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Abstract
One of the most popular time-frequency representations is certainly the Wigner dis-
tribution. Its quadratic nature is, however, at the origin of unwanted interferences or
artefacts. The desire to suppress these artefacts is the reason why engineers, mathe-
maticians and physicists have been looking for related time-frequency distributions,
many of them being members of the Cohen class. Among these, the Born-Jordan dis-
tribution has recently attracted the attention of many authors, since the so-called ghost
frequencies are grandly damped, and the noise is, in general, reduced; it also seems
to play a key role in quantum mechanics. The central insight relies on the kernel of
such a distribution, which contains the sinus cardinalis sinc, the Fourier transform of
the first B-spline B1. The idea is to replace the function B1 with the spline or order
n, denoted by Bn, yielding the function (sinc)n when Fourier transformed, whose
speed of decay at infinity increases with n. The related Cohen kernel is given by
�n(z1, z2) = sincn(z1 · z2), n ∈ N, and the corresponding time-frequency distribu-
tion is called generalized Born-Jordan distribution of order n. We show that this new
representation has a great potential to damp unwanted interference effects and this
damping effect increases with n. Our proofs of these properties require an interdisci-
plinary approach, using tools from both microlocal and time-frequency analysis. As
a by-product, a new quantization rule and a related pseudo-differential calculus are
investigated.
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1 Introduction

The time-frequency analysis of real-world signals is an intrinsically interdisciplinary
topic, involving engineering, physics and mathematics. It is an essential topic in var-
ious applications (see for instance the papers [5–7, 24, 33, 34, 39, 40, 47]). In the
present paper, we introduce a new family of time-frequency representations defined
by exponentiating the sinus cardinalis kernel; we call the members of this family gen-
eralized Born-Jordan distributions. These new distributions form a subclass of the
Cohen class containing several important and well-known distributions (Wigner and
Born–Jordan). The interest of this new class of time-frequency distributions comes
from the fact that its members efficiently damp the artefacts stemming from the inter-
action between distinct time-frequency components in a given signal, which are due
to the bilinear nature of Cohen class distributions. These damping properties will be
made explicit by a precise study of the smoothing effects induced by our generalized
Born–Jordan distributions.

Now, one of the most popular time-frequency representations of a signal f is the
Wigner distribution

Wf (x, ω) =
∫
Rd

f
(
x + y

2

)
f

(
x − y

2

)
e−2πiyω dy, x, ω ∈ R

d , (1)

where the signal f can be thought of as a function in L2(Rd) (or more generally as
a tempered distribution f ∈ S ′(Rd)). It is however well-known that the quadratic
nature of the Wigner distribution generates undesired (usually oscillatory) interfer-
ences between signal components separated in time-frequency. To overcome this
issue, the so-called Cohen class of time-frequency distributions was introduced in [6]
and widely studied by many authors (see [1–3, 7, 34] and references therein). The
Cohen class members Qf are generated by convolving the Wigner distribution of a
signal f with a smoothing distribution θ ∈ S ′(R2n) (Cohen kernel) in order to try to
suppress the oscillatory artefacts:

Qf = Wf ∗ θ . (2)

Choosing θ = Fσ �1, where Fσ �1 is the symplectic Fourier transform of

�1(x, ω) = sinc(xω) =
{ sin(πxω)

πxω
for xω �= 0

1 for xω = 0
(3)

leads to the Born-Jordan distribution:

Q1f = Wf ∗ Fσ (�1), f ∈ L2(Rd), (4)

see [2, 6–8, 11, 26, 29, 34] and references therein.
In the present paper, we introduce new Cohen kernels and related distributions

using the B-spline functions Bn. Recall that the sequence of B-splines {Bn}n∈N+ is
defined inductively as follows: the first B-spline is

B1(t) = χ[
− 1

2 , 12

](t).

51   Page 2 of 22 Adv Comput Math (2020) 46: 51



Assuming that we have defined Bn, for some n ∈ N+, the spline Bn+1 is then defined
by

Bn+1(t) = (Bn ∗ B1)(t) =
∫
R

Bn(t − y)B1(y)dy =
∫ 1

2

− 1
2

Bn(t − y)dy. (5)

Bn is a piecewise polynomial of degree at most n − 1, n ∈ N+, and satisfying Bn ∈
Cn−2(R), n ≥ 2. For the main properties of Bn, we refer e.g. to [4].

Observe that sinc(ξ) = FB1(ξ) hence by induction on n

sincn(ξ) = FBn(ξ), n ∈ N+. (6)

Definition 1 For n ∈ N, the nth Born-Jordan kernel is the function �n on R
2d

defined by
�n(x, ω) = sincn(xω), (x, ω) ∈ R

2d . (7)

The Born-Jordan distribution of order n (BJDn) is given by

Qnf = Wf ∗ Fσ (�n), f ∈ L2(Rd). (8)

The cross-BJDn is given by

Qn(f, g) = W(f, g) ∗ Fσ (�n), f, g ∈ L2(Rd). (9)

We write Qn(f, f ) = Qnf for every f ∈ L2(Rd).

Remark 1 Note that �0 ≡ 1 , hence Fσ (�0) = δ and Q0f = Wf , the Wigner
distribution of f .

In the sequel, we study central properties of the newly introduced distributions and
thereby address the following issues:

(i) Regularity and Smoothness Properties of Qn;
(ii) Damping of interferences in comparison with the Wigner distribution;
(iii) Visual comparison in dimension d = 1 between Qn and the Wigner Distribu-

tion;
(iv) Born–Jordan quantization of order n and related pseudo-differential calculus.

