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Abstract
This paper is concerned with the construction, analysis, and realization of a numerical
method to approximate the solution of high-dimensional elliptic partial differential
equations. We propose a new combination of an adaptive wavelet Galerkin method
(AWGM) and the well-known hierarchical tensor (HT) format. The arising HT-
AWGM is adaptive both in the wavelet representation of the low-dimensional factors
and in the tensor rank of the HT representation. The point of departure is an adap-
tive wavelet method for the HT format using approximate Richardson iterations
and an AWGM for elliptic problems. HT-AWGM performs a sequence of Galerkin
solves based upon a truncated preconditioned conjugate gradient (PCG) algorithm in
combination with a tensor-based preconditioner. Our analysis starts by showing con-
vergence of the truncated conjugate gradient method. The next step is to add routines
realizing the adaptive refinement. The resulting HT-AWGM is analyzed concerning
convergence and complexity. We show that the performance of the scheme asymp-
totically depends only on the desired tolerance with convergence rates depending on
the Besov regularity of low-dimensional quantities and the low-rank tensor structure
of the solution. The complexity in the ranks is algebraic with powers of four stem-
ming from the complexity of the tensor truncation. Numerical experiments show the
quantitative performance.
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1 Introduction

The increase of available computational power made a variety of complex problems
accessible for computer-based simulations. However, the complexity of problems
has increased even faster, so that several “real-world” problems will be out of reach
even with computers of the next generations. One class of such challenging problems
arises from high-dimensional models suffering from the curse of dimensionality. This
shows the ultimate need to construct and analyze sophisticated numerical methods.

This paper is concerned with high-dimensional systems of elliptic partial differ-
ential equations (PDEs). Examples include chemical reactions, financial derivatives,
equations depending on a large number of parameters (e.g., material properties), or
a large number of independent variables. In general terms, we consider an operator
problem Au = f , where A : X → X ′ is elliptic,1 f ∈ X ′ is given, and u ∈ X is the
desired solution, which we aim to approximate in a possible “sparse” manner.

Of course, this issue also depends on the specific notion of sparsity, which itself
is typically adapted to the problem. In the context of adaptive methods (think of
adaptive finite element or wavelet methods), the sparsity benchmark is a Best N-term
approximation, i.e., a possibly optimal approximation to u ∈ X using N ∈ N degrees
of freedom. In particular for high-dimensional problems, one tries to approximate
u in terms of low-rank tensor format approximations. We will combine these two
notions to be explained next.

1.0.1 Best N-term approximation

Given a dictionary (basis, frame) � := {ψλ : λ ∈ J } ⊂ X , where the index set
J is typically of infinite cardinality, one seeks an approximate expansion of u in �.
A best N-term approximation is of the form u ≈ uN := ∑

λ∈� cλψλ, cλ ∈ R and
� ⊂ J is of cardinality N ∈ N, i.e., |�| = N . The goal of an optimal approximation
can also be expressed by determining the minimal number of terms N(ε) required to
achieve a certain accuracy ε > 0: ‖u − uN(ε)‖X ≤ ε.

It is known that the optimal speed of convergence of such approximations entirely
depends on the properties of the solution u and the chosen basis. In fact, there is an
intimate connection between decay of the error of the bestN-term approximation and
the Besov regularity of u, see [13]. An approximation scheme (or algorithm) is called
quasi-optimal if it realizes (asymptotically) the same rate as the N-term approxima-
tion. Known quasi-optimal methods are adaptive in the sense that approximations are
constructed in nonlinear manifolds rather than in linear subspaces.

For adaptive finite element methods (AFEM, [28]) and adaptive wavelet methods
(AWM, e.g., [8, 9, 17]), there are quasi-optimal algorithms known, in particular for
elliptic problems.

1We assume that X ↪→ H ↪→ X ′ is a Gelfand triple with a pivot Hilbert spaceH and X ′ is the dual space
of X induced by H.
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1.0.2 Low-rank tensor methods

For high-dimensional problems (d 	 1), it is well-known that most algorithms scale
exponentially in the dimension and are thus intractable: they suffer from the curse
of dimensionality. If the operator A has a tensor structure (or can at least be well-
approximated by such), one can try to find an efficient separable approximation

u ≈
r∑

i=1

d⊗

j=1

vi
j , (1.1)

where r is referred to as the rank and v1 ⊗ · · · ⊗ vd(x) := v1(x1) · · · vd(xd) for
x = (x1, . . . , xd) ∈ R

d is a tensor product. Hence, if the rank r is small even for
large d , one can try to approximate the univariate factors vi

j : R → R separately
resulting in a tractable algorithm.

A major breakthrough in this area was the development of tensor formats that
in fact realized such approximations. We mention the hierarchical Tucker (HT) for-
mat [20] and the tensor train format [29] and refer to [19] for a general overview.
Nowadays, there is a whole variety of algorithms that have been developed in these
formats, both iterative solvers [6, 24, 26, 27] (using basic arithmetic operations on
tensors and truncations to control the rank) and direct methods [14, 21, 25, 30], which
work within the tensor structure itself. For a survey on tensor methods for solving
high-dimensional PDEs, we refer to [5].

1.0.3 HTucker-adaptive wavelet Galerkin method

In this paper, we consider a combination of bestN-term and low-rank approximations
in order to obtain a convergent algorithm that is optimal both w.r.t. N and the tensor
rank r . To this end, we use appropriate wavelet bases �, i.e., the factors in Eq. 1.1
are approximated by sparse wavelet expansions

vi
j =

∑

λ∈�i
j

c
i,j
λ ψ

j
λ , c

i,j
λ ∈ R.

To the best of our knowledge, the first such approximation was constructed in
[1], where inexact Richardson iterations from [9] were combined with the HT for-
mat from [20]. In [4], the authors considered soft thresholding techniques for rank
reduction.

The goal of this paper is to extend the AWGM method with coarsening from
[8] to the high-dimensional setting using the HT format—resulting in an HTucker-
adaptive wavelet Galerkin method (HT-AWGM). In particular, we aim at providing
the corresponding convergence analysis. A core ingredient of AWGM is the fact that
wavelet bases can be used to rewrite the operator equation Au = f equivalently
into an equation Au = f in sequence spaces, where A is boundedly invertible. The
backbone of that is optimal wavelet preconditioning. Hence, a tensor-based wavelet
preconditioner is needed. Luckily, in [3] the problem of separable preconditioning
was addressed and the algorithm from [1] was extended to the elliptic case.
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1.0.4 Organization of the paper

The remainder of this paper is organized as follows. In Section 2, we collect all
required preliminaries. As a core ingredient for the new HT-AWGM, we use a
truncated PCG algorithm from [27, Algorithm 2] and analyze its convergence in
Section 3. The convergence and complexity analysis of the full HT-AWGM is
described in Section 4. We show numerical results in Section 5. We indicate the
potential and remaining issues of the method.

2 Preliminaries

We start by briefly reviewing some basic facts on adaptive wavelet methods, low-rank
tensor formats, and the preconditioning problem arising in connection with tensor
spaces.

2.1 (Quasi-)optimal approximations

For the remainder of this work, we use the shorthand notation

A � B,

to indicate there exists a constant C > 0 independent of A and B such that A ≤ CB.
The notation A � B is defined analogously.

The introduction mainly follows [35]. We seek the solution of the operator
equation

Au = f, A : X → X ′, u ∈ X , f ∈ X ′, (2.1)

where A is a linear boundedly invertible operator and X is a separable Hilbert Space.
Given a Riesz basis � := {ψλ : λ ∈ J }, e.g., a wavelet basis, and the corresponding
boundedly invertible analysis and synthesis operators

F : X ′ → �2(J ), f �→ {f (ψλ)}λ, F ′ : �2(J )→X , {cλ}λ �→
∑

λ∈J
cλψλ,

we can reformulate (2.1) equivalently as a discrete infinite-dimensional linear system

Au = f , A : �2(J ) → �2(J ), u, f ∈ �2(J ), (2.2)

with A := FAF ′, u := FRu, and f := Ff , where R : X → X ′ is the Riesz
isomorphism. The operator A inherits the properties of its continuous counterpart A

and is in particular boundedly invertible as well.
Next, we introduce the notation for the Galerkin problem. Let � ⊂ J be some

finite index subset. We introduce the restriction operator R� : �2(J ) → �2(�),
which simply drops all entries outside �. Likewise the extension operator E� :
�2(�) → �2(J ) pads all entries outside � with zeros. We will sometimes employ
the notation A� := R�AE� to denote the discretized wavelet operator.
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The benchmark for optimal approximations is the best N-term approximation

uN := argmin
{
‖u − v‖X : v ∈ X , v =

∑

λ∈�⊂J
vλψλ, #� ≤ N

}
,

or, equivalently, in �2(J )

uN := argmin
{‖u − v‖�2 : v ∈ �2(J ), # supp(v) ≤ N

}
,

where supp(v) denotes those wavelet indices λ ∈ J , for which vλ �= 0. Note
that, as opposed to linear approximation techniques, we seek an approximation in
an N-dimensional nonlinear manifold. The approximation class of all best N-term
approximations converging with rate s is known as

As :=
{
u ∈ �2(J ) : ‖u‖As := sup

ε>0
ε[min{N ∈ N0 : ‖u−uN‖�2 ≤ ε}]s < ∞

}
. (2.3)

It is known that such approximation spaces are interpolation spaces between Lp

and certain Besov spaces, which establishes a direct link between regularity and
approximation classes, see also [13] for more details.

An adaptive wavelet method is called (quasi-)optimal whenever it produces for
u ∈ As an approximation v to u with ‖u − v‖�2 ≤ ε, such that # supp(v) �
ε−1/s‖u‖1/sAs

and the number of operators is bounded by a multiple of the same quan-
tity. In other words, given that u is in a certain approximation class, an optimal
adaptive method achieves the best possible asymptotic rate of convergence in linear
computational complexity of the output size.

