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Abstract
In computational geometry, different ways of space partitioning have been devel-
oped, including the Voronoi diagram of points and the power diagram of balls. In this
article, a generalized Voronoi partition of overlapping d-dimensional balls, called
the boundary-partition-based diagram, is proposed. The definition, properties, and
applications of this diagram are presented. Compared to the power diagram, this
boundary-partition-based diagram is straightforward in the computation of the vol-
ume of overlapping balls, which avoids the possibly complicated construction of
power cells. Furthermore, it can be applied to characterize singularities on molecu-
lar surfaces and to compute the medial axis that can potentially be used to classify
molecular structures.
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1 Introduction

The Voronoi diagram [1–3] is a partition of a Euclidean plane into regions, based on
the distance to points in a specific subset of the plane. In any dimension d , given a
finite set of points {p1,p2, . . . ,pN } in E

d (the d-dimensional Euclidean space), the
corresponding Voronoi cell RV (pi ) consists of every point whose distance to pi is
not greater than its distance to any other point pj . That is to say, the Voronoi region
is given by

RV(pi ) =
{
x ∈ E

d | |x − pi | ≤ ∣∣x − pj

∣∣ , j = 1, . . . , N
}

, (1)

where the notation | · | denotes the Euclidean norm. Each Voronoi cell is generated
by the intersection of half-spaces, and hence, is a convex polygon (see Fig. 1 (left)
for a graphical illustration).

The power diagram [4, 5], also called the Laguerre–Voronoi diagram, provides
another partition of the plane into polygonal cells with respect to a finite set of circles.
For a finite set of spheres {S1, S2, . . . , SN } in E

d with d ≥ 2 (circles in E
2), the

power region RP(Si) consists of all points whose power distances to Si are not larger
than their power distances to any other sphere Sj . The power distance from a point
x ∈ E

d to a sphere Si with center ci and radius ri is defined as

distP(x, Si) := |x − ci |2 − r2
i . (2)

The power region RP(Si) is then given by

RP(Si) =
{
x ∈ E

d | distP(x, Si) ≤ distP(x, Sj ), j = 1, . . . , N
}

. (3)

It is worth to mention that the spheres could be overlapping and the power distance
can be negative. The power diagram can be seen as a generalized Voronoi diagram,
in the sense that the Euclidean norm in Eq. (1) is replaced with the power distance
distP(·, ·). If ri = 0 for each i, the power diagram degenerates to be the classical
Voronoi diagram. Figure 1 (middle) shows an example of the power diagram for
three discs. The volume of the union of d-balls can be computed by summing up the
volume of each power cell (see [6, 7] for details). However, computing the power
cells could be tricky which involves characterizing the planar bases of pyramids [7].

Fig. 1 Left: classical Voronoi diagram of three points: middle, power diagram of three circles; right,
boundary-partition-based diagram of the same three circles
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In the general case, given a Euclidean subspace X ⊂ E
d endowed with a distance

function and a finite number of nonempty subsets {A1, A2, . . . , AN } in X, the cor-
responding Voronoi region RV(Ai) is the set of each point in X whose distance to
Ai is not greater than their distance to any other set Aj . That is to say, the Voronoi
region RV(Ai) is given by

RV(Ai) = {
x ∈ X | dist(x, Ai) ≤ dist(x, Aj ), j = 1, . . . , N

}
, (4)

where the distance function between a point x and a set A defined as

dist(x, A) := inf
y∈A

|x − y|. (5)

Most commonly, each subset Ai is taken as a point and its corresponding Voronoi
region RV(Ai) is consequently a polyhedron in E

d . In particular, the Voronoi diagram
in E

3 can be computed and visualized by some softwares such as the Voro++ [8] and
the CGAL [9]. In addition to the power diagram, there are some other generalized
Voronoi diagrams, such as the Möbius diagram [10], the anisotropic diagrams [11],
the Apollonius diagram [12, 13], and the centroidal Voronoi tessellations [14].

In this article, we propose a special Voronoi diagram of d-balls, called the
boundary-partition-based (BPB) diagram, which is based on the boundary partition
of the union of d-balls. The initial idea of this diagram started from the character-
ization of molecular surfaces in E

3 (see [15]). Figure 1 (right) provides a simple
example of this diagram of three discs in the plane, whose boundary is divided into
three open circular arcs {γ1, γ2, γ3} and three intersection points {x1, x2, x3}. We take
{γ1, γ2, γ3, x1, x2, x3} as the sets {Ai} in Eq. (4) for the generic Voronoi diagram,
to obtain six BPB cells. This gives a partition of the union of discs, consisting of
circular sectors and polygons. To compute the area of these discs, one can sum up
simply the areas of three circular sectors (respectively in red, yellow, and blue) and
one big polygon (in gray). Note that the area of a polygon is easy to compute using
the Gauss–Green theorem, as its boundary is composed of line segments. Comparing
to the power diagram, the BPB diagram is convenient for volume (area) computa-
tion, which will be presented later. In addition, it can be used to characterize the
singularities of molecular surfaces.