The most suitable framework to handle these aspects is provided by modulation
spaces (see [19] and also the textbook [31]), recalled in Section 2.3. Their definition
is based on the the short-time Fourier transform (STFT) Vgf , defined, for a fixed
Schwartz function g ∈ S(Rd) \ {0}, by

Vgf (x, ω) =
∫
Rd

f (y) g(y − x) e−2πiyω dy, (x, ω) ∈ R
2d . (10)

For 1 ≤ p, q ≤ ∞, the (unweighted) modulation space Mp,q(Rd) is then the
subspace of tempered distributions f such that

‖f ‖Mp,q :=
(∫

Rd

(∫
Rd

|Vgf (x, ω)|p dx

)q/p

dω

)1/q

< ∞

(with standard modifications for p = ∞ or q = ∞).
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Regularity of Qn While it seems intuitively clear that a signal’s Born-Jordan distribu-
tion of order n cannot be rougher than the correspondingWigner distribution, we will
prove several related precise statements. In Proposition 6, we will show that the n-th
Born-Jordan kernel belongs to the Wiener amalgam space W(FL1, L∞), defined in
Section 2.3 below, for every n ∈ N+. This observation is the key tool for proving the
following result:

Theorem 1 Let f ∈ S ′(Rd) be a signal, with Wf ∈ Mp,q(R2d) for some 1 ≤
p, q ≤ ∞. Then Qnf ∈ Mp,q(R2d), for every n ∈ N+.

The previous statement holds in more generality and can be rephrased for members
in the Cohen class as follows.

Theorem 2 Let f ∈ S ′(Rd) be a signal, with Wf ∈ Mp,q(R2d) for some 1 ≤
p, q ≤ ∞ and the Cohen kernel θ defined in (2) belonging to the modulation space
M1,∞(R2d). Then, the corresponding Cohen member Qf belongs to Mp,q(R2d).

Our central concern is the discussion of the new distributions’ capacity for
the damping of interferences in comparison with the Wigner distribution, a topic
connected with the smoothness of Qn and measured using the Fourier-Lebesgue
wave-front set.

The notion of wave-front set of a distribution is nowadays a standard technique in
the study of singularities for solutions to partial differential (or pseudo-differential)
equations. The basic idea is to detect the location and orientation of the singularities
of a distribution f by looking at which directions the Fourier transform of ϕf fails
to decay rapidly, where ϕ is a cut-off function supported in a neighbourhood of any
given point x0. This test is performed in the framework of edge detection, where often
the Fourier transform is replaced by other transforms, see e.g. [38] and the references
therein.

We shall use the Fourier-Lebesgue wave-front set, introduced in [41–43], and
related to the Fourier-Lebesgue spaces FL

q
s (Rd), s ∈ R, 1 ≤ q ≤ ∞. Recall that the

norm in the space FL
q
s (Rd), 1 ≤ q ≤ ∞, is given by

‖f ‖FL
q
s (Rd ) = ‖f̂ (ω)〈ω〉s‖Lq(Rd ), (11)

with 〈ω〉 = (1+|ω|2)1/2. Inspired by this definition, given a distribution f ∈ S ′(Rd),
its wave-front set WFFL

q
s
(f ) ⊂ R

d × (Rd \ {0}) is the set of points (x0, ω0) ∈
R

d × R
d , ω0 �= 0, where the following condition is not satisfied: for some cut-off

function ϕ (i.e. ϕ is smooth and compactly supported on R
d ), with ϕ(x0) �= 0, and

some open conic neighbourhood � ⊂ R
d \ {0} of ω0 it holds

‖F[ϕf ](ω)〈ω〉s‖Lq(�) < ∞. (12)

Observe that WFFL2
s
(f ) = WFHs (f ) is the standard Hs wave-front set (see

[35, Chapter XIII] and Section 2 below). Roughly speaking, (x0, ω0) �∈ WFFL
q
s
(f )

means that f has regularity FL
q
s at x0 and in the direction ω0. We are interested in
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the FL
q
s wave-front set of the Born-Jordan distribution of order n of a given signal

f ∈ L2(Rd).
Here is the mathematical explanation of the Qn’s smoothing effects:

Theorem 3 Let f ∈ S ′(Rd) be a signal, with Wf ∈ M∞,q(R2d) for some 1 ≤ q ≤
∞. Let (z, ζ ) ∈ R

2d × R
2d , with ζ = (ζ1, ζ2) satisfying ζ1 · ζ2 �= 0. Then

(z, ζ ) �∈ WFFL
q
2n

(Qnf ).

This means that if the Wigner distribution Wf has FLq local regularity and is
somewhat controlled at infinity, then Qnf is smoother, having s = 2n additional
derivatives, at least in the directions ζ = (ζ1, ζ2) satisfying ζ1 · ζ2 �= 0. In dimension
d = 1, this condition reduces to ζ1 �= 0 and ζ2 �= 0. Hence, this result explains the
smoothing property of such distributions, which involves all the possible directions
except those of the coordinates axes. That is why the interferences of two components
which do not share the same time or frequency localization come out substantially
reduced. Observe that for n = 1, we recapture the damping phenomenon of the
classical Born–Jordan distribution (cf. [13, Theorem 1.2]).

For signals in L2(Rd), the previous result can be rephrased in terms of the
Hörmander’s wave-front set as follows:

Corollary 1 Let f ∈ L2(Rd), so that Wf ∈ L2(R2d). Let (z, ζ ) be as in the state-
ment of Theorem 3. Then, (z, ζ ) �∈ WFH 2n(Qnf ), i.e. Qnf has regularity H 2n at z

and in the direction ζ .

The pictorial examples below suggest that the smoothing effects of the BJDn do
not occur in the directions ζ1 · ζ2 = 0. From a mathematical point of view, this is
explained by the following theorem.

Theorem 4 Suppose that for some 1 ≤ p, q1, q2 ≤ ∞, n ∈ N+ and C > 0, we have

‖Qnf ‖Mp,q1 ≤ C‖Wf ‖Mp,q2 , (13)

for every f ∈ S(Rd). Then, q1 ≥ q2.

