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Abstract
A well-balanced high-order scheme for shallow water equations with variable topog-
raphy and temperature gradient is constructed. This scheme is of van Leer-type and
is based on exact Riemann solvers. The scheme is shown to be able to capture almost
exactly the stationary smooth solutions as well as stationary elementary discontinu-
ities. Numerical tests show that the scheme gives a much better accuracy than the
Godunov-type scheme and can work well even in the resonant regime. Wave interac-
tion problems are also tested where the scheme possesses a good accuracy. It turns
out that the superbee limiter can provide us with more accurate approximations than
van Leer’s limiter.
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1 Introduction

Numerical approximations for fluid flow models involving source terms in noncon-
servative form have been attractive for many authors in various areas. Often, the
nonconservative terms cause lots of inconvenience for standard existing numerical
schemes, such as visible oscillations, or the approximations may not be better when
the mesh sizes get smaller. In this paper, we aim to construct a well-balanced and
high-order numerical scheme of the van Leer type for the following Ripa system:

∂th + ∂x(hu) = 0,

∂t (hu) + ∂x

(
hu2 + gh2θ

2

)
= −ghθ∂xa,

∂t (hθ) + ∂x(huθ) = 0,

(1.1)

see [25, 26]. Here, h = h(x, t), u = u(x, t), and θ = θ(x, t) denote the water
depth, the depth-averaged horizontal velocity, and the potential temperature field,
respectively; g is the gravitational constant, and a = a(x) is the bottom topography.
Note that the Ripa system (1.1) was used to model ocean currents. It was derived
from the Saint-Venant system of shallow water equations, in which the horizontal
water temperature fluctuations are taken into account.

In a recent work [33], we proposed a Godunov-type scheme for (1.1), which was
shown to have good approximations. The Godunov-type scheme was constructed
relying on exact solutions of the local Riemann problem; see [31]. This work devel-
ops the method by building a higher order scheme of van Leer’s type for (1.1), where
the idea of Hancock is used when computing intermediate states instead of using
solutions of a generalized Riemann problem (see [16]), for example, for conserva-
tion laws (without nonconservative terms). The scheme is built and then tested for
all kinds of data in the supercritical region or subcritical region, or both. Especially,
the scheme still converges and gives a good accuracy when dealing with the resonant
phenomenon. Apart from using solutions of the Riemann problem, we still consider
the case of interaction waves for testing the newly constructed van Leer-type scheme.
Even in this interesting case of interacting waves, the scheme still converges with a
high accuracy. Furthermore, this scheme is shown by numerical tests that it can cap-
ture almost exactly the stationary smooth solutions as well as stationary elementary
discontinuities.

Numerical schemes for a single conservation law with a nonconservative source
term were studied in [3, 5, 6]. Numerical approximations of solutions for shallow
water equations with variable topography and nonconservative systems were stud-
ied in [7, 14, 15, 17, 19, 22–24, 27]. Godunov-type schemes for multi-phase flow
models and other hyperbolic systems of balance laws in nonconservative forms are
considered in [2, 21, 29]. High-resolution schemes of van Leer-type were constructed
in [9, 10]. Recently, a well-balanced scheme that can capture exactly a new kind
of steady-state solutions for the Ripa system was presented in [13]. Such a solution
is not an elementary wave, since it is not associated with a characteristic field, and
cannot be expressed as a combination of a finite number of elementary waves. How-
ever, our scheme in this work will be demonstrated to be able to capture this kind of
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steady-state solutions as well. Numerical schemes for the Ripa system were also con-
structed in [8, 18, 28, 32, 34]. Well-balanced schemes for the model of a fluid flow
in a nozzle with variable cross-section were constructed in [20]. Numerical schemes
for two-phase flow models were presented in [1, 4, 11, 30]. See also the references
therein.

This paper is organized as follows. Basic concepts and terminologies of the sys-
tem are given in Section 2. The Riemann solver is given in Section 3. Section 4 is
devoted to the construction of the van Leer-type scheme for 1.1. Numerical tests are
conducted in Section 5. Finally, we address conclusions and discussions in Section 6.

2 Background

2.1 Non-strict hyperbolicity

To investigate basic properties of the system (1.1), one often supplements it with the
trivial equation:

∂ta = 0. (2.1)

The system (1.1)–(2.1) can be written under the nonconservative form:

∂tU + A(U)∂xU = 0, (2.2)

where

U =

⎛
⎜⎜⎝

h

u

θ

a

⎞
⎟⎟⎠ , A(U) =

⎛
⎜⎜⎝

u h 0 0
gθ u gh/2 gθ

0 0 u 0
0 0 0 0

⎞
⎟⎟⎠ .

The eigenvalues of the matrix A(U) are given by

λ1(U) = u − c, λ2(U) = u, λ3(U) := u + c, λ4(U) := 0, (2.3)

and the corresponding eigenvectors can be chosen as

r1(U) =

⎛
⎜⎜⎝

h

−c

0
0

⎞
⎟⎟⎠ , r2(U) =

⎛
⎜⎜⎝

h

0
−2θ
0

⎞
⎟⎟⎠ , r3(U) =

⎛
⎜⎜⎝

h

c

0
0

⎞
⎟⎟⎠ , r4(U) =

⎛
⎜⎜⎝

c2

−guθ

0
u2 − c2

⎞
⎟⎟⎠ ,

(2.4)
where

c = √
ghθ .

Let us define the strictly hyperbolic regions:

G1 =
{
U : λ4(U) < λ1(U)

}
,

G2 =
{
U : λ1(U) < λ4(U) < λ2(U)

}
,

G3 =
{
U : λ2(U) < λ4(U) < λ3(U)

}
,

G4 =
{
U : λ3(U) < λ4(U)

}
.

(2.5)
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The characteristic fields (λi, ri), i = 1, 2, 3, 4, may coincide on certain surfaces.
More precisely,

C+ =
{
U : λ1(U) = λ4(U)

}
,

C0 =
{
U : λ2(U) = λ4(U)

}
,

C− =
{
U : λ3(U) = λ4(U)

}
.

In addition, it is clear that the first and third characteristic fields (λ1, r1), (λ3, r3) are
genuinely nonlinear, since

−∇λ1 · r1 = ∇λ3 · r3 = 3c

2
,

and that the second and fourth characteristic fields (λ2, r2), (λ4, r4) are linearly
degenerate, since

∇λ2 · r2 = ∇λ2 · r4 = 0.
The generalized Froude number is defined by

Fr(U) = |u|
c
.

If Fr(U) > 1, then U is called a supercritical state; if Fr(U) < 1, then U is called
a subcritical state; if Fr(U) = 1, then U is called a critical state.

2.2 Rarefaction waves

We will consider rarefaction waves of the system (1.1)–(2.1), which are piecewise
smooth self-similar solutions of the form:

U(x, t) = V (ξ), ξ = x

t
, x ∈ R, t > 0.

Substituting this into (2.2), we can see that rarefaction waves are solutions of the
following initial-value problem for ordinary differential equations:

dV (ξ)

dξ
= rj (V (ξ)), ξ ≥ λj (U0),

V (λj (U0)) = U0, j = 1, 3,
(2.6)

where the eigenvectors r1 and r3 are given (2.4). In particular, it holds along the
integral curves that

dθ(ξ)

dξ
= da(ξ)

dξ
= 0,

which means that the temperature θ and the bottom topography a remain constant
through any rarefaction fan; see [31]. Then, we have the two following results:

Firstly, the forward curve of 1-rarefaction waves R1(U0) starting from a given
left-hand state U0, which consists of all the right-hand states U that can be connected
to U0 by a rarefaction wave associated with the first characteristic field:

R1(U0) : a = a0, θ = θ0,

u = u0 − 2
√

gθ0(
√

h − √
h0), h < h0.

(2.7)
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Secondly, the backward curve of 3-rarefaction waves RB
3 (U0) starting from a

given right-hand state U0, which consists of all the left-hand states U that can be
connected to U0 by a rarefaction wave associated with the third characteristic field:

RB
3 (U0) : a = a0, θ = θ0,

u = u0 + 2
√

gθ0(
√

h − √
h0), h < h0.

(2.8)

2.3 Shock waves

A shock wave of (1.1)–(2.1) is a weak solution of the form:

U(x, t) =
{

U−, x < σ t,

U+, x > σ t,
(2.9)

where σ = σ(U−, U+) is the speed of the shock wave; U−, U+ are the left-hand and
right-hand states, respectively.

With the Rankine-Hugoniot relation associated with (2.1), we have:

− σ [a] = 0, (2.10)

where [a] = a+ − a− is the jump of the quantity a across the shock wave. Let us
fix a left-hand state U− = U0 = (h0, u0, θ0, a0), and look for all right-hand states
U = U+ of the shock (2.9). Equation (2.10) implies that there are two possibilities
across a shock wave:

(i) Either the bottom topography a remains constant,
(ii) Or the speed σ = 0 = λ4(U±).

In the second case (ii), the contact discontinuity is stationary since it travels with
zero speed.

In case (i), the bottom topography a remains constant. Consequently, the system
(1.1)–(2.1) can be reduced to the following shallow water equations in conservative
form:

∂th + ∂x(hu) = 0,

∂t (hu) + ∂x

(
hu2 + gh2θ

2

)
= 0,

∂t (hθ) + ∂x(huθ) = 0.

(2.11)

The associated Rankine-Hugoniot relations for (2.11) are given by

− σ [h] + [hu] = 0,

− σ [hu] +
[
hu2 + gh2θ

2

]
= 0,

− σ [hθ ] + [huθ ] = 0.

(2.12)
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Transforming the relations (2.12), we obtain:

h+(u+ − σ) = h−(u− − σ) =: M,

M(u+ − u−) + g

2

(
h2+θ+ − h2−θ−

)
= 0,

M(θ+ − θ−) = 0.

(2.13)

In the case M �= 0, the relations (2.13) are equivalently written:

M = u+ − u−
1

h+ − 1
h−

,

(u+ − u−)2 = gθ−
2

(h+ − h−)2
( 1

h+
+ 1

h−

)
,

θ+ = θ−.

(2.14)

A shock wave (2.9) associated with the nonlinear characteristic fields (λi, ri), i =
1, 3 is required to fulfil the Lax shock inequalities

λi(U+) < σ(U−, U+) < λi(U−), i = 1, 3, (2.15)

as the admissibility criterion.

• For 1-Lax shock (discontinuity wave associated with the first characteristic
field), (2.14) and (2.15) imply that

M > 0, h+ > h−, u+ < u−. (2.16)

• For 3-Lax shock (discontinuity wave associated with the third characteristic
field), (2.14) and (2.15) imply that

M < 0, h− > h+, u− > u+. (2.17)

The set of all right-hand states that can be connected to a given left-hand state U0
by 1-Lax shock forms a curve, denoted by S1(U0)

S1(U0) : a = a0, θ = θ0,

u = u0 −
√

gθ0

2
(h − h0)

√
1

h
+ 1

h0
, h > h0.