The outline of this paper is as follows. In Section 2, we divide the boundary into
patches of different dimensions and study the properties of the BPB cells in E

d , by
analyzing the signed distance from any point to the boundary of a union of d-balls.
Then, in Section 3, we present the volume formula of a union of d-balls based on the
boundary components. In Section 4, we introduce the application of the BPB diagram
to characterize molecular surfaces. Finally, we draw some conclusions in Section 5.

2 Boundary-partition-based Voronoi diagram

We consider a finite set of (d−1)-dimensional spheres {S1, S2, . . . , SN } in E
d , where

the (d − 1)-sphere Si has center ci ∈ E
d and radius ri for each 1 ≤ i ≤ N .

The corresponding d-balls are consequently denoted by {B1, B2, . . . , BN } where
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Bi = B(ci , ri). In this article, the notation B(c, r) denotes the open ball with center
c and radius r . The union of these d-balls is denoted by Ω , that is,

Ω :=
N⋃

i=1

Bi (6)

and the boundary of this union is denoted by Γ := ∂Ω . The open exterior region
outside Ω is denoted by Ω

c := E
d\ (Ω ∪ Γ ).

As the boundary Γ is a closed and compact set, for any point p ∈ E
d , there exists

at least one closest point on Γ to p. The signed distance function fΓ with respect to
Γ is then given as follows

fΓ (p) :=
{

−dist(p, Γ ) if p ∈ Ω,

dist(p, Γ ) if p ∈ Ωc.
(7)

As a consequence, the sets Ω, Γ , and Ω
c

can be mathematically written as Ω =
{p | fΓ (p) < 0}, Γ = {p | fΓ (p) = 0}, and Ω

c = {p | fΓ (p) > 0}.

Remark 1 Another way to characterize Ω, Γ , and Ω
c

is to use the signed distance
function fi(p) to each sphere Si , where fi(p) = |p− ci |− ri, ∀p ∈ E

d , and 1 ≤ i ≤
N . By defining the following function

F(p) := min
1≤i≤N

{fi(x)}, (8)

we have Ω = {p | F(p) < 0}, Γ = {p | F(p) = 0}, and Ω
c = {p | F(p) > 0}.

2.1 Boundary partition

As mentioned previously, the boundary Γ is composed of spherical patches of dif-
ferent dimensions from 0 to d −1. We will provide a rigorous characterization in this
subsection.

To do this, we define an index mapping I as follows:

x ∈ Γ �→ I(x) := {i1, i2, . . . , im | x ∈ Sit , t = 1, . . . , m} ⊆ {1, 2, . . . , N}, (9)

where I(x) collects all indices of the spheres containing x and m is the number of
these spheres. Then, we define the intersection set of these spheres as follows:

Si :=
m⋂

t=1

Sit , (10)

where the subscript i = I(x) = {i1, i2, . . . , im} depends on x (see an example in
Fig. 2). Further, the affine space generated by the associated centers

ci := {ci1 , ci2 , . . . , cim} (11)

is denoted by

Λi := {y | y =
m∑

t=1

λtcit ,

m∑
t=1

λt = 1, λt ∈ E}. (12)
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Fig. 2 2D schematic diagram of the index set i = I(x) at the boundary of three discs

With the above notations, we propose the following lemma:

Lemma 1 In the case when Si is non-empty and dim(Λi) ≤ d − 1, Si is either a
k-dimensional sphere (k-sphere) with

k = dim(Si) = d − dim(Λi) − 1, (13)

or a point (in the tangent case), where dim(·) denotes the dimension. Note that
the 0-dimensional sphere is a pair of points. Furthermore, in the case when Si is
non-empty and dim(Λi) = d , Si is a point.

Proof Let us take an arbitrary point x0 ∈ Si. We rewrite Si in the following form:

Si = {x | |x − cit |2 − |x0 − cit |2 = 0, 1 ≤ t ≤ m}
= Si1 ∩ Pi,

(14)

where

Pi = {x | |x − cit |2 − |x0 − cit |2 = |x − ci1 |2 − |x0 − ci1 |2, 2 ≤ t ≤ m}
= {x | (x − x0, cit − ci1) = 0, 2 ≤ t ≤ m}. (15)

Here, Pi is the intersection of m − 1 hyperplanes that contain x0. It is an affine space
with dim(Pi) = d − dim(Λi) and satisfies Pi − x0 ⊥ Λi − ci1 .