In other words, for a general signal, the BJDn is not everywhere smoother than the
Wigner distribution. As expected, the problems arise in the directions ζ = (ζ1, ζ2)

such that ζ1 · ζ2 = 0.

Visual comparison in dimension d = 1 between Qn and theWigner distribution We
now illustrate the effect of using higher order cross-term suppression by means of
the generalized BJDn. We display the time-frequency distributions of both synthetic
and real signals. More precisely, Fig. 1 shows a comparison of the Wigner trans-
form, the Born-Jordan transform and generalized Born-Jordan transform of the sum
of four rotated Gaussian windows. It is clearly visible that the amount of cross-term
suppression increases for higher order smoothing.
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Fig. 1 Four Gaussian Windows in rotated positions: Comparison of Wigner distribution, Born-Jordan and
generalized Born-Jordan distribution

The second example, shown in Fig. 2, depicts the Wigner transform, the Born–
Jordan transform and two versions of generalized Born-Jordan transform (n = 10
and n = 100) of another synthetic signal consisting of two linear chirps. Note that
the geometry of this example is different from the previous one in the sense of that
it lacks symmetry around zero. As a final example, shown in Fig. 3, we applied the
Wigner transform, the Born–Jordan transform and two versions of generalized Born–
Jordan transform to a classical real signal, namely a bat call. As in the first example,
the cross-term suppression increases for exponent n = 2, while, when applying even
higher order smoothing, we observe a loss of concentration in time-frequency. As in
the case of the two chirps, the geometry of this example lacks central symmetry.

The Born-Jordan quantization of order n This procedure arises as the natural exten-
sion of the n = 1 case (that is, the usual Born–Jordan quantization). Observe that
choosing n = 0, it reduces to the Weyl quantization. We denote by � a positive
parameter; in physics it is viewed as the reduced Planck constant.

Definition 2 For n ∈ N, the Born–Jordan quantization of order n is the mapping

a ∈ S ′(R2d) �→ ÂBJ,n = OpBJ ,n(a) =
(

1
2π�

)d
∫
R2d

(Fσ a)(z)�n(z)T̂ (z)dz, (14)
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Fig. 2 Two linear chirps: Comparison of Wigner distribution, Born-Jordan and generalized Born-Jordan
distribution

where T̂ (z) = e−iσ (̂z,z)/� is the Heisenberg operator and σ the standard symplectic
form (see the notation below).

The case n = 0 (�0 ≡ 1) is the well-known Weyl quantization.

In the sequel, we shall set � = 1/2π , as is customary in time-frequency analysis.
Hence, the constant in front of the integrals in (14) disappears.

2 Preliminaries

2.1 Notation

We use the notation xω = x · ω = x1ω1 + . . . + xdωd for the scalar product in R
d ,

〈·, ·〉 for the inner product in L2(Rd) and for the duality pairing between Schwartz
functions and temperate distributions (it is antilinear in the second argument by con-
vention). Given functions f, g, we write f � g if f (x) ≤ Cg(x) for every x and
some constant C > 0, and similarly for �. The notation f � g means f � g and
f � g.

We write C∞
c (Rd) for the class of smooth functions on Rd with compact support.
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Wigner distribution
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Fig. 3 Bat call signal: Comparison of Wigner distribution, Born-Jordan and generalized Born-Jordan
distribution

We denote by σ the standard symplectic form on the phase space R2d ≡ R
d ×R

d ;
the phase space variable is denoted z = (x, ω) and the dual variable by ζ = (ζ1, ζ2).
By definition σ(z, ζ ) = Jz · ζ = ω · ζ1 − x · ζ2, where

J =
(

0d×d Id×d

−Id×d 0d×d

)
.

The Fourier transform of a function f (x) in Rd is

Ff (ω) = f̂ (ω) =
∫
Rd

e−2πixωf (x) dx,

and the symplectic Fourier transform of a function F(z) in the phase space R
2d is

defined by

Fσ F (ζ ) =
∫
R2d

e−2πiσ (ζ,z)F (z) dz.

The symplectic Fourier transform is an involution, i.e. Fσ (Fσ F ) = F . Moreover,
Fσ F (ζ ) = FF(Jζ ).

Observe that �n(J (ζ1, ζ2)) = �n(ζ1, ζ2) so that

Fσ (�n) = F(�n), ∀n ∈ N+. (15)
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For s ∈ R, the L2-based Sobolev space Hs(Rd) is constituted by the distributions
f ∈ S ′(Rd) such that

‖f ‖Hs := ‖f̂ (ω)〈ω〉s‖L2 < ∞. (16)

2.2 Time-frequency representations andmain properties

2.2.1 Wigner distribution and ambiguity function [25, 31]

We already defined in the “Introduction”, see (1), the Wigner distribution Wf of a
signal f ∈ S ′(Rd). In general, we have Wf ∈ S ′(R2d). When f ∈ L2(Rd), we have
Wf ∈ L2(R2d) and in fact it turns out

‖Wf ‖L2(R2d ) = ‖f ‖2
L2(Rd )

. (17)

In the sequel, we will encounter several times the symplectic Fourier transform of
Wf , which is known as Woodward’s (radar) ambiguity function Af . We have the
formula

Af (ζ1, ζ2) = Fσ Wf (ζ1, ζ2) =
∫
Rd

f
(
y + 1

2
ζ1

)
f

(
y − 1

2
ζ1

)
e−2πiζ2y dy. (18)

We refer to [25, Chapter 9] and [28] for more details.