There are two classical approaches to implementing such an optimal adaptive
wavelet method (see [8, 9, 17]). The first2 applies an inexact iteration method such as
the Richardson iteration, to the bi-infinite discrete system in Eq. 2.2. The second one,
in the spirit of adaptive FEM methods, produces a sequence �(0) → �(1) → · · ·
of finite index sets and solves the finite Galerkin problem on these sets, yielding a
sequence of solutions u(0) → u(1) → · · · , following the paradigm solve → esti-
mate → mark → refine. The latter one is referred to as an adaptive wavelet Galerkin
method (AWGM).

In [8], the authors introduced an AWGM that required additional coarsening to
ensure minimality of the active index sets, i.e., solve → estimate → mark → refine
→ coarsen. In [17], it was shown that optimality can be guaranteed without the addi-
tional coarsening step. In this work, we require an additional coarsening step as in
[8] for the same purpose. Removing this step as in [17], optimality can no longer
be guaranteed in our setting of low-rank approximation, and we briefly address this
issue in Section 4.7.

There are three basic routines necessary for an efficient realization of an AWGM:
(1) approximate residual evaluation (Estimate), (2) approximate Galerkin solver
(solve), and (3) bulk chasing (mark and refine). We do not discuss these routines in
detail here, but refer to the literature. In order to control the number of active vari-
ables (number of selected wavelets), one often uses a coarsening step in order to

2Chronologically, however, the second.
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remove “unnecessary” coefficients. This is done by a routine calledCOARSE, which
we detail for later use: For a given finitely supported v, such routine is assumed to
produce an approximation vε such that

# supp(vε) � min
{
N : ‖v − w‖�2 ≤ ε, w ∈ �2(J ), # supp(w) ≤ N

}
.

A straightforward realization would involve sorting—with log linear complexity.
To achieve linear complexity, exact sorting can be replaced by an approximate bin
sorting which satisfies the above estimate. We refer to [17].

AWGM requires that A, or, equivalently, A is symmetric positive definite. Oth-
erwise, a similar analysis applies to the normal equations with AT A. However,
the additional application of AT hampers numerical performance and convergence
estimates depend on κ(A)2 rather than on κ(A). The penalty for applying AT is
even more severe in the high-dimensional case due to the increase in ranks. The
Richardson iterations can be applied to non-symmetric A; however, in this case, the
convergence will depend on κ(A)2 as well. See [35, Section 3].

2.2 Tensor formats

We briefly review some of the basics of tensor formats, see, e.g., [19]. A tensor of
order d is an element of a tensor space V := ⊗d

j=1Vj , where Vj are some vector
spaces. We consider topological tensor spaces, i.e., V is Banach space with some
norm ‖·‖V . Typically, Vj are themselves Banach spaces and the norm on V is induced
by the norms on Vj . The tensor product ⊗ : V1 × · · · × Vd → V1 ⊗ · · · ⊗ Vd is the
unique multilinear mapping factoring any other multilinear mapping ϕ : V1 × · · · ×
Vd → W into a linear mapping f : V1 ⊗ · · · ⊗ Vd → W such that ϕ = f ◦ ⊗, where
Vj and W are some vector spaces.

The hierarchical Tucker (HT) format combines both the advantages of stable
approximation of the Tucker format with the sparse representation of the r-term
format by further decomposing the core tensor. For a general multi-index α ⊂
{1, . . . , d}, we can define the tensor product vector space

Vα :=
⊗

j∈α

Vj .

The idea behind HT can be illustrated by the following simple observation: An ele-
ment u ∈ V can be also seen as an element of u ∈ Vα ⊗ Vᾱ with α, ᾱ ⊂ {1, . . . , d}
with ᾱ being the complement of α. This defines the notion of multilinear ranks
r(u)α that depends on the choice of α. Applying this idea recursively, we start with a
Tucker decomposition of u ∈ Vα ⊗Vᾱ . We then further decompose the bases Uα and
Uᾱ of Vα and Vᾱ , respectively, until we reach the singletons α = {j}. We denote the
ranks of this hierarchical representation by r(u) = (r(u)α)α∈T with the max norm
|r(u)|∞ defined in an obvious way, where T is the HT tree structure. In contrast to the
Tucker format, which requires the storage of an order d tensor, the HT format stores
several order 3 tensors.3 However, note that in the worst case r(u) can still behave

3Due to the binary decomposition α = αL ∪ αR , each transfer tensor has 2 indices related to the child
nodes αL, αR and one index related to the parent node α.
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exponentially w.r.t. d . Nonetheless, it is known that the asymptotic behavior of the
storage requirements of HT are not worse than that of the r-term format and the per-
formance of HT in practice has proven its merit. A rigorous answer to the question
as to when and why functions exhibit good approximation properties in tensor tree
formats remains a challenging and interesting problem.

As in the case for best N-term approximations in Eq. 2.3, we require a benchmark
to assess the quality of the ranks of approximation. For this purpose, we use the
benchmark introduced in [1], similar to Eq. 2.3. We use the notation u ∈ HN to
denote that u is representable in an HT format with |r(u)|∞ ≤ N . Given a positive,
strictly increasing growth sequence, γ := (γ (n))n∈N0 with γ (0) = 1, define an
approximation class as

A(γ ) :=
{

v ∈ V : |v|A(γ ) := sup
N∈N0

γ (N) inf
w∈HN

‖v − w‖V < ∞
}

,

with norm ‖v‖A(γ ) = ‖v‖V + |v|A(γ ). It is known from, e.g., [33] that the best
approximation error for a function with Sobolev smoothness s behaves in the worst
case like

max
α∈T \{1,...,d} r

−s max{1/|α|,1/(d−|α|)}
α .

One of the most important operations on tensors is truncation. It lies in the heart
of all iterative tensor algorithms that rely on truncation to keep ranks low. For a
given algebraic tensor u ∈ V , we seek an approximation v ∈ V with r(v)α ≤ rα ≤
r(u)α for some fixed rα and all α ⊂ {1, . . . , d}. In practice, this can be done by
applying singular value decompositions (SVD) to matricizationsMα(u) ∈ Vα ⊗ Vᾱ ,
a method referred to as higher order singular value decomposition (HOSVD). Unlike
the standard SVD, the HOSVD provides one only with a quasi-best approximation
in the sense

‖u − vHOSVD‖V ≤
√∑

α

∑

i≥rα+1

(σα
i )2 ≤ √

2d − 3 inf
v∈V,

r(v)≤r

‖u − v‖V , (2.4)

where r = (rα)α is some integer vector and σα
i are the corresponding singular val-

ues of the α matricization. We will denote the (nonlinear) operator that produces an
HOSVD of u by T (u, ε), i.e.,

‖u − T (u, ε)‖V ≤ ε.

The total computational work for truncating a tensor u can be bounded by a constant
multiple of dr4 + r2

∑d
j=1 nj , where r = |r(u)|∞ and nj := dim(Vj ).

We need to combine the wavelet coarsening with the tensor rank truncation. Recall
that to apply COARSE to a tensor u ∈ V of finite support in the wavelet dictionary,
we would have to search through all entries of u, a process that scales exponentially
in d . Thus, we require low-dimensional quantities that allow us to perform this task.
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For this purpose, we use contractions4 introduced in [1]. For a tensor u ∈ �2(J d)

where J is a 1D wavelet index set, we set

πj (u) = (πj (u)[λj ])λj ∈J :=
⎛

⎝
√ ∑

λ1,...,λj−1,λj+1,...,λd∈J d−1

|uλ1,...,λj ,...,λd
|2
⎞

⎠

λj ∈J

. (2.5)

Recalling the restriction operator

RJ1×...×Jd
u[λ] :=

{
u[λ], if λ ∈ J1 × . . . × Jd ,

0, otherwise,

the two important properties of these contractions are

πj (u)[λj ] =
√∑

k

|σ j
k |2|Uk

j (λj )|2,

‖(I − RJ1×...×Jd
)u‖ ≤

√
√
√
√
√

d∑

j=1

∑

λ∈J \Jj

|πj (u)[λ]|2,

≤ √
d‖(I − RJ1×...×Jd

)u‖, (2.6)

where Uk
j

is the k-th column of the j -th HOSVD basis frame and σ
j
k are the

corresponding singular values. We use the notation

suppj (u) := supp(πj (u)),

to refer to the 1D support of u along the j -th dimension, i.e., u can be viewed as
u ∈ �2(supp1(u) × · · · × suppd(u)).

2.3 Separable preconditioning

Suppose we want to solve an equation on the Sobolev space X ⊂ Hs(�) on a
bounded Lipschitz domain � ⊂ R

d with appropriate boundary conditions. Typi-
cally, the point of departure is a Riesz wavelet basis �L2 for L2(�) from which
we obtain a whole range of Riesz bases for Hs by a simple diagonal scaling (see,
e.g., [36, Section 5.6.3]) �H 1 := D−s�L2 , where D := (δλ,μ‖ψλ‖H 1)λ,μ. This is
equivalent to reformulating (2.2) as the preconditioned infinite system

D−sAD−sDu = D−sf . (2.7)

In the context of high-dimensional problems, d 	 1 is large and the complexity
of approximating the solution to Eq. 2.2 will in general scale exponentially with the
dimension d (see, e.g., [35, Section 7]). However, given a product structure of the
domain � = ×d

j=1�j (or smooth images thereof), the problem (2.2) can be solved

4We remark that this is a slight abuse of terminology for general tensor contractions.
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with tractable methods (see, e.g., [10]). For this, we will need � to be a tensorised
basis of lower-dimensional components, i.e., � := ×d

j=1�j and we reconsider X as

a tensor space X = ⊗d
j=1Xj . This way, if A permits a separable structure or can be

well approximated in such a form, than we can discretize A such that it preserves the
product structure with low-dimensional components.

Unfortunately, the space Hs(�) is not equipped with a cross norm, i.e., for an
elementary tensor product v = v1 ⊗ · · · ⊗ vd

‖v‖s �= ‖v1‖s · · · ‖vd‖s .