In the case of dim(Λi) ≤ d − 1, we then have dim (Pi) ≥ 1. Note that Si is the
intersection of the sphere Si1 and the affine space Pi. If Si is non-empty, then it is
either a sphere with dim(Si) = d − dim(Λi) − 1, or a single point in the degenerate
case when Pi is tangent to Si. We mention that in this degenerate case, Si is a point
contained in Λi with dim(Λi) ≤ d − 1. Furthermore, in the case of dim(Λi) = d , we
have dim(Pi) = 0 and Pi is consequently the point x0. If Si is nonempty, then Si is
just the point x0.

For a given set of indices i ⊆ {1, 2, . . . , N}, if dim(Si) ≥ 1, we can define the
following set:

Γi := {x ∈ Γ | I(x) = i} ⊆ Si ∩ Γ, (16)
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which is open in Si. In this case, we can further divide Γi as follows:

Γi =
⋃
j

γ
(k)
i,j , (17)

where γ
(k)
i,j ⊆ Γi is an open connected k-patch and k = dim(Si) = dim(γ

(k)
i,j ) denotes

the dimension. This means that Γi has been divided into different k-patches. For the
sake of simplicity, we can reorder all patches {γ (k)

i,j } based on the dimension k, by
replacing the subscripts (i, j) with only one subscript i. As a consequence, the whole
boundary Γ is classified into a set of patches {γ (k)

i } with 0 ≤ k ≤ d −1, 1 ≤ i ≤ nk ,
that is,

Γ =
d−1⋃
k=0

nk⋃
i=1

γ
(k)
i , (18)

where nk is the number of k-patches and γ
(k)
i is an open connected k-patch when

k ≥ 1. In particular, γ
(0)
i is simply an intersection point and γ

(1)
i is a circular arc or a

circle. From the derivation of γ
(k)
i , we know that I(x) remains the same for any point

x ∈ γ
(k)
i . Therefore, we can generalize the definition of I as follows:

I(γ
(k)
i ) := I(x), (19)

where x ∈ γ
(k)
i is an arbitrary point on γ

(k)
i .

Next, we analyze the signed distance fΓ to the boundary Γ , which involves in
finding one closest point to any given point p (note that the uniqueness of the closest
point is not guaranteed).

2.2 Analysis of the signed distance function

We want to analyze the signed distance fΓ from an arbitrary point to the boundary
Γ of the union of d-balls. We first consider the case when the point lies outside the
union and give the following lemma. The proof of this lemma is trivial and therefore
skipped here.

Lemma 2 For any point p ∈ Ω
c
, fΓ (p) = dist(p, Γ ) = F(p).

We now focus our attention to the case when p ∈ Ω . In fact, this case is studied
from another perspective, in the sense that for any point x on Γ , we study the set of
all points in Ω that have x as a closest point on Γ . We therefore define a mapping R
such that ∀x ∈ Γ ,

R(x) = {p ∈ Ω | dist(p, Γ ) = |p − x|} ⊆ Ω, (20)

which represents the region consisting of the points having x as a closest point. It
therefore holds for any x ∈ Γ and p ∈ R(x), fΓ (p) = −dist (p, Γ ) = −|p − x|.
Further, the convexity of the set R(x) is ensured according to the following lemma.
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Lemma 3 ∀x ∈ Γ , the setR(x) is convex. Further, it holds that conv(x, ci) ⊆ R(x),
where i = I(x) = {i1, i2, . . . , im}. Here, the notation conv denotes the convex hull of
a set of points.

Proof We first need to prove that ∀p1,p2 ∈ R(x) and ∀λ ∈ [0, 1], p0 = λp1 + (1 −
λ)p2 ∈ R(x). To do this, we construct a function as follows:

h(p) = dist(p, Γ )2−|p−x|2 = inf
y∈Γ

{
2(x − y,p) + |y|2 − |x|2}, p ∈ E

d . (21)

As a consequence, x is a closest point on Γ to p if and only if h(p) = 0. As an
obvious fact, we have h(p) ≤ 0, ∀p ∈ E

d . Since x is a closest point on Γ to p1 and
to p2, we have h(p1) = h(p2) = 0. Then, we can compute

h(p0) = inf
y∈Γ

{
2(x − y) · [

λp1 + (1 − λ)p2
] + |y|2 − |x|2}

≥ λ inf
y∈Γ

{
2(x − y) · p1 + |y|2 − |x|2

}
+(1 − λ) inf

y∈Γ

{
2(x − y) · p2 + |y|2 − |x|2

}
= λh(p1) + (1 − λ)h(p2)

= 0.

(22)

This means that x is also a closest point to p0. To prove that p0 ∈ R(x), we should
show further that p0 ∈ Ω . As x is a closest point to p1, we know that the ball centered
at p1 with radius |p1 − x| is covered by Ω , i.e.,

B(p1, |p1 − x|) ⊆ Ω .

