J. Comput. Graph. Stat. 25(4), 1212–1229 (2016)

6. Huser, R., Dombry, C., Ribatet, M., Genton, M.G.: Full likelihood inference for max-stable data. Stat

8(1), e218 (2019)

7. Genton, M.G.: Skew-elliptical distributions and their applications: a journey beyond normality. CRC

Press (2004)

8. Genton, M.G., Keyes, D.E., Turkiyyah, G.: Hierarchical decompositions for the computation of high-

dimensional multivariate normal probabilities. J. Comput. Graph. Stat. 27(2), 268–277 (2018)

9. Stephenson, A., Tawn, J.: Exploiting occurrence times in likelihood inference for componentwise

maxima. Biometrika 92(1), 213–227 (2005)

10. Barthelmann, V., Novak, E., Ritter, K.: High dimensional polynomial interpolation on sparse grids.

Adv. Comput. Math. 12(4), 273–288 (2000)

11. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numerical algorithms 18(3), 209–

232 (1998)

12. Shen, J., Yu, H.: Efficient spectral sparse grid methods and applications to high-dimensional elliptic

problems. SIAM J. Sci. Comput. 32(6), 3228–3250 (2010)

13. Genz, A., Bretz, F.: Computation of multivariate normal and t probabilities, vol. 195. Springer Science

& Business Media, New York (2009)

14. Azzimonti, D., Ginsbourger, D.: Estimating orthant probabilities of high-dimensional Gaussian

vectors with an application to set estimation. J. Comput. Graph. Stat. 27(2), 255–267 (2018)

15. Botev, Z.I.: The normal law under linear restrictions: simulation and estimation via minimax tilting.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79(1), 125–148 (2017)

16. Botev, Z.I., L’Ecuyer, P.: Efficient probability estimation and simulation of the truncated multivariate

student-t distribution. In: Proceedings of the 2015 Winter Simulation Conference, pp 380–391. IEEE

Press (2015)

17. Craig, P.: A new reconstruction of multivariate normal orthant probabilities. Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 70(1), 227–243 (2008)

18. Fayed, H., Atiya, A.: A novel series expansion for the multivariate normal probability integrals based

on Fourier series. Math. Comput. 83(289), 2385–2402 (2014)

19. Genz, A.: Numerical computation of multivariate normal probabilities. Journal of computational and

graphical statistics 1(2), 141–149 (1992)

20. Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., Bornkamp, B., Maechler, M., Hothorn,

T.: Multivariate normal and t distributions (2014)

21. Geweke, J.: Efficient simulation from the multivariate normal and student-t distributions subject to

linear constraints and the evaluation of constraint probabilities. Seattle, USA (1991)

22. Hajivassiliou, V., McFadden, D., Ruud, P.: Simulation of multivariate normal rectangle probabilities

and their derivatives theoretical and computational results. Journal of econometrics 72(1-2), 85–134

(1996)

23. Keane, M.P.: 20 simulation estimation for panel data models with limited dependent variables.

Handbook of Statistics 11, 545–571 (1993)

24. Kuo, F., Sloan, I., Woźniakowski, H.: Multivariate integration for analytic functions with Gaussian

kernels. Math. Comput. 86(304), 829–853 (2017)

25. Meyer, C.: Recursive numerical evaluation of the cumulative bivariate normal distribution. arXiv

preprint arXiv:1004.3616 (2010)

26. Miwa, T., Hayter, A.J., Kuriki, S.: The evaluation of general non-centred orthant probabilities. Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 65(1), 223–234 (2003)

27. Pakman, A., Paninski, L.: Exact Hamiltonian Monte Carlo for truncated multivariate Gaussians. J.

Comput. Graph. Stat. 23(2), 518–542 (2014)

28. Phinikettos, I., Gandy, A.: Fast computation of high-dimensional multivariate normal probabilities.

Computational Statistics & Data Analysis 55(4), 1521–1529 (2011)

29. Ridgway, J.: Computation of Gaussian orthant probabilities in high dimension. Statistics and

computing 26(4), 899–916 (2016)

65 Page 32 of 34 Adv Comput Math (2021) 47: 65

http://arxiv.org/abs/1004.3616

30. Wang, X.: Strong tractability of multivariate integration using quasi–Monte Carlo algorithms. Math.

Comput. 72(242), 823–838 (2003)

31. Floros, D., Liu, T., Pitsianis, N., Sun, X.: Sparse dual of the density peaks algorithm for cluster analysis

of high-dimensional data. In: 2018 IEEE High Performance extreme Computing Conference (HPEC),

pp 1–14. IEEE (2018)

32. Yu, C.D., Reiz, S., Biros, G.: Distributed-memory hierarchical compression of dense SPD matrices. In:

Proceedings of the International Conference for High Performance Computing, Networking, Storage,

and Analysis, p 15. IEEE Press (2018)

33. Greengard, L., Gueyffier, D., Martinsson, P.-G., Rokhlin, V.: Fast direct solvers for integral equations

in complex three-dimensional domains. Acta Numerica 18, 243–275 (2009)

34. Hackbusch, W.: A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices.

Computing 62(2), 89–108 (1999)

35. Hackbusch, W., Khoromskij, B.N.: A sparse H-matrix arithmetic. Computing 64(1), 21–47 (2000)

36. Ho, K.L., Greengard, L.: A fast direct solver for structured linear systems by recursive skeletonization.

SIAM J. Sci. Comput. 34(5), A2507–A2532 (2012)

37. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series.