Considering again (2.7), this means that D−s cannot be represented in a separable
form. However, this issue was addressed in [3], where the exact precondition-
ing D−s was replaced by an approximate separable scaling via exponential sum
approximations. We will utilize this separate scaling both for preconditioning the
Galerkin solver and the approximate residual evaluation. We briefly recall some basic
properties of the said preconditioning.5

For certain parameters δ > 0, η > 0, T > 1, we choose

h ∈
(
0, π2

5(| ln(δ/2)|+4)

)
, n+ ≥ h−1 max

{
4√
π
,
√| ln(δ/2)|

}
, and n ≥

h−1
(
ln 2√

π
+ | ln(min{δ/2, η})| + 1

2 ln T
)
. The approximation involved is

1√
t

= 2√
π

∫
R

e−t ln2(1+ex )

1+e−x dx ≈ ∑n+
k=−n hw(kh)e−α(kh)t =: ϕn+,n(t),

where w(x) := 2√
π
(1 + e−x)−1, α(x) := ln2(1 + ex), and t > 0 is some scaling

weight. We get
∣
∣
∣
∣
1√
t

− ϕn+,n(t)

∣
∣
∣
∣ ≤ δ√

t
, |ϕn+,∞(t) − ϕn+,n(t)| ≤ η√

t
, (2.8)

for all t ∈ [1, T ]. For the exact diagonal preconditioning, the scaling weights for
tensor product wavelets can be obtained by observing that H 1 (and similarly Hs) is
isomorphic to the intersection of Hilbert spaces

H 1(�)∼=
d⋂

j=1

L2(�1) ⊗ · · · ⊗ H 1(�j ) ⊗ · · · ⊗ L2(�d), with �=�1 × · · · × �d .

The norm on the intersection space leads to the scaling weight t := ∑d
j=1 ‖ψλj

‖2
H 1 ,

for ψλ = ⊗d
j=1ψλj

. We will denote by

S(δ, η) and S(δ) := lim
η→0

S(δ, η)

5For ease of presentation, we restrict ourselves to s = 1.
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the corresponding separable approximation to D and the limit, respectively. We
mention important properties from [3] for later use

‖DS−1(δ, η)‖ ≤ 1 + δ, ∀η > 0, (2.9a)

‖DS−1(δ)‖ ≤ 1 + δ, (2.9b)

‖S(δ)D−1‖ ≤ 1

1 − δ
, (2.9c)

‖D(D−1 − S−1(δ, η))RJT
‖ ≤ δ, ∀η > 0, (2.9d)

‖D(S−1(δ) − S−1(δ, η))RJT
‖ ≤ η, ∀δ > 0, (2.9e)

‖S(δ)(S−1(δ) − S−1(δ, η))RJT
‖ ≤ η

1 − δ
, (2.9f)

S−1(δ, η) ≤ S−1(δ), ∀η > 0, (2.9g)

1 − δ ≤ S−1(δ)D ≤ 1 + δ, (2.9h)

1 − δ ≤
(
S−1(δ, η)D

)

λ∈JT

≤ 1 + δ, ∀η > 0, (2.9i)

where the last three inequalities are to be understood componentwise. The index
set JT indicates the set of wavelet indices for which (2.8) holds, depending on the
parameter T . We thus seek to approximate the solution of the preconditioned equation

S−1(δ)AS−1(δ)S(δ)u = Aδuδ = f δ = S−1(δ)f ,

with the shorthand notation

S−1(δ)AS−1(δ) =: Aδ, S−1(δ)f =: f δ, S(δ)u =: uδ .

We assume a product structure of the operator A. I.e., we can write A as

A =
∑

1≤n1,...,nd≤R

cn1,...,nd

d⊗

j=1

A
nj

j . (2.10)

for some one-dimensional components A
nj

j and coefficients cn1,...,nd
. Moreover, D

represents the exact diagonal scaling D := (δλ,μdλ)λ,μ for some weights d2
λ =

d2
λ1,...,λd

= ∑d
j=1 d2

λj
, λ ∈ J d . We use Dj := (δλj ,μj

dλj
)λj ∈J ,μj ∈J to denote the

corresponding one-dimensional components.

3 Perturbed finite-dimensional descent method

For further presentation, we formulate a general descent method with perturbations
for solving the linear system Ax = b, A : V → V , x, b ∈ V , where A is an s.p.d.
matrix and V is a finite-dimensional vector space, possibly an algebraic tensor space
with N := dim(V) < ∞, i.e., V ∼= R

N .
For simplicity of presentation, we omit preconditioning at this point. The analysis

for the case of exact preconditioning remains the same. Approximate preconditioning
adds a perturbation to the descent direction.
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We will frequently use the associated quadratic functional

f (x) := 1

2
〈x, Ax〉 − 〈b, x〉 ≡ fA,b(x),

where 〈·, ·〉 denotes the standard inner product on V with induced Euclidean norm
‖ ·‖ and ‖ ·‖A := 〈·, A·〉 the energy norm. The very well-known descent method then
reads as follows.

Algorithm 1 Descent method for minimizing f (x).

Input: x(0) ∈ V
1: k ← 0
2: while stopping criterion for f (x(k)) not satisfied do
3: choose/update descent direction d(k)

4: d(k) ← d(k) + ε
(k)
1 (e.g., truncation)

5: compute step size αk

6: x(k+1) ← x(k) + αkd
(k)

7: x(k+1) ← x(k+1) + ε
(k+1)
2

8: k ← k + 1
9: end while

The abstract stopping criterion from line 2 depends on the particular choice of
problem and descent method. E.g., in this work, we use a CG descent method for
a linear problem, i.e., the algorithm terminates when the residual satisfies a certain
error tolerance: see also line 4 of Algorithm 3.

In a tensor-based solver, lines 4 and 7 are typical candidates for truncating a tensor
due to the increase in ranks after the summation. The quantities ε

(k)
j , j = 1, 2, repre-

sent the error incurred due to truncation, where x(k) is replaced by a truncated version
x̃(k) := T

(
x(k), ε

)
, such that ‖ε(k)

2 ‖ ≤ ε for the truncation error ε
(k)
2 := x̃(k) − x(k).

We emphasize that the analysis has to rely solely on the control of the magnitude
of ε

(k)
2 without restricting the direction of ε

(k)
2 , which destroys optimality features of

conjugate directions.

3.1 Gradient descent

Choosing d(k) = r(k) + ε
(k)
2 , with r(k) := b − Ax(k) being the residual, and using

the optimal step size αk leads to the well-known gradient-type descent method. The
following lemma shows that appropriately choosing ε

(k)
1 and ε

(k)
2 ensures the same

asymptotic convergence as the exact gradient descent method.

Proposition 3.1 For the choice d(k) = r(k) in line 3 and

αk = arg min
α∈R

f (x(k) + αd(k))
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in line 5 (exact line search) of Algorithm 1, we have the estimate for the error e(k) :=
x∗ − x(k)

‖e(k)‖A ≤ θk‖e(0)‖A +
k−1∑

j=0
θk−j−1

(
‖ε(j)

1 ‖A

λmin
+ ‖ε(j+1)

2 ‖A

)

, (3.1)

with reduction factor θ := λmax−λmin
λmax+λmin

, and λmax and λmin being the largest and
smallest eigenvalues of A, respectively.

Proof It holds that the iterate x(k+1) can be written as x(k+1) = x(k) + αkr
(k) +

αkε
(k)
1 + ε

(k+1)
2 and the error reads e(k+1) = (I − αkA)e(k) + αkε

(k)
1 + ε

(k+1)
2 . The

optimal step size is known to be αk = 〈d(k),d(k)〉
〈d(k),Ad(k)〉 . Let {λj }j=1,...,N denote the eigen-

values of A and {ψj }j=1,...,N the corresponding orthonormal basis of eigenvectors.
Since A is s.p.d., we get the standard estimate (cj := 〈d(k), ψj 〉)

〈d(k), Ad(k)〉 = 〈
N∑

j=1

cjψj ,

N∑

j=0

cjλjψj 〉 =
N∑

j=1

λj c
2
j ≥ λmin‖d(k)‖2. (3.2)

Using standard arguments for the analysis of the gradient descent method (cf.

[18, Thm. 9.2.3]), we get ‖e(k+1)‖A ≤ θ‖e(k)‖A + ‖ε(k)
1 ‖A

λmin
+‖ε(k+1)

2 ‖A, which proves
(3.1).

Remark 3.2 There are many related results on inexact gradient descent methods in
optimization, see, e.g., [11, 12, 32], or in low-rank approximation, see, e.g., [7, 15].
The form of Proposition 3.1 highlights how perturbations in the descent direction and
solution propagate through the iterations, and serves as a comparison for the error
estimate of the perturbed CG method from Theorem 3.4.

3.2 Conjugate gradient descent

The (rank-)truncated (P)CG method was first proposed in [27, Algorithm 2] with
promising numerical results.

Obviously, the perturbed CGmethod does not preserve orthogonality of the search
directions w.r.t. 〈·, A·〉 and the resulting algorithm is not a Krylov method (see also
below). Nevertheless, we can guarantee the perturbed CG to be a descent method
which in turn will provide us with a convergence estimate.

Lemma 3.3 Let κ := λmax
λmin

and fix some τ ∈ (0, 1√
1+κ2

). Let δ1, δ2 > 0, and γ > 0

be chosen such that 3
2δ1 + δ2 ≤ 1

τ 2
− (1 + κ2) and (1 − δ1

2 )τ ≥ γ . If the error

sequence ε
(k)
1 satisfies

‖ε(k)
1 ‖ ≤ min

{
δ1

2
,

δ2‖r(k)‖
2|βk−1| ‖d(k−1)‖

}

‖r(k)‖, (3.3)
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Algorithm 2 Truncated (P)CG method.

Input: x(0) ∈ V
1: r(0) ← b − Ax(0), d(0) ← r(0) + ε

(0)
1

2: k ← 0
3: while stopping criterion for f (x(k)) not satisfied do

4: αk ← 〈r(k),d(k)〉
〈d(k),Ad(k)〉 ,

5: x(k+1) ← x(k) + αkd
(k) + ε

(k+1)
2

6: βk ← −〈r(k+1),Ad(k)〉
〈d(k),Ad(k)〉

7: d(k+1) ← r(k+1) + βkd
(k) + ε

(k+1)
1

8: k ← k + 1
9: end while

then d(k) is a descent direction with 〈r(k), d(k)〉 ≥ γ ‖r(k)‖‖d(k)‖, where γ does not
depend on k.