2.2.2 Marginal properties of Qn

The members of the Cohen class are also called pseudo-density functions since they
are supposed to indicate how the signal density is distributed over time and frequency.
The terminology pseudo-density comes from the fact that such distributions in gen-
eral are not positive functions and can take not only negative but even complex values.
In order for Qn to be a pseudo-density function, it must satisfy certain requirements.
In particular, the marginal densities∫

Rd

Qnf (x, ω)dω = |f (x)|2,
∫
Rd

Qnf (x, ω)dx = |f̂ (ω)|2, (19)

for every f in the Schwartz class S(Rd). It can be shown (see [36] or [28, Proposition
97]) that those conditions are equivalent to the requirements

F(�n)(x, 0) = 1, ∀x ∈ R
d , F(�n)(0, ω) = 1, ∀ω ∈ R

d . (20)

In this case, using (15), (8) and (7), one sees that they are trivially satisfied, since
sincn(0) = 1, for every n ∈ N.

2.2.3 The Moyal identity is not satisfied

A quite convenient property of Cohen’s kernel (2) is Moyal’s identity [15, Theorem
14.2 and 27.15]

〈Q(f1, g1),Q(f2, g2)〉L2(R2d ) = 〈f1, f2〉L2(Rd )〈g1, g2〉L2(Rd ), f1, f2, g1, g2 ∈ L2(Rd).
(21)
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It plays an essential role in quantum mechanics (but perhaps not in signal analysis, as
already observed by Janssen in [36]). While the Wigner distribution, the STFT and
the ambiguity function satisfy (21), the BJDn Qn does not for n ∈ N+. To prove
this, we will use the following characterization (cf. [36, Section 3] and [27]):

Proposition 1 A member of the Cohen class, cf. (2), satisfies Moyal’s identity (21) if
and only if

|θ(x, ω)| = 1, for all (x, ω) ∈ R
2d . (22)

Choosing Q = Qn, n ∈ N+, we have θ(x, ω) = sincn(xω), so that condition (22)
is not satisfied for any n ∈ N+. Observe that for n = 0 (the Wigner distribution), the
previous conditions holds, as expected.

2.3 Modulation spaces [20–22, 25, 31]

Modulation spaces are used in time-frequency analysis to measure the time-
frequency concentration of a signal. As already observed in the “Introduction”,
the construction of these functional spaces relies on the notion of short-time (or
windowed) Fourier transform defined in (10).

Let now s ∈ R, 1 ≤ p, q ≤ ∞. The modulation space M
p,q
s (Rd) consists of all

tempered distributions f ∈ S ′(Rd) such that

‖f ‖M
p,q
s

:=
(∫

Rd

(∫
Rd

|Vgf (x, ω)|p〈ω〉sp dx

)q/p

dω

)1/q

< ∞ (23)

(with obvious changes for p = ∞ or q = ∞). When s = 0, we write
Mp,q(Rd) instead of M

p,q

0 (Rd). We will also use the shorthand notation M
p
s (Rd)

for M
p,p
s (Rd). The spaces M

p,q
s (Rd) are Banach spaces for any 1 ≤ p, q ≤ ∞, and

every non-zero g ∈ S(Rd) yields an equivalent norm in (23).
Modulation spaces generalize and include as special cases several function spaces

arising in Harmonic Analysis. In particular for p = q = 2, we have

M2
s (Rd) = Hs(Rd),

whereas M1(Rd) coincides with the Segal algebra S0(R
d) (cf. [18]), and M∞,1(Rd)

is the so-called Sjöstrand class [32].
For members of M

p,q
s , the exponent p is a measure of average decay at infinity

in the scale of spaces 
p, whereas the exponent q is a measure of smoothness in the
scale FLq . The number s is a further regularity index, completely analogous to that
appearing in the Sobolev spaces Hs(Rd).

Other modulation spaces, also known as Wiener amalgam spaces, are obtained
by exchanging the order of integration in (23). Precisely, the modulation spaces
W(FLp, Lq)(Rd), for p, q ∈ [1, +∞), are given by the distributions f ∈ S ′(Rd)

such that

‖f ‖W(FLp,Lq)(Rd ) :=
(∫

Rd

(∫
Rd

|Vgf (x, ω)|p dω

)q/p

dx

)1/q

< ∞

51   Page 10 of 22 Adv Comput Math (2020) 46: 51



(with obvious changes for p = ∞ or q = ∞). Using Parseval’s identity in (10), we
can write the so-called fundamental identity of time-frequency analysis

Vgf (x, ω) = e−2πixωVĝf̂ (ω, −x),

hence,
|Vgf (x, ω)| = |Vĝf̂ (ω, −x)| = |F(f̂ Tωĝ)(−x)|

so that

‖f ‖Mp,q =
(∫

Rd

‖f̂ Tωĝ‖q

FLp dω

)1/q

= ‖f̂ ‖W(FLp,Lq).

This means that Wiener amalgam spaces can be viewed as the images by a Fourier
transform of modulation spaces: F(Mp,q) = W(FLp, Lq).

We will frequently use the following product property of Wiener amalgam spaces
[20, Theorem 1 (v)]: for 1 ≤ p, q ≤ ∞,

if f ∈ W(FL1, L∞) and g ∈ W(FLp, Lq) then fg ∈ W(FLp, Lq). (24)

Taking p = 1, q = ∞, we see that W(FL1, L∞)(R2d) is an algebra under pointwise
multiplication.

Proposition 2 Let 1 ≤ p, q ≤ ∞ and A ∈ GL(d,R). Then, for every f ∈
W(FLp, Lq)(Rd),

‖f (A ·)‖W(FLp,Lq) ≤ C| detA|(1/p−1/q−1)(det(I + A∗A))1/2‖f ‖W(FLp,Lq). (25)

In particular, for A = λI , λ > 0,

‖f (A ·)‖W(FLp,Lq) ≤ Cλ
d
(
1
p

− 1
q
−1

)
(λ2 + 1)d/2‖f ‖W(FLp,Lq). (26)

In the proof of Theorem 4, we will use the following dilation properties of
Gaussians (first proved in [46, Lemma 1.8], see also [10, Lemma 3.2]):

Lemma 1 Let ϕ(x) = e−π |x|2 and λ > 0. For 1 ≤ p, q ≤ ∞,

‖ϕ(λ ·)‖Mp,q � λ−d/q ′
as λ → +∞,

where q ′ is the conjugate exponent of q, that is 1/q + 1/q ′ = 1.