(2.18)

Similarly, the set of all left-hand states that can be connected to a given right-hand
state U0 by 3-Lax shock forms a curve, denoted by SB

3 (U0)

SB
3 (U0) : a = a0, θ = θ0,

u = u0 +
√

gθ0

2
(h − h0)

√
1

h
+ 1

h0
, h > h0,

(2.19)

see [31].
The shock speeds in the nonlinear characteristic fields may coincide with the

characteristic speed of the linearly degenerate field as stated in the following lemma.
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Lemma 2.1 (Lem. 2.1, [21]) Consider the projection onto the (h, u)-plane. To every
UL = (hL, uL) ∈ G1, there exists exactly one point U# ∈ S1(UL)∩G2 such that the
1−shock speed σ1(UL, U#) = 0. The state U# = (h#, u#) is defined by

h# =
−hL +

√
h2L + 8hLu2L/gθL

2
, u# = uLhL

h#
.

Moreover, for any U ∈ S1(UL), the shock speed σ1(UL, U) > 0 if and only if U is
located above U# on S1(UL).

From the above results, the wave curves in nonlinear characteristic fields can be
defined by

W1(U0) = S1(U0) ∪ R1(U0),

WB
3 (U0) = SB

3 (U0) ∪ RB
3 (U0).

(2.20)

From (2.20), we can write in detail that the curves W1(U0),WB
3 (U0) can be

parameterized as

W1(U0) : u = ω1(U0, h) =
⎧⎨
⎩

u0 −
√

gθ0

2
(h − h0)

√
1

h
+ 1

h0
, h > h0,

u0 − 2
√

gθ0(
√

h − √
h0), h < h0,

WB
3 (U0) : u = ωB

3 (U0, h) =
⎧⎨
⎩

u0 +
√

gθ0

2
(h − h0)

√
1

h
+ 1

h0
, h > h0,

u0 + 2
√

gθ0(
√

h − √
h0), h < h0.

(2.21)

In the case M = 0, the relations (2.13) become

σ = u+ = u−,

h2+θ+ = h2−θ−.
(2.22)

Since σ = u± = λ2(U±), the discontinuity wave corresponding to this case is called
the 2-contact wave. The curve of 2-contact discontinuities can be parameterized by h

which starts from a given state U0 as follows:

W2(U0) : a = a0, u = u0,

θ = h20θ0

h2
, h > 0.

(2.23)

A 2-contact discontinuity may be referred to as a material contact; see [31].

2.4 Stationary contact discontinuities

It is easy to see that stationary smooth solutions of (1.1) satisfy

(hu)′ = 0,
(
hu2 + g

2
h2θ

)′ + ghθa′ = 0,

(huθ)′ = 0,

(2.24)
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where (.)′ = d(.)/dx.

Theorem 2.2 (Theorem 2.2, [33]) (a) Any solution of the following system of
ordinary differential equations:

(hu)′ = 0,
(

u2

2
+ gθ(h + a)

)′
= 0,

θ ′ = 0,

(2.25)

is a stationary smooth solution of (1.1).
(b) Any discontinuity (2.9) with speed σ = 0 satisfying the jump relations

[hu] = 0,
[
u2

2
+ gθ(h + a)

]
= 0,

[θ ] = 0,

(2.26)

is a weak solution of (1.1) in the sense of nonconservative product correspond-

ing to the path s ∈ [0, 1] 
→ κ(s) :=
(
h(s), u(s), θ(s), a(s)

)
defined by (2.25)

such that κ(0) = (h−, u−, θ−, a−) and κ(1) = (h+, u+, θ+, a+); see [12].
(c) The integral curve associated with the characteristic field (λ4, r4) is a solution

of (2.25).

Therefore, a 4-contact discontinuity of (1.1) is the one satisfying (2.26). Since
4-contact discontinuities travel with zero speed, they are referred to as stationary
contact discontinuities.

It is interesting to remark in the following on one kind of stationary waves of (1.1);
see [13]. Observe that from the third equation of (2.24), one may obtain

(hu)′θ + (hu)θ ′ = 0.

Using the first equation in (2.24), the last equation becomes

uθ ′ = 0

which means that either θ ′ = 0 or u = 0. In the first case, we obtain the 4-contact
discontinuities as argued above. In the second case, where u = 0, one may get from
the second equation of (2.24):

2θ(h + a)′ + hθ ′ = 0.

And so, if one assumes that h′ = 0, then the last equation yields

(2a + h ln θ)′ = 0

which leads to a family of stationary solutions of the form

u = 0, [h] = 0, [2a + h ln θ ] = 0.

13 (2021)47: 13Adv Comput Math
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It is easy to see that this curve is tangent to the vector field

s(U) = (0, 0, 1, −h/(2θ))T

which is not parallel to any of the eigenvectors ri(U0) at U0, i = 1, 2, 3, 4. There-
fore, discontinuities given by this family are not elementary waves. Since solutions of
the Riemann problem consist of a finite number of elementary waves, these station-
ary discontinuities are not involved in the construction of solutions of the Riemann
problem.

2.5 Admissible stationary contact discontinuities

It is not the case that all stationary contact discontinuities are admissible. We will
discuss about this in the following.

Given a state U0 and bottom levels on both sides of the stationary contact a �= a0,
the water height h can be resolved when other known quantities from the second
equation of (2.26). From this equation, we can obtain a function depending on h as
follows:

ϕ(h) = 2gθ0h
3 + (2gθ0(a − a0 − h0) − u20)h

2 + h20u
2
0 = 0. (2.27)

We have the following result:

a ≤ amax(U0) := a0 + 1

2gθ0

(
(gθ0h0)

1/3 − u
2/3
0

)2
(2(gθ0h0)

1/3 + u
2/3
0 ), (2.28)

see [31].
The formula (2.28) means that amax(U0) ≥ a0 and the equality holds only if U0

belongs to the non-strictly hyperbolic surfaces. Note that if the inequality in (2.28) is
strict, i.e., a < amax(U0), then the two roots are distinct: h1(a) < h∗ < h2(a) where

h∗ = u20 + 2gθ0(a0 + h0 − a)

3gθ0
.

As a result, whenever (2.28) holds, there are two states U+ = Ui so that a stationary
contact discontinuity from U− = U0 is possible. The locations of these states can be
determined in the following lemma:

Lemma 2.3 (Lemma 3.1, [31]) Assume that a < amax(U0), where amax(U0) is
defined by (2.28). The function ϕ defined by (2.27) admits two distinct roots h1 < h2.
Moreover, the state U1 using the smaller root h1 belongs to G1 if u0 > 0 and belongs
to G4 if u0 < 0; the state U2 using the larger root h2 lies in G2 if u0 > 0 and lies in
G3 if u0 < 0.

To select a unique Riemann solution, the following admissibility criterion for
stationary contact discontinuities is imposed; see [31]:

(MC) Along any stationary curve W4(U0), the bottom level a is monotone as a
function of h. The total variation of the bottom-level component of any Riemann
solution must not exceed |aL − aR|, where aL, aR are left-hand and right-hand
bottom levels.

13Adv Comput Math (2021)47: 13
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Lemma 2.4 (Lemma 3.2, [31]) Assume that a < amax(U0), where amax(U0)

is defined by (2.28). The monotonicity criterion selects the following admissible
stationary contact wave.

i If U0 ∈ G1 ∪ G4, then only the stationary contact using the smaller root h1 of ϕ
defined by (2.27) is selected.

ii If U0 ∈ G2 ∪ G3, then only the stationary contact using the larger root h2 of ϕ

defined by (2.27) is selected.

Elementary waves of (1.1), which make up solutions of the Riemann problem, are
defined in the following.

Definition 2.5 Elementary waves for the system (1.1) and (2.1) are the following
ones: Lax shocks, rarefaction waves, material contact discontinuities, and admissible
stationary contact discontinuities.

3 The exact Riemann solver

Exact solutions of the Riemann problem for the Ripa system (1.1) have been pre-
sented in [31]. In this section, we will briefly recall these solutions for a reader to
easily follow the construction of the van Leer-type scheme in the next section. As
usual, the solutions of the Riemann problem are combined by a finite number of
elementary waves including shock waves, rarefaction waves, contact waves, and sta-
tionary waves. It is sufficient to consider only the Riemann data in G1 ∪ C+ ∪ G2
because the other cases can similarly be obtained. The constructions will be based on
the left-hand state UL.

Notations The following notations will be used in this section to construct the
Riemann solutions:

(i) Wi (U1, U2): an i-wave connecting a state U1 and a state U2, where W = S:
Lax shock,W = R: rarefaction wave, i = 1, 2, 3, 4;

(ii) Wi (U1, U2) → Wj (U2, U3): an i-wave from the left-hand state U1 to the
right-hand state U2 is followed by a j -wave from the left-hand state U2 to the
right-hand state u3;

(iii) Wi (U1, U2) ← Wj (U2, U3): an i-wave from the right-hand state U1 to the
left-hand state U2 is preceded by a j -wave from the right-hand state U2 to
the left-hand state U3;

(iv) The (forward) curveWi→j (U0) consists of all right-hand states U which can
be reached from U0 using an i-wave from the left-hand state U0 to some
intermediate right-hand state U1 ∈ Wi (U0), followed by a j -wave from the
left-hand state U1 to the right-hand state U ;

(v) The (backward) curveWi←j (U0) consists of all left-hand states U which can
be reached from U0 using an i-wave from the right-hand state U0 to some
intermediate left-hand state U1 ∈ Wi (U0), preceded by a j -wave from the
right-hand state U1 to the left-hand state U ;

13 (2021)47: 13Adv Comput Math
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(vi) Us, Ub denote the states resulted by stationary contact discontinuity wave
from U ;

(vii) U# denotes the state resulting from a zero-speed shock wave from U ;
(viii) U± = W1(UL) ∩ C±;
(ix) U0 = W1(UL) ∩ C0.

3.1 Case A: UL ∈ G1 ∪ C+

In this subsection, three constructions A1, A2, and A3 will be built in the case of UL

starting from G1.

Construction A1 The left-hand and right-hand states are both supercritical.
The solution starts from a stationary wave from UL to the state U1, then followed

by a wave curve W1 from U1 to the state U2, then followed by a 2-contact disconti-
nuity from U2 to the state U3, then followed by a wave curveW3 from U3 to the state
UR .

As a result, the Riemann solution for the system (1.1) is in the form of

W4(UL, U1) → W1(U1, U2) → W2(U2, U3) → W3(U3, UR). (3.1)

See Fig. 1.