Proof First we show that ‖r(k)‖ ≥ τ‖d(k)‖. To this end, note that

‖d(k)‖2 = 〈d(k), d(k)〉 = ‖r(k)‖2 + β2
k−1‖d(k−1)‖2 + ‖ε(k)

1 ‖2 + 2βk−1〈r(k), d(k−1)〉
+2〈r(k), ε

(k)
1 〉 + 2βk−1〈d(k−1), ε

(k)
1 〉. (3.4)

Next, we get

〈r(k), d(k−1)〉 = 〈b − A(x(k−1) + αk−1d
(k−1)), d(k−1)〉

= 〈r(k−1), d(k−1)〉 − 〈r(k−1), d(k−1)〉
〈d(k−1), Ad(k−1)〉 〈Ad(k−1), d(k−1)〉 = 0.

For the term β2
k−1‖d(k−1)‖2, we get

β2
k−1‖d(k−1)‖2 = |〈r(k), Ad(k−1)〉|2

|〈d(k−1), Ad(k−1)〉|2 ‖d(k−1)‖2 (3.2)≤ |〈r(k), Ad(k−1)〉|2
λ2min|〈d(k−1), d(k−1)〉|2 ‖d(k−1)‖2

≤ λ2max‖r(k)‖2‖d(k−1)‖2
λ2min‖d(k−1)‖4 ‖d(k−1)‖2 ≤ κ2‖r(k)‖2.

Using Eq. 3.3, we estimate the term (3.4) as ‖d(k)‖2 ≤ (1+κ2+ δ1
2 +δ1+δ2)‖r(k)‖2 ≤

1
τ 2

‖r(k)‖2. This finally gives us the desired claim
〈r(k), d(k)〉 = 〈r(k), r(k)〉 + 〈r(k), ε

(k)
1 〉 ≥ 〈r(k), r(k)〉 − ‖r(k)‖‖ε(k)

1 ‖
= ‖r(k)‖(‖r(k)‖ − ‖ε(k)

1 ‖) ≥ ‖r(k)‖2(1 − δ1

2
) ≥ γ ‖r(k)‖‖d(k)‖.

With this preparation at hand, we get the following convergence estimate.
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Theorem 3.4 Let the assumptions of Lemma 3.3 hold. For the truncation tolerance
ε2 set

‖εk+1
2 ‖ ≤ θμ(λmax)

−1‖r(k)‖, (3.5)

with

θ :=
√

1 − γ 2

2κ
, γ < 1, κ > 1, μ < θ−1 − 1. (3.6)

Then, we have

‖e(k)‖A ≤ [θ(1 + μ)]k‖e(0)‖A, (3.7)

with the error reduction factor

� := θ(1 + μ) < 1.

Proof Without loss of generality, we can assume the solution is at the origin x∗ = 0
and thus b = 0. Since d(k) is a descent direction by Lemma 3.3, [22, Lemma 6.2.2]

yields f (x(k+1)) ≤ f (x(k)) − γ 2

4λmax
‖r(k)‖2. Using an eigenbasis of A as in Eq. 3.2,

we get

f (x(k)) = 1

2
〈x(k), Ax(k)〉 = 1

2

N∑

j=1

λj c
2
j , ‖r(k)‖2 = 〈Ax(k), Ax(k)〉 =

N∑

j=1

λ2j c
2
j .

This gives

f (x(k+1)) ≤ 1

2

N∑

j=1

λj c
2
j (1 − γ 2

2λmax
λj ) ≤ (1 − γ 2λmin

2λmax
)
1

2

N∑

j=1

λj c
2
j = (1 − γ 2

2κ
)f (x(k)).

The identity 2f (x) = ‖x‖2A gives the desired claim for θ as in Eq. 3.6. Finally, we
get with Eq. 3.5

‖e(k+1)‖A ≤ θ‖e(k)‖A + ‖ε(k+1)
2 ‖A,

≤ θ‖e(k)‖A + θμ‖e(k)‖A,

= �‖e(k)‖A.

This completes the proof.

Remark 3.5 Note that the rate in Eq. 3.6 is asymptotically the same as in Propo-
sition 3.1 for large κ . This is not surprising, since we used the same approach for
analyzing the convergence as in the gradient descent method. Of course, Eq. 3.6 is
more pessimistic, since it applies to a generalized descent method.

The preceding analysis is a worst-case scenario that guarantees convergence of
the method with a monotonic decrease of the error in the energy norm. However,
numerically, the perturbed CG performs far better than the gradient descent method.
This is due to the fact that the perturbed CG inherits some nice properties of its
exact counterpart, as can be seen in the following lemma. Moreover, the analysis in
Theorem 3.4 is quite general, since we only require local optimality (i.e., a descent
direction) and the resulting bound in Eq. 3.7 is thus by no means optimal.
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Note, that according to Eq. 3.7, the truncation tolerance ‖ε(k+1)
2 ‖ should be

set proportional to θ‖e(k)‖A. However, since the error reduction factor θ corre-
sponds to a worst-case scenario, this tolerance might be unnecessarily prohibitive and
significantly hamper quantitative performance.

A more detailed look on the estimates from [22, Lemma 6.2.2] reveals
f (x(k+1)) ≤ 1

2

∑N
j=1 λj c

2
j − αk〈r(k), d(k)〉, which suggests to choose an adaptive

tolerance proportional to αk‖d(k)‖. This is precisely the case for the adaptive toler-
ance strategy in [27, Algorithm 2]. Hence, we use this in our subsequent numerical
experiments.

Lemma 3.6 For the perturbed CG method we have the following representations

r(k) = (I − Ap(k)(A))r(0) − A

⎛

⎝
k−1∑

j=0

q
(k)
k−j−1(A)ε

(j)

1 + A

k∑

j=1

g
(k)
k−j (A)ε

(j)

2

⎞

⎠ ,

e(k) = (I − Ap(k)(A))e(0) −
⎛

⎝
k−1∑

j=0

q
(k)
k−j−1(A)ε

(j)

1 +
k∑

j=1

g
(k)
k−j (A)ε

(j)

2

⎞

⎠ ,

where p(k) ∈ Pk−1, i.e., a polynomial of degree k − 1, g(k)
j ∈ Pj with g

(k)
j (0) = 1,

j = 0, . . . , k − 1, and q
(k)
j ∈ Pj such that p(k)(t) = ∑k−1

j=0 q
(k)
j (t).

Proof We prove the assertion by induction over k. For k = 1, we have x(1) = x(0) +
α0(r

(0) + ε
(0)
1 ) + ε

(1)
2 = x(0) + α0Ar(0) + α0ε

(0)
1 + ε

(1)
2 . As a consequence, r(1) =

b − Ax(1) = (I − α0A)r(0) − α0Aε
(0)
1 − Aε

(1)
2 and

d(1) = r(1) + β0d
(0) + ε

(1)
1 = (I − α0A)r(0) − α0Aε

(0)
1 − Aε

(1)
2 + β0(r

(0) + ε
(0)
1 ) + ε

(1)
1

= (I + β0I − α0A)r(0) + (β0I − α0A)ε
(0)
1 + ε

(1)
1 − Aε

(1)
2 ,

from which the assertion follows for k = 1. Now, let the claim hold for some k ≥ 1,
then, we get by induction that

x(k+1) = x(k) + αkd
(k) + ε

(k+1)
2 ,

= x(0) + p(k)(A)r(0) +
k−1∑

j=0

q
(k)
k−j−1(A)ε

(j)

1 +
k∑

j=1

g
(k)
k−j (A)ε

(j)

2

+αk

⎛

⎝p̃(k)(A)r(0) +
k∑

j=0

q̃
(k)
k−j (A)ε

(j)

1 + A

k∑

j=1

g̃
(k)
k−j (A)ε

(j)

2

⎞

⎠ + ε
(k+1)
2

= x(0) + p(k+1)(A)r(0) +
k∑

j=0

q
(k+1)
k−j (A)ε

(j)

1 +
k+1∑

j=1

g
(k+1)
k−j+1(A)ε

(j)

2 ,

with p(k+1) := p(k)+αkp̃
(k), q(k+1)

j := q
(k)
j +αkq̃

(k)
j for j < k and q

(k+1)
k := αkq̃

(k)
k

as well as g
(k+1)
j := g

(k)
j + αktg̃

(k)
j−1 for j > 0 and g

(k+1)
0 := 1. Note that the
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properties stated in this Lemma hold for the polynomials p(k+1), q(k+1)
j , and g

(k+1)
j .

Finally,

d(k+1) = r(k+1) + βkd
(k) + ε

(k+1)
1

= (I − Ap(k)(A))r(0) − A

k∑

j=0

q
(k)
k−j (A)ε

(j)

1 − A

k+1∑

j=1

g
(k)
k−j+1(A)ε

(j)

2

+βk

⎛

⎝p̃(k)(A)r(0) +
k∑

j=0

q̃
(k)
k−j (A)ε

(j)

1 + A

k∑

j=1

g̃
(k)
k−j (A)ε

(j)

2

⎞

⎠ + ε
(k+1)
1

= (I − Ap(k)(A) + βkp̃
(k)(A))r(0) + ε

(k)
1 − A

k∑

j=0

q
(k)
k−j (A)ε

(j)

1

+βk

k∑

j=0

q̃
(k)
k−j (A)ε

(j)

1 − Aε
(k+1)
2 − A

k∑

j=1

(g
(k)
k−j+1(A) − βkg̃

(k)
k−j (A))ε

(j)

2 ,

which completes the proof.

Similar to its exact counterpart, the perturbed (P)CG is thus a polynomial method
both in the initial residual and in the perturbations. It is easy to see that the poly-
nomials {p(j)}j are not orthogonal w.r.t. the discrete inner product 〈p, q〉CG :=
〈p(A)r(0), q(A)r(0)〉, see [16, Example 2.4.8]. Consequently the resulting iterates do
not minimize 〈p(k), t−1p(k)〉CG = ‖e(k)‖2A.