Mathematics of computation 19(90), 297–301 (1965)

38. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Mathematics of computation

31(138), 333–390 (1977)

39. Hackbusch, W.: Multi-grid methods and applications, vol. 4. Springer Science & Business Media,

New York (2013)

40. Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. Journal of computational physics

73(2), 325–348 (1987)

41. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in

three dimensions. Acta numerica 6, 229–269 (1997)

42. Frigo, M., Johnson, S.G.: FFTW: An adaptive software architecture for the FFT. In: Acoustics, Speech

and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on, 3, pp. 1381–

1384. IEEE (1998)

43. Barnett, A.H., Magland, J., af Klinteberg, L.: A parallel nonuniform fast fourier transform library

based on an “exponential of semicircle” kernel. SIAM J. Sci. Comput. 41(5), C479–C504 (2019)

44. Greengard, L., Lee, J.-Y.: Accelerating the nonuniform fast Fourier transform. SIAM review 46(3),

443–454 (2004)

45. Lee, J.-Y., Greengard, L.: The type 3 nonuniform FFT and its applications. J. Comput. Phys. 206(1),

1–5 (2005)

46. Bebendorf, M.: Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Prob-

lems. Lecture Notes in Computational Science and Engineering, vol. 63. Springer, New York

(2008)

47. Li, K.-C.: Sliced inverse regression for dimension reduction. J. Am. Stat. Assoc. 86(414), 316–327

(1991)

48. Ho, K.L., Ying, L.: Hierarchical interpolative factorization for elliptic operators: differential equa-

tions. Commun. Pure Appl. Math. 69(8), 1415–1451 (2016)

49. Ho, K.L., Ying, L.: Hierarchical interpolative factorization for elliptic operators: integral equations.

Commun. Pure Appl. Math. 69(7), 1314–1353 (2016)

50. Halko, N., Martinsson, P.-G., Tropp, J.A.: Finding structure with randomness: Probabilistic algorithms

for constructing approximate matrix decompositions. SIAM review 53(2), 217–288 (2011)

51. Boyd, J.P.: Asymptotic Fourier coefficients for a c∞ bell (smoothed-“top-hat”) and the Fourier

extension problem. J. Sci. Comput. 29(1), 1–24 (2006)

52. Abrarov, S.M., Quine, B.M.: Efficient algorithmic implementation of the Voigt/complex error

function based on exponential series approximation. Appl. Math. Comput. 218(5), 1894–1902 (2011)

53. Abrarov, S.M., Quine, B.M.: On the Fourier expansion method for highly accurate computation of the

Voigt/complex error function in a rapid algorithm. arXiv preprint arXiv:1205.1768 (2012)

54. Gautschi, W.: Efficient computation of the complex error function. SIAM J. Numer. Anal. 7(1), 187–

198 (1970)

55. Karbach, T.M., Raven, G., Schiller, M.: Decay time integrals in neutral meson mixing and their

efficient evaluation. arXiv preprint arXiv:1407.0748 (2014)

56. Gilbert, A.C., Indyk, P., Iwen, M., Schmidt, L.: Recent developments in the sparse Fourier transform:

A compressed Fourier transform for big data. IEEE Signal Process. Mag. 31(5), 91–100 (2014)

Page 33 of 34 65Adv Comput Math (2021) 47: 65

http://arxiv.org/abs/1205.1768
http://arxiv.org/abs/1407.0748

57. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial

differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

58. Gander, M.J.: An eigendecomposition updating algorithm for large Hermitian matrices under low

rank perturbations (1998)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published

maps and institutional affiliations.

Affiliations

Jingfang Huang1 · Jian Cao2 ·Fuhui Fang1 ·Marc G. Genton2 ·

David E. Keyes2 ·George Turkiyyah3

Jian Cao

Jian.Cao@kaust.edu.sa

Fuhui Fang

fangfh@live.unc.edu

Marc G. Genton

Marc.Genton@kaust.edu.sa

David E. Keyes

David.Keyes@kaust.edu.sa

George Turkiyyah

gt02@aub.edu.lb

1 University of North Carolina, Chapel Hill, North Carolina, USA

2 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

3 American University of Beirut, Beirut, Lebanon

65 Page 34 of 34 Adv Comput Math (2021) 47: 65

http://orcid.org/0000-0002-6720-8389
mailto: Jian.Cao@kaust.edu.sa
mailto: fangfh@live.unc.edu
mailto: Marc.Genton@kaust.edu.sa
mailto: David.Keyes@kaust.edu.sa
mailto: gt02@aub.edu.lb

	Hierarchical Algorithm for TMVN Expectation
	Abstract
	Introduction
	Low-rank low-dimensional properties in high-dimensional datasets
	Definitions of low-rank and low-dimensional properties
	Low-rank and low-dimensional features in applications

	A fast hierarchical algorithm for computing TMVN expectations
	Case I: Tridiagonal system
	Divide and conquer on a hierarchical tree
	Generalization to banded matrices.

	Case II: Exponential matrix
	Divide and conquer on a hierarchical tree
	Parent-children relations
	Dimension reduction and effective variables

	General H(x) and H-matrices with low-rank and low-dimensional features

	Preliminary numerical results
	Tridiagonal case
	Exponential case

	Conclusions
	Appendix A1 Potential theory–based analysis
	References
	Affiliations

