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Abstract
This paper presents a general framework for the coercivity analysis of a class of
quadratic finite volume element (FVE) schemes on triangular meshes for solving
elliptic boundary value problems. This class of schemes covers all the existing
quadratic schemes of Lagrange type. With the help of a new mapping from the trial
function space to the test function space, we find that each element matrix can be
decomposed into three parts: the first part is the element stiffness matrix of the
standard quadratic finite element method (FEM), the second part is the difference
between the FVE and FEM on the element boundary, while the third part can be
expressed as the tensor product of two vectors. Thanks to this decomposition, we
obtain a sufficient condition to guarantee the existence, uniqueness, and coercivity
result of the FVE solution on triangular meshes. Moreover, based on this sufficient
condition, some minimum angle conditions with simple, analytic, and computable
expressions can be derived and they depend only on the constructive parameters of
the schemes. As a byproduct, some existing coercivity results are improved. Finally,
an optimal H 1 error estimate is proved by the standard techniques.
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1 Introduction

The finite volume method (FVM) is one of the major numerical methods for solving
partial differential equations (c.f. [2, 22, 28, 29, 32]), since it preserves the local
conservation law. The finite volume element method (FVEM) is one type of FVM,
and its mathematical progress can be found in [23, 26, 44] and the references cited
therein.

The coercivity result is one of the most challenging works for the analysis of
FVEMs, especially for the high-order schemes. For the linear FVEM on triangular
meshes, its element stiffness matrix can be regarded as a small perturbation of linear
FEM for variable coefficient, then the coercivity result can be proved (c.f. [1, 4, 18,
19, 40]), and the error estimates were presented in [1, 4, 12, 13, 18, 19, 38, 40] for
incomplete references. Recently, [16, 17, 47] studied the adaptive linear FVEM on
triangular meshes, and [35] studied the conditioning of linear FVEM on arbitrary
simplicial meshes.

Unlike the linear scheme, the existing quadratic scheme is constructed by two
parameters α and β, where α ∈ (0, 1/2) on the element boundary and β ∈ (0, 2/3)
in the interior of element (c.f. [40]). For the coercivity result of quadratic FVE
schemes, its mathematical progress still lags far behind compared with the linear
FVEM. For example, for the first proposed quadratic scheme (α, β) = (1/3, 1/3),
by assuming that the maximum angle of each triangular element is not greater than
90◦, and the ratio of the lengths of the two sides of the maximum angle belong to
[√2/3,

√
3/2], Tian and Chen [31] presented a coercivity result. In 1996, Liebau

[25] studied the scheme (α, β) = (1/4, 1/3), and required that the geometry of
the triangulation triangles is not too extreme. In 2009, Xu and Zou [40] improved
some earlier coercivity results, the minimum angle should be greater than or equal
to 7.11◦ for the scheme proposed in [15] (α, β) = (1/6, 1/4), 9.98◦ for the scheme
proposed in [25] (α, β) = (1/4, 1/3), and 20.95◦ for the scheme proposed in [31]
(α, β) = (1/3, 1/3). In 2012, a general framework for the construction and analysis
of higher-order FVMs was established in [8] by Chen, Wu, and Xu. For a specific
quadratic scheme, its minimum angle condition can be obtained by a computer pro-
gram, and the coercivity result is the same as [40] for the schemes in [15, 25, 31].
Later, the relationship of the uniform ellipticity, inf-sup condition, and uniform local
ellipticity of high-order FVMs was presented in [10]. In 2017, by introducing a novel
mapping from the trial function space to test function space, Zou [49] proposed an
unconditionally stable quadratic scheme with (α, β) = ((3 − √

3)/6, (3 − √
3)/6).

Recently, Zhou and Wu [46] analyze a family of quadratic schemes with a parameter
β and α is fixed as (3 − √

3)/6, and improved the minimum angle condition in [36]
to 1.42◦.

Based on the coercivity result of quadratic scheme on triangular meshes, one can
study its convergence properties and apply it to solve more complicated problems,
e.g., [7, 14, 21, 33, 34, 36, 37, 39, 41, 42]. The relevant studies of hybrid FVMs
and Hermite FVMs were presented in [5, 8, 9, 11] and the references cited therein.
On the other hand, for the coercivity analysis on quadrilateral meshes, we refer the
reader to a non-exhaustive literature [6, 20, 23, 24, 27, 30, 43, 45, 48]. From another
viewpoint, one can postprocess the continuous Galerkin finite element solution, to
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obtain a finite-volume-like solution which satisfies the conservation law on each dual
cell. For example, in 2013 Bush and Ginting [3] postprocess the linear FEM, while
in 2017 Zou, Guo, and Deng [50] consider the high-order FEM.

In this work, we intend to generalize the coercivity analysis in [46] to any scheme
parameter pair (α, β), which cover all the existing quadratic schemes of Lagrange
type. In this case, some new difficulties arise. Firstly, there are two scheme param-
eters α and β need us to consider, while [46] only concentrate on one scheme
parameter β and α is fixed as (3 − √

3)/6. Therefore, the representation, compu-
tation, and analysis of the element stiffness matrix are more complicated than [46].
Secondly, the analysis technique in [46] heavily depends on the orthogonality on the
boundary of triangle. However, here we consider a class of schemes with two scheme
parameters α and β, and the orthogonality on the boundary of triangle does not hold
when α �= (3 − √

3)/6.
In order to overcome these difficulties, in this paper, we introduce a novel mapping

from the trial function space to the test function space. Precisely, we first convert
the FVE element bilinear form to a quadratic form with respect to a 6-by-6 singular
element matrix. With the help of the mapping, a weak orthogonality on the boundary
of triangle holds for any α, then this element matrix can be split as three parts: the
first part is the element stiffness matrix of the standard quadratic FEM, the second
part is the difference between the FVE and FEM on the boundary of triangle, while
the third part is the difference in the interior of triangle and can be simplified to the
tensor product of two vectors. Then, the analysis of this element matrix can be further
transformed to that of a 5-by-5 symmetric matrix. Thanks to this finding, we obtain
a sufficient condition to guarantee the existence, uniqueness, and coercivity result of
the FVE solution on triangular meshes. Under the coercivity result, the optimal H 1

error estimate is proved.
Compared with the prior works, the present work has some contributions. Firstly,

we present a general framework to study a class of quadratic FVE schemes with two
parameters α and β, covering all the existing quadratic schemes of Lagrange type [15,
25, 31, 36, 46, 49]. Secondly, for any quadratic scheme which determined by α and
β, we proved that the coercivity result is valid on equilateral triangular mesh. Thirdly,
in order to ensure the coercivity result of these schemes on general triangular meshes,
we obtain the corresponding minimum angle condition with a simple, analytic, and
computable expression, and moreover the minimum angle only relies on the scheme
parameters. As a direct consequence, some existing coercivity results are improved,
see Table 1. Throughout the analysis, two factors play important roles, i.e., the proper
choice of the mapping from the trial function space to the test function space, and the
weak orthogonality properties.

Here we mention a closely related work [8] where a general framework was pro-
posed to analyze high-order FVE schemes on triangular meshes. Specifically, for
the quadratic FVE schemes, there exist some similarities and differences between
the present work and [8]. Firstly, both works adopt the element analysis approach.
Secondly, the mappings from the trial function space to the test function space are
different. [8] uses a fixed mapping while this work uses a special one depending on
α, leading to different bilinear forms. Finally, the coercivity condition obtained in

Adv Comput Math (2020) 46: 71 Page 3 of 31    71



Table 1 The minimum angle conditions for some special quadratic FVE schemes

(α, β) Existing results Our results

(
1
3 , 1

3

)
, in 1991, [31] 20.95◦, in 2009, [40] 10.08◦

20.95◦, in 2012, [8](
1
6 , 1

4

)
, in 1992, [15] 7.11◦, in 2009, [40] 7.11◦

7.11◦, in 2012, [8](
1
4 , 1

3

)
, in 1996, [25] 9.98◦, in 2009, [40] 4.14◦

9.98◦, in 2012, [8](
3−√

3
6 ,

6+√
3−

√
21+6

√
3

9

)
, in 2016, [36] 5.24◦, in 2016, [36] 1.42◦

1.42◦, in 2020, [46]

[8] does not have an analytic expression and it can only be verified by a computer
program.