Though the perturbed CG is a straightforward extension of its exact counter-
part, the iterates are not characterized by minimization problems anymore. Thus,
the typical notions of optimality or orthogonality of Krylov methods are lost. More-
over, we lose information about “how far” these inexact iterates are from the
optimal iterates. This is due to the fact that nothing specific about the direction
is required in the truncation step, other than it has to satisfy an error bound. Of
course, numerically perturbed (P)CG still converges faster than perturbed gradient
descent. However, we believe a rigorous proof of this would require more knowl-
edge about the truncation step and thus most likely a modification of the algorithm
itself.

4 HTucker-adaptive wavelet Galerkin method

As already said earlier, the new HTucker-adaptive wavelet Galerkin method (HT-
AWGM) relies on the strategy

· · · → SOLVE → ESTIMATE → MARK and REFINE → · · ·
which is analogous to an adaptive FEM solver. We detail the ingredients as follows.
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4.1 SOLVE

We use a Galerkin solver based on the CG iterations described in Section 3.2 with
the approximate separable preconditioning from [3], see Section 2.3. The arising
procedure is referred to as

PCG(S−1(δ), Aδ, f δ, u(0), �, ε),

where S−1(δ) is the preconditioning operator, Aδ is the discrete (infinite dimen-
sional) operator, f δ is the right hand side, u(0) is the initial guess, � is a finite index
set on which the iterations are performed, and ε is the residual tolerance.

Remark 4.1 We shall assume a separable structure for the operator A and thus will
not discuss the approximation of more general operators (for this see, e.g., [1]). Thus,
evaluating A�u on a finite set � boils down to applying the low-dimensional com-
ponents of A� to the leaves of u. For the low-dimensional evaluation, we use the
evaluation procedures from [23, Chapter 6].

4.2 ESTIMATE

For this step, we need a procedure for approximate residual evaluation. This requires
determining an extended index set �̃ ⊃ � based on a desired tolerance ε > 0 and
evaluating

‖R�̃

(
f δ − AδE�u�

) ‖.
Again, due to the separable structure of A, we only need to build �̃ = �̃1 × · · · ×
�̃d from the low-dimensional components �̃j , j = 1, . . . , d. For this purpose, we
use the method from [23, Chapter 7]. Additionally, we need to approximate scaling
S−1(δ), which we discuss in detail later. We refer to this procedure as

RES(S−1(δ), Aδ, f δ, uδ, ε),

where ε refers to the relative accuracy in the sense that

‖ (
f δ − AδE�u�

) − r̃‖ ≤ ε‖r̃‖,
and r̃ is the approximate residual.

4.3 MARK and REFINE

In AFEM, one first marks certain elements, which are then refined by a chosen strat-
egy: REFINE. In AWGM, these steps are performed together. The current index set
� is extended, which drives the adaptivity of the algorithm. We use a standard bulk
chasing strategy with a parameter α ∈ (0, 1), described as follows. Suppose the cur-
rent approximation u is supported on �, then we determine a (minimal) set �̃ ⊃ �

on which the approximate residual evaluation is performed. Then, we compute an
intermediate set �̄ with � ⊂ �̄ ⊂ �̃ such that

‖R�̄r‖ ≥ α‖r‖, (4.1)
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where r is the approximate residual supported on �̃.
In a low-dimensional setting, Eq. 4.1 is realized by an approximate sorting of the

entries in r and forming �̄ by the minimal number of largest entries that satisfy (4.1).
Such an approach is clearly not feasible for large dimensions d 	 1.

In the tensor setting, we can only use low-dimensional quantities and thus deter-
mine �̄ by sorting the contractions πj (r) using the COARSE routine from the
low-dimensional setting, where COARSE(u, ε) returns a tensor v with ‖u− v‖ ≤ ε.
We refer to the resulting procedure as

EXPAND(�, r, α).

4.4 HT-AWGM algorithm

We now have all algorithmic ingredients at hand to describe a general AWGM proce-
dure based on a tensor format in Algorithm 3. We use the notation C(u, ε) to denote
COARSE(u, ε); T (u, ε) to denote truncation and

‖(Aδ)−1‖ ≤ (λmin)
−1, ‖Aδ‖ ≤ λmax

Algorithm 3 HT-AWGM.

Input: Tolerance ε > 0, initial finite index set �(0,0) �= ∅, δ > 0, α ∈ (0, 1),
ω0, ω1, ω2, ω3, ω4, ω5 > 0, M ∈ N.

1: u(0,0) ← 0, r(0,0) ← ω0, ω
(0)
0 ← ω0

2: for k = 0, . . . do
3: for m = 0, . . . , M do
4: u(k,m+1) ← PCG(S−1(δ), Aδ, f δ, u(k,m), �(k,m), ω2‖r(k,m)‖)
5: r(k,m+1) ← RES(S−1(δ), Aδ, f δ, u(k,m+1), ω1)

6: if (1 + ω1)‖r(k,m+1)‖ ≤ ε then
7: return uε ← u(k,m+1)

8: end if
9: if (1 + ω1)‖r(k,m+1)‖ ≤ ω3ω

(k)
0 , or m = M then

10: u(k+1,0) ← T (u(k,m+1), ω4λ
−1
minω

(k)
0 )

11: u(k+1,0) ← C(u(k+1,0), ω5λ
−1
minω

(k)
0 )

12: �(k+1,0) ← supp(u(k+1,0))

13: r(k+1,0) ← RES(S−1(δ), Aδ, f δ, u(k+1,0), ω1)

14: ω
(k+1)
0 ← (ω3 + ω4 + ω5)ω

(k)
0

15: break
16: end if
17: �(k,m+1) ← EXPAND(�(k,m), r(k,m+1), α)

18: end for
19: end for

The involved parameters have the following meaning:

• ω0 is the initial estimate for the right hand side, i.e., ω0 ≥ ‖f δ‖,
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• ω1 is the relative precision of the residual evaluation,
• ω2 drives the tolerance for the approximate Galerkin solutions,
• ω3 is the required error reduction rate before truncation and coarsening,
• ω4 drives the truncation tolerance that controls rank growth,
• ω5 drives the coarsening tolerance that controls index set growth and influences

rank growth by controlling the maximum wavelet level,
• α is the bulk criterion parameter that drives adaptivity.

4.5 Convergence of HT-AWGM

We start proving the convergence of the algorithm by investigating the approximate
residual evaluation. Two types of approximation are involved for the operator: (a) the
finite index set approximation of A and (b) the approximation of the exact diagonal
scaling D−1, resp. S−1(δ).

Lemma 4.2 Let v be finitely supported and let Aε denote an approximation to A in
the sense that

∥
∥D−1(A − Aε)D

−1v
∥
∥ ≤ ε. Moreover, let f ε be an approximation to

f such that
∥
∥D−1(f − f ε)

∥
∥ ≤ ε. Finally, assume that ‖S−1(δ)f ε‖ ≤ Cf ‖f δ‖ for

all ε > 0 with Cf ≥ 1. Then,

∥
∥
∥(f δ − Aδv) − S−1(δ, η)(f ε − AεS

−1(δ, η)v)

∥
∥
∥

≤ ε(1 + δ)(2 + δ) + η

1 − δ

(
Cf ‖f δ‖ + 2‖Aδ‖‖v‖) + 2

(1 + δ)2

1 − δ
ηε, (4.2)

with η, δ > 0.

Proof We begin by splitting the left-hand side of Eq. 4.2 into two parts

∥
∥
∥(f δ − Aδv) − S−1(δ, η)(f ε − AεS

−1(δ, η)v)

∥
∥
∥

≤
∥
∥
∥f δ − S−1(δ, η)f ε

∥
∥
∥

︸ ︷︷ ︸
=: (I)

+
∥
∥
∥Aδv − S−1(δ, η)AεS

−1(δ, η)v

∥
∥
∥

︸ ︷︷ ︸
=: (II)

.

We further split (I) as

∥
∥
∥f δ − S−1(δ, η)f ε

∥
∥
∥ ≤ ‖S−1(δ)(f − f ε)‖ + ‖(S−1(δ) − S−1(δ, η))f ε‖

and get the first part ‖S−1(δ)(f − f ε)‖ = ‖S−1(δ)DD−1(f − f ε)‖ ≤ (1 + δ)ε,
where the last inequality follows from the property ‖S−1(δ)D‖ ≤ 1 + δ. For the
second part in (I), we get

‖(S−1(δ) − S−1(δ, η))f ε‖ = ‖(S−1(δ) − S−1(δ, η))S(δ)S−1(δ)f ε‖
≤ η

1−δ
‖S−1(δ)f ε‖ ≤ Cf

η
1−δ

‖f δ‖,
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where we used the fact ‖(S−1(δ) − S−1(δ, η))S(δ)‖ ≤ η
1−δ

. In a similar fashion, we
split (II) into 2 parts

(II) ≤ ‖S−1(δ)(A − Aε)S
−1(δ)v‖

︸ ︷︷ ︸
=:(II.1)

+ ‖S−1(δ)AεS
−1(δ)v − S−1(δ, η)AεS

−1(δ, η)v‖
︸ ︷︷ ︸

=:(II.2)
,

and follow the proof of [3, Proposition 15]. For the first term, we get

(II.1) = ‖[S−1(δ)D]D−1(A − Aε)D
−1[DS−1(δ)]v‖ ≤ (1 + δ)2ε,

where we used Eq. 2.9b. The second term (II.2) involves the approximation errors
‖S(δ)(S−1(δ) − S−1(δ, η))v‖ and ‖S−1(δ)(A − Aε)S

−1(δ)v‖. For the former, we
use Eq. 2.9f and the latter can be bounded by (1+ δ)2ε as in (II.1). Altogether we get

(II.2) ≤ 2η
1−δ

(‖Aδ‖‖v‖ + (1 + δ)2ε),

which completes the proof.