Construction A2 Supercritical left-hand state and subcritical right-hand state.
The solution starts from a 1-shock wave from UL to a state U1, then followed by

a stationary wave from U1 to U2, then followed by a 2-contact discontinuity from U2
to the state U3, then followed by a curve wave W3 from U3 to UR .

As a result, the Riemann solution for the system (1.1) is in the form of

W1(UL, U1) → W4(U1, U2) → W2(U2, U3) → W3(U3, UR). (3.2)

See Fig. 2.

Fig. 1 A Riemann solution of the form (3.1) in Construction A1

13Adv Comput Math (2021)47: 13
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Fig. 2 A Riemann solution of the form (3.2) in Construction A2

Construction A3 Supercritical left-hand state and right-hand state near the critical
curve: colliding waves.

The solution starts from a stationary wave from UL to U1,
then followed by a zero-speed 1-shock wave from U1 to U2, then followed by a

stationary wave from U2 to U3, then followed by a 2-contact discontinuity from U3
to the state U4, then followed by a curve wave W3 from U4 to UR .

As a result, the Riemann solution for the system (1.1) is in the form of

W4(UL, U1) → W1(U1, U2) → W4(U2, U3) → W2(U3, U4) → W3(U4, UR).
(3.3)

See Fig. 3.

Fig. 3 A Riemann solution of the form (3.3) in Construction A3

13 (2021)47: 13Adv Comput Math
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3.2 Case B: UL ∈ G2

In this subsection, three constructions B1, B2, and B3 will be built in the case of UL

starting from G2.

Construction B1 Subcritical left-hand state and supercritical right-hand state.
The solution starts from a 1-rarefaction wave from UL to U1, then followed by a

stationary wave from U1 to U2, then followed by a curve wave W1 from U2 to U3,
then followed by a 2-contact discontinuity from U3 to the state U4, then followed by
a curve wave W3 from U4 to UR .

As a result, the Riemann solution for the system (1.1) is in the form of

W1(UL, U1) → W4(U1, U2) → W1(U2, U3) → W2(U3, U4) → W3(U4, UR).
(3.4)

See Fig. 4.

Construction B2 The left-hand and right-hand states are both subcritical.
The solution starts from a curve wave W1 from UL to U1, then followed by a

stationary wave from U1 to U2, then followed by a 2-contact discontinuity from U2
to the state U3, then followed by a curve wave W3 from U3 to UR .

As a result, the Riemann solution for the system (1.1) is in the form of

W1(UL, U1) → W4(U1, U2) → W2(U2, U3) → W3(U3, UR). (3.5)

See Fig. 5.

Construction B3 Subcritical left-hand state and right-hand state near the critical
curve: colliding waves.

The solution starts from a 1-rarefaction wave from UL to U1, then followed by
a stationary wave from U1 to U2, then followed by a zero-speed 1-shock wave

Fig. 4 A Riemann solution of the form (3.4) in Construction B1
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Fig. 5 A Riemann solution of the form (3.5) in Construction B2

from U2 to U3, then followed by a stationary wave from U3 to U4, then followed
by a 2-contact discontinuity from U4 to the state U5, then followed by a curve
wave W3 from U5 to UR . Observe that h2 is smaller root of ϕ(U1, a2) = 0 and
hb
3 is bigger root of ϕ(U3, aR) = 0 by using Newton’s method.
As a result, the Riemann solution for the system (1.1) is in the form of

W1(UL,U1) → W4(U1, U2) → W1(U2, U3) → W4(U3, U4) → W2(U4, U5) → W3(U5, UR).
(3.6)

See Fig. 6.

Fig. 6 A Riemann solution of the form (3.6) in Construction B3
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4 Building a van Leer-type scheme

In this section, we will build up a van Leer-type scheme for the system (1.1) relying
on the constructions of Riemann solutions in the previous section. Let us set

U =

⎛
⎜⎜⎝

h

hu

hθ

a

⎞
⎟⎟⎠ , F (U) =

⎛
⎜⎜⎜⎝

hu

hu2 + gh2θ

2
huθ

0

⎞
⎟⎟⎟⎠ , H(U) =

⎛
⎜⎜⎝

0
−ghθ

0
0

⎞
⎟⎟⎠ . (4.1)

We can re-write the system (1.1)–(2.1) in the form

∂tU + ∂xF (U) = H(U)∂xa. (4.2)

The problem has the initial condition as follows:

U(x, 0) = U0(x), x ∈ R, (4.3)

then, the discrete initial values U0 = (U0
j )j∈Z are given by the average value

U0
j = 1


x

∫ xj+1/2

xj−1/2

U0(x)dx, j ∈ Z. (4.4)

4.1 Godunov-type scheme

In this subsection, let us recall Godunov-type scheme in [33]. Suppose that Un =
(Un

j )j∈Z is known. We define the approximation Un+1 = (Un+1
j )j∈Z of U(., tn+1)

as follows:

(i) We extend the sequence Un as a piecewise constant function Up.con(., tn)
defined by

Up.con(x, tn) = Un
j , xj−1/2 < x < xj+1/2, j ∈ Z. (4.5)

(ii) We solve the local Riemann problems for (4.2) with the initial condition

U(x, 0) = Up.con(x, tn), (4.6)

to find the solution U(., 
t). This solution is obtained by solving a juxtaposi-
tion of local Riemann problems, so

U(x, t) = Uexact

(x − xj+1/2

t
; Un

j , Un
j+1

)
, xj < x < xj+1, j ∈ Z,

(4.7)

where Uexact

(x

t
; UL, UR

)
denote the exact solution of the Riemann problem

for (4.2) corresponding to the Riemann data (UL, UR).
(iii) We project (L2-projection) the exact solution U(., 
t) onto the piecewise

constant functions, i.e.,

Un+1
j = 1


x

∫ xj+1/2

xj−1/2

U(x, 
t)dx. (4.8)
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Provided we assume the C.F.L. condition:


t


x
max{|λk(U

n
j )| : k = 1, 2, 3, 4} ≤ 1

2
, (4.9)

so that the waves issued from the points xj−1/2 and xj+1/2 do not interact. Since the
a-component is constant in each interval (xj−1/2, xj+1/2), then the right-hand side
of (4.2) vanishes. The Godunov-type scheme is defined by

Un+1
j = Un

j − 
t


x

(
F(Uexact (0−; Un

j , Un
j+1)) − F(Uexact (0+; Un

j−1, U
n
j ))

)
,

(4.10)
where Uexact (0−; Un

j , Un
j+1), Uexact (0+; Un

j−1, U
n
j ) are determined as in [33].

4.2 van Leer-type scheme

Suppose Un = (Un
j )j∈Z is known. We define the approximation Un+1 = (Un+1

j )j∈Z
of U(., tn+1) as follows:

(i) We extend the sequence Un as a piecewise linear function Up.lin(., tn) defined
by

Up.lin(x, tn) = Un
j + Sn

j


x
(x−xj ), xj−1/2 < x < xj+1/2, j ∈ Z, (4.11)

where slopes Sn
j = (sn

j,1, s
n
j,2, s

n
j,3, s

n
j,4) are defined as follows:

Sn
j = (Un

j+1 − Un
j )�(ρn

j ),

ρn
j = Un

j − Un
j−1

Un
j+1 − Un

j

,

We can use any limiter function in two following one:⎡
⎣

�(ρ) = max(0,min(1, 2ρ),min(ρ, 2)), the superbee limiter,

�(ρ) = |ρ| + ρ

1 + |ρ| , van Leer’s limiter.
(4.12)

(ii) We solve the local Riemann problems for (4.2) with the initial condition

U(x, 0) = Up.lin(x, tn), (4.13)

to find the solution U(., 
t).
(iii) We project (L2-projection) the exact solution U(., 
t) onto the piecewise

constant functions, i.e.,

Un+1
j = 1


x

∫ xj+1/2

xj−1/2

U(x, 
t)dx. (4.14)

Provided we assume the C.F.L. condition:


t


x
max{|λk(U

n
j )| : k = 1, 2, 3, 4} ≤ 1

2
, (4.15)

so that the waves issued from the points xj−1/2 and xj+1/2 do not interact.
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In order to derive a more explicit form of the scheme, we integrate the (4.2) over
the rectangle (xj−1/2, xj+1/2) × (0, 
t). Since a is constant on (xj−1/2, xj+1/2), we
obtain:

∫ xj+1/2

xj−1/2

(U(x,
t) − U(x, 0))dx +
∫ 
t

0

(
F(U(xj+1/2 − 0, t)) − F(U(xj−1/2 + 0, t))

)
dt = 0.

(4.16)

Applying (4.4) and (4.14), we get:


x(Un+1
j − Un

j ) +
∫ 
t

0

(
F(U(xj+1/2 − 0, t)) − F(U(xj−1/2 + 0, t))

)
dt = 0.

(4.17)
Using the midpoint rule, we write:

1


t

∫ 
t

0

(
F(U(xj+1/2 − 0, t))

)
dt = F(U(xj+1/2 − 0,


t

2
)) + O(
t2),

1


t

∫ 
t

0

(
F(U(xj−1/2 + 0, t))

)
dt = F(U(xj−1/2 + 0,


t

2
)) + O(
t2).

(4.18)

For approximating F(U(xj+1/2 − 0, 
t/2)) and F(U(xj−1/2 + 0, 
t/2)), we use
a predictor-corrector scheme. Firstly, following an idea of Hancock, we define the
updated values U

n+1/2
j+1/2,± at time tn + 
t/2 by

U
n+1/2
j+1/2,− = Un

j+1/2,− − 
t

2
x
(F(Un

j+1/2,−) − F(Un
j−1/2,+)),

U
n+1/2
j+1/2,+ = Un

j+1/2,+ − 
t

2
x
(F(Un

j+3/2,−) − F(Un
j+1/2,+)),

(4.19)

where

Un
j+1/2,− = Up.lin(xj+1/2 − 0) = Un

j + 1

2
Sn

j ,

Un
j+1/2,+ = Up.lin(xj+1/2 + 0) = Un

j+1 − 1

2
Sn

j+1.
(4.20)

Secondly, we resolve the Riemann problem of (4.2) at the point xj+1/2 with piecewise

constant initial data U
n+1/2
j+1/2,±, whose solution is noted as usual

Uexact

(x − xj+1/2

t
; U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+

)
. (4.21)

Thirdly, we replace U(xj+1/2 ± 0, 
t/2) by

Uexact

(
0±; U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+

)
. (4.22)

Thus, the scheme (4.17) becomes

Un+1
j = Un

j − 
t


x

(
F(Uexact (0−; U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+))−F(Uexact (0+; U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+))

)
.