We organize the rest of the paper as follows. In Section 2, we present a class of
quadratic finite volume element schemes. In order to prove the coercivity result, we
first give some preliminaries in Section 3. The coercivity analysis of these schemes
on equilateral triangular mesh and general triangular meshes is presented in Sec-
tions 4 and 5, respectively. In Section 6, we provide some analytic expressions to
approximate the minimal angle condition. In Section 7, we discuss the minimum
angle condition for some special quadratic schemes, and give a simple and analytic
expression of this angle. The optimal H 1 error estimate is shown in Section 8 and the
conclusions are given in Section 9.

In the sequential discussion, to avoid repetition, we sometimes write “A � B”
to indicate that A can be bounded by B multiplied by a constant irrelative to the
parameters which A and B may depend on. Analogously, “A � B” means that B can
be bounded by A, while “A ∼ B” stands for the fact that we have both “A � B” and
“B � A.”

2 A class of quadratic FVE schemes

We consider the following elliptic equation

− ∇ · (κ∇u) = f , in Ω, (2.1)

u = 0, on ∂Ω, (2.2)

where Ω ⊂ R

2 is a bounded polygonal domain, f ∈ L2(Ω), and κ is a piece-
wise smooth function that can be bounded above and below, i.e., there exist positive
constants κmin and κmax, such that

κmin ≤ κ(x, y) ≤ κmax, for a.e. (x, y) ∈ Ω .
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For the polygonal domain Ω , the primary mesh Th := {K} is a conforming tri-
angular partition of Ω , where h = maxK∈Th

hK and hK is the diameter of K . We
assume that κ is smooth inside each cell and Th is shape regular, i.e., there exists a
positive constant θ0, independent of h and K , such that

θK ≥ θ0 > 0, ∀ K ∈ Th, (2.3)

where θK is the minimum interior angle of K . With respect to the primary mesh Th,
the standard k-th order finite element space of Lagrange type is

Uk
h = {uh ∈ C(Ω) : uh|K ∈ Pk, ∀ K ∈ Th; uh|∂Ω = 0}, (2.4)

where Pk is the set of all polynomials of degree not greater than k. Obviously, we
have Uk

h ⊂ H 1
0 (Ω). Throughout the paper, we choose the trial function space Uh as

Uh := U2
h .

Next, we introduce the construction of the dual cells. To this end, for any triangular
element K ∈ Th, letNK and EK be the set of six nodes (three vertices and three edge
midpoints) and the set of three edges of K , respectively. Moreover, let

Nh =
⋃

K∈Th

NK, N ◦
h = Nh\∂Ω, Eh =

⋃
K∈Th

EK .

For any K = �P1P2P3 ∈ Th, see Fig. 1, we denote by Q the barycenter of K

and Mi (i = 1, 2, 3) the midpoint of the line segment PiPi+1, here and hereafter
i denotes, without special mention, a periodic index with period 3. For each α ∈
(0, 1/2), P α

i,i+1 and P α
i+1,i are the two points on the line segment PiPi+1, subjected

to
|PiP

α
i,i+1|

|PiPi+1| = |P α
i+1,iPi+1|
|PiPi+1| = α. (2.5)

P
1

P
2

P
3

Q

M
1

M
2

M
3

P
1,2

P
2,1

P
2,3

P
3,2

P
1,3

P
3,1

P
1,2

P
2,3

P
3,1

Fig. 1 Partition of the triangular element K
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For each β ∈ (0, 2/3), the point P
β

i,i+1 is located at the line segment PiMi+1,
satisfying

|PiP
β

i,i+1|
|PiMi+1| = β. (2.6)

Using these notations, we obtain a partition ofK , consisting of three quadrilaterals
and three pentagons, see Fig. 1. For each node P ∈ Nh, the dual cell associated with
P is a polygonal domain surrounding P and denoted as VP . If P = Pi is a vertex
of K , then the contribution of K to VP is the quadrilateral PiP

α
i,i+1P

β

i,i+1P
α
i,i+2. If

P = Mi is an edge midpoint of K , then the contribution of K to VP is the pentagon
P α

i,i+1P
α
i+1,iP

β

i+1,i+2QP
β

i,i+1. The dual mesh T ′
h consists of all dual cells, i.e.,

T ′
h = {VP : P ∈ Nh},

see Fig. 2 for an example of T ′
h .

The corresponding test function space is defined as

Vh = Span{ψP : P ∈ N ◦
h },

where ψP is the characteristic function associated with VP . Then, for any vh ∈ Vh,
we have vh = ∑

P∈N ◦
h

vP ψP with vP = vh(P ). Moreover, there holds dimUh =
dimVh = #N ◦

h .

Fig. 2 The primary mesh Th (solid lines) and its associated dual mesh T ′
h (dotted lines)
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The quadratic finite volume element solution of (2.1) and (2.2) is a function uh ∈
Uh, satisfying the following local conservation law

−
∫

∂VP

κ
∂uh

∂n
ds =

∫

VP

f dxdy, ∀ P ∈ N ◦
h ,

where n is the unit normal outward to ∂VP . Consequently, the above quadratic finite
volume element method can be reformulated as: Find uh ∈ Uh such that

ah(uh, vh) = (f, vh), ∀ vh ∈ Vh, (2.7)

where

ah(u, vh) = −
∑

P∈N ◦
h

vP

∫

∂VP

κ
∂u

∂n
ds, u ∈ H 1

0 (Ω), vh ∈ Vh

and (f, vh) denotes the standard L2 inner product of f and vh.
Recalling the construction of the dual mesh, one can see that the above problem

depends on two parameters α ∈ (0, 1/2) and β ∈ (0, 2/3). Therefore, (2.7) actually
leads to a class of quadratic finite volume element schemes. When (α, β) is endowed
with specific values, we recover all the existing schemes listed below.

– If α = β = 1/3, (2.7) reduces to the FVE scheme in [31].
– If α = 1/6 and β = 1/4, (2.7) leads to the FVE scheme in [15].
– If α = 1/4 and β = 1/3, (2.7) reduces to the FVE scheme in [25].
– If

α = 3 − √
3

6
, β = 6 + √

3 −
√
21 + 6

√
3

9
,

(2.7) is identical to the quadratic FVE scheme in [36].
– If α = β = (3 − √

3)/6, (2.7) reduces to the FVE scheme in [49].
– If α = (3−√

3)/6 and β ∈ (0, 2/3), (2.7) reduces to the family of FVE schemes
studied in [46].

In the subsequential discussion, we shall study the quadratic finite volume element
scheme (2.7) for any α ∈ (0, 1/2) and β ∈ (0, 2/3).

3 Preliminaries

In this section, we first introduce a novel mapping from the trial function space to the
test function space, then present a sketch of the standard element analysis to prove
the coercivity result.

3.1 A novel mapping from the trial function space to the test function space

For a given ω �= 0, let Πω be an interpolation operator that maps uh ∈ Uh to Πωuh ∈
Vh, given by

Πωuh(Pi) = uh(Pi)
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and

Πωuh(Mi) = 1 − ω

2
(uh(Pi) + uh(Pi+1)) + ωuh(Mi), (3.1)

where Pi(i = 1, 2, 3) and Mi(i = 1, 2, 3) denote the vertices and midpoints of the
triangle K , respectively. Obviously, Πω is a bijection from the trial function space
Uh to the test function space Vh. We remark that if ω = 1 (resp. ω = 2/

√
3), then

Πω reduces to the mapping in [23, 31, 36] (resp. [46, 49]).
In the following coercivity analysis, ω plays an important role and it is determined

by the scheme parameter α. Here, we give two choices below.