Similarly, we have B(p2, |p2 − x|) ⊆ Ω . Notice that the line segment p1p2 is covered
by the union of these two balls (intersecting at x), which implies that p0 ∈ p1p2 ⊆ Ω .
Since p0 has x as a closest point and p0 ∈ Ω , we therefore have p0 ∈ R(x). So far,
we have proved that R(x) is convex.

Further, if there exists a set of spheres {Sit }t=1,...,m each containing x ∈ Γ , it is
obvious that x is a closest point of cit . In addition, we know that x ∈ Γ is a closest
point to itself. Due to the convexity of R(x), we then have conv(x, ci) ⊆ R(x).

Remark 2 It is well-known that the Voronoi cells of a finite number of points are
convex. In Lemma 3, we have actually proved that this convexity also holds for an
infinite number of points (forming the boundary surface).

Theorem 1 Given a point x ∈ Γ and i = I(x) = {i1, i2, . . . , im}, the following
statements hold:

(1) R(x) ⊆ cone(x; v1, v2, . . . , vm), where vt := cit − x and

cone(x; v1, v2, . . . , vm) = {y | y = x +
m∑

t=1

λtvt , λt ≥ 0} represents a convex

cone (as in linear algebra) with apex x.
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(2) If there exists another point x′ ∈ Γ satisfying x′ �= x and x′ ∈ Si, then R(x) =
conv(x, ci).

Proof (1) According to Theorem 19.1 in the book [16], we can write

cone(x; v1, v2, . . . , vm) =
N0⋂
s=1

Hs, (23)

where Hs := {y | (y,ns) ≤ bs} is a half-space in E
d , ns denotes its normal vector,

bs = (x,ns) is a real number, N0 denotes the number of half-spaces, and (·, ·) denotes
the Euclidean scalar product in E

d equivalent to the · notation. Each half-space Hs

corresponds to a hyperplane Ps defined by

Ps := {y | (y,ns) = bs}.
Without loss of generality, we suppose that |ns | = 1 for each half-space Hs . Fur-
thermore, each hyperplane Ps is supposed to contain at least one ray starting from
x in a direction among {v1, v2, . . . , vm}. In fact, the half-space Hs can be removed
in Eq. (23) if Ps does not contain any such ray. To prove the first statement of the
theorem, it suffices to show that ∀p ∈ R(x) and ∀1 ≤ s ≤ N0, it follows that p ∈ Hs .

Let p ∈ R(x) and s be fixed. As mentioned above, Ps contains a ray starting from
x in direction vr , for some 1 ≤ r ≤ m. Then, we have (x + λvr ,ns) = bs, ∀λ ≥ 0,
which implies that (vr ,ns) = 0.

We now construct a small curve ζs(x) starting from x in the direction of ns lying
on Γ , of the form

ζs(x) = x + xns + α(x)v, x ∈ [0, ε], (24)

where α(x) ≥ 0 is a function with respect to x satisfying α(0) = 0, v is a nonzero
vector in E

d , and ε is a sufficiently small positive number. In order to choose v, we
define the following nonempty set:

As = {vt | (vt ,ns) = 0, 1 ≤ t ≤ m} � vr .

As a consequence, the vector v and the function α(x) can be constructed as follows:

v = csvr , (25)

and

α(x) = 1 −
√

1 − x2

|v|2 ∈ [0, 1], 0 ≤ x ≤ |v|, (26)

where cs = max
vt∈As

(vt , vr )

|vr |2 = (vt0, vr )

|vr |2 ≥ 1 for some vt0 ∈ As . The above-

constructed v has the following two properties:

(v, v − vt0) = (v, v) − (v, vt0) = (vt0 , vr )
2

|vr |2 − (vt0 , vr )
2

|vr |2 = 0 (27)

and

(v, v − vt ) = (vt0 , vr )
2

|vr |2 − (vt0 , vr )(vt , vr )

|vr |2 ≥ 0, ∀vt ∈ As . (28)
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With the above construction of ζs(x) and the properties of v, we can now state the
following claim.

Claim ∃ ε > 0, s.t., ζs(x) ∈ Γ, ∀x ∈ [0, ε].

The proof of this claim is presented in Appendix 1. Let us focus on the proof of
the first statement in Theorem 1. For any point p ∈ R(x), we know that x is a closest
point on Γ to p and ζs(x) ∈ Γ, ∀x ∈ [0, ε]. Therefore, we have

d

dx

(|ζs(x) − p|2)|x=0 ≥ 0, (29)

which yields that
(
x − p, ζ ′

s(0)
) ≥ 0. It is not difficult to find that ζ ′

s(0) = ns and
we then obtain (p,ns) ≤ (x,ns) = bs . This implies that p ∈ Hs for each subscript s.
The proof of the first statement in the theorem is complete.