(4.23)
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To complete the van Leer-type scheme (4.23), we will specify the values

Ulef t := Uexact

(
0−; UL, UR

)
,

Uright := Uexact

(
0+; UL, UR

)
,

(4.24)

as follows:
Construction Ulef t Uright

A1 (3.1) UL U1
A2 (3.2) U1 U2
A3 (3.3) UL U3
B1 (3.4) U1 U2
B2 (3.5) U1 U2
B3 (3.6) U1 U4

(4.25)

Riemann solver (A1) The Riemann solver (A1) relying on Construction A1 yields

Uexact

(
0−; UL, UR

)
= UL,

Uexact

(
0+; UL, UR

)
= U1(UL, UR).

(4.26)

where U1(UL, UR) = Us
L = (hs

L, us
L, θL, aR) ∈ W4(UL), hs

L is the smaller root of
the nonlinear (2.27), us

L = uLhL/hs
L.

This means that the van Leer-type scheme (4.23) using the Riemann solver (A1) is

Un+1
j = Un

j − 
t


x

(
F(U

n+1/2
j+1/2,−) − F(U1(U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+))

)
, (4.27)

where U1(U
n+1/2
j−1/2,−, U

n+1/2
j−1/2,+) is defined as in (4.26).

Riemann solver (A2) The Riemann solver (A2) relying on Construction A2 yields

Uexact

(
0−; UL, UR

)
= U1(UL, UR),

Uexact

(
0+; UL, UR

)
= U2(UL, UR).

(4.28)

We can determine U1(UL, UR) and U2(UL, UR) as follows:

Step 1: Set h1 = h#L, where h#L is defined as Lemma 2.1. Set h2 = h0, where
U0 = (h0, u0, θL, aL) = W1(UL) ∩ C0.

Step 2: - Estimate hT = h1 + h2

2
.

- Compute UT = (hT , uT , θL, aL) ∈ W1(UL).
- Compute Ub

T = (hb
T , ub

T , θL, aR) ∈ W4(UT ), where hb
T is the bigger

root of the nonlinear (2.27), ub
T = uT hT /hb

T .
Step 3: - If Ub

T ∈ W3←2(UR), finish the computation and set U1(UL, UR) =
UT , U2(UL, UR) = Ub

T ;
- If Ub

T is above the curve W3←2(UR), set h1 = h and return Step 2;
- If Ub

T is below the curve W3←2(UR), set h2 = h and return Step 2.
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This means that the van Leer-type scheme (4.23) using the Riemann solver (A2) is

Un+1
j = Un

j − 
t


x

(
F(U1(U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+)) − F(U2(U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+))

)
,

(4.29)
where U1(U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+), U2(U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+) are defined as in (4.28).

Riemann solver (A3) The Riemann solver (A3) relying on Construction A3 yields

Uexact

(
0−; UL, UR

)
= UL,

Uexact

(
0+; UL, UR

)
= U3(UL, UR).

(4.30)

We can determine U3(UL, UR) as follows:

Step 1: Set a1 = aL, a2 = aR .

Step 2: - Estimate a = a1 + a2

2
;

- Compute Us
L = (hs

L, us
L, θL, a) where hs

L is the smaller root of the
nonlinear (2.27), us

L = uLhL/hs
L.

- Compute Us#
L = (hs#

L , us#
L , θL, a) where hs#

L , us#
L are defined as

Lemma 2.1.
- Compute Us#b

L = (hs#b
L , us#b

L , θL, aR) where hs#b
L is the bigger root of

the nonlinear (2.27), us#b
L = us#

L hs#
L /hs#b

L .
Step 3: - If Us#b

L ∈ W3←2(UR), finish the computation and set U3(UL, UR) =
Us#b

L .
- If Us#b

L is above the curve W3←2(UR), set a2 = a and return step 2.
- If Us#b

L is below the curve W3←2(UR), set a1 = a and return step 2.

This means that the van Leer scheme (4.23) using the Riemann solver (A3) is

Un+1
j = Un

j − 
t


x

(
F(U

n+1/2
j+1/2,−) − F(U3(U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+))

)
, (4.31)

where U3(U
n+1/2
j−1/2,−, U

n+1/2
j−1/2,+) is defined as in (4.30).

Riemann solver (B1) The Riemann solver (B1) relying on Construction B1 yields

Uexact

(
0−; UL, UR

)
= U1(UL, UR),

Uexact

(
0+; UL, UR

)
= U2(UL, UR).

(4.32)

where
U1(UL, UR) = U+ = (h+, u+, θL, aL) = W1(UL) ∩ C+,

U2(UL, UR) = U+s = (h+s , u+s , θL, aR).
(4.33)

where h+s is the smaller root of the nonlinear (2.27), u+s = u+h+/h+s .
This means that the van Leer-type scheme (4.23) using the Riemann solver (B1) is

Un+1
j = Un

j − 
t


x

(
F(U1(U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+)) − F(U3(U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+))

)
,

(4.34)
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where U1(U
n+1/2
j+1/2,−, U

n+1/2
j+1/2,+), U3(U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+) are defined as in Eq. 4.32.

Riemann solver (B2) The Riemann solver (B2) relying on Construction B2 yields

Uexact

(
0−; UL, UR

)
= U1(UL, UR),

Uexact

(
0+; UL, UR

)
= U2(UL, UR).

(4.35)

We can determine U1(UL, UR) and U2(UL, UR) as follows:

Step 1: Set h1 = h+, where U+ = (h+, u+, θL, aL) = W1(UL) ∩ C+.
Set h2 = h0, where U0 = (h0, u0, θL, aL) = W1(UL) ∩ C0.

Step 2: - Estimate hT = h1 + h2

2
.

- Compute UT = (hT , uT , θL, aL) ∈ W1(UL).
- Compute Ub

T = (hb
T , ub

T , θL, aR) ∈ W4(UT ), where hb
T is the bigger

root of the nonlinear (2.27), ub
T = uT hT /hb

T .
Step 3:

- If Ub
T ∈ W3←2(UR), finish the computation and set U1(UL, UR) =

UT , U2(UL, UR) = Ub
T ;

- If Ub
T is above the curve W3←2(UR), set h1 = h and return Step 2;

- If Ub
T is below the curve W3←2(UR), set h2 = h and return Step 2.

This means that the van Leer-type scheme (4.23) using the Riemann solver (B2) is

Un+1
j = Un

j − 
t


x

(
F(U1(U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+)) − F(U2(U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+))

)
,

(4.36)
where U1(U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+), U2(U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+) are defined as in (4.35).

Riemann solver (B3) The Riemann solver (B3) relying on Construction B3 yields

Uexact

(
0−; UL, UR

)
= U1(UL, UR),

Uexact

(
0+; UL, UR

)
= U4(UL, UR).

(4.37)

We can determine U1(UL, UR) and U4(UL, UR) as follows:

Step 1: U1(UL, UR) = U+ = (h+, u+, θL, aL) = W1(UL) ∩ C+.
Step 2: Set a1 = aL, a2 = aR .

Step 3: - Estimate a = a1 + a2

2
;

- Compute U+s = (h+s , u+s , θL, a) where h+s is the smaller root of
the nonlinear (2.27), u+s = u+h+/h+s .
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- Compute U+s# = (h+s#, u+s#, θL, a) where h+s#, u+s# are defined as
Lemma 2.1.

- Compute U+s#b = (h+s#b, u+s#b, θL, aR) where h+s#b is the bigger
root of the nonlinear (2.27), u+s#b = u+s#h+s#/h+s#b.

Step 4: - If U+s#b ∈ W3←2(UR), finish the computation and set U4(UL, UR) =
U+s#b.

- If U+s#b is above the curve W3←2(UR), set a2 = a and return step 3.
- If U+s#b is below the curve W3←2(UR), set a1 = a and return step 3.

This means that the van Leer-type scheme (4.23) using the Riemann solver (B3) is

Un+1
j = Un

j − 
t


x

(
F(U1(U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+)) − F(U4(U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+))

)
,

(4.38)
where U1(U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+), U4(U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+) are defined as in (4.37).

5 Numerical tests

In this section, we will conduct the numerical experiments by usingMATLAB, which
demonstrate the advantage of our van Leer-type scheme (4.23) by handling either the
superbee or van Leer’s limiter. For each test, we compare the numerical solution Uh

with the corresponding exact solution U by using the stability condition:

CFL = 0.5,

and we plot the solution Uh and U for

x ∈ [−1, 1], t = 0.05.

Furthermore, we will compare the results of van Leer-type scheme with the outcomes
of Godunov-type scheme in all of solution constructions.

5.1 Test 1: Well-balanced property

This subsection is aimed to demonstrate that our van Leer-type scheme is capable of
maintaining equilibrium states as the following test cases.

5.1.1 Test 1.1: Discontinuous topography

Firstly, we conduct our van Leer-type scheme with the discontinuous topography and
the initial condition in the form of

U0(x) =
{

UL = (hL, uL, θL, aL), if x < 0,

UR = (hR, uR, θR, aR), if x > 0,
(5.1)
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Fig. 7 A stationary contact wave is captured exactly by van Leer-type scheme using our Riemann solver
with different 
t in test 1.1

where UL, UR are the left-hand and the right-hand states of a stationary wave,
respectively. Here, they are chosen as

(hL, uL, θL, aL) = (2, 0.5, 2, 1),

(hR, uR, θR, aR) = (1.798490811703, 0.556021745284, 2, 1.2).

Figure 7 shows the errors of numerical solutions at 400 mesh points and t = 0.05 on
the interval [−1, 1] with different 
t when our scheme practices with the superbee
or van Leer’s limiter. Apparently, we can see that our scheme captures the stationary
solutions because the errors of numerical solutions tend to zero when we increase
the numbers of time mesh points, so it is well-balanced. Additionally, Table 1 also
interprets this when the errors of our scheme are significantly small in the case of

t = 0.05/1600, at only 1.9566× 10−12, 1.9348× 10−12 by using the superbee and
van Leer’s limiters, respectively.

Table 1 Errors of numerical approximations with 400 mesh points and different 
t for test 1.1

Superbee limiter van Leer’s limiter


t ||Uh − U ||L1 ||Uh − U ||L1

0.05/200 4.8559 × 10−12 4.8983 × 10−12

0.05/400 2.8548 × 10−12 2.8098 × 10−12

0.05/800 2.1801 × 10−12 2.2022 × 10−12

0.05/1600 1.9566 × 10−12 1.9348 × 10−12
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Fig. 8 A 2-contact wave with u = 0 is captured exactly by van Leer-type scheme using our Riemann
solver with different 
t in test 1.2

5.1.2 Test 1.2: Flat topography

Secondly, we handle the problem with the flat topography and the initial condition in
the form of

U0(x) =
{

UL = (hL, uL, θL, aL), if x < 0,

UR = (hR, uR, θR, aR), if x > 0,
(5.2)

where UL, UR are the left-hand and the right-hand states of a stationary wave,
respectively. Here, they are chosen as

(hL, uL, θL, aL) = (2, 0, 0.2, 1),

(hR, uR, θR, aR) = (2.8284, 0, 0.1, 1).