– In Section 4, for the discussion of the equilateral triangular mesh, we choose

ω ∈ (ω−, ω+) , (3.2)

where

ω± = 4
(
1 ± √

3α(1 − α)
)2

3 (1 − 2α)
.

– In Section 5, for the discussion of the general triangular meshes, we choose

ω = 2

3 (1 − 2α)
. (3.3)

Suppose that λi , i = 1, 2, 3 are the three linear nodal basis functions correspond-
ing to Pi , i = 1, 2, 3. Then, for any uh ∈ Uh

uh|K =
3∑

i=1

uh(Pi)φPi
+

3∑
i=1

uh(Mi)φMi
, ∀ K ∈ Th,

where
φPi

= λi(2λi − 1), φMi
= 4λiλi+1 (3.4)

are the quadratic nodal basis functions corresponding to Pi and Mi , i = 1, 2, 3. Some
properties of φPi

and φMi
are listed in the following Lemma whose proof is trivial

and we omit it here.

Lemma 3.1 For each φPi
and φMi

defined in (3.4), we have

ΠωφPi
(Pj ) = δij , j = 1, 2, 3,

ΠωφPi
(Mi) = ΠωφPi

(Mi+2) = 1 − ω

2
, ΠωφPi

(Mi+1) = 0,

and

ΠωφMi
(Pj ) = ΠωφMi

(Mi+1) = ΠωφMi
(Mi+2) = 0, j = 1, 2, 3,

ΠωφMi
(Mi) = ω.

Moreover, we have

3∑
i=1

φPi
+

3∑
i=1

φMi
=

3∑
i=1

ΠωφPi
+

3∑
i=1

ΠωφMi
= 1.
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3.2 The sketch of the element analysis for the coercivity analysis

To prove the global coercivity result

ah(uh, Πωuh) � |uh|21, ∀ uh ∈ Uh, (3.5)

it suffices to prove

aK
h (uh, Πωuh) � |uh|21,K, ∀ uh ∈ Uh, ∀ K ∈ Th,

where

aK
h (uh, Πωuh) = −

∑
P∈Nh

Πωuh(P )

∫

∂VP ∩K

κ
∂uh

∂n
ds. (3.6)

For any uh ∈ Uh, in each K , we define the vector

u = (uh(P1), · · · , uh(P6))
T , (3.7)

where Pi+3 := Mi , i = 1, 2, 3. Hence, there holds

aK
h (uh, Πωuh) = aK

h

⎛
⎝

6∑
j=1

uh(Pj )φPj
,

6∑
i=1

uh(Pi)ΠωφPi

⎞
⎠ = uT

AKu, (3.8)

where AK = (aij )6×6 with

aij = aK
h (φPj

, ΠωφPi
). (3.9)

Thus, the proof of (3.5) reduces to the spectral analysis of the element matrix AK .

3.3 Preliminaries for the spectral analysis ofAK

Lemma 3.2 Assume that Th is shape regular, then for each K ∈ Th,

|uh|1,K ∼ ‖Gu‖, ∀ uh ∈ Uh, (3.10)

where

G =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 1 −1 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎠

, (3.11)

u is defined in (3.7) and ‖ · ‖ denotes the Euclidean norm.

Proof The proof of (3.10) can be found in Lemma 1 of [31] or Lemma 3.4.1 in
[23].

Lemma 3.3 The element matrix AK defined in (3.8) is singular and

6∑
k=1

aik =
6∑

k=1

akj = 0, i, j = 1, · · · , 6. (3.12)
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Proof For any i = 1, · · · , 6, it follows from (3.9) and Lemma 3.1 that

6∑
k=1

aik =
6∑

k=1

aK
h (φPk

, ΠωφPi
) = aK

h

(
6∑

k=1

φPk
, ΠωφPi

)
= aK

h (1, ΠωφPi
) = 0.

On the other hand, for any j = 1, · · · , 6,

6∑
k=1

akj =
6∑

k=1

aK
h (φPj

, ΠωφPk
) = aK

h

(
φPj

,

6∑
k=1

ΠωφPk

)
= aK

h (φPj
, 1) = 0,

where we have used the fact that κ∇φPj
·n is continuous inside K in the last equality.

Thus, (3.12) is proved and AK is singular.

Lemma 3.4 Let

T = 1

6

⎛
⎜⎜⎜⎜⎜⎜⎝

5 −1 −1 −2 2
−1 5 −1 −2 −4
−1 −1 5 4 2
−1 −1 −1 4 2
−1 −1 −1 −2 2
−1 −1 −1 −2 −4

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.13)

and define

BK = 1

2
T

T
(
AK + A

T
K

)
T, (3.14)

where AK is given by (3.9). Then, we have

G

T
BKG = 1

2

(
AK + A

T
K

)
. (3.15)

Proof By (3.13) and (3.11), we have

TG = I − 1

6
1,

where I is the identity matrix and 1 is a 6×6 matrix with all entries equal to 1. Then,
using this identity, (3.12) and (3.14), we reach (3.15) by direct calculations.

Lemma 3.5 If κ = 1 on K , then, for aij defined in (3.9), we have

aij =
∫

∂K

∇φPj
· nΠωφPi

ds −
∫

K

(�φPj
)ΠωφPi

dxdy. (3.16)

Proof Recalling (3.9) and (3.6), we find that (3.16) is a direct consequence of Green’s
formula.
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Lemma 3.6 For any K = �P1P2P3 ∈ Th, we have

∇λi · ∇λi+1 = − 1

2|K| cot θi+2, ∇λi · ∇λi = 1

2|K| (cot θi+1 + cot θi+2) ,

�φPi
= 2

|K| (cot θi+1 + cot θi+2) , �φMi
= − 4

|K| cot θi+2

and

ni = − 2|K|
|PiPi+1|∇λi+2,

where ni denotes the unit normal outward to the edge PiPi+1 of K , and θi =
∠Pi+2PiPi+1 is the interior angle of K corresponding to vertex Pi .

Proof The proof can be found, e.g., in Lemma 3 of [46].

From (3.15), one can see that its right-hand side is the symmetric part of AK . In
order to investigate the spectral property of AK , we shall study BK for the equilateral
triangular element and general triangular element in Sections 4 and 5, respectively.
For simplicity of exposition, we introduce the following notations,

a1 = 1

|PiPi+1|
∫

PiPi+1

λiΠωφPi
ds, (3.17)

a2 = 1

|PiPi+1|
∫

PiPi+1

λi+1ΠωφPi
ds, (3.18)

a3 = 1

|K|
∫

K

ΠωφPi
dxdy. (3.19)

By Lemma 3.1 and through some straightforward calculations, we have

a1 = 1

4

(
2αω − ω + 1 − 2α2 + 2α

)
, (3.20)

a2 = 1

4

(
2αω − ω + 1 + 2α2 − 2α

)
, (3.21)

a3 = αβω + 1

3
(1 − ω) , (3.22)

where α, β, and ω are defined by (2.5), (2.6), and (3.1), respectively. The above
results indicate that a1, a2, and a3 are independent of index i. Moreover, it follows
that

1

|PiPi+1|
∫

PiPi+1

ΠωφPi
ds = 1

|PiPi+1|
∫

PiPi+1

ΠωφPi+1ds = a1 + a2,

1

|PiPi+1|
∫

PiPi+1

λiΠωφMi
ds = 1

|PiPi+1|
∫

PiPi+1

λi+1ΠωφMi
ds = 1

2
− a1 − a2,

1

|PiPi+1|
∫

PiPi+1

ΠωφMi
ds = 1 − 2a1 − 2a2,

1

|K|
∫

K

ΠωφMi
dxdy = 1

3
− a3.