For a given tolerance tol > 0 and a finite tensor v, we can specify ε and η as

ε ≤ tol

3(1 + δ)(2 + δ)
, η ≤ min

{
1 − δ

2
,

tol(1 − δ)

3(Cf ‖f δ‖ + 2‖Aδ‖‖v‖)

}

.

By Eq. 4.2, this would ensure

‖(f δ − Aδv) − S−1(δ, η)(f ε − AεS
−1(δ, η)v)‖ ≤ tol.

As a consequence, given the parameter ω1 ∈ (0, 1) from Algorithm 3 and some fixed
δ > 0, we can now use Eq. 4.2 to ensure

‖(f δ − Aδv) − S−1(δ, η)(f ε − AεS
−1(δ, η)v)‖ ≤ ω1‖S−1(δ, η)(f ε − AεS

−1(δ, η)v)‖. (4.3)

With all the above ingredients at hand, it is now easy to prove that Algorithm 3
converges for an appropriate choice of parameters. There are two main components.
First, we choose ω1, ω2, and α appropriately such that we ensure in each inner itera-
tion m → m+1 of Algorithm 3 a guaranteed error reduction. Second, we choose ω3,
ω4, and ω5 such that after truncation and coarsening we still ensure an error reduction
for the outer iteration k → k + 1.

We use the notation

‖ · ‖A := 〈·, Aδ·〉,
to denote the energy norm.
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Proposition 4.3 Let�(0) = �
(0)
1 ×· · ·×�

(0)
d and all�(0)

j are assumed to have a tree

structure6 as required in [23, Chapter 6]. Let the parameters satisfy 0 < ω1 < α and

ω2 <
(1 − ω1)(α + ω1)

1 + ω1
κ(Aδ)−1.

This guarantees an error reduction in the inner iterations

‖u − u(k,m+1)‖A ≤ ϑ‖u − u(k,m)‖A, (4.4)

with

ϑ :=
(

1 −
(

α − ω1

1 + ω1

)2

κ−1(Aδ) +
(

ω2

1 − ω1

)2

κ(Aδ)

)1/2

< 1 (4.5)

Moreover, if M ∈ N is chosen such that

M ≥ M∗ = M∗(δ) :=
⌈∣
∣
∣
∣
∣

ln(ω3[κ(Aδ)]−1/2)

ln(ϑ)

∣
∣
∣
∣
∣

⌉

, (4.6)

and

ω3 + ω4 + ω5 < 1, (4.7)

then the error decreases in each outer iteration such that

‖u − u(k,0)‖ ≤ λ−1
minω0(ω3 + ω4 + ω5)

k . (4.8)

This ensures Algorithm 3 terminates after at most K∗M∗ steps, where

K∗ = K∗(ε, δ) :=
⌈∣
∣
∣
∣
∣

ln([εκ(Aδ)ω3ω0(1 + ω1)]−1(1 − ω1))

ln(ω3 + ω4 + ω5)

∣
∣
∣
∣
∣

⌉

, (4.9)

with the output satisfying

‖f δ − Aδuε‖ ≤ ε.

Proof The statement in Eq. 4.4 with ϑ as in Eq. 4.5 is an immediate consequence of
the assumptions and an application of [35, Prop. 4.2]. The conditions on α, ω1 and
ω2 ensure 0 < ϑ < 1.

In the inner iterations, we thus get for any k

‖u − u(k,m)‖ ≤ λ
−1/2
min ‖u − u(k,m)‖A ≤ λ

−1/2
min ϑm‖u − u(k,0)‖A,

≤
√

κ(Aδ)ϑm‖u − u(k,0)‖ ≤
√

κ(Aδ)ϑmλ−1
minω

(k)
0 .

The requirement (4.6) ensures

‖u − u(k,M)‖ ≤
√

κ(Aδ)ϑMλ−1
minω

(k)
0 ≤ ω3λ

−1
minω

(k)
0 . (4.10)

6This allows the application of an exact APPLY routine from [23] on finite index sets with linear
complexity. I.e., no additional error terms are introduced in the convergence estimate.
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Alternatively, the first if-condition in line 9 ensures

‖u−u(k,m+1)‖≤λ−1
min‖Aδ(u−u(k,m+1))‖ ≤ λ−1

min(1 + ω1)‖r(k,m+1)‖ ≤ ω3λ
−1
minω

(k)
0 .

Hence, after truncation and coarsening, we obtain

‖u − u(k+1,0)‖ ≤ ‖u − u(k,m+1)‖ + ‖u(k,m+1) − T (u(k,m+1), λ−1
minω4ω

(k)
0 )‖

+‖uk+1,0 − T (u(k,m+1), λ−1
minω4ω

(k)
0 )‖

≤ λ−1
minω

(k)
0 (ω3 + ω4 + ω5) = λ−1

minω0(ω3 + ω4 + ω5)
k+1,

which shows (4.8). Combining (4.10) and (4.8), we obtain (4.9). Together with (4.7),
this completes the proof.

4.6 Complexity

The complexity in rank and discretization is controlled by the intermediate trunca-
tion and coarsening steps in line 10 and 11 of Algorithm 3. This is done in analogy
to the re-coarsening step in the non-tensor case as in, e.g., [8]; and to the tensor
recompression and coarsening as in [1]. In [17], it was shown that an AWGMwithout
re-coarsening is optimal for a moderate choice of α. Unfortunately, the same ideas
do not carry over to the tensor case. For a detailed discussion, see Section 4.7.

In order to capture the optimal ranks and index set size w.r.t. u, we must choose a
truncation tolerance in line 10 and a coarsening tolerance in line 11 slightly above the
error ‖u − u(k,m+1)‖. In addition, since in the tensor case we can only numerically
realize quasi-optimal approximations w.r.t. rank and discretization, quasi-optimality
constants from Eqs. 2.4 to 2.6 are involved.

Proposition 4.4 Let uδ ∈ A(γ ) and πj (u
δ) ∈ As for all 1 ≤ j ≤ d . Assume the

sequence γ is admissible

ρ(γ ) := sup
n∈N

γ (n)

γ (n − 1)
< ∞.

Finally, let the parameters ω4, ω5 satisfy

ω4 > (
√
2d − 3)ω3, ω5 >

√
d(1 + √

2d − 3)ω3. (4.11)

Then, the following estimates hold

|r(u(k,0))|∞ ≤ γ −1
(
C0(ω3 + ω4 + ω5)

−k‖uδ‖A(γ )

)
, ‖u(k,0)‖≤C1‖uδ‖A(γ ),

d∑

j=1

# suppj (u
(k,0)) ≤ C2(ω3 + ω4 + ω5)

−k/s

⎛

⎝
d∑

j=1

‖πj (u
δ)‖As

⎞

⎠

1/s

,

d∑

j=1

‖πj (u
(k,0))‖As

≤ C3

d∑

j=1

‖πj (u
δ)‖As

,
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with the constants

C0 := λmin
√
2d − 3

ω0(ω4 − ω3
√
2d − 3)

ρ(γ ), C1 := 1 + (ω3 + ω4)
√
2d − 3

ω4 − ω3
√
2d − 3

,

C2 := 2d

(
λminω3

√
2d − 3

ω0(ω4 − ω3
√
2d − 3)

)1/s

,

C3 := 2s(1 + 3s) + 24sdmax(1,s) 1 + ω4(
√
2d − 3 + √

d(1 + √
2d − 3))

ω4 − ω3
√
2d − 3

.

Proof The proof is an application of [1, Thm. 7].

The complexity requirement (4.11) together with the convergence requirement
(4.7) implies ω3 < [1 + √

2d − 3 + √
d(1 + √

2d − 3)]−1.
Proposition 4.4 ensures the outer iterates u(k,0) to have quasi-optimal support size

and ranks. We first demonstrate that the quasi-optimal support size is preserved by
the inner iterates u(k,m).

In the estimates following in this subsection, we require the basic assumption of
efficient approximability of the right-hand side, i.e.,

d∑

j=1

#πj (f
δ
ε) ≤ Cε−1/s

⎛

⎝
d∑

j=1

‖πj (f
δ)‖As

⎞

⎠

1/s

,

d∑

j=1

‖πj (f
δ
ε)‖As ≤ C

d∑

j=1

‖πj (f
δ)‖As , (4.12)

for any ε > 0 and a constant C > 0 independent of ε.

Proposition 4.5 Assume that the one-dimensional components of A are s∗-
compressible. Let the assumptions of Proposition 4.4 hold for 0 < s < s∗. Moreover,
let the assumptions of Theorem 3.4 be satisfied. Then, the intermediate index sets
satisfy

d∑

j=1

#�(k,m)
j ≤ C‖uδ − u(k,m)‖−1/s

⎛

⎝
d∑

j=1

‖πj (u
δ)‖As

⎞

⎠

1/s

,

for a constant C independent of k and m.

Proof On iteration (k, m) we get the following.
1. Due to Theorem 3.4, we can ensure an upper bound on the number of PCG

iterations. Let r i
CG denote the inner PCG residual at PCG iteration i and ei

CG the
corresponding error. Then,

‖r i
CG‖ ≤ λ

1/2
max‖ei

CG‖A ≤ λ
1/2
max�

i‖e0CG‖A ≤ κ1/2�i‖r(k,m)‖A ≤ ω2‖r(k,m)‖A.

Thus, the number of PCG iterations is bounded by

i ≤ I ∗ :=
⌈∣
∣
∣
∣
ln(ω2κ

−1/2)

ln(�)

∣
∣
∣
∣

⌉

. (4.13)
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2. Applying the same proof as in [8, Prop. 6.7], together with the results from
[1, Thm. 8] and Eq. 4.12, we obtain

‖πj (u
(k,m+1))‖As

≤ C(I ∗)‖πj (u
(k,m))‖As

,

for 1 ≤ j ≤ d .
3. Applying once more [1, Thm. 8], Eq. 4.12, and the above

‖πj (r
(k,m+1))‖As

≤ C(‖πj (f
δ)‖As

+ ‖πj (u
(k,m+1))‖As

),

≤ C̃(‖πj (f
δ)‖As

+ ‖πj (u
(k,m))‖As

),

≤ C̄(‖πj (f
δ)‖As

+ ‖πj (u
(k,0))‖As

),

for 1 ≤ j ≤ d and a constant C̄ > 0 independent of k or m.
4. Let C(v, N) denote the routine COARSE retaining N terms, i.e.,∑d
j=1 # suppj (πj (v)) ≤ N . Let Co(v, N) denote the best N-term approximation

over product sets, such that
∑d

j=1 # suppj (πj (v)) ≤ N . For a given ε > 0, take N to
be minimal such that

‖v − Co(v, N)‖ ≤ ε.