(2) We now prove the second statement in Theorem 1. Suppose that there exists
another point x′ ∈ Γ such that x′ �= x and x′ ∈ Sit , ∀1 ≤ t ≤ m. According to
Lemma 3, we only need to prove that R(x) ⊆ conv(x, ci). For any point p ∈ R(x),
since R(x) ⊆ cone(x; v1, v2, . . . , vm) from the first statement, there exist a set of
positive numbers λt ≥ 0, s.t.,

p = x +
m∑

t=1

λtvt .

Since x, x′ ∈ Sit for each 1 ≤ t ≤ m, we have

0 = |x − cit |2 − |x′ − cit |2 = −|x′ − x|2 + 2(x′ − x) · vt ,

which yields that

2(x′ − x) · vt = |x − x′|2, 1 ≤ t ≤ m.

Furthermore, since x is a closest point on Γ to p, we have

|p − x|2 ≤ |p − x′|2 = |p − x|2 + 2(p − x) · (x − x′) + |x − x′|2,
and therefore,

|x − x′|2 ≥ 2(x′ − x) · (p − x)

= 2
m∑

t=1

λt (x′ − x) · vt

=
(

m∑
t=1

λt

)
|x − x′|2.

Since x′ �= x, we consequently have the inequality
m∑

t=1

λt ≤ 1,

which means that p ∈ conv(x, ci). Then, we have R(x) ⊆ conv(x, ci).
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Corollary 1 For each boundary component γ
(k)
i of Γ , if k ≥ 1, then ∀x ∈ γ

(k)
i ,

R(x) = conv(x, ci), where i = I(γ
(k)
i ) = {i1, i2, . . . , im}.

Proof In the case of k ≥ 1, γ
(k)
i contains infinitely many points, each of which is

contained and only contained by the set of spheres {Si1 , Si2 , . . . , Sim}. Therefore, the
second statement in Theorem 1 can be applied.

Remark 3 For an intersection point x = γ
(0)
i , R(x) = conv(x, ci) might not hold.

2.3 Partition of the union of d-balls

In this part, we introduce the general concept of the BPB diagram, which gives a
partition of Ed . According to Lemma 1, the partition of Ω

c
is directly based on the

simple function F(·) given by Eq. (8). Alternatively, one can also decompose Ω
c

using the power distance or even simply treat Ω
c

as one entire cell. Thus, we are only
interested in the partition of Ω .

The mapping R maps any point x ∈ Γ to a subregion of Ω that collects all points
having x as a closest point. We now generalize the definition 20 of R as follows:

R(γ ) =
⋃
x∈γ

R(x) ⊆ Ω, ∀γ ⊆ Γ, (30)

which maps any subset γ of Γ to a subregion of Ω such that each point in the subre-
gion has a closest point in γ . Further, we define the BPB cell corresponding to γ

(k)
i

as follows:

RBP(γ
(k)
i ) =

{
x ∈ E

d | dist(x, γ (k)
i ) ≤ dist(x, γ (l)

j ), ∀0 ≤ l ≤ d − 1, 1 ≤ j ≤ nk

}
,

(31)
where the distance function dist(·, ·) is given by Eq. (5). As a consequence, each BPB
cell RBP(γ

(k)
i ) satisfies the following relationship:

RBP(γ
(k)
i ) ∩ Ω = R(γ

(k)
i ), ∀0 ≤ k ≤ d − 1, 1 ≤ i ≤ nk . (32)

According to Theorem 1 and Corollary 1, in the case of 1 ≤ k ≤ d − 1, R(γ
(k)
i ) can

be characterized by

R(γ
(k)
i ) =

⋃
x∈γ

(k)
i

conv(x, ci), ∀1 ≤ k ≤ d − 1, 1 ≤ i ≤ nk, (33)

where i = I(γ
(k)
i ). In the case of k = 0, γ

(0)
i is an intersection point (0-patch). Then,

according to the first statement in Theorem 1, we have

conv(γ
(0)
i , ci) ⊆ R(γ

(0)
i ) ⊆ cone(γ (0)

i ; v1, v2, . . . , vm), (34)

where i = I(γ
(0)
i ) = {i1, i2, . . . , im} and vt = ct − γ

(0)
i with 1 ≤ t ≤ m.
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To better understand the cell R(γ
(0)
i ), we define the following subregion of Ω by

R0 :=
n0⋃
i=1

R(γ
(0)
i ). (35)

Suppose that the classical Voronoi diagram of all intersection points {γ (0)
i }1≤i≤n0 is

given, which divides E3 into different Voronoi cells. The Voronoi cell corresponding

to γ
(0)
i is denoted by Vor

(
γ

(0)
i

)
. As a consequence, the cell R(γ

(0)
i ) can be written

as
R(γ

(0)
i ) = R0 ∩ Vor

(
γ

(0)
i

)
, 1 ≤ i ≤ n0. (36)

R0 will be further analyzed later in Section 3.
Here, we provide two examples of the BPB diagram. Figure 3 provides a partition

of some discs in E
2, respectively, obtained from the power diagram (computed by F.