2.4 Wave-front set for Fourier-Lebesgue spaces [35, 41]

The notion of Hs wave-front set allows to quantify the regularity of a function or
distribution in the Sobolev scale at any given point and direction. This is done by
microlocalizing the definition of the Hs norm in (16) as follows (cf. [35, Chapter
XIII]).

Given a distribution f ∈ S ′(Rd), we define its wave-front set WFHs (f ) ⊂ R
d ×

(Rd \ {0}), as the set of points (x0, ω0) ∈ R
d × R

d , ω0 �= 0, for which the following
condition is not satisfied: for some cut-off function ϕ ∈ C∞

c (Rd) with ϕ(x0) �= 0
and some open conic neighbourhood of � ⊂ R

d \ {0} of ω0. we have

‖F[ϕf ](ω)〈ω〉s‖L2(�) < ∞.
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More generally one can start from the Fourier-Lebesgue spaces FL
q
s (Rd), s ∈ R,

1 ≤ q ≤ ∞, which is the space of distributions f ∈ S ′(Rd) such that the norm in
(11) is finite. Arguing exactly as above (with the space L2 replaced by Lq ), one then
arrives in a natural way to a corresponding notion of wave-front set WFFL

q
s
(f ) as

we anticipated in the “Introduction” (see (12)).
We need to recall some basic results about the action of constant coefficient linear

partial differential operators on such wave-front set (cf. [41]). Given the operator

P =
∑

|α|≤m

cα∂α, cα ∈ C;

it is straightforward to see that, for 1 ≤ q ≤ ∞, s ∈ R, f ∈ S ′(Rd),

WFFL
q
s
(Pf ) ⊂ WFFL

q
s+m

(f ).

Consider now the inverse inclusion. We say that ζ ∈ R
d , ζ �= 0, is non-characteristic

for the operator P if ∑
|α|=m

cαζα �= 0

i.e. the operator P is elliptic in the direction ζ . The following result is a microlocal
version of the classical regularity result of elliptic operators (see [41, Corollary 1
(2)]):

Proposition 3 Let 1 ≤ q ≤ ∞, s ∈ R and f ∈ S ′(Rd). Let z ∈ R
d and suppose that

ζ ∈ R
d \ {0} is non-characteristic for P . Then, if (z, ζ ) �∈ WFFL

q
s
(Pf ), we have

(z, ζ ) �∈ WFFL
q
s+m

(f ).

3 Generalized Born–Jordan kernels for monomials

LetC[x, ω] be the commutative ring of polynomials generated by x and ω; it consists
of all finite sums a(x, ω) = ∑

λm
am
(x, ω) (λm
 ∈ C) where am
(x, ω) = ωmx


with (m, 
) ∈ N
2. We identify C[x, ω] with the ring of polynomial functions in the

variables (x, ω) ∈ R
2. We denote by C[̂x, ω̂] the corresponding Weyl algebra; it

is realized as the non-commutative unital algebra generated by the two operators x̂

and ω̂ satisfying [̂x, ω̂] = (i/2π)Id. These operators are realized as the unbounded
operators defined on L2(R) by x̂f = xf and ω̂f = −(i/2π)∂xf . We will call
quantization of C[x, ω] any continuous linear mapping Op : C[x, ω] −→ C[̂x, ω̂]
having the following properties:

(Q1) Triviality: Op(1) = Id, Op(x) = x̂, and Op(ω) = ω̂;
(Q2) Dirac’s restricted rule:

[x,Op(am
)] = (i/2π)Op({x, am
}) , [ω,Op(am
)] = (i/2π)Op({ω, am
});
(Q3) Self-adjointness: If a ∈ C[x, ω] then Op(a) is self-adjoint on its domain.

51   Page 12 of 22 Adv Comput Math (2020) 46: 51



One shows [16] (also see [8]) that for every quantization of C[x, ω], there exists
[8, 16] a function f with f (0) = 1 and e−it/2f real such that

Op(am
) =
min(m,
)∑

j=0

j !
(

m

j

)(



j

)
f (j)(0)(2π)−j ω̂m−j x̂
−j . (27)

Let (am
)σ = Fσ am
 be the symplectic Fourier transform of am
 and T̂ (z) =
e−2πiσ (̂z,z) the Heisenberg operator.

Proposition 4 Let Op : S ′(R2n) −→ L(S(Rn),S ′(Rn)) be a quantization having
the properties (Q1), (Q2), (Q3). (i) The restriction of Op to C[x, ω] is then given by

Op(am
) =
∫

(am
)σ (x, ω)�(2πxω)T̂ (x, ω)dωdx (28)

where �(t) = e−it/2f (t). (ii) The Cohen kernel θ of Op thus has symplectic Fourier
transform Fσ θ given by

Fσ θ(x, ω) = �(2πxω). (29)

Proof A detailed proof is given in Domingo and Galapon [16] (formulas (10) and
(14)). Notice that formula (28) readily follows from (27) using the elementary
formula

F(ωm ⊗ x
) = (i/2π)m+
δ(m)(ω) ⊗ δ(
)(x).

Formula (29) follows since (28) is the Weyl representation of the operator with
twisted symbol (am
)σ � [the twisted symbol is the symplectic Fourier transform of
the usual symbol].

Remark 2 This result shows that if one limits oneself to pseudo-differential calculi
satisfying the Dirac conditions (Q2) then the Cohen kernel is of a very particular type:
its Fourier transform only depends on the product ωx. In particular, the associated
quasidistribution Qψ = Wψ ∗ θ satisfies the marginal conditions since Fσ θ(0) =
�(0) = 1 (see [27], formula (7.29), p. 107).