Then, by property (2.6)

‖v − C(v, N)‖ ≤ √
d‖v − Co(v, N)‖ ≤ ε.

Consequently

min {N : ‖v − C(v, N)‖ ≤ ε} ≤ min

{

N : ‖v − Co(v, N)‖ ≤ ε√
d

}

.

5. As shown in the proof of [1, Thm. 7], the best N-term approximation over
product sets satisfies the property

min
{
N : ‖v − Co(v, N)‖ ≤ ε

} ≤ 2dε−1/s

⎛

⎝
d∑

j=1

‖πj (v)‖As

⎞

⎠

1/s

.

Combining 3.5. with Proposition 4.4, we get the desired claim

d∑

j=1

#�(k,m+1)
j ≤ C(

√
1−α2‖r(k,m+1)‖)−1/s

⎛

⎝
d∑

j=1

‖πj (f
δ)‖As

+‖πj (u
(k,0))‖As

⎞

⎠

1/s

≤ C̃‖uδ − u(k,m+1)‖−1/s

⎛

⎝
d∑

j=1

‖πj (u
δ)‖As

⎞

⎠

1/s

,

with a constant C̃ > 0 independent of k or m. This completes the proof.

The maximum wavelet level appearing in �(k,m) influences the rank of the pre-
conditioning S−1(δ, η). To show that intermediate ranks can only deteriorate in a
controlled manner, we require the following lemma.
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Lemma 4.6 Let the assumptions of Proposition 4.5 be satisfied for 0 < s < s∗.
Additionally, assume the data f and operator A have excess regularity for some
t > 0

‖D−1+t
j πj (f ε)‖ � ‖D−1+t

j πj (f )‖ < ∞, ‖D−1+t
j A

nj

j D−1−t
j ‖ < ∞, (4.14)

for any 1 ≤ j ≤ d , any 1 ≤ nj ≤ R, and any ε > 0 (see Eq. 2.10). Essentially (4.14)
requires the one-dimensional components f to have regularity H−1+t and the one-
dimensional wavelet basis to have regularity H 1+t , which in turn ensures a slightly
faster decay of the wavelet coefficients.

Then, on iteration (k, m) the maximum level arising in �(k,m) can be bounded by

t−1 log2

⎛

⎜
⎝CkM∗I∗+m‖uδ − u(k,m)‖−1−1/2s max

j
‖Dt

jf δ‖
⎛

⎝
d∑

j=1

‖πj (u
δ)‖As

⎞

⎠

1/2s
⎞

⎟
⎠ ,

where C > 0 is a constant independent of k and m, and M∗ and I ∗ are defined in
Eqs. 4.6 and 4.13 respectively.

Proof We want to apply [3, Lemma 37], i.e., the maximum level depends on the
decay of the wavelet coefficients and the size of the tensor. To this end, note that
�(k,0) is obtained by coarsening u(k−1,m) for anm that satisfies line 9 of Algorithm 3.
Thus, we need to estimate ‖Dt

j
u(k−1,m)‖ and the support size of u(k−1,m). For the

latter we apply Proposition 4.5.
For the former, we can apply [3, Prop. 39] together with assumption (4.14), since

u(k−1,m) is a polynomial in f δ (cf. Lemma 3.6) and excess regularity is stable under
truncation or coarsening. This gives the desired claim for �(k,0).

The set �(k,m), m > 1, is obtained by coarsening the approximate residual r(k,m).
Thus, as above, we need to estimate ‖Dt

j
r(k,m)‖ and the support size of r(k,m). To

this end, note that the approximate residual is of the form

r(k,m) = S−1(δ, ηk)(f εk
− Aεk

S−1(δ, ηk)u
(k,m)),

for εk and ηk chosen according to Lemma 4.2. Applying assumption (4.14) and [3,
Prop. 39] to u(k,m), we get

‖Dt
j r(k,m)‖ ≤ CkM∗I∗+m‖Dt

jf δ‖,
for C > 0 independent of k or m.

For the support size of r(k,m), we apply (4.12), the compressibility of A together
with [1, Thm. 8], and Proposition 4.5. This gives

d∑

j=1

#πj (r
(k,m)) ≤ C‖uδ − u(k,m)‖−1/s

⎛

⎝
d∑

j=1

‖πj (u
δ)‖As

⎞

⎠

1/s

,

and the desired claim follows by an application of [3, Lemma 37].

Finally, we demonstrate that intermediate ranks of the numerical solution depend
on the approximation accuracy and ranks of the exact solution. In the following, r(A)
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and r(f ) denote the (finite) ranks of the non-preconditioned operator and right-hand
side.

Proposition 4.7 Let the assumptions of Proposition 4.5 and Lemma 4.6 hold. Let
I ∗ from Eq. 4.13 denote the bound on the number of PCG iterations. Then, we can
bound the ranks of the arising intermediate iterates as

|r(u(k,m))|∞ ≤ C|r(A)|mI∗
∞

⎡

⎣1 + | ln(‖uδ − u(k,m)‖)| + ln

⎛

⎝
d∑

j=1

‖πj (u
δ)‖As

⎞

⎠

⎤

⎦

2mI∗

×

×
[

γ −1

(

C
‖uδ‖A(γ )

‖uδ − u(k,m)‖

)

+ |r(f )|∞
]

=: r̂ ,

for a constant C > 0 independent of k or m.

Proof Applying Lemma 4.6 and [3, Theorem 34], we get for the rank of the
preconditioner at step (k, m)

|r(S−1(δ, ηk,m))|∞ ≤ C

⎛

⎝1 + | ln(‖uδ − u(k,m)‖)| + k + ln

⎛

⎝
d∑

j=1

‖πj (u
δ)‖As

⎞

⎠

⎞

⎠ .

Using Proposition 4.3, k can be bounded by 1 + | ln(‖uδ − u(k,m)‖)|. Finally,
since u(k,m) is a polynomial in f δ and u(k,0) (cf. Lemma 3.6) and together with
Proposition 4.4, we get the desired claim.

Corollary 4.8 Under the assumptions of Proposition 4.7, the number of operations
to produce the iterate u(k,m) can be bounded as

O
([

1 +
∣
∣
∣ln(ε(k,m))

∣
∣
∣
]8(M∗+1)I∗ [

1 + γ −1
(
C(ε(k,m))−1

)]4(M∗+1)I∗
(ε(k,m))−1/s

)

,

where ε(k,m) := ‖uδ − u(k,m)‖ and C > 0 is independent of ε(k,m).

Proof The dominant part for the complexity estimate is truncation. For a finite tensor
v, the work for truncating is bounded by

d|r(v)|4∞ + |r(v)|4∞
d∑

j=1

#πj (v)

Application of Proposition 4.7 yields the desired claim.

Remark 4.9 A few remarks on Corollary 4.8 are in order.

1. The factor ε−1/s is the work related to the approximation of the frames of uδ . It
does not dominate the complexity estimate.

2. The factor γ −1(C
‖uδ‖A(γ )

ε
) reflects the low-rank approximability of uδ . Unlike

in standard AWGM methods, due to the heavy reliance on truncation techniques
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to keep ranks small, we cannot expect the dependence on this factor to be linear
but rather algebraic at best. To achieve linear complexity, if at all possible, would
require a fundamentally different approach to approximate u.

3. The dimension dependence on d 	 1 is hidden in the constants and the rank

growth factor γ −1(C
‖uδ‖A(γ )

ε
). In particular, approximability of f , A, uδ and the

behavior of κ(Aδ) determine the overall amount of work w.r.t. d . E.g., in [3, Thm.
26], the authors assume γ to be exponential in the rank r and independent of d;
the sparsity of frames of f to be independent of d and the overall support size of
f to grow at most linearly in d; the excess regularity to be t , κ(Aδ) and the ranks
of A to be independent of d; the number of operations to compute f ε to grow at
most polynomially in d . With these assumptions, the authors show the number of
required operations to compute uε to grow at most as dC ln(d)| ln(ε)|C ln(d) w.r.t.
d . Here, ln(d) stems from the fact that the quasi-optimality of truncation and
coarsening depends on d .

4.7 Discussion

For a long time, the question of optimality for classical adaptive methods remained
open. In particular, it was unclear if adaptive algorithms recovered the minimal index
set (of wavelets or finite elements) required for the current error, up to a constant.
In [8], the authors showed for an elliptic problem solved via an adaptive wavelet
Galerkin routine that indeed optimality can be achieved. Crucial for optimality was a
re-coarsening step, as in line 11 of Algorithm 3. In [17], it was shown that optimality
can be attained without a re-coarsening step by a careful choice of the bulk chasing
parameter α. In [34], the results were extended to finite elements.

It was thus of interest for us to investigate if we can ensure index set optimality
without the re-coarsening step in line 11 of Algorithm 3. By “optimality” we refer to
the optimal product index set.

In short, this fails for the current form of the algorithm. On one hand, the choice
of the bulk chasing parameter 0 < α < 1 is a delicate balance between optimality
and convergence. In [17], it was shown that α < κ(A)−1/2 ensures optimality, while
any choice α > 0 ensures convergence.

On the other hand, by the nature of high-dimensional problems, if we want to avoid
exponential scaling in d , we have to consider each �j in the product �1 × · · · × �d

separately. This leads to the necessity of aggregating information, as is done via the
contractions in Eq. 2.5. Such aggregation means we can estimate magnitudes at best
only up to a dimension dependent constant. Specifically,

√
d in Eq. 2.6.