McCollum’s package [17]) and the proposed BPB diagram. In the BPB diagram, the
union of these discs is divided into circular sectors and polygons (constituting R0).
Note that the boundary of R0 is composed of line segments with the disc centers and
the intersection points as endpoints. As a consequence, the area of R0 can be obtained
directly using the Gauss–Green theorem, while the power cells could be complicated
to compute.

Figure 4 provides an example of the power diagram and the BPB diagram of
three intersected balls in E

3. The union of these 3-balls is divided into spherical sec-
tors (in red), double-cone cells (in yellow), and tetrahedrons (in blue), respectively,
corresponding to the 2-patches, 1-patches (circular arcs) and 0-patches (intersection
points) on Γ . The volumes of BPB cells are can be computed conveniently, similarly
to the 2D case, which will be explained with details in Section 3.

In summary, the group of subregions {R(γ
(k)
i )} with 0 ≤ k ≤ d−1 and 1 ≤ i ≤ nk

provides a partition of Ω . In fact, for any point p ∈ Ω , we have p ∈ R(γ
(k)
i ) if and

Fig. 3 The power diagram (left) and the BPB diagram (right) of 15 random circles in the plane. In the
BPB diagram, R0 is composed of those polygons enclosed by the red segments and its subdivisions are
not shown
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Fig. 4 The power diagram (left) and the BPB diagram (right) of three intersected 3-balls. In the BPB
diagram, R0 is composed of the polyhedron enclosed by the blue triangles and its subdivisions are not
shown

only if p has a closest point in γ
(k)
i . Therefore, this newly proposed diagram allows

to find efficiently a closest point on Γ to p and consequently allows to compute
the signed distance fΓ (p). Since Lemma 3, Theorem 1, and Corollary 1 provide an

accurate description of any cell R
(
γ

(k)
i

)
, we emphasize that the volume (resp. area)

of the union of balls (resp. discs) can be computed based on the BPB diagram, which
is explained in the next section.

3 Volume of the union of d-balls

The BPB diagram can be used to calculate the volume of Ω , given all components
of Γ . In E

2 and E
3, the boundary components are easy to compute, while this could

be difficult in higher dimension (so as the power diagram). In E
d with d ≥ 4, the

BPB diagram builds a relationship between the boundary and the volume through the
mapping R.

3.1 General formula

Consider an arbitrary k-patch γ
(k)
i on Γ , 1 ≤ k ≤ d−1, 1 ≤ i ≤ nk . We suppose that

γ
(k)
i is part of a k-sphere with center c(k)

i and radius r
(k)
i (see Lemma 1). According

to Eq. 33, we can compute

R(γ
(k)
i ) =

⋃
x∈γ

(k)
i

conv(x, ci)

=
{
y | y = λx +

m∑
t=1

λtcit , x ∈ γ
(k)
i , λ +

m∑
t=1

λt = 1, 0 ≤ λ, λt ≤ 1

}
=

{
y | y = λx + (1 − λ)z, x ∈ γ

(k)
i , z ∈ conv(ci), 0 ≤ λ ≤ 1

}
, (37)

where i = I(γ
(k)
i ) = {i1, i2, . . . , im}. Then, we propose the following lemma on

calculating the d-dimensional volume (d-volume) of the cell R(γ
(k)
i ) when k ≥ 1.
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Lemma 4 Let γ
(k)
i be an arbitrary k-patch with 1 ≤ k ≤ d − 1 contained on a

k-sphere. The d-volume ofR(γ
(k)
i ) can be characterized as follows:

Vol(d)
(
R(γ

(k)
i )

)
= r

(k)
i B(k + 1, d − k)Vol(k)

(
γ

(k)
i

)
Vol(d−k) (conv(ci)), (38)

where Vol(k)(γ ) denotes the k-volume of a k-dimensional surface γ , r(k)
i denotes the

radius of the k-sphere containing γ
(k)
i and B(·, ·) is the Beta function.

Proof We define two sets � := γ
(k)
i − c(k)

i and � := conv (ci) − c(k)
i , where c(k)

i

is the center of the k-sphere containing γ
(k)
i . From Lemma 1, we then conclude that

� ⊥ �. Further, � and � are respectively of dimension k and d − k − 1. According
to Eq. 37, we can write R(γ

(k)
i ) as follows:

R(γ
(k)
i ) =

{
y

∣∣ y = c(k)
i + r

r
(k)
i

σ +
(

1 − r

r
(k)
i

)
τ, σ ∈ �, τ ∈ �, 0 ≤ r ≤ r

(k)
i

}
.