(3.23)
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4 The coercivity result for the equilateral triangular mesh

In this section, for any α ∈ (0, 1/2) and β ∈ (0, 2/3), we assume that ω satisfies
(3.2) and prove that the coercivity result of these schemes is valid on the equilateral
triangular mesh.

Lemma 4.1 If κ = 1 on K and K is an equilateral triangle, then for any given
α ∈ (0, 1/2) and β ∈ (0, 2/3), BK is a positive definite matrix if and only if ω

satisfies (3.2).

Proof From (3.16), (3.4), Lemma 3.6, (3.17), (3.18), and (3.19), a direct calculation
yields that

AK = 1√
3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 b2 b2 b3 b4 b3

b2 b1 b2 b3 b3 b4

b2 b2 b1 b4 b3 b3

b5 b5 b6 b7 b8 b8

b6 b5 b5 b8 b7 b8

b5 b6 b5 b8 b8 b7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

b1 = 6a1 − 2a2 − 4a3, b2 = a1 + 5a2 − 4a3,

b3 = −4a1 + 4a2 + 4a3, b4 = −16a2 + 4a3,

b5 = −1

3
− 2a1 − 2a2 + 4a3, b6 = 2

3
− 4a1 − 4a2 + 4a3,

b7 = 16

3
− 8a1 − 8a2 − 4a3, b8 = −8

3
+ 8a1 + 8a2 − 4a3.

From the equality (3.14), still by straightforward calculations, we obtain that

C

T
BKC = 1√

3
B

′
K,

where

C =

⎛
⎜⎜⎜⎜⎝

0 −1 0 −1 −1
−1 1 1 0 0
1 0 −1 1 0

−1 −1 0 −1 −1
0 1 1 1 1

⎞
⎟⎟⎟⎟⎠

Adv Comput Math (2020) 46: 7171   Page 12 of 31



and

B
′
K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 − 8a1 − 8a2 3 − 8a1 − 8a2 5a1 − 7a2 − 2 5
2 − 4a1 − 4a2 17

6 − 5a1 − 9a2

3 − 8a1 − 8a2 5 − 8a1 − 8a2 5
2 − 4a1 − 4a2 5 − 13a1 − a2

31
6 − 11a1 − 7a2

5a1 − 7a2 − 2 5
2 − 4a1 − 4a2 5 − 8a1 − 8a2 3 − 8a1 − 8a2 17

6 − 5a1 − 9a2
5
2 − 4a1 − 4a2 5 − 13a1 − a2 3 − 8a1 − 8a2 5 − 8a1 − 8a2 31

6 − 11a1 − 7a2
17
6 − 5a1 − 9a2 31

6 − 11a1 − 7a2 17
6 − 5a1 − 9a2 31

6 − 11a1 − 7a2 16
3 − 8a1 − 8a2 − 4a3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using Matlab, we find that

det
(
B

′
K(1 : 1, 1 : 1)) = 5 − 8(a1 + a2) = 1 + 4ω(1 − 2α),

det
(
B

′
K(1 : 2, 1 : 2)) = 16 − 32(a1 + a2) = 16ω(1 − 2α),

det
(
B

′
K(1 : 3, 1 : 3))=3 (5−8a1−8a2) p1(a1, a2) = 3 (1+4ω(1−2α)) p1(a1, a2),

det
(
B

′
K(1 : 4, 1 : 4)) = 9 (p1(a1, a2))

2

and

det
(
B

′
K

) = 12(2a1 + 2a2 − 3a3) (p1(a1, a2))
2 = 12ωα(2 − 3β) (p1(a1, a2))

2 ,

where

p1(a1, a2) = −27a21 + 18a1a2 − 3a22 + 13a1 − 15a2 − 1

12
.

From (3.20) and (3.21), we find that

p1(a1, a2) = −3

(
1

2
− α

)2

(ω − ω−)(ω − ω+),

Therefore, for any given α ∈ (0, 1/2) and β ∈ (0, 2/3), B′
K is a positive definite

matrix if and only if (3.2) holds. Since C is a nonsingular matrix, thus the proof is
complete.

From (3.2), we see that for any given α ∈ (0, 1/2) and β ∈ (0, 2/3), there exists
at least one ω such that BK is a positive definite matrix. Thus, we have the following
Theorem 4.1.

Theorem 4.1 Assume that Th consists of equilateral triangles, κ is piecewise con-
stant with respect to Th or alternatively, κ is piecewise W 1,∞ with respect to Th, and
the mesh size h is small enough. Then, for the scheme (2.7) with α ∈ (0, 1/2) and
β ∈ (0, 2/3), we have the coercivity result (3.5) with ω subjected to (3.2).

Proof The proof is similar to that of Theorem 1 in [46] and we omit it here.

5 The coercivity result for general triangular meshes

Throughout this section, for any α ∈ (0, 1/2) and β ∈ (0, 2/3), we shall assume
that ω satisfies (3.3). Thanks to (3.3), a certain weak orthogonality holds for any α.
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Consequently, we are able to obtain a sufficient condition to ensure the coercivity
result of the schemes on general triangular meshes.

5.1 The properties ofAK andBK

Lemma 5.1 Assume that A(1)
K = (a

(1)
ij )6×6 is the element stiffness matrix of the

standard quadratic finite element method, given by

a
(1)
ij =

∫

K

∇φPi
· ∇φPj

dxdy. (5.1)

Then, we have

A
(1)
K = 1

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 (r2 + r3) r3 r2 −4r3 0 −4r2

r3 3 (r1 + r3) r1 −4r3 −4r1 0

r2 r1 3 (r1 + r2) 0 −4r1 −4r2

−4r3 −4r3 0 8 (r1 + r2 + r3) −8r2 −8r1

0 −4r1 −4r1 −8r2 8 (r1 + r2 + r3) −8r3

−4r2 0 −4r2 −8r1 −8r3 8 (r1 + r2 + r3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.2)

where
ri = cot θi, i = 1, 2, 3 (5.3)

and θi = ∠Pi+2PiPi+1 (i = 1, 2, 3) are the three interior angles of K .

Proof By (3.4), Lemma 3.6, and straightforward calculations, we can verify (5.2).

Lemma 5.2 For any α ∈ (0, 1/2) and β ∈ (0, 2/3), if only if ω satisfies (3.3), we
have

a1 + a2 = 1

6
, (5.4)

∫

e

(uh − Πωuh) ds = 0, ∀ uh ∈ U2
h , ∀ e ∈ Eh (5.5)

and

∫

e

vh (φM ′ − ΠωφM ′) ds = 0, ∀ vh ∈ U1
h , ∀ e ∈ Eh, (5.6)

where U1
h and U2

h are defined by (2.4), M ′ is the midpoint of e′ ∈ Eh. Moreover, (3.3)
implies (3.2) if and only if

α ∈ I0 :=
(
1

2

(
1 −

√
4

3

√
2 − 1

)
,
1

2

)
. (5.7)
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Proof From (3.20), (3.21), and (3.3), there holds

a1 + a2 = 1

2
(2αω − ω + 1) = 1

6
,

which verifies (5.4). For each edge e ∈ Eh, let its two vertices be P1 and P2, and the
midpoint M . Thus, to verify (5.5), it suffices to verify the cases uh = λ1 and λ1λ2.
From the definition of Πω, we see that

Πωλ1(P1) = 1, Πωλ1(P2) = 0, Πωλ1(M) = 1

2
.

Then, ∫

e

Πωλ1 ds = α|e| + 1

2
(1 − 2α)|e| = 1

2
|e| =

∫

e

λ1 ds.

As for uh = λ1λ2, we have

Πωuh(P1) = 0, Πωuh(P2) = 0, Πωuh(M) = 1

4
ω.

Hence, it follows from (3.3) that∫

e

Πωuh ds = 1

4
ω(1 − 2α)|e| = 1

6
|e| =

∫

e

uh ds.