Thus, for a given α > 0, computing the minimal index set would be of exponential
complexity. Computing the minimal index set via contractions for a given α, we can
show that the resulting set is optimal for an adjusted value of

α̃ :=
√

α2 + d − 1

d
.

For d > 1, this value is too close to 1 and cannot additionally satisfy α̃ < κ(A)−1/2

for realistic values of κ(A).
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From a different perspective, suppose we use contractions to determine the index
set in the first dimension only and then iterate this procedure over all dimensions.
Choosing α < κ(A)−1/2 ensures the optimality of the resulting index sets. However,
the final relative error is bounded by

√
d(1 − α2). Hence, for realistic κ(A), we lose

convergence. The range of values for optimality and convergence do not intersect
since the additional constant

√
d is larger than 1. This mismatch lies at the heart of

the issue.

5 Numerical experiments

In this section, we test our implementation of HT-AWGM analyzed in the previous
section. In particular, we are interested in the behavior of ranks and the discretization.
We choose a simple model problem and vary the dimension d . We consider−�u = 1
in � := (0, 1)d , u = 0 on ∂� in its variational formulation of finding u ∈ H 1

0 (�)

such that a(u, v) := ∫
�
〈∇u(x), ∇v(x)〉dx = 1(v) for all v ∈ H 1

0 (�). The corre-
sponding operator is given by A : H 1

0 (�) → H−1(�), where A(u) := a(u, ·), which
is boundedly invertible and self-adjoint.

For the discretization, we use tensor products of L2-orthonormal piecewise poly-
nomial cubic B-spline multiwavelets. We use our own implementation of an HTucker
library. All of the software is implemented in C++. For more details, see, e.g., [31].
We set the HT tree to be a perfectly balanced binary tree. We vary the dimension as
d = 2, 4, 8, 16, 32.

5.0.1 Results

In Fig. 1a, we display the convergence history with respect to the number of overall
iterations. Due to the structure of the linear operator A, the condition number κ(Aδ)

is independent of d . Moreover, the parameters α, ω1, ω2 ∈ (0, 1) are chosen the
same for all dimensions. Thus, the theoretical convergence rate of HT-AWGM is
independent of d , which is observed in Fig. 1a.

However, the parameters ω3, ω4, ω5 depend on d which result in different
tolerances for the re-truncation and re-coarsening step.7

In Fig. 1b, we show the behavior of ranks of the numerical solution uk . The
data points are sorted by rank, where for repeating ranks we took the minimum
of the corresponding residual. For all dimensions d , we observe an exponential
decay w.r.t. ranks, which is according to expectation for the Laplacian. As stated in
Remark 4.9 and consistent with the observations in [3], we expect the ranks to scale
logarithmically in the dimension.

In Fig. 1c, we plot the sum of the supports of frames and the corresponding resid-
ual. Since we are using cubic multiwavelets, we expect the convergence w.r.t. the

7In the graphics, re-truncation and re-coarsening are counted as one iteration step, though technically it is
not a HT-AWGM iteration step.
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Fig. 1 HT-AWGM for different dimensions d

support size to be of order 3 and the dimension dependence to be slightly more than
linear.

Finally, Fig. 1d shows the number of PCG iterations in each HT-AWGM itera-
tion. We see that PCG requires between 2 and 10 iterations to achieve a fixed error
reduction (ω2) for all dimensions d , since κ(Aδ) does not depend on d .

5.0.2 Discussion

We would like to emphasize that, unlike in classical non-tensor adaptive methods,
for high-dimensional tensor methods, ranks are crucial for performance. The size
of the wavelet discretization affects the performance indirectly, since the maximum
wavelet level affects the ranks in the preconditioning. However, this is not necessarily
a feature solely of the preconditioning. Larger frames imply we are searching for
low-dimensional manifolds in higher dimensional spaces. In the worst-case scenario,
this implies the ranks of such manifolds will grow.

A few numerical considerations significantly improve the overall performance.
For PCG, choosing the adaptive tolerance is a trade off between the number iterations
and how expensive each iteration is. We found that choosing the adaptive tolerance
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0.1 (parameter δ in [27, Algorithm 2]) yields the best results. For experiments varying
the adaptive tolerance, we refer to [27].

Moreover, note that in each PCG iteration, the preconditioned matrix-vector prod-
uct only has to be computed once, since this can be avoided for computing the energy
norm of the search direction. We are only interested in computing the residual and
thus we can also avoid computing an intermediate matrix-vector product and apply
the preconditioning, summation, and truncation to the residual directly. This gives
the same result, but involves much lower intermediate ranks, since the truncation
tolerances are relative to the residual and not ‖Aδuk‖.

5.0.3 Comparison

We conclude this section by discussing some implementation variants for HT-
AWGM and a comparison with the method presented in [3] which we refer to as
HT-RICH.

1. As discussed in Section 4.7, re-coarsening is required by the theory to ensure
the complexity estimates, as without this step one cannot guarantee that the
complexity of the frame supports and consequently ranks will remain bounded.
Numerically, however, it might be advantageous to omit the re-coarsening step,
if it does not significantly improve the observed ranks. The same considerations
apply to the re-truncation step.

2. The most time-consuming part of HT-AWGM (and our implementation of
HT-RICH) is the application and subsequent truncation of the preconditioned
operator

S−1(δ, η)A�S−1(δ, η),

which essentially involves applying the preconditioner S−1(δ, η) twice. The
simultaneous application and truncation were detailed in [3].

It is standard for preconditioned CGmethods on finite-dimensional linear sys-
tems that, instead of applying S−1(δ, η)A�S−1(δ, η) to the residual, we rewrite
the preconditioned linear system such that we only have to apply

S−2(δ, η)A�,

to the residual. This can be applied in the PCG step of HT-AWGM as well,
which significantly reduces the computational effort, since now we only have to
apply the preconditioner S−2(δ, η) once.

For finite-dimensional systems, both alternatives would be equivalent, with
the latter requiring fewer matrix-vector applications. However, in the adaptive
setting of a growing discretization, this essentially means we are working with
coefficients u re-scaled in L2. I.e., upon truncating we can only guarantee L2-
error control – not H 1. The same modification forHT-RICH was applied in [2],
where the authors observed a reduction in numerical cost at the expense of a lack
of H 1-error control.
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Fig. 2 Run time performance of HT-AWGM and HT-RICH

In Fig. 2, we compare the run time performance of two versions of HT-AWGM
and our implementation of the method from [3], which we refer to as HT-RICH.8

We set f = 1.
ForHT-AWGM, we compare the following two versions: one as before with PCG

with H 1-error control, with a re-truncation but without a re-coarsening step; and one
without a re-coarsening and a re-truncation step, and a PCG routine with L2-error
control as explained above. The bulk chasing parameter is set to α = 0.1 in the
former version, and to α = 0.95 in the latter.

We refer to the latter version as “HTAWGM-L2.” For HT-RICH, we set all
parameters to the theoretical values as described in [3].

In Fig. 2a, we observe that all routines exhibit similar asymptotic behavior. For
higher dimensions, the convergence rate for HT-AWGM remains the same as is pre-
dicted by the theoretical expectations for this model problem. From Fig. 2b, we see
that the rank behavior for a given residual accuracy is similar for all routines. This is
also the reason for the same asymptotic behavior in Fig. 2a, as tensor ranks effectively
determine the overall complexity. Moreover, the support of frames of the solution
behaves as in Fig. 2c for all algorithm variants.

The (non-asymptotic) run time behavior, however, differs. The HT-AWGM ver-
sion without re-truncation is much faster than both HT-AWGM with re-truncation
and HT-RICH. The H 1-error control in the former ensures that the number of PCG
iterations remains bounded even for higher accuracies and wavelet levels. However,
each iteration is more expensive, such that overall the convergence is slower. ForHT-
AWGM, we observe one additional truncation step and the same convergence as for
HT-RICH, with a constant speed up factor.

8BothHT-AWGM andHT-RICHwere implemented using the same libraries and computational routines;
the tests were performed on the same hardware.
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5.0.4 Summary

We highlight the following key messages that numerical tests in this work (and in
part in [3]) suggest:

• Low-rank methods allow to deal with very high-dimensional problems, inacces-
sible to classical methods, provided the differential operator has a simple tensor
product structure.

• The most important factor driving complexity by far is the ranks of the numerical
iterates.

• The asymptotic behavior of both HT-AWGM and HT-RICH is similar (as
expected), with the potential of speed-ups within HT-AWGM due to the
flexibility of use of faster iterative methods in the SOLVE step (cf. Section 4).

• Behavior of ranks and support of frames for the Poisson problem within HT-
AWGM seems to be unaffected by additional re-coarsening or re-truncation
steps. However, as discussed in Section 4.7, this cannot be shown rigorously for
the current version of the algorithm.

6 Conclusion

We introduced and analyzed an adaptive wavelet Galerkin scheme for high-
dimensional elliptic equations. To deal with the curse of dimensionality, we utilized
low-rank tensor methods, specifically the hierarchical Tucker format. The method is
adaptive both in the wavelet representation and the tensor ranks.

We have shown that the method converges and that the numerical solution
has quasi-optimal ranks and wavelet representation. The computational complexity
depends solely on the Besov regularity and low-rank approximability of the solution.
We provided numerical experiments for the Poisson equation for d = 2, 4, 8, 16 and
32 dimensions.

The method is well suited for problems where d is large, provided certain favor-
able separability assumptions are satisfied: the operator is either low rank or can
be accurately approximated by low-rank operators; the condition of the operator
only mildly depends on the dimension; the right-hand side is either low rank or
can be accurately approximated by low-rank functions. The dominating part of the
complexity is the ranks.

HT-AWGM involves a re-truncation and a re-coarsening step to ensure optimality
w.r.t. ranks and wavelet representation. Although there is evidence to support that
both can be avoided, we were not able to devise a rigorous framework to show this. In
future work, we want to construct a more clever rank extension strategy, avoid both
the re-truncation and re-coarsening steps, and consider different Galerkin solvers.
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