Figure 8 represents the errors of numerical solutions at 400 mesh points and t = 0.05
on the interval [−1, 1] with different 
t when our van Leer-type scheme operates
with the superbee or van Leer’s limiter. Accordingly, we can see that our scheme
captures the 2-contact wave with u = 0 because the errors of numerical solutions
reach zero when we decrease 
t , so it is well-balanced. Besides that, Table 2 also
expresses this when the errors of our scheme are extremely small in the case of 
t =

Table 2 Errors of numerical approximations with 400 mesh points and different 
t for test 1.2

Superbee limiter van Leer’s limiter


t ||Uh − U ||L1 ||Uh − U ||L1

0.05/200 2.1647 × 10−17 2.1647 × 10−17

0.05/400 2.0935 × 10−17 2.0935 × 10−17

0.05/800 2.0935 × 10−17 2.0935 × 10−17

0.05/1600 2.0935 × 10−17 2.0935 × 10−17
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Fig. 9 A stationary contact wave is captured exactly by van Leer-type scheme using our Riemann solver
with different 
t in test 1.3

0.05/1600, at only 2.0935 × 10−17, 2.0935 × 10−17 by using the superbee and van
Leer’s limiters, respectively.

5.1.3 Test 1.3: Continuous topography

Thirdly, we resolve the problem with the continuous topography. Let us take the
stationary solutions with the smooth topography as

h(x) = exp(x),

u(x) = exp(−x),

θ(x) = 1,

a(x) = −exp(−2x)

2g
− exp(x) + 3, x ∈ [0, 1].

(5.3)

Figure 9 shows the errors of numerical solutions at 100 mesh points and t = 0.01
on the interval [0, 1] with different 
t when our van Leer-type scheme practices with

Table 3 Errors of numerical approximations with 100 mesh points and different 
t for test 1.3

Superbee limiter van Leer’s limiter


t ||Uh − U ||L1 ||Uh − U ||L1

0.01/100 4.6494 × 10−6 4.1627 × 10−6

0.01/200 4.6135 × 10−6 4.1126 × 10−6

0.01/400 4.5959 × 10−6 4.0883 × 10−6

0.01/800 4.5872 × 10−6 4.0773 × 10−6

0.01/1600 4.5833 × 10−6 4.0721 × 10−6
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Table 4 Errors of numerical approximations with 100 mesh points and different t for test 1.3

Superbee limiter van Leer’s limiter

t ||Uh − U ||L1 ||Uh − U ||L1

0.01 5.6314 × 10−6 5.4015 × 10−6

0.001 6.3595 × 10−7 6.1646 × 10−7

0.0001 4.8140 × 10−8 4.5478 × 10−8

0.00001 4.6111 × 10−9 4.3433 × 10−9

0.000001 4.5908 × 10−10 4.3234 × 10−10

the superbee or van Leer’s limiter. Clearly, we can see that our scheme captures the
smooth stationary solutions because the errors of numerical solutions tend to zero
when the numbers of time mesh points get bigger, so it is well-balanced. Besides that,
Table 3 also points out this when the error of our scheme is really small in the case
of 
t = 0.01/1600, at only 4.5833 × 10−6, 4.0721 × 10−6 by using the superbee
and van Leer’s limiters, respectively. The errors decrease slowly because there is an
accumulation of ones, so the errors of stationary solutions get sharply small when the
time gets small. Moreover, this issue is also pointed out in Table 4 and Fig. 10.

5.1.4 Test 1.4: Stationary solutions of form u = 0, [h ] = 0, [2a + h ln(θ )] = 0.

It is derived from (2.24) that a smooth stationary solution of (1.1) can be determined
by the equations

u = 0, h′ = 0, (2a + h ln(θ))′ = 0,

Fig. 10 A stationary contact wave is captured exactly by van Leer-type scheme using our Riemann solver
with different t in test 1.3
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Fig. 11 Exact and approximate solutions with 800 mesh points for test 1.4 with smooth initial data (5.4)

where (.)′ = d(.)/dx; see [13]. By an approximation argument, a steady-state
discontinuity of the form

u = 0, [h] = 0, [2a + h ln(θ)] = 0,

is also a weak solution of (1.1). In this test, we aim to show that our scheme (4.23)
can capture this kind of stationary solutions in both cases of smooth solutions and
steady-state discontinuity.

Indeed, let us first consider the Cauchy problem for (1.1) with the smooth initial
data U0(x) = (h(x), u(x), θ(x), a(x)), where

h(x) = 2,

u(x) = 0,

θ(x) = exp(−2 + arctan(x)),

a(x) = 2 − arctan(x),

(5.4)

and with the discontinuous initial data

U0(x) =
{

(hL, uL, θL, aL) = (0.7, 0, 2, 1.5),

(hR, uR, θR, aR) = (0.7, 0, 2.30712998979022, 1.45).
(5.5)
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Fig. 12 Exact and approximate solutions with 800 mesh points for test 1.4 with discontinuous initial data
Eq. 5.5

The exact solutions of these test are stationary solutions U(x, t) = U0(x), x ∈ R,
t ≥ 0.

Figures 11 and 12 show the exact solutions and their approximations by the
scheme (4.23) for this test with smooth and discontinuous initial data at time t = 0.01
on the interval [−1, 1] with 800 mesh points, respectively. Figures 13 and 14 express
the errors of numerical solutions with different mesh points when our van Leer-type
scheme practices with the superbee or van Leer’s limiter. These figures and Tables 5
and 6 show that our scheme can approximate this kind of stationary solutions with
a very high accuracy in both cases. More precisely, the scheme can capture almost
exactly the smooth solution, but has some small oscillations near the discontinuity.

5.2 Test 2: Construction A1

In this test, we conduct to approximate a Riemann solution of Construction A1. The
Riemann data are given by

U0(x) =
{

UL = (hL, uL, θL, aL) = (0.01, 3, 2, 1.2) ∈ G1, if x < 0,

UR = (hR, uR, θR, aR) = (0.02, 2, 3, 1) ∈ G1, if x > 0.
(5.6)
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Fig. 13 Steady smooth solution of form u = 0, [h] = 0, [2a + h ln(θ)] = 0 in test 1.4 is captured by van
Leer-type scheme (4.23)

According to Construction A1, the exact solution is started by a stationary wave
from UL to U1, then followed by a 1-shock wave from U1 to U2, then followed by
a 2-contact wave from U2 to U3, then followed by a 3-shock wave from U3 to UR ,
where UL, U1, U2, U3, and UR are reported in Table 7.

Figure 15 shows an exact solutions and its approximation at time t = 0.05 on
the interval [−1, 1] with 100 mesh points by the van Leer-type scheme using the
superbee or van Leer’s limiter and the Godunov-type scheme. Besides that, the errors

Fig. 14 Steady discontinuous solution of form u = 0, [h] = 0, [2a + h ln(θ)] = 0 in test 1.4 is captured
by van Leer-type scheme (4.23)

13 (2021)47: 13Adv Comput Math



Page 29 of 53

Table 5 Errors of numerical approximations with different mesh points for test 1.4 with smooth initial
data Eq. 5.4

Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 ||Uh − U ||L1

100 5.51 × 10−6 5.4914 × 10−7

200 1.3836 × 10−6 1.3134 × 10−7

400 3.0632 × 10−7 3.2655 × 10−8

800 7.6038 × 10−8 8.1013 × 10−9

1600 1.9247 × 10−8 2.0197 × 10−9

of solutions and orders of accuracy for test 2 are reported in Table 8 and the errors of
solutions are also presented in Fig. 16.

Looking at Table 8 and Fig. 16, we are able to see that the approximate solutions
of both schemes in comparison with exact solutions get smaller when the mesh sizes
get smaller, yet the errors of van Leer-type scheme are much smaller than the ones of
Godunov-type scheme. In addition, the orders of accuracy of van Leer-type scheme
are higher than the ones of Godunov-type scheme. Furthermore, it is easy to observe
that the graph of approximate solutions of van Leer-type scheme using the superbee
limiter is closer to the graph of exact solutions than the one of van Leer-type scheme
using van Leer’s limiter and of Godunov-type scheme as in Fig. 15.

Thus, this test demonstrates the convergence of the approximate solutions by van
Leer-type scheme to the exact solutions. Especially, the accuracy of the van Leer-type
scheme using the superbee limiter is better than the one using the van Leer’s limiter.

5.3 Test 3: Construction A2

In this test, we conduct approximating a Riemann solution of Construction A2. We
consider the Riemann data to be

U0(x) =
{

UL = (hL, uL, θL, aL) = (0.5, 4, 3, 1.5) ∈ G1, if x < 0,

UR = (hR, uR, θR, aR) = (1.2, 1.5, 4, 1) ∈ G2, if x > 0.
(5.7)

Table 6 Errors of numerical approximations with different mesh points for test 1.4 with discontinuous
initial data (5.5)

Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 ||Uh − U ||L1

100 1.7945 × 10−4 1.8037 × 10−4

200 8.5315 × 10−5 8.5911 × 10−5

400 4.7037 × 10−5 4.6888 × 10−5

800 2.3314 × 10−5 2.3156 × 10−5

1600 2.0166 × 10−5 1.2822 × 10−5
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Table 7 States that separate the elementary waves of the exact solution of the Riemann problem in test 2:
Construction A1

UL U1 U2 U3 UR

h 0.01 0.007287 0.045991 0.037551 0.02

u 3.0 4.116756 2.589118 2.589118 2.0

θ 2.0 2.0 2.0 3.0 3.0

a 1.2 1.0 1.0 1.0 1.0

According to construction A2, the exact solution is started by a 1-shock wave from
UL to U1, then followed by a stationary wave from U1 to U2, then followed by a 2-
contact wave from U2 to U3, then followed by a 3-rarefaction wave from U3 to UR ,
where UL, U1, U2, U3, and UR are reported in Table 9.

Figures 17 and 18 represents an exact solution and its approximation at time t =
0.05 on the interval [−1, 1] with 100 and 1600 mesh points, respectively by the van
Leer-type scheme using the superbee or van Leer’s limiter and the Godunov-type
scheme. Besides that, the errors of solution and orders of accuracy for test 3 are
reported in the Table 10 and the errors of solutions are also presented in Fig. 19.