(39)
Since � ⊥ �, the volume infinitesimal dy can be written as

dy =
(

r

r
(k)
i

)k (
1 − r

r
(k)
i

)d−k−1

drdσdτ .

We can consequently compute

Vol(d)
(
R(γ

(k)
i )

)
=

∫ r
(k)
i

0

(
r

r
(k)
i

)k (
1 − r

r
(k)
i

)d−k−1

dr

∫
�

dσ

∫
�

dτ

= r
(k)
i

(∫ 1

0
λk(1 − λ)d−k−1dλ

)
Vol(k)

(
γ

(k)
i

)
Vol(d−k−1) (conv(ci))

= r
(k)
i B(k + 1, d − k) Vol(k)

(
γ

(k)
i

)
Vol(d−k−1) (conv (ci)) . (40)

where B(·, ·) is the Beta function [18].

We now consider an arbitrary intersection point γ
(0)
i with 0 ≤ i ≤ n0. Suppose

that γ
(0)
i is an endpoint of some 1-patches (circular arcs) denoted by {γ (1)

ij }j=1,...,Ki
.

Recall that ΛI(γ
(0)
i )

denotes the affine space defined in Eq. 12. In the degenerate case,

γ
(0)
i lies in the affine space ΛI(γ

(0)
i )

which is in this case of dimension

dim
(
ΛI(γ

(0)
i )

)
≤ d − 1, (41)

as presented in the proof of Lemma 1. In this case, γ (0)
i is actually generated by a (d−

1)-sphere and a tangent affine space. According to Theorem 1, we have R(γ
(0)
i ) ⊆

ΛI(γ
(0)
i )

and therefore,

dim
(
R(γ

(0)
i )

)
≤ d − 1. (42)
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As a consequence, the volume of the BPB cell corresponding to a degenerate
intersection point is

Vol(d)
(
R(γ

(0)
i )

)
= 0. (43)

This implies that the degenerate intersection points can be ignored in the computation
of Vol(d) (R0). In the nondegenerate case, γ

(0)
i is generated by the intersection of a

(d − 1)-sphere and some line passing through the sphere. In this case, there exists
some 1-patches having γ

(0)
i as an endpoint, implying that Ki > 0. Further, it holds

that

dim

(
ΛI(γ

(1)
ij )

)
= d − 2, ∀j = 1, 2, . . . , Ki, (44)

according to Lemma 1. Then, we can denote the (d − 1)-dimensional face corre-
sponding to γ

(1)
ij by

Fij := conv

(
γ

(0)
i , cI(γ

(1)
ij )

)
, (45)

where cI(γ
(1)
ij )

is a set of spherical centers given by Eq. 11 and Fij is actually a tetrahe-

dron in some (d − 1)-hyperplane. We define the set of all nondegenerate intersection
points as P̃0. Then, we propose the following lemma for computing Vol(d) (R0) where
R0 is defined in Eq. 35.

Lemma 5 The volume of R0 can be computed as

Vol(d)(R0) =
n0∑
i=1

Ki∑
j=1

1

d

(
nij · γ

(0)
i

)
Vol(d−1)

(
Fij

)
, (46)

where nij denotes the outward-pointing normal vector of Fij . We make a convention

that nij = 0 when γ
(0)
i is a degenerate intersection point.

Proof Denote by R̃0 the union of all BPB cells associated with nondegenerate
intersection points in P̃0, that is,

R̃0 = R
(
P̃0

)
. (47)

According to the definition Eq. 35 of R0 and Eq. 43, we know that

Vol(d) (R0) = Vol(d)
(
R̃0

)
. (48)

Claim The boundary of R̃0 can be characterized as

∂R̃0 =
⋃

1≤i≤n0
1≤j≤Ki

Fij

⋃
F0, (49)

where F0 is some subset on ∂R̃0 with dim (F0) ≤ d − 2.
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The proof of Claim 3.1 is presented in Appendix 2. According to the Gauss–Green
theorem, we can further compute

Vol(d)(R̃0) =
∫

R̃0

1

d
(∇ · y) dy

= 1

d

∫
∂R̃0

(n · y) dσy

=
n0∑
i=1

Ki∑
j=1

1

d

∫
Fij

(
nij · y) dσy

=
n0∑
i=1

Ki∑
j=1

1

d

(
nij · γ (0)

i

)
Vol(d−1)

(
Fij

)
, (50)

where dσy denotes the surface measure. In the last equality, we use the fact that Fij

lies in a hyperplane and that nij · y is constant.