We now focus on the case where the symplectic Fourier transform of the Cohen
kernel is given by

Fσ θ(x, ω) = sincn(πxω) , n ∈ N = {0, 1, 2, ...}.
With the notation above, we thus have �(πxω) = sincn(πxω) so that �(t) =
sincn(t/2) and hence f (t) = eit/2 sincn(t/2). Suppose first n = 0; then f (j)(0) =
(i/2)j hence formula (27) yields

Op(am
) =
min(m,
)∑

j=0

(
m

j

)(



j

)
j !

(
i

4π

)j

ω̂m−j x̂
−j
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so that Op(am
) = OpW(am
) = OpBJ,0(am
) (see (14)) is just the Weyl ordering
of the monomial am
 ([16] and [27], p.34). Suppose next n = 1. Then, f (j)(0) =
ij /(j + 1) and

Op(am
) =
min(m,
)∑

j=0

(
m

j

)(



j

)
j !

j + 1

(
i

2π

)j

ω̂m−j x̂
−j ;

here Op(am
) = OpBJ,1(am
) is the Born-Jordan ordering [16] and [27, page 34].
In the case of a general n, we have, by Leibniz’s formula,

f (j)(0) =
j∑

k=0

(
j

k

) (
i

2

)j−k (
1

2

)k (
dk

dtk
sincn

)
(0). (30)

The derivatives of sincn at t = 0 can be calculated using Faà di Bruno’s formula [17]
for the derivatives of the composition of two functions

(g ◦ h)(k)(t) =
∑

κ·α=k

(
k

α

)
g(|α|)(h(t))�α(t) (31)

where κ = (1, 2, ..., k), α = (α1, α2, ..., αk) ∈ N
k and

�α(t) =
(
1

1!h
(1)(t)

)α1
(
1

2!h
(2)(t)

)α2

· · ·
(
1

k!h
(k)(t)

)αk

.

Choosing g(t) = xn and h(t) = sinc(t/2) this formula yields

dk

dtk
sincn(0) =

∑
κ·α=k|α|≤n

(
k

α

)(
n

|α|
)

|α|!�α(0);

since sinc(2m+1)(0) = 0 and sinc(2m)(0) = (−1)m/(2m + 1) we have

�α(0) = 1

1!(α1 + 1)α12!(α2 + 1)α2 · · · k!(αk + 1)αk
.

4 Time-frequency analysis of the nth Born-Jordan kernel

The Born–Jordan kernel �1 in (3) belongs to the space W(FL1, L∞)(R2d), as
proved in [13]:

Proposition 5 The function �1 in (3) belongs to W(FL1, L∞)(R2d).

The previous property is true for any �n, n ∈ N+, as shown below.

Proposition 6 For n ∈ N+, the function �n defined in (7) belongs to the Wiener
algebra W(FL1, L∞)(R2d).
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Proof The result is attained by induction on n. We know that �1 ∈
W(FL1, L∞)(R2d) by Proposition 5. If we assume �n ∈ W(FL1, L∞)(R2d), for a
certain integer n > 1, we obtain

�n+1 = �n·�1 ∈ W(FL1, L∞)(R2d)·W(FL1, L∞)(R2d) ↪→ W(FL1, L∞)(R2d),

since the Banach space W(FL1, L∞)(R2d) is an algebra by pointwise product. This
gives the claim.

We now have the tools we need to prove Theorem 1 stated in the “Introduction”.

Proof of Theorem 1 We need to show thatQnf ∈ Mp,q(R2d). Taking the symplectic
Fourier transform in (4), we are reduced to prove that

�nFσ (Wf ) = �nAf ∈ W(FLp, Lq)

where Fσ (Wf ) = Af is the ambiguity function of f in (18). The claim is proven
using the product property (24): by Proposition 6, the function�n is inW(FL1, L∞)

and in view of the assumption Wf ∈ Mp,q(R2d) so that F(Wf ) ∈ W(FLp, Lq).
Therefore, Fσ (Wf )(ζ ) = F(Wf )(J ζ ) ∈ W(FLp, Lq) by Proposition 2 and we are
done.

An alternative proof relies on the continuity of the mapping

A : a �−→ a ∗ �1
σ , (32)

which was shown to be bounded on Mp,q(R2d) in [12, Proposition 5.1], see also the
subsequent work [30]. By induction, it then follows that the same continuity property
holds for Qn in (8), with a = Wf , and Theorem 1.2 is thus proved.

Actually, the previous issue is a special case of the general result for members of
the Cohen class stated in Theorem 2 (recall that, if �n ∈ W(FL1, L∞)(R2d), then
Fσ �n ∈ M1,∞(R2d)), which can be proved as follows.

Proof of Theorem 2 It is a consequence of the convolution relations for modulation
spaces (cf. [9]):

Mp,q(R2d) ∗ M1,∞(R2d) ↪→ Mp,q(R2d),

for any 1 ≤ p, q ≤ ∞.

In [13], the following property for the chirp function was proven:

Proposition 7 The function F(ζ1, ζ2) = e2πiζ1ζ2 belongs to W(FL1, L∞)(R2d).

Since W(FL1, L∞)(R2d) can be characterized as the space of pointwise multipli-
ers on the Feichtinger algebra W(FL1, L1)(R2d) [23, Corollary 3.2.10], the result in
Proposition 7 could also be deduced from general results about the action of second
order characters on the Feichtinger algebra, cf. [18, 45].

By Proposition 7 and by the dilation properties for Wiener amalgam spaces (25),
we can state:

Corollary 2 For ζ = (ζ1, ζ2), consider the function FJ (ζ ) = F(Jζ ) = e−2πiζ1ζ2 .
Then, FJ ∈ W(FL1, L∞)(R2d).
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5 Smoothness of the Born-Jordan distribution of order n

In the present section, we compare the smoothness of the Born–Jordan distribution of
order n with that of the Wigner distribution. In particular, we will prove Theorem 3.