Table 10 and Fig. 19 point out that the errors of three schemes become smaller
when the mesh sizes get smaller, and the errors of van Leer-type scheme are the

Fig. 15 Exact and approximate solutions with 100 mesh points for test 2
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Table 8 Errors of numerical approximations and orders of accuracy for different mesh sizes for test 2

Godunov-type scheme Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 Order ||Uh − U ||L1 Order ||Uh − U ||L1 Order

100 0.0844 0.0484 0.0505

200 0.0588 0.52 0.0253 0.94 0.0300 0.75

400 0.0395 0.57 0.0164 0.63 0.0191 0.66

800 0.0235 0.75 0.0076 1.10 0.0093 1.03

1600 0.0145 0.69 0.0038 1.00 0.0050 0.89

3200 0.0092 0.66 0.0022 0.83 0.0028 0.84

6400 0.0059 0.64 0.0011 0.91 0.0016 0.85

Fig. 16 Errors of numerical solutions with different mesh points for test 2

Table 9 States that separate the elementary waves of the exact solution of the Riemann problem in test 3:
Construction A2

UL U1 U2 U3 UR

h 0.5 0.780210 1.327153 1.149348 1.2

u 4.0 2.053781 1.207381 1.207381 1.5

θ 3.0 3.0 3.0 4.0 4.0

a 1.5 1.5 1.0 1.0 1.0
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Fig. 17 Exact and approximate solutions with 100 mesh points for test 3

smallest. In addition, the orders of accuracy of van Leer-type scheme are the highest;
and we also see these results as in Table 11 and Fig. 20 when we consider on the
interval (0.3970, 0.4169) containing rarefaction wave. Furthermore, the van Leer-
type scheme using the superbee limiter has slightly higher orders of accuracy than
the one using van Leer’s limiter as in Table 10.

However, we observe that the graph of approximate solutions of van Leer-type
scheme using the superbee limiter is closer to the graph of exact solutions than the

Table 10 Errors of numerical approximations and orders of accuracy for different mesh sizes for test 3

Godunov-type scheme Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 Order ||Uh − U ||L1 Order ||Uh − U ||L1 Order

100 0.1016 0.1025 0.0942

200 0.0672 0.60 0.0584 0.81 0.0561 0.75

400 0.0371 0.86 0.0237 1.30 0.0235 1.25

800 0.0232 0.68 0.0113 1.07 0.0118 1.00

1600 0.0152 0.62 0.0054 1.06 0.0061 0.95

3200 0.0100 0.60 0.0033 0.71 0.0038 0.69

6400 0.0068 0.56 0.0021 0.67 0.0024 0.66
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Fig. 18 Exact and approximate solutions with 1600 mesh points for test 3

one of van Leer-type scheme using van Leer’s limiter and of Godunov-type scheme
as in Fig. 17, except the left hand of the stationary wave W4(U1, U2) and of the 3-
rarefaction wave R3(U3, UR) in the first two pictures of h, u in Fig. 17. If the mesh
size is reduced to h = 2/1600, then the oscillations of graph of numerical solutions
are quite tiny on the left hand of the 3-rarefaction wave R3(U3, UR), and almost
disappears on the left hand of stationary wave W4(U1, U2) as shown in Fig. 19.

Consequently, test 3 demonstrates the convergence of the approximate solutions
by van Leer-type scheme to the exact solution when the initial data belong to super-
critical and subcritical. Although the van Leer-type scheme using the superbee limiter
has a better accuracy than using the van Leer’s limiter, it suffers a slight oscillation
around the approximation of the 3-rarefaction wave R3(U3, UR) in Fig. 17.

Fig. 19 Errors of numerical solutions with different mesh points for test 3
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Table 11 Errors of numerical approximations and orders of accuracy for different mesh sizes for test 3 in
the interval of rarefaction wave (0.3970, 0.4169)

Godunov-type scheme Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 Order ||Uh − U ||L1 Order ||Uh − U ||L1 Order

1600 6.6817 × 10−4 2.5273 × 10−4 2.3510 × 10−4

3200 6.6135 × 10−4 0.01 1.6083 × 10−4 0.65 1.6368 × 10−4 0.52

6400 5.6432 × 10−4 0.23 1.1038 × 10−4 0.54 1.0204 × 10−4 0.68

5.4 Test 4: Construction A3

In this test, we conduct to approximate a Riemann solution of Construction A3, where
the Riemann data are given by

U0(x) =
{

UL = (hL, uL, θL, aL) = (0.5, 4, 3, 1.5) ∈ G1, if x < 0,

UR = (hR, uR, θR, aR) = (1.1, 3.2, 4, 1) ∈ G2, if x > 0.
(5.8)

According to Construction A3, the exact solution is started by a stationary wave
from UL to U1, then followed by a 1-shock wave with zero-speed from U1 to U2,
then followed by a stationary wave from U2 to U3, then followed by a 2-contact
wave from U3 to U4, then followed by a 3-rarefaction wave from U4 to UR , where
UL, U1, U2, U3, U4, UR are reported in Table 12.

One can see from the configuration of the exact solution (3.3) that the exact
solution contains three waves propagating with the same zero speed.

Figure 21 expresses an exact solution and its approximation at time t = 0.05 on
the interval [−1, 1] with 100 mesh points by the van Leer-type scheme using the

Fig. 20 Errors of numerical solutions with different mesh points in the interval of rarefaction wave for test
3
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Table 12 States that separate the elementary waves of the exact solution of the Riemann problem in test
4: Construction A3

UL U1 U2 U3 U4 UR

h 0.5 0.288128 0.838361 1.036362 0.897516 1.1

u 4.0 6.941370 2.385607 1.929828 1.929828 3.2

θ 3.0 3.0 3.0 3.0 4.0 4.0

a 1.5 1.164550 1.164550 1.0 1.0 1.0

superbee limiter or van Leer’s limiter and the Godunov-type scheme. Besides that,
the errors of solution and orders of accuracy for test 4 are reported in Table 13 and
the errors of solutions are also showed in Fig. 22.

Table 13 and Fig. 22 show that the errors for approximating solutions of both
schemes become smaller when the mesh sizes get smaller, and that the errors of van
Leer-type scheme are much smaller than the ones of Godunov-type scheme. In addi-
tion, the orders of accuracy of van Leer-type scheme are higher than the ones of
Godunov-type scheme; and we also see these outcomes as in Table 14 and Fig. 23

Fig. 21 Exact and approximate solutions with 100 mesh points for test 4
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Table 13 Errors of numerical approximations and orders of accuracy for different mesh sizes for test 4

Godunov-type scheme Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 Order ||Uh − U ||L1 Order ||Uh − U ||L1 Order

100 0.1540 0.0863 0.0945

200 0.0956 0.69 0.0399 1.11 0.0469 0.75

400 0.0605 0.66 0.0195 1.04 0.0242 1.25

800 0.0389 0.64 0.0106 0.88 0.0135 1.00

1600 0.0247 0.65 0.0051 1.04 0.0070 0.95

3200 0.0158 0.65 0.0027 0.90 0.0039 0.84

6400 0.0101 0.65 0.0015 0.87 0.0022 0.83

when we consider on the interval (0.4181, 0.4633) containing rarefaction wave, the
tendency of the orders of accuracy gradually increase in case the mesh points get big-
ger. Furthermore, it is easy to observe that the graph of approximate solutions of van
Leer-type scheme using the superbee limiter is closer to the graph of exact solutions
than the one of van Leer-type scheme using van Leer’s limiter and of Godunov-type
scheme as in Fig. 21.

This test also demonstrates the convergence of the approximate solutions by van
Leer-type scheme to the exact solution when the initial data even for the resonant
phenomenon, where several waves travel with a coinciding speed. Especially, the
approximate solutions by the van Leer-type scheme using the superbee limiter are
closer to the exact solutions than the one using the van Leer’s limiter.

Fig. 22 Errors of numerical solutions with different mesh points for test 4
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Table 14 Errors of numerical approximations and orders of accuracy for different mesh sizes for test 4 in
the interval of rarefaction wave (0.4181, 0.4633)

Godunov-type scheme Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 Order ||Uh − U ||L1 Order ||Uh − U ||L1 Order

200 0.0023 0.0017 0.0017

400 0.0020 0.17 0.0011 0.68 0.0011 0.66

800 0.0016 0.38 5.9980 × 10−4 0.85 6.2033 × 10−4 0.84

1600 0.0012 0.37 3.3539 × 10−4 0.84 3.4589 × 10−4 0.84

3200 8.5948 × 10−4 0.51 1.8674 × 10−4 0.85 1.9099 × 10−4 0.86

6400 5.0177 × 10−4 0.78 9.4428 × 10−5 0.98 9.6710 × 10−5 0.98

5.5 Test 5: Construction B1

In this test, we conduct to approximate a Riemann solution of Construction B1 with
the Riemann data:

U0(x) =
{

UL = (hL, uL, θL, aL) = (0.5, 1, 3, 1.5) ∈ G2, if x < 0,

UR = (hR, uR, θR, aR) = (0.3, 4, 2, 1.3) ∈ G1, if x > 0.
(5.9)

According to Construction B1, the exact solution is started by a 1-rarefaction wave
from UL to U1, then followed by a stationary wave from U1 to U2, then followed by
a 1-shock wave from U2 to U3, then followed by a 2-contact wave from U3 to U4,
then followed by a 3-shock wave from U4 to UR , where UL, U1, U2, U3, U4, and UR

are reported in Table 15.

Fig. 23 Errors of numerical solutions with different mesh points in the interval of rarefaction wave for test
4
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Table 15 States that separate the elementary waves of the exact solution of the Riemann problem in test
5: Construction B1

UL U1 U2 U3 U4 UR

h 0.5 0.283962 0.156098 0.252118 0.308780 0.3

u 1.0 2.889365 5.256126 4.070455 4.070455 4.0

θ 3.0 3.0 3.0 3.0 2.0 2.0

a 1.5 1.5 1.3 1.3 1.3 1.3

Figures 24 and 25 represents an exact solutions and its approximation at time
t = 0.05 on the interval [−1, 1] with 100 and 1600 mesh points, respectively by
the van Leer-type scheme using the superbee or van Leer’s limiter and the Godunov-
type scheme. Besides that, the errors of solution and orders of accuracy for test 5 are
reported in Table 16 and the errors of solutions are also showed in Fig. 26.