Next, to prove (5.6), it suffices to verify (5.6) for vh = λ1 and M ′ = M (namely
φM ′ = φM ). Note that in this case

∫

e

vhφM ds = 4
∫

e

λ21λ2 ds = 1

3
|e|.

From (3.23) and (5.4), we get

∫

e

vhΠωφM ds =
(
1

2
− a1 − a2

)
|e| = 1

3
|e|,

which verifies (5.6).
Finally, if ω given by (3.3) satisfies (3.2), we have

2
(
1 −√3α(1 − α)

)2
< 1 < 2

(
1 +√3α(1 − α)

)2
,

which implies (5.7). The proof is complete.

Lemma 5.3 For the basis functions φPi
and φMi

defined in (3.4), we have

∫

K

(
φPi

− ΠωφPi

)
dxdy = −a3 |K| ,

∫

K

(
φMi

− ΠωφMi

)
dxdy = a3 |K| .

(5.8)

Proof A direct calculation yields that∫

K

φPi
dxdy = 0,

∫

K

φMi
dxdy = 1

3
|K| , i = 1, 2, 3.
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It follows from (3.19) and (3.23) that∫

K

ΠωφPi
dxdy = a3 |K| ,

∫

K

ΠωφMi
dxdy =

(
1

3
− a3

)
|K| , i = 1, 2, 3.

The desired equalities in (5.8) follow immediately.

Lemma 5.4 For the ri defined in (5.3), we have

r1r2 + r1r3 + r2r3 = 1, (5.9)

r21 r
2
2 + r21 r

2
3 + r22 r

2
3 = 1 − 2r1r2r3(r1 + r2 + r3), (5.10)

r31 r2+r31 r3+r32 r1+r32 r3+r33 r1+r33 r2 =
(
r21 + r22 + r23

)
−r1r2r3(r1+r2+r3) (5.11)

and
r1 + r2 + r3 ≥ √

3. (5.12)

Proof Note that

tan θ3 = − tan(θ1 + θ2) = −1 − tan θ1 tan θ2

tan θ1 + tan θ2
,

which leads to (5.9). (5.10) and (5.11) follow from the relations

r21 r
2
2 + r21 r

2
3 + r22 r

2
3 = (r1r2 + r1r3 + r2r3)

2 − 2r1r2r3(r1 + r2 + r3)

and

r31 r2 + r31 r3 + r32 r1 + r32 r3 + r33 r1 + r33 r2 = (r1r2 + r1r3 + r2r3)
(
r21 + r22 + r23

)
− r1r2r3(r1 + r2 + r3),

respectively. The proof of (5.12) can be found in Lemma 6 of [46].

Lemma 5.5 Assume that (3.3) holds and κ = 1 on K . Then, for AK defined in (3.8)
and (3.9), we have

AK = A

(1)
K + a2A

(2)
K + a3A

(3)
K , (5.13)

where A(1)
K is given by (5.2),

A

(2)
K = 4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−r2 − r3 r1 r1 r2 + r3 −2r1 − r2 − r3 r2 + r3

r2 −r1 − r3 r2 r1 + r3 r1 + r3 −r1 − 2r2 − r3

r3 r3 −r1 − r2 −r1 − r2 − 2r3 r1 + r2 r1 + r2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(5.14)

A

(3)
K = ξ ⊗ η (i.e., ξηT ) with

ξ = (−1, −1, −1, 1, 1, 1)T ,

η = 2 (r2 + r3, r1 + r3, r1 + r2, −2r3, −2r1, −2r2)
T .
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Consequently, for BK defined in (3.14), we have

det (BK) = 16

243
(r1 + r2 + r3)p(r1, r2, r3), (5.15)

where

p(r1, r2, r3) = A + Br1r2r3(r1 + r2 + r3) + C
(
r21 + r22 + r23

)
(5.16)

and

A = 2C − (12a2 − 1)(12a2 + 9a3 − 2)2,

B = −486a22 (4a2 − 3a3)
2 ,

C = −9
(
18a22 + 12a2 − 1

) (
96a22a3 − 16a22 + 8a2a3 − 3a23

)
. (5.17)

Proof It follows from (3.16) that

aij =
∫

∂K

∇φPj
· nΠωφPi

ds −
∫

K

(
�φPj

)
ΠωφPi

dxdy

=
∫

∂K

∇φPj
· nφPi

ds−
∫

K

(
�φPj

)
φPi

dxdy+
∫

∂K

∇φPj
· n (ΠωφPi

− φPi

)
ds

−
∫

K

(
�φPj

) (
ΠωφPi

− φPi

)
dxdy

=
∫

K

∇φPj
· ∇φPi

dxdy +
∫

∂K

∇φPj
· n
(
ΠωφPi

− φPi

)
ds

− (�φPj

) ∫

K

(
ΠωφPi

− φPi

)
dxdy,

where we have used Green’s formula in the last equality. Consequently,

AK = A

(1)
K + Ã

(2)
K + ξ̃ ⊗ η, ξ̃ = (̃ξi

)
, η = (ηj ),

where A

(1)
K = (a

(1)
ij )6×6 is defined in (5.1) and given by (5.2), Ã(2)

K = (̃a
(2)
ij )6×6 is

given by

ã
(2)
ij =

∫

∂K

∇φPj
· n (ΠωφPi

− φPi

)
ds,

and the last part is the tensor product of ξ̃ and η, given by

ξ̃i = 1

|K|
∫

K

(
φPi

− ΠωφPi

)
dxdy, ηj = |K| (�φPj

)
, i, j = 1, · · · , 6.

From (5.8), (3.4), and Lemma 3.6, we obtain

ξ̃ = a3 (−1, −1, −1, 1, 1, 1)T = a3ξ ,

η = 2 (r2 + r3, r1 + r3, r1 + r2, −2r3, −2r1, −2r2)
T .

By direct calculations, we deduce from (3.4) that

1

|PiPi+1|
∫

PiPi+1

λiφPi
ds = 1

6
,

1

|PiPi+1|
∫

PiPi+1

λi+1φPi
ds = 0, i = 1, 2, 3.
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Consequently, for i = 1, 2, 3, it follows from (5.4) that

1

|PiPi+1|
∫

PiPi+1

λi

(
ΠωφPi

− φPi

)
ds = −a2,

1

|PiPi+1|
∫

PiPi+1

λi+1
(
ΠωφPi

− φPi

)
ds = a2. (5.18)

By (3.4), Lemma 3.6, (5.5), and (5.18)∫

P1P2

∇φP1 · n1
(
ΠωφP1 − φP1

)
ds

=
∫

P1P2

(4λ1 − 1)∇λ1 ·
(

− 2|K|
|P1P2|∇λ3

) (
ΠωφP1 − φP1

)
ds

= 4r2
|P1P2|

∫

P1P2

λ1
(
ΠωφP1 − φP1

)
ds

= −4a2r2.

Similarly, ∫

P1P3

∇φP1 · n3
(
ΠωφP1 − φP1

)
ds = −4a2r3.

Therefore, we have

ã
(2)
11 =

∫

∂K

∇φP1 · n
(
ΠωφP1 − φP1

)
ds = 4a2(−r2 − r3).

By the same arguments,

ã
(2)
12 = 4a2r1, ã

(2)
14 = 4a2(r2 + r3), ã

(2)
15 = 4a2(−2r1 − r2 − r3).