We begin by stating and proving the following global result.

Theorem 5 Let f ∈ S ′(Rd) be a signal such that Wf ∈ Mp,q(R2d) for some
1 ≤ p, q ≤ ∞. Then,

Qnf ∈ Mp,q(R2d)

and moreover
(∇x · ∇ω)nQnf ∈ Mp,q(R2d). (33)

Here we used the notation

∇x · ∇ω =
d∑

j=1

∂2

∂xj ∂ωj

.

Proof The property Qnf ∈ Mp,q(R2d) is proven in Theorem 1.
Let us now prove (33). Taking the symplectic Fourier transform, we see that it is

sufficient to prove that

(ζ1ζ2)
n sincn(ζ1ζ2)Fσ Wf = 1

πn
sinn(πζ1ζ2)Fσ Wf ∈ W(FLp, Lq).

We have

sin(πζ1ζ2) = eπiζ1ζ2 − e−πiζ1ζ2

2i
∈ W(FL1, L∞), (34)

by Proposition 7, Corollary 2 and Proposition 2, with the scaling λ = 1/
√
2.

Hence, for n = 1,

1

π
sin(πζ1ζ2)Fσ Wf ∈ W(FLp, Lq)

by the product property (24). Assume now that, for a certain n ∈ N+,
1

πn
sinn(πζ1ζ2)Fσ Wf ∈ W(FLp, Lq).

Then,

1

πn+1
sinn+1(πζ1ζ2)Fσ Wf = 1

π
sin(πζ1ζ2)︸ ︷︷ ︸

∈W(FL1,L∞)

· 1

πn
sinn(πζ1ζ2)Fσ Wf

︸ ︷︷ ︸
∈W(FLp,Lq)

∈ W(FLp, Lq),

by (34) and the product property (24) again. By induction, we attain the result.

We are now ready to prove Theorem 3.

Proof of Theorem 3 Consider n ∈ N+. We will apply Proposition 3 to the 2n-th order
operator P n, where P = ∇x ·∇ω in R2d . The non-characteristic directions for P n are
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given by the vectors ζ = (ζ1, ζ2) ∈ R
d × R

d , satisfying ζ1 · ζ2 �= 0. By (33) (with
p = ∞), we have

WFFLq (P nQnf ) = ∅,

because ϕF ∈ FLq if ϕ ∈ C∞
c (R2d) and F ∈ M∞,q(R2d) (here F = P nQnf ).

Hence, we obtain

(z, ζ ) �∈ WFFLq (P nQnf ), ∀(z, ζ ) such that ζ = (ζ1, ζ2), ζ1 · ζ2 �= 0.

Since ζ is non-characteristic for the operator P n, by Proposition 3 we infer

(z, ζ ) �∈ WFFL
q
2n

(Qnf )

for every z ∈ R
2d .

Proof of Corollary 1 Apply Theorem 3 with q = 2. Indeed, for f ∈ L2(Rd),
Moyal’s identity gives Wf ∈ L2(R2d) = M2,2(Rd) ⊂ M∞,2(R2d) (cf. (17)).
Observe that the FL2

2n wave-front set coincides with the H 2n wave-front set.

The proof of Theorem 4 requires Lemma 5.1 in [13]:

Lemma 2 Let χ ∈ C∞
c (R). Then, the function χ(ζ1ζ2) belongs to

W(FL1, L∞)(R2d).

As announced in the “Introduction”, the smoothing properties of the Qn distribu-
tions do not hold in the whole phase space. We do not have any gain in the directions
ζ1 · ζ2 = 0 as it comes up clearly from the proof of the following issue.

Proof of Theorem 4 The pattern is similar to that of Theorem 1.4 in [13]. We detail
the main steps for sake of clarity. The idea is to test the estimate (13) using rescaled
Gaussian functions f (x) = ϕ(λx), with λ > 0 large parameter. We shall prove that,
restricting to a neighbourhood of ζ1 · ζ2 = 0, the constrain q1 ≥ q2 must be satisfied.

An easy computation (see e.g. [31, Formula (4.20)]) yields

W(ϕ(λ ·))(x, ω) = 2d/2λ−dϕ(
√
2λ x)ϕ(

√
2λ−1 ω). (35)

For every 1 ≤ p, q ≤ ∞, the above formula gives

‖W(ϕ(λ ·))‖Mp,q = 2d/2λ−d‖ϕ(
√
2λ ·)‖Mp,q ‖ϕ(

√
2λ−1 ·)‖Mp,q .

By the dilation properties of Gaussians in Lemma 1

‖W(ϕ(λ ·))‖Mp,q � λ−2d+d/q+d/p as λ → +∞. (36)

We now study the Mp,q -norm of the BJDn Qn(ϕ(λ ·)). The idea is to estimate this
norm from below obtaining the same expansion as in (36).

‖Qn(ϕ(λ ·))‖Mp,q = ‖Fσ (�n) ∗ W(ϕ(λ ·))‖Mp,q .

By taking the symplectic Fourier transform and using Lemma 2 and the product
property (24), we have

‖Fσ (�n) ∗ W(ϕ(λ ·))‖Mp,q � ‖�nFσ [W(ϕ(λ ·))]‖W(FLp,Lq)

� ‖�n(ζ1, ζ2)χ(ζ1ζ2)Fσ [W(ϕ(λ ·))]‖W(FLp,Lq)
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for any χ ∈ C∞
c (R) and n ∈ N+. Choosing χ supported in the interval [−1/4, 1/4]

and χ ≡ 1 in the interval [−1/8, 1/8] (the latter condition will be used later), we
write

χ(ζ1ζ2) = χ(ζ1ζ2)�
n(ζ1, ζ2)�

−n(ζ1, ζ2)χ̃(ζ1ζ2),

with χ̃ ∈ C∞
c (R) supported in [−1/2, 1/2] and χ̃ = 1 on [−1/4, 1/4], therefore

on the support of χ . Since by Lemma 2 the function �−n(ζ1, ζ2)χ̃(ζ1ζ2) belongs
to W(FL1, L∞), by the product property, the last expression can be estimated from
below as

� ‖χ(ζ1ζ2)Fσ [W(ϕ(λ ·))]‖W(FLp,Lq).