Table 16 and Fig. 26 also demonstrate the convergence of both schemes, and the
errors of van Leer-type scheme are much smaller than the ones of Godunov-type
scheme. Again, the orders of accuracy of van Leer-type scheme are higher than the
ones of Godunov-type scheme; and we also have the similar results as in Table 17 and

Fig. 24 Exact and approximate solutions with 100 mesh points for test 5
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Table 16 Errors of numerical approximations and orders of accuracy for different mesh sizes for test 5

Godunov-type scheme Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 Order ||Uh − U ||L1 Order ||Uh − U ||L1 Order

100 0.1635 0.1043 0.0992

200 0.1024 0.67 0.0650 0.68 0.0593 0.74

400 0.0630 0.70 0.0292 1.16 0.0289 1.04

800 0.0396 0.67 0.0162 0.85 0.0172 0.75

1600 0.0245 0.69 0.0078 1.05 0.0085 1.01

3200 0.0155 0.66 0.0035 1.16 0.0043 0.99

6400 0.0099 0.64 0.0021 0.76 0.0026 0.74

Fig. 25 Exact and approximate solutions with 1600 mesh points for test 5

Fig. 26 Errors of numerical solutions with different mesh points for test 5
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Table 17 Errors of numerical approximations and orders of accuracy for different mesh sizes for test 5 in
the interval of rarefaction wave (−0.1317, 0.0000)

Godunov-type scheme Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 Order ||Uh − U ||L1 Order ||Uh − U ||L1 Order

200 0.0139 0.0113 0.0099

400 0.0109 0.35 0.0065 0.81 0.0058 0.76

800 0.0073 0.58 0.0034 0.92 0.0031 0.89

1600 0.0046 0.66 0.0018 0.93 0.0017 0.92

3200 0.0027 0.78 9.0197 × 10−4 0.99 8.3105 × 10−4 0.99

6400 0.0016 0.79 4.5603 × 10−4 0.98 4.2091 × 10−4 0.98

Fig. 27 when we consider on the interval (−0.1317, 0.0000) containing rarefaction
wave.

Nevertheless, the van Leer-type scheme using the superbee limiter suffers a small
oscillation around the 1-shock wave S1(U2, U3) of the first two pictures of h, u in
Fig. 24. If the mesh sizes are reduced with 1600 mesh points on [−1, 1], then this
oscillation almost disappears; see Fig. 25.

Thus, this test also shows the convergence of the approximate solutions by the van
Leer-type scheme to the exact solution. Especially, the approximate solutions of our
scheme using the superbee limiter reach the exact solutions better than the van Leer’s
ones.

Fig. 27 Errors of numerical solutions with different mesh points in the interval of rarefaction wave for test
5
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Table 18 States that separate the elementary waves of the exact solution of the Riemann problem in test
6: Construction B2

UL U1 U2 U3 UR

h 0.6 0.518204 1.156671 1.335608 1.5

u 3.0 3.685363 1.651092 1.651092 2.4

θ 4.0 4.0 4.0 3.0 3.0

a 1.5 1.5 1.0 1.0 1.0

5.6 Test 6: Construction B2

In this test, we conduct approximating a Riemann solution of Construction B2 with
the Riemann data:

U0(x) =
{

UL = (hL, uL, θL, aL) = (0.6, 3, 4, 1.5) ∈ G2, if x < 0,

UR = (hR, uR, θR, aR) = (1.5, 2.4, 3, 1) ∈ G2, if x > 0.
(5.10)

According to Construction B2, the exact solution is started by a 1-rarefaction wave
from UL to U1, then followed by a stationary wave from U1 to U2, then followed by

Fig. 28 Exact and approximate solutions with 100 mesh points for test 6
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Table 19 Errors of numerical approximations and orders of accuracy for different mesh sizes for test 6

Godunov-type scheme Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 Order ||Uh − U ||L1 Order ||Uh − U ||L1 Order

100 0.1399 0.0815 0.0904

200 0.0906 0.63 0.0436 0.90 0.0499 0.86

400 0.0579 0.65 0.0226 0.94 0.0269 0.89

800 0.0374 0.63 0.0108 1.06 0.0139 0.96

1600 0.0241 0.63 0.0055 0.98 0.0074 0.90

3200 0.0156 0.63 0.0028 1.00 0.0040 0.89

6400 0.0100 0.63 0.0014 0.99 0.0022 0.87

a 2-contact wave from U2 to U3, then followed by a 3-rarefaction wave from U3 to
UR , where UL, U1, U2, U3, and UR are reported in Table 18.

The exact and approximate solutions at time t = 0.05 with 100 mesh points on
the interval [−1, 1] are displayed in Fig. 28. The errors and orders of accuracy are
reported in Tables 19, 20, and 21, and the errors of solutions are also showed in
Figs. 29, 30, and 31.

The approximate solutions are shown to be convergent to the exact solution, by
Table 19 and Fig. 29. And, the errors of van Leer-type scheme are much smaller than
the ones of Godunov-type scheme. In addition, the orders of accuracy of van Leer-
type scheme are higher than the ones of Godunov-type scheme. Our van Leer-type
scheme using the superbee limiter has the best orders of accuracy among the three
tested ones.

5.7 Test 7: Construction B3

In this test, we conduct to approximate a Riemann solution of Construction B3 with
the Riemann data:

U0(x) =
{

UL = (hL, uL, θL, aL) = (0.5, 2, 4, 1.5) ∈ G2, if x < 0,

UR = (hR, uR, θR, aR) = (0.9, 1.5, 3, 1) ∈ G2, if x > 0.
(5.11)

Table 20 Errors of numerical approximations and orders of accuracy for different mesh sizes for test 6 in
the interval of rarefaction wave (−0.0875,−0.0461)

Godunov-type scheme Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 Order ||Uh − U ||L1 Order ||Uh − U ||L1 Order

1600 0.0013 4.5596 × 10−4 4.5645 × 10−4

3200 7.9636 × 10−4 0.65 2.3483 × 10−4 0.95 2.3479 × 10−4 0.96

6400 4.9920 × 10−4 0.67 1.2497 × 10−4 0.91 1.2494 × 10−4 0.91
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Table 21 Errors of numerical approximations and orders of accuracy for different mesh sizes for test 6 in
the interval of rarefaction wave (0.4059, 0.4420)

Godunov-type scheme Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 Order ||Uh − U ||L1 Order ||Uh − U ||L1 Order

1600 0.0015 2.9277 × 10−4 2.9749 × 10−4

3200 0.0011 0.50 1.5151 × 10−4 0.95 1.5465 × 10−4 0.94

6400 7.2782 × 10−4 0.57 7.8238 × 10−5 0.95 8.0580 × 10−5 0.94

According to Construction B3, the exact solution is started by a 1-rarefaction wave
from UL to U1, then followed by a stationary wave from U1 to U2, then followed by a
1-shock wave with zero speed from U2 to U3, then followed by a stationary wave U3
to U4, then followed by a 2-contact wave from U4 to U5, then followed by a 3-shock
wave from U5 to UR , where UL, U1, U2, U3, U4, U5, UR are reported in Table 22.

As seen in (3.6), the exact solution contains three waves propagating with the same
zero speed.

Figure 32 shows an exact solution and its approximation at time t = 0.05 on
the interval [−1, 1] with 100 mesh points by the van Leer-type scheme using the
superbee limiter or van Leer’s limiter, and by the Godunov-type scheme. The errors
of solution and orders of accuracy for test 7 are reported in Table 23 and the errors of
solutions are also showed in Fig. 33.

Again, the errors for approximating solutions of both schemes tend to zero as the
mesh sizes tend to zero, as shown in Table 23 and Fig. 33, and the errors of van Leer-
type scheme are much smaller than the ones of Godunov-type scheme. In addition,

Fig. 29 Errors of numerical solutions with different mesh points for test 6
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Fig. 30 Errors of numerical solutions with different mesh points in the interval of rarefaction wave
(−0.0875,−0.0461) for test 6

the orders of accuracy of van Leer-type scheme are higher than the ones of Godunov-
type scheme; and we also see these outcomes as in Table 24 and Fig. 34 when we
consider the interval (−0.1114, 0.0000) containing rarefaction wave.

Consequently, test 7 demonstrates the convergence of the approximate solutions
by the van Leer-type scheme to the exact solution in this very interesting resonant
case, where the exact solution contains several waves corresponding to different char-
acteristic fields, which propagate with a coinciding shock speed. Especially, the van
Leer-type scheme using the superbee limiter has a better accuracy than the one using
the van Leer limiter.

5.8 Test 8: Interaction of waves

In this test, we consider the Cauchy problem where the initial data consist of three
constant states UL, UM , and UR with two different jump discontinuities at x1 = 0
and x2 = 1. First of all, the Cauchy problem can be seen as two separated Riemann
problems located at x1 and x2. After a certain time t = t1, the highest speed wave
in the solution of the Riemann problem located at x1 interacts with the lowest speed

Table 22 States that separate the elementary waves of the exact solution of the Riemann problem in test
7: Construction B3

UL U1 U2 U3 U4 U5 UR

h 0.5 0.333950 0.168242 0.586556 0.785290 0.906775 0.9

u 2.0 3.618124 7.181757 2.059946 1.538632 1.538632 1.5

θ 4.0 4.0 4.0 4.0 4.0 3.0 3.0

a 1.5 1.5 1.174806 1.174806 1.0 1.0 1.0
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Fig. 31 Errors of numerical solutions with different mesh points in the interval of rarefaction wave
(0.4059, 0.4420) for test 6

Fig. 32 Exact and approximate solutions with 100 mesh points for test 7
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Table 23 Errors of numerical approximations and orders of accuracy for different mesh sizes for test 7

Godunov-type scheme Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 Order ||Uh − U ||L1 Order ||Uh − U ||L1 Order

100 0.1033 0.0735 0.0770

200 0.0670 0.62 0.0396 0.89 0.0430 0.84

400 0.0425 0.66 0.0203 0.96 0.0233 0.89

800 0.0269 0.66 0.0114 0.83 0.0132 0.82

1600 0.0171 0.66 0.0053 1.10 0.0068 0.95

3200 0.0109 0.64 0.0026 1.02 0.0037 0.90

6400 0.0070 0.63 0.0013 0.97 0.0020 0.86

Fig. 33 Errors of numerical solutions with different mesh points for test 7

Table 24 Errors of numerical approximations and orders of accuracy for different mesh sizes for test 7 in
the interval of rarefaction wave (−0.1114, 0.0000)

Godunov-type scheme Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 Order ||Uh − U ||L1 Order ||Uh − U ||L1 Order

100 0.0145 0.0085 0.0090

200 0.0093 0.63 0.0045 0.93 0.0047 0.95

400 0.0078 0.25 0.0033 0.45 0.0034 0.44

800 0.0054 0.53 0.0020 0.74 0.0021 0.74

1600 0.0035 0.63 0.0011 0.83 0.0012 0.83

3200 0.0021 0.77 5.6169 × 10−4 0.98 5.8911 × 10−4 0.98

6400 0.0012 0.79 2.8658 × 10−4 0.97 3.0092 × 10−4 0.97
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Fig. 34 Errors of numerical solutions with different mesh points in the interval of rarefaction wave for
Test 7

wave in the solution of the Riemann problem located at x2 generating new waves
after the wave interaction at t1. We will point out the time of wave interaction t1;
simultaneously, we will approximate solution by the our scheme after this time and
compare with the exact solution. It is interesting to see the interaction of waves where
the bottom level suffers a jump. Therefore, we will consider the interaction of a 3-
shock starting from x1 with a 4-stationary contact discontinuity along x2. This two
waves meet at (x, t) = (x2, t1). New waves are generated from this interaction of
wave, and they are merely elementary waves of the local Riemann problem located
at (x2, t1).