By the symmetric property of the index ri ,

ã
(2)
13 = R

(
ã

(2)
12 , {r1, r3, r2}

)
, ã

(2)
16 = R

(
ã

(2)
14 , {r1, r3, r2}

)
,

where R(a, {ri, rj , rk}) is an index replace function such that r1, r2, and r3 in a are
replaced by ri , rj , and rk , respectively. Moreover, we have

Ã

(2)
K (2, :) = R

(
P
(
Ã

(2)
K (1, :), {3, 1, 2, 6, 4, 5}

)
, {r2, r3, r1}

)

and
Ã

(2)
K (3, :) = R

(
P
(
Ã

(2)
K (1, :), {2, 3, 1, 5, 6, 4}

)
, {r3, r1, r2}

)
,

where for a 1 × 6 vector A, Â = P(A, {i1, i2, · · · , i6}) is a permutate function such
that Â(j) = A(ij ), j = 1, · · · , 6. It follows from (5.6) that

ã
(2)
ij = 0, i ∈ {4, 5, 6}, j ∈ {1, · · · , 6}.

In other words, we obtain that Ã(2)
K = a3A

(2)
K with A

(2)
K defined in (5.14), and (5.13)

is verified.
Finally, usingMatlab, we get from (3.14) and (5.13) that

det (BK) = 16

243
(r1 + r2 + r3)p̂(r1, r2, r3),
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where

p̂(r1, r2, r3) = Âr1r2r3(r1 + r2 + r3) + B̂
(
r21 r

2
2 + r21 r

2
3 + r22 r

2
3

)

+Ĉ
(
r31 r2 + r31 r3 + r32 r1 + r32 r3 + r33 r1 + r33 r2

)
(5.19)

and
Â = 2A + B + C, B̂ = A, Ĉ = C, (5.20)

and A, B, and C are defined in (5.17). Then from (5.19), (5.10), (5.11), and (5.20),

p̂(r1, r2, r3) = A + Br1r2r3(r1 + r2 + r3) + C
(
r21 + r22 + r23

)
= p(r1, r2, r3),

where the polynomial p is defined by (5.16), thus (5.15) is proved and the proof is
complete.

5.2 The coercivity result

For any triangular element K , without loss of generality, we assume that θ1 ≤ θ2 ≤
θ3, then θ1 ≤ π/3, r1 ≥ 1/

√
3 and

r1 ≥ r2 = cot θ2 ≥ cot

(
π − θ1

2

)
= tan

θ1

2
=
√
1 + r21 − r1. (5.21)

In other words, (r1, r2, r3) is defined in

D =
{
(r1, r2, r3) : r1 ≥ 1√

3
,

√
1 + r21 − r1 ≤ r2 ≤ r1, r3 = 1 − r1r2

r1 + r2

}
.

Then, we denote

θmin = arccot sup {r1 : p(r1, r2, r3) > 0, ∀ (r1, r2, r3) ∈ D} , (5.22)

where the polynomial p is defined in (5.16), and suppose that θK is the mini-
mum interior angle of K . In order to present the coercivity result, we introduce the
following two geometric assumptions.

(A1) For any K ∈ Th, there holds

θK > θmin.

(A2) There exists a positive constant ε0, independent of h, such that

θK ≥ θmin + ε0, ∀ K ∈ Th.

Thus, we have the following Lemma 5.6.

Lemma 5.6 Assume that the diffusion coefficient κ is piecewise constant with respect
to Th. For any α ∈ I0 (defined by (5.7)) and β ∈ (0, 2/3), let ω satisfy (3.3). Then,
for each BK defined by (3.14), we have the following results.

(1) If (A1) holds, then BK is a positive definite matrix.
(2) Under the assumptions (2.3) and (A2),

uT
BKu � ‖u‖2, ∀ u ∈ R

5.

Adv Comput Math (2020) 46: 71 Page 19 of 31    71



Proof Note that κ is piecewise constant with respect to Th, we can assume further
that, without losing generality, κ = 1 on K . If (A1) holds, then it follows from (5.15),
(5.12), and (5.22) that

det(BK) > 0. (5.23)

Moreover, we suppose that μi , i = 1, · · · , 5 are the five eigenvalues of BK , then
they satisfy the equation F(r1, r2, r3, μ) := det(μI − BK) = 0, where I is the unit
matrix. Note that F(r1, r2, r3, μ) is a polynomial about the four variables r1, r2, r3,
and μ, then F(r1, r2, r3, μ) is smooth enough. Therefore, μi relies on r1, r2, and r3
continuously. For any α ∈ I0 and β ∈ (0, 2/3), from Lemma 5.2 and Lemma 4.1,
we get that μi , i = 1, · · · , 5 are all positive provided r1 = r2 = r3 = 1/

√
3. On

the other hand, we have det(BK) =∏5
i=1 μi for any K . Thus, from (5.23) we obtain

that μi , i = 1, · · · , 5 are all positive by view of continuity argument. That is, BK is
a positive definite matrix.

Finally, by (3.14), (5.13), Gershgorin disk theorem, and (2.3), we have, for the
spectral radius of BK ,

ρ (BK) � |r1| + |r2| + |r3| � cot θ0.

Under the assumption (A2), we obtain that there exists a positive constant Cε0 such
that

p(r1, r2, r3) ≥ Cε0 .

Consequently, we deduce from (5.15) and (5.12) that

uT
BKu ≥ 16

√
3Cε0

243 [ρ (BK)]4
‖u‖2 � ‖u‖2, ∀ u ∈ R

5,

and complete the proof.

Theorem 5.1 Assume that κ is piecewise constant with respect to Th or alternatively,
κ is piecewise W 1,∞ with respect to Th and the mesh size h is small enough. For any
α ∈ I0 (defined by (5.7)) and β ∈ (0, 2/3), let ω satisfy (3.3). Then, we have the
following results.

(1) (Existence and uniqueness) Under the assumption (A1), (2.7) has a unique
solution.

(2) (Coercivity) Under the assumptions (2.3) and (A2), the coercivity result (3.5)
holds.

Proof The proof is similar to that of Theorem 1 in [46] and we omit it here.

6 Some analytic expressions for θmin

In this section, for any α ∈ I0 (defined by (5.7)) and β ∈ (0, 2/3), we are going
to find some analytic expressions to approximate the minimum angle condition θmin
which defined in (5.22). From (5.17), one can see that B ≤ 0, and here we consider
two cases: A > 0, B = 0, C < 0 and A > 0, B < 0, C < 0.
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6.1 Case 1: A > 0, B = 0, C < 0

Lemma 6.1 Let θi (i = 1, 2, 3) be the three interior angles of a triangle, satisfying
θ1 ≤ θ2 ≤ θ3. Then for a given r1,

g(r2) = r1 + r2 + r3

is a strictly increasing function with respect to r2, where ri is defined by (5.3).

Proof From (5.9), we have

g(r2) = r1 + r2 + 1 − r1r2

r1 + r2
,

which yields that
dg

dr2
= r22 + 2r1r2 − 1

(r1 + r2)2
.

By (5.21), we deduce that

r22 + 2r1r2 − 1 ≥ tan2
θ1

2
+ 2

tan θ1
2

tan θ1
− 1 = tan2

θ1

2
+
(
1 − tan2

θ1

2

)
− 1 = 0,

and the equality holds if and only if r2 = tan(θ1/2), namely θ2 = θ3, which implies
g(r2) is a strictly increasing function.

Theorem 6.1 Assume that θ1 ≤ θ2 ≤ θ3 and A, B, and C are defined in (5.17),
subjected to A > 0, B = 0 and C < 0. If r1 satisfies

r1 ∈ (D−
1 , D+

1 ),

where

D±
1 = 1

3

(√
2 − A

C
±
√

−1 − A

C

)
,

then we have
p(r1, r2, r3) = A + C

(
r21 + r22 + r23

)
> 0. (6.1)

Consequently, if D−
1 < 1/

√
3, there holds

θmin = arccotD+
1 . (6.2)

Proof If A > 0, B = 0, and C < 0, then from (5.9)

p(r1, r2, r3) = A + C
(
r21 + r22 + r23

)
= A − 2C + C(r1 + r2 + r3)

2.