We end up with the same object that was already estimated in the proof of Theorem
1.4 in [13], where it was shown that

‖χ(ζ1ζ2)Fσ [W(ϕ(λ ·))]‖W(FLp,Lq) � λ−2d+d/p+d/q as λ → +∞. (37)

Comparing (37) with (36), we obtain the desired conclusion.

6 Pseudo-differential calculus

The Weyl quantization was introduced by Weyl in [47] and is the n = 0 case of the
Born–Jordan quantization of order n in (14):

a ∈ S ′(R2d) �→ ÂW = OpW(a) =
(

1
2π�

)d
∫
R2d

Fσ a(z)T̂ (z)dz.

Comparing with (14), we infer the symbol relation

Fσ aBJ,n�
n = Fσ aW

(observe that aBJ,n denotes the symbol of ÂBJ,n whereas aW is the Weyl symbol)
that is

aBJ,n ∗ Fσ (�n) = aW . (38)

Using the weak definition for Weyl operators via the Wigner distribution

〈OpW(a)f, g〉 = 〈a, W(g, f )〉, a ∈ S ′(R2d), f, g ∈ S(Rd)

and the convolution property (whenever is well-defined)

〈F ∗ G, H 〉 = 〈F, H ∗ G〉
we can also define, for n ∈ N, the n-th Born-Jordan pseudo-differential operator with
symbol a ∈ S ′(Rd) by

〈OpBJ,n(a)f, g〉 = 〈a, Qn(g, f )〉, f, g ∈ S(Rd). (39)

(Observe that n = 1 is the standard Born–Jordan operator, whereas n = 0 gives the
Weyl operator).

We aim at studying continuity properties of such operators and of the related
distributions on modulation spaces.

First, we analyze the quadratic representations Qn.
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Theorem 6 Assume s ≥ 0, p1, q1, p, q ∈ [1, ∞] such that

2min{ 1

p1
,
1

q1
} ≥ 1

p
+ 1

q
. (40)

If f ∈ M
p1,q1
vs (Rd), the Cohen distribution Qnf , n ∈ N+, is in M

p,q

1⊗vs
(R2d), with

‖Qnf ‖M
p,q
1⊗vs

(R2d ) � ‖�n‖W(FL1,L∞)(R2d )‖f ‖2
M

p1,q1
vs (Rd )

. (41)

Proof In [14, Theorem 1.2], two of us proved that if the Cohen kernel θ , defined in
(2), is in M1,∞(R2d), then the related Cohen distribution Qf satisfies

‖Qnf ‖M
p,q
1⊗vs

(R2d ) � ‖θ‖M1,∞(R2d )‖f ‖2
M

p1,q1
vs (Rd )

where the indices p1, q1, p, q ∈ [1, ∞] are related by condition (40).
By Proposition 6, the function �n is in W(FL1, L∞), so that the BJ kernel

Fσ (�n) is in M1,∞(R2d) with ‖Fσ (�n)‖M1,∞ � ‖�n‖W(FL1,L∞) and the thesis
follows.

We write q ′ for the conjugate exponent of q ∈ [1, ∞] (it is defined by 1/q +
1/q ′ =). The n-th Born-Jordan operator enjoys the same continuity properties as for
the n = 1 case, proved in [12, Theorem 1.1]. Indeed, we can state:

Theorem 7 Consider 1 ≤ p, q, r1, r2 ≤ ∞, such that

p ≤ q ′ (42)

and
q ≤ min{r1, r2, r ′

1, r
′
2}. (43)

Then, the Born-Jordan operator OpBJ,n(a), from S(Rd) to S ′(Rd), having symbol
a ∈ Mp,q(R2d), extends uniquely to a bounded operator on Mr1,r2(Rd), with the
estimate

‖OpBJ,n(a)f ‖Mr1,r2 � ‖a‖Mp,q ‖f ‖Mr1,r2 , f ∈ Mr1,r2 . (44)

Conversely, if this conclusion holds true, the constraints (42) are satisfied and it must
hold

max

{
1

r1
,
1

r2
,
1

r ′
1
,
1

r ′
2

}
≤ 1

q
+ 1

p
, (45)

that is (43) for p = ∞.

Proof The sufficient conditions are proved by induction on n. The result holds true
for n = 1 by Theorem [12, Theorem 1.1]. Assume now that the result is true for a
certain n ∈ N+ and observe, by definition (14), that

OpBJ,n+1(a) = OpBJ,n(b), with a = b ∗ Fσ �.

The claim follows from the convolution relation Mp,q(R2d) ∗ M1,∞(R2d) ↪→
Mp,q(R2d).

The necessary conditions are obtained arguing exactly as in the case n = 1; for
details, we refer to the proof of Theorem 1.1 given in [12].
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7 Technical notes

The figures in the “Introduction” were produced using LTFAT (The Large Time-
Frequency Analysis Toolbox), cf. [44] as well as the Time-Frequency Toolbox
(TFTB), distributed under the terms of the GNU Public Licence: http://tftb.nongnu.
org/.

The bat sonar signal in Fig. 3 was recorded as a .mat file in the latter toolbox.
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22. Feichtinger, H.G.: Generalized amalgams, with applications to Fourier transform. Canad. J. Math.
42(3), 395–409 (1990)

23. Feichtinger, H.G., Zimmermann, G.: A Banach space of test functions for Gabor analysis. In:
Feichtinger, H.G., Strohmer, T. (eds.) Applied and Numerical Harmonic Analysis, pp. 123–170.
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