Specifically, we consider the Cauchy problem with the following initial condition

U0(x) =

⎧⎪⎨
⎪⎩

UL = (hL, uL, θL, aL) = (0.5, 6, 3, 1.2) ∈ G1, if x < 0,
UM = (hM, uM, θM, aM) = (0.3, 5, 4, 1) ∈ G1, if 0 < x < 1,
UR = (hR, uR, θR, aR) = (0.199774, 7.508502, 4, 0.7) ∈ G1, if x > 1,

(5.12)

see Fig. 35.
Obviously, the Riemann data (UL, UM) at x = 0 satisfies construction A1 and the

Riemann data (UM, UR) at x = 1 satisfies (2.26). So, while t < t1, the Riemann
solution at x = 0 is

W4(UL, U1) ⊕ S1(U1, U2) ⊕ W2(U2, U3) ⊕ S3(U3, UM),

and the Riemann solution at x = 1 is just the 4-contact stationary wave

W4(UM, UR),

(see Fig. 36). An interaction of wave occurs when the 3-shock wave S3(U3, UM)

from x = 0 meets the 4-stationary contact wave W4(UM, UR) at (x = 1, t1). The
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Fig. 35 The initial condition (5.12)

time t1 is determined by equating

x = σ3(U3, UR)t = 1,

or

t1 ≈ 0.1039.

Observe that the 2-contact W2(U2, U3) starting at x = 0 may meet the 4-contact
W4(UM, UR) at a larger time t2, when the line x = σ2(U2, U3)t cuts the line x = 1.
It is easy to check that

t2 ≈ 0.1541.

We will conduct the test at a time t∗ between these two values t1 and t2. For instance,
we take

t∗ = 0.15.

Note that after the first interaction of wave between the 3-shock wave S3(U3, UM)

and the 4-stationary contact wave W4(UM, UR), new waves are generated and form
a solution of the local Riemann problem located at (x = 1, t1) with the initial data
(U3, UR). It is easy to see that after the first wave interaction and before the second
interaction of wave, that is

t1 < t < t2,
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Fig. 36 The exact solution for test 8 at time t1 < t < t2

the exact solution of this local Riemann problem located at (x = 1, t1) with the initial
data (U3, UR) is given by

W4(U3, U4) ⊕ R1(U4, U5) ⊕ S3(U5, UR).

Thus, the exact solution for (1.1) with initial data (5.12) at the time t = 0.15 is

W4(UL, U1)⊕S1(U1, U2)⊕W2(U2, U3)⊕W4(U3, U4)⊕R1(U4, U5)⊕S3(U5, UR),

(see Fig. 36) where U1, U2, U3, U4, and U5 are reported in Table 25.
Figure 37 shows an exact solution and its approximation at time t = 0.15 on the

interval [−1, 2]with 100mesh points by the van Leer-type scheme using the superbee
limiter or van Leer’s limiter and the Godunov-type scheme. Besides that, the errors
of solution and orders of accuracy for this test are reported in Table 26 and the errors
of solutions are also showed in Fig. 38.

Apparently, the approximate solutions of both schemes tend to the exact solution
when the mesh sizes tend to zero, as shown in Table 26 and Fig. 38. The errors of
van Leer-type scheme are much smaller than the ones of Godunov-type scheme. In
addition, the orders of accuracy of van Leer-type scheme are higher than the ones
of Godunov-type scheme; and we also have the likely results as in Table 27 and

Table 25 States that separate the elementary waves of the exact solution of the Riemann problem in test
8: Interaction of waves

U1 U2 U3 U4 U5

h 0.412437 0.510408 0.442026 0.333005 0.308126

u 7.273842 6.487368 6.487368 8.611240 8.886406

θ 3.0 3.0 4.0 4.0 4.0

a 1.0 1.0 1.0 0.7 0.7
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Fig. 37 Exact and approximate solutions with 100 mesh points for test 8

Fig. 39 when we consider the interval (1.2207, 1.2597) containing rarefaction wave,
the tendency of the orders of accuracy gradually increase in case the mesh points
get bigger. Furthermore, our van Leer-type scheme using the superbee limiter has a
better accuracy than the one using the van Leer limiter as in Table 26.

Thus, this test also demonstrates the convergence of the approximate solutions by
the van Leer-type scheme to the exact solution.

Table 26 Errors of numerical approximations and orders of accuracy for different mesh sizes for test 8

Godunov-type scheme Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 Order ||Uh − U ||L1 Order ||Uh − U ||L1 Order

100 0.3761 0.0974 0.1309

200 0.2368 0.67 0.0473 1.04 0.0629 1.06

400 0.1543 0.62 0.0329 0.52 0.0405 0.63

800 0.0924 0.74 0.0133 1.31 0.0184 1.14

1600 0.0573 0.69 0.0078 0.76 0.0108 0.77

3200 0.0352 0.70 0.0043 0.86 0.0060 0.86

6400 0.0223 0.66 0.0025 0.77 0.0034 0.81
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Fig. 38 Errors of numerical solutions with different mesh points for test 8

Table 27 Errors of numerical approximations and orders of accuracy for different mesh sizes for test 8 in
the interval of rarefaction wave (1.2207, 1.2597)

Godunov-type scheme Superbee limiter van Leer’s limiter

N ||Uh − U ||L1 Order ||Uh − U ||L1 Order ||Uh − U ||L1 Order

1600 0.0024 5.9773 × 10−4 3.7429 × 10−4

3200 0.0020 0.26 4.2734 × 10−4 0.48 1.9418 × 10−4 0.95

6400 0.0016 0.34 2.2644 × 10−4 0.92 9.9061 × 10−5 0.97

Fig. 39 Errors of numerical solutions with different mesh points in the interval of rarefaction wave for test
8
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6 Conclusions

Our second-order van Leer-type scheme constructed in this work for the Ripa system
(1.1) is shown by tests to be quite in the well-balanced sense as it can exactly cap-
ture the stationary smooth solutions as well as stationary elementary discontinuities.
It can work well for data in the supercritical region or subcritical region, or both. All
the tests show that the approximate solutions by the scheme converge to the exact
solutions. Besides that, the tests demonstrate that the errors and orders of accuracy
of van Leer-type scheme are better than the ones of Godunov-type scheme. Further-
more, the approximate solutions of van Leer-type scheme using the superbee limiter
have a better accuracy than ones that use van Leer’s limiter. However, in some cases,
the van Leer-type scheme using the superbee limiter may suffer a slight oscillation,
which will almost disappear for small enough mesh sizes.
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20. Kröner, D., Thanh, M.D.: Numerical solutions to compressible flows in a nozzle with variable cross-
section. SIAM J. Numer. Anal. 43, 796–824 (2005)

21. LeFloch, P.G., Thanh, M.D.: A Godunov-type method for the shallow water equations with variable
topography in the resonant regime. J. Comput. Phys. 230, 7631–7660 (2011)

22. Li, G., Caleffi, V., Qi, Z.K.: A well-balanced finite difference WENO scheme for shallow water flow
model. Appl. Math. Comput. 265, 1–16 (2015)

23. Li, G., Song, L.N., Gao, J.M.: High order well-balanced discontinuous Galerkin methods based on
hydrostatic reconstruction for shallow water equations. J. Comput. Appl. Math. 340, 546–560 (2018)

24. Qian, S.G., Shao, F.J., Li, G.: High order well-balanced discontinuous Galerkin methods for shallow
water flow under temperature fields. Comput. Appl. Math. 37, 5775–5794 (2018)

25. collab= P. Ripa: Conservation laws for primitive equations models with inhomogeneous layers.
Geophys Astrophys Fluid Dyn. 70, 85–111 (1993)

26. Ripa, P.: On improving a one-layer ocean model with thermodynamics. J. Fluid Mech. 303, 169–201
(1995)

27. Rosatti, G., Begnudelli, L.: The Riemann Problem for the one-dimensional, free-surface shallow water
equations with a bed step: theoretical analysis and numerical simulations. J. Comput. Phys. 229, 760–
787 (2010)

28. Sanchez-Linares, C., Morales de Luna, T., Castro Diaz, M.J.: A HLLC scheme for Ripa model. Appl.
Math. Comput. 72, 369–384 (2016)

29. Saurel, R., Abgrall, R.: A multi-phase Godunov method for compressible multifluid and multiphase
flows. J. Comput. Phys. 150, 425–467 (1999)

30. Tian, B., Toro, E.F., Castro, C.E.: A path-conservative method for a five-equation model of two-phase
flow with an HLLC-type Riemann solver. Comput. & Fluids 46, 122–132 (2011)

31. Thanh, M.D.: The Riemann problem for the shallow water equations with horizontal temperature
gradients. Appl. Math. Comput. 325, 159–178 (2018)

32. Thanh, M.D., Thanh, N.X.: Well-balanced numerical schemes for shallow water equations
with horizontal temperature gradient. Bull. Malays. Math. Sci. Soc 43(1), 783–807 (2020).
https://doi.org/10.1007/s40840-018-00713-5

33. Thanh, N.X., Thanh, M.D., Cuong, D.H.: Godunov-type numerical scheme for the shallow
water equations with horizontal temperature gradient. Taiwan. J. Math. 24(1), 179–223 (2020).
https://doi.org/10.11650/tjm/190501

34. Touma, R., Klingenberg, C.: Well-balanced central finite volume methods for the Ripa system. Appl.
Num. Math. 97, 42–68 (2015)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

13Adv Comput Math (2021)47: 13

https://doi.org/10.1007/s40840-018-00713-5
https://doi.org/10.11650/tjm/190501

	A well-balanced high-order scheme on van Leer-type for the shallow water equations with temperature gradient and variable bottom topography
	Abstract
	Introduction
	Background
	Non-strict hyperbolicity
	Rarefaction waves
	Shock waves
	Stationary contact discontinuities
	Admissible stationary contact discontinuities

	The exact Riemann solver
	Notations
	Case A: ULG1C+
	Construction A1
	Construction A2
	Construction A3


	Case B: ULG2
	Construction B1
	Construction B2
	Construction B3



	Building a van Leer-type scheme
	Godunov-type scheme
	van Leer-type scheme
	Riemann solver (A1)
	Riemann solver (A2)
	Riemann solver (A3)
	Riemann solver (B1)
	Riemann solver (B2)
	Riemann solver (B3)



	Numerical tests
	Test 1: Well-balanced property
	Test 1.1: Discontinuous topography
	Test 1.2: Flat topography
	Test 1.3: Continuous topography
	Test 1.4: Stationary solutions of form u=0,[h]=0, [2a+hln()]=0.

	Test 2: Construction A1
	Test 3: Construction A2
	Test 4: Construction A3
	Test 5: Construction B1
	Test 6: Construction B2
	Test 7: Construction B3
	Test 8: Interaction of waves

	Conclusions
	References