Thus, from Lemma 6.1, for any given r1, the polynomial p attains its minimum at the
point (r1, r2, r3) = (r1, r1, (1 − r21 )/(2r1)). Consequently, we obtain (6.1) provided

p(r1, r1, (1 − r21 )/(2r1)) > 0,

which is equivalent to r1 ∈ (D−
1 , D+

1 ). Finally, we get the minimum angle (6.2)
provided D−

1 < 1/
√
3.
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6.2 Case 2: A> 0, B< 0, C< 0

Theorem 6.2 Assume that θ1 ≤ θ2 ≤ θ3 and A, B, and C are defined in (5.17),
subjected to A > −C > −B/5 > 0. If r1 satisfies

max
{
D+

2 , D+
3 , D4

}
< r21 < min

{
−A + C

B + C
,
2C

B
, D−

2 , D−
3 , D5

}
, (6.3)

where

D±
2 = B + 5C ±√(B + 5C)2 − 7B(2C − B)

7B
, (6.4)

D±
3 = B + C − 2A ±√(B + C − 2A)2 − (5C − B)(3B + 5C)

5C − B
, (6.5)

D4 and D5 are the smallest two roots of

− 3Bx3 + (2B + 9C)x2 + (4A + B − 2C)x + C > 0, (6.6)

and satisfies D4 < D5, then we have

p(r1, r2, r3) = A + Br1r2r3(r1 + r2 + r3) + C
(
r21 + r22 + r23

)
> 0. (6.7)

Consequently, if
max

{
D+

2 , D+
3 , D4

}
< 1/3, (6.8)

then

θmin = arccot

(
min

{
−A + C

B + C
,
2C

B
, D−

2 , D−
3 , D5

})1/2

. (6.9)

Proof We first claim that
r1 ≥ r2 ≥ |r3|. (6.10)

For the case where θ3 ≤ π/2, namely r3 ≥ 0, by (6.10) and (5.9), we have

p(r1, r2, r3) ≥ A+Br21 (r1r3+r2r3+r1r2)+C(r21+r1r2+r2r3+r1r3) = A+C+(B+C)r21 ,

which verifies (6.7) by recalling (6.3).
Consider the case where θ3 > π/2, namely r3 < 0, then we have θ1 = π − θ2 −

θ3 < π/2 − θ1, i.e., r1 > 1. Let

σ = r2

r1
, τ = − r3

r1
. (6.11)

It follows that

p(r1, r2, r3) = A − Br41στ(1 + σ − τ) + Cr21

(
1 + σ 2 + τ 2

)

= r21

(
C − Br21τ

)
σ 2 − Br41τ(1 − τ)σ + A + Cr21

(
1 + τ 2

)

� q(σ, τ ). (6.12)

Note that

r2 = cot θ2 = cot(π − θ1 − θ3) > cot(π/2 − θ1) = tan θ1 = 1

r1
,
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and from (6.11) and (5.9)

τ = r1r2 − 1

r1r2 + r21

=
σ − 1

r21

σ + 1
= 1 −

1 + 1
r21

1 + σ
, (6.13)

which implies that for any given r1, q(σ, τ ) is defined in the curve

C =
⎧⎨
⎩(σ, τ ) : 1

r21

< σ ≤ 1, τ = 1 −
1 + 1

r21

1 + σ

⎫⎬
⎭ .

From (6.13), it is easy to verify that τ is a strictly increasing and upper convex func-
tion with respect to σ . Thus, for any given r1, the curve C is contained in the right
triangle K̃ = �P̃1P̃2P̃3 (see Fig. 3a) with

P̃1 =
(

1

r21

, 0

)
, P̃2 =

(
1,

1

2
− 1

2r21

)
, P̃3 =

(
1

r21

,
1

2
− 1

2r21

)
.

Moreover, we have

0 < τ ≤ 1

2
− 1

2r21
<

1

2
.

Recalling B < 0 and (6.3), we deduce that

C − Br21τ < C − B

2
r21 < 0,

which implies that, for a fixed τ , q(σ, τ ) is a quadratic function with respect to σ ,
opening downward. As a result,

min
(σ,τ )∈C

q(σ, τ ) ≥ min
(σ,τ )∈K̃

q(σ, τ ) = min
(σ,τ )∈P̃1P̃3∪P̃1P̃2

q(σ, τ ). (6.14)

On the line segment P̃1P̃3, namely σ = 1/r21 , there holds

q(1/r21 , τ ) = r21 (B + C)τ 2 − B
(
1 + r21

)
τ + A + Cr21 + C

r21

.

Obviously, it is a quadratic function of τ and opens downward, which implies that

min
(σ,τ )∈P̃1P̃3

q(σ, τ ) = min
(σ,τ )∈{P̃1,P̃3}

q(σ, τ ). (6.15)

On the line segment P̃1P̃2, we have the relationship

τ = 1

2

(
σ − 1

r21

)

and

q(σ, τ ) = −1

4
Br41σ

3+1

4
r21

(
5C−2Br21

)
σ 2+1

4

(
B−2C+2Br21

)
σ+A+Cr21+

C

4r21
,

which implies that

dq

dσ
= −3

4
Br41σ

2 + 1

2
r21

(
5C − 2Br21

)
σ + 1

4

(
B − 2C + 2Br21

)
.

Adv Comput Math (2020) 46: 71 Page 23 of 31    71



Note that B < 0, r1 > 1 and using (6.3) once again,

dq

dσ

∣∣∣
σ=1/r21

= 1

2

(
4C − B − Br21

)
<

1

2

(
4C − Br21 − Br21

)
= 2C − Br21 < 0

and

dq

dσ

∣∣∣
σ=1

=−1

4

(
7Br41 −2(B+5C)r21 +(2C−B)

)
=−7

4
B
(
r21 −D+

2

)(
r21 −D−

2

)
< 0,

where D±
2 is defined in (6.4). It follows that

dq

dσ

∣∣∣
(σ,τ )∈P̃1P̃2

< 0,

which implies that p(σ, (σ − 1/r21 )/2) is a strictly decreasing function of σ when
1/r21 < σ ≤ 1. Consequently,

min
(σ,τ )∈P̃1P̃2

q(σ, τ ) = min
(σ,τ )=P̃2

q(σ, τ )

and combining the facts (6.14) and (6.15)

min
(σ,τ )∈K̃

q(σ, τ ) = min
(σ,τ )={P̃2,P̃3}

q(σ, τ ).

At the point P̃3, note that 5C − B < 0 and (6.3), we find that

q

(
1

r21

,
1

2
− 1

2r21

)
= 1

4r21

(
(5C − B)r41 + 2(2A − B − C)r21 + (3B + 5C)

)

= 5C − B

4r21

(
r21 − D+

3

) (
r21 − D−

3

)
> 0,

where D±
3 is defined in (6.5). At the point P̃2,

q

(
1,

1

2
− 1

2r21

)
= 1

4r21

(
−3Br61 + (2B + 9C)r41 + (4A + B − 2C)r21 + C

)
> 0,

where the last inequality is obtained by (6.3) and (6.6). Recalling (6.14), we have

min
(σ,τ )∈C

q(σ, τ ) > 0.

Note that (6.12), then (6.7) is verified. The minimum angle (6.9) follows from (6.3)
and (6.8) immediately, and completes the proof.

Remark 6.1 In Theorem 6.2, for any given r1, the polynomial p is defined in the
curve C. In order to analyze the property of p more easily, here we study its property
in a right triangle K̃ = �P̃1P̃2P̃3 which contained C, see Fig. 3a. In fact, if the
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Fig. 3 The curve C and its associated region (a) a right triangle to approximate C (b) a smaller region to
approximate C

minimum angle (6.9) is not the optimal and cot θmin >
√
2, then one can choose other

appropriate smaller region instead of K̃ , e.g., see Fig. 3b, where

P̃1 =
(

1
r21

, 0

)
, P̃2 =

(
1
2 ,

1
3 − 2

3r21

)
, P̃3 =

(
1
r21

, 1
3 − 2

3r21

)
,

P̃4 =
(

3
4 ,

3
7 − 4

7r21

)
, P̃5 =

(
1, 1

2 − 1
2r21

)
, P̃6 =

(
1
2 ,

1
2 − 1

2r21

)
.

7 Discussions of minimum angle for some existing schemes

In this section, we will discuss the minimum angle condition for some special
schemes. Precisely, we have given the analytic expressions of these minimum angle
conditions, and improved some existing minimum angle conditions.

7.1 The family of schemes with α = (1 − 1/
√
3)/2 and β ∈ (0, 2/3)

Theorem 7.1 Let α = β = (1− 1/
√
3)/2, then the minimum angle θmin in (A1) can

be expressed as

θmin = 0.

Proof Note that α ∈ I0 (defined by (5.7)), then from (3.3), (3.21), and (3.22), we get

ω = 2√
3
, a2 = 0, a3 = 0.

By (5.17)

A = 4, B = 0, C = 0,

which implies that p(r1, r2, r3) = 4 > 0 and θmin = 0.
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Remark 7.1 Theorem 7.1 indicates that when α = β = (1 − 1/
√
3)/2, (2.7) leads

to an unconditionally stable quadratic scheme on shape regular mesh Th, which is
consistent with the result in [49].

Theorem 7.2 Let α = (1 − 1/
√
3)/2, then for any β �= α, the minimum angle θmin

in (A1) can be expressed as

θmin = arccot

(
1

3

(√
2 − A

C
+
√

−1 − A

C

))
, (7.1)

where

A = 2C + (9β̃ − 2
)2

, C = −27β̃2, β̃ = 2

3
(1 − 3α) (β − α) . (7.2)

Proof Since α ∈ I0, then from (3.3), (3.21), and (3.22), we find that

ω = 2√
3
, a2 = 0, a3 = 1√

3

(
1 − 1√

3

)
β + 1

3

(
1 − 2√

3

)
= β̃.

By (5.17)

A = 2C + (9β̃ − 2
)2

, B = 0, C = −27β̃2.

It follows from (7.2) that

β̃ =
√
3−1

3

(
β − 3−√

3

6

)
∈
(

−2
√
3−3

9
, 0

)
∪
(
0,

1

9

)
, ∀ β ∈ (0, α)∪

(
α,

2

3

)
,

which implies that C < 0 and A = 27(β̃ − 2/3)2 − 8 > 0. Moreover, we have

A

C
= 2 − 1

27

(
2

β̃
− 9

)2

< −1,

which yields that

D−
1 = 1

3

(√
2 − A

C
−
√

−1 − A

C

)
= 1√

2 − A
C

+
√

−1 − A
C

<
1√
3
.

Recalling the Theorem 6.1, then we complete the proof.

Remark 7.2 By a simple calculation, the minimum angle (7.1) is the same as (18)
in [46]. Consequently, for the quadratic scheme proposed in [36], here the minimum
angle is the same as [46], namely 1.42◦.

7.2 The scheme α = 1/4 and β = 1/3

This scheme was proposed in [25], we improved the minimum angle 9.98◦ in [8, 40]
to 4.14◦.
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Theorem 7.3 Let α = 1/4 and β = 1/3, then the minimum angle θmin in (A1) can
be expressed as

θmin = arccot

(√
575

3

)
≈ 4.14◦. (7.3)

Proof Note that α ∈ I0, then from (3.3), (3.21), and (3.22), we obtain

ω = 4

3
, a2 = − 1

96
, a3 = 0.

By (5.17)

A = 82657

16384
, B = − 3

32768
, C = − 575

32768
.

Then, the polynomial in (6.6) can be expressed as

1

32768
(3x − 575)

(
3x2 − 1152x + 1

)
.

Thus, we have

D4 = 576 − √
331773

3
, D5 = 575

3
and

min

{
−A + C

B + C
,
2C

B
, D−

2 , D−
3 , D5

}
= D5.

Note that
max

{
D+

2 , D+
3 , D4

} = D+
2 < 1/3

and Theorem 6.2, we get the desired result (7.3).

7.3 The scheme α = 1/6 and β = 1/4

For the scheme α = 1/6 and β = 1/4 proposed in [15], we find that the minimum
angle is 7.11◦, which is the same as [8, 40].

Theorem 7.4 Let α = 1/6 and β = 1/4, then the minimum angle θmin in (A1) can
be expressed as

θmin = arccot

⎛
⎝
√
161 + 2

√
6479

5

⎞
⎠ ≈ 7.11◦. (7.4)

Proof Note that α ∈ I0, then from (3.3), (3.21), and (3.22), we have

ω = 1, a2 = 1

72
, a3 = 1

24
.

From (5.17)

A = 15935

9216
, B = − 25

55296
, C = − 1195

55296
.
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Then, the polynomial in (6.6) can be expressed as

5

55296
(3x − 239)

(
5x2 − 322x + 1

)
,

which implies that

D4 = 161 − 2
√
6479

5
, D5 = 161 + 2

√
6479

5
and

min

{
−A + C

B + C
,
2C

B
, D−

2 , D−
3 , D5

}
= D5.

Note that
max

{
D+

2 , D+
3 , D4

} = D+
2 < 1/3

and Theorem 6.2, the minimum angle (7.4) is obtained.

7.4 The scheme α = β = 1/3

This scheme was proposed in [31], we improved the minimum angle 20.95◦ in [8,
40] to 10.08◦. The result is given below.

Theorem 7.5 Let α = β = 1/3, then the minimum angle θmin in (A1) can be
expressed as

θmin = arccot

(√
95

3

)
≈ 10.08◦. (7.5)

Proof Since α ∈ I0, then from (3.3), (3.21), and (3.22), we deduce that

ω = 2, a2 = − 1

36
, a3 = −1

9
.

By (5.17)

A = 3410

243
, B = − 1

54
, C = − 95

243
.

Then, the polynomial in (6.6) can be expressed as

1

486
(3x − 95)

(
9x2 − 291x + 2

)
.

It follows that

D4 = 97 − √
9401

6
, D5 = 95

3
and

min

{
−A + C

B + C
,
2C

B
, D−

2 , D−
3 , D5

}
= D−

3 .

Note that
max

{
D+

2 , D+
3 , D4

} = D+
2 < 1/3

and Theorem 6.2, we have

θmin = arccot
√

D−
3 ≈ 10.46◦.
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Finally, we get the desired result (7.5) by the analysis in Fig. 3b of Remark 6.1.

8 H1 error estimates

Theorem 8.1 Assume that Th is shape regular and κ is piecewise W 1,∞ with respect
to Th. Assume also that the exact solution u ∈ H 1

0 (Ω)∩H 3(Ω). Then, for any α ∈ I0
(defined by (5.7)) and β ∈ (0, 2/3), under the assumption (A2), we have

|u − uh|1 � h2‖u‖3. (8.1)

Proof The proof is similar to that of Theorem 2 in [46] and we omit it here.

Remark 8.1 If Th consists of equilateral triangles, then it follows from Theorem 4.1
that the optimal H 1 error estimates (8.1) hold for any α ∈ (0, 1/2) and β ∈ (0, 2/3).

9 Conclusions

This paper provides a general framework for the coercivity analysis of a class of
quadratic FVE schemes on triangular meshes. This class of schemes have two param-
eters α ∈ (0, 1/2) and β ∈ (0, 2/3), which cover all the existing quadratic schemes
of Lagrange type. By the element analysis and a novel mapping from the trial func-
tion space to the test function space, we obtain the geometry assumption (A1) (resp.
(A2)) that ensures the existence and uniqueness (resp. the coercivity result) of these
schemes. Moreover, we give some minimum angle conditions with simple, ana-
lytic, and computable expressions. By these results, the minimum angle conditions
for some existing schemes are improved, which is summarized in Table 1.
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