In summary, given the components of its boundary Γ , we obtain an explicit
expression of the volume of the union of balls Ω according to Lemmas 4 and 5 as
follows:

Vol(d)(Ω) =
d−1∑
k=1

nk∑
i=1

r
(k)
i B(k + 1, d − k) Volk

(
γ

(k)
i

)
Vold−k (conv (ci))

+
n0∑
i=1

Ki∑
j=1

1

d

(
nij · γ (0)

i

)
Vol(d−1)

(
Fij

)
. (51)

3.2 Analytical volume in 3D

We have given an explicit formula of the volume of Ω , which is based on the BPB
diagram. In the cases of E2 and E

3, the different components of Γ are not difficult
to compute. In this subsection, we consider the case of E3 as an illustration.

The boundary of the union of 3-balls is constituted by the intersection points, the
circular arcs (or circles), and the spherical 2-patches. The length of a circular arc is
easy to compute and the area of a spherical 2-patch can be computed by the Gauss–
Bonnet theorem [19]. For the sake of completeness, we present here the explicit
formula of the area of a spherical 2-patch γ with the notations in Fig. 5 as follows:
(see [15] for details)∑

j

αj +
∑
j

kej
|ej | + 1

r2
Area (γ ) = 2πχ, (52)

where αj is the angle at vertex vi between two neighboring circular arcs ej−1 and
ej , kej

is the geodesic curvature of ej , |ej | is the length of ej , and Area (γ ) is the
area of γ . In addition, χ is the Euler characteristic of γ , which equals to 2 minus the
number of loops forming the boundary of γ . From the volume formulation Eq. 51 in
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Fig. 5 3D schematic diagram of
notations associated with the
spherical patch γ with center c
and radius r . αj is the angle
variation between two
neighboring circular arcs ej−1
and ej at the vertex vj of γ

the previous subsection, we obtain the volume of the union (still denoted by Ω) of
balls in E

3:

Vol(3)(Ω) = 1

3

n2∑
i=1

r
(2)
i Area(γ (2)

i ) + 1

6

n1∑
i=1

r
(1)
i d

(1)
i

∣∣∣γ (1)
i

∣∣∣
+1

3

n0∑
i=1

Ki∑
j=1

(
nij · γ

(0)
i

)
Area

(
Fij

)
, (53)

where r
(2)
i denotes the radius of the 2-patch γ

(2)
i , r

(1)
i denotes the radius of the

circular arc γ
(1)
i , d

(1)
i denotes the distance between the centers of the two spheres

generating γ
(1)
i , and Area(γ (2)

i ) is computed according to Eq. 52. The faces {Fij }
are 2D polygons enclosed by specific line segments (connecting the sphere centers
and the intersection points) and in the common case are triangles. The above formula
Eq. 53 is convenient to be computed.

The computation of the volume of molecular cavities is an elementary problem
in biology and chemistry. There are plenty of works on it using the power diagram,
such as [20–24]. Based on the proposed BPB diagram, we test 18 molecules in Mat-
lab, with the geometry data derived from the Protein Data Bank (PDB), including
caffeine, 1yjo, 1etn, 1b17, 101m, 2k4c, 3wpe, 1kju, 1a0t, 1a0c, 4xbg, 4cql, 5any,
4wht, 4qy1, 4by9, 4u8u, and 4y5z. The numerical results are presented in Table 1 and
Fig. 6. We should mention that these volumes are exact if the machine errors are not
taken into account. In addition, the run time appears to scale roughly linearly with
respect to N .

Remark 4 The volume formula Eq. 53 of the BPB diagram only involves the compu-
tation of boundary components. In other words, any buried ball does not contribute
to the volume. While the power diagram requires to compute more, because one has
to compute not only the boundary components but also the boundaries of all power
cells, which could be tricky and nonrobust due to the possible degenerate cases as
pointed out in [7]. From this point of view, the BPB diagram is more convenient to
be implemented and can save computational cost for the volume computation.
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Table 1 Molecule volumes computed by the BPB diagram and the run time of the implementation in
Matlab

PDB ID N n0 n1 n2 Volume (Å
3
) Time (s)

Caffeine 24 56 85 31 2.1703e+02 7.1000e−01

1yjo 67 174 269 90 9.7922e+02 9.6000e−01

1etn 160 550 847 282 1.5936e+03 9.6000e−01

1b17 483 1308 2154 668 7.1927e+03 1.3500e+00

101m 1413 4388 6987 2114 2.0476e+04 2.6500e+00

2k4c 2443 9032 13,691 4412 2.2762e+04 4.8400e+00

3wpe 5783 18,404 28,568 8470 8.0276e+04 8.8700e+00

1kju 7671 26,858 41,680 12,257 1.0550e+05 1.2490e+01

1a0t 10,077 32,430 50,834 14,644 1.3923e+05 1.5360e+01

1a0c 15,116 48,048 76,952 22,416 2.1503e+05 2.3920e+01

4xbg 20,282 63,522 98,952 29,032 2.8060e+05 3.3720e+01

4cql 26,833 85,046 133,223 39,112 3.7450e+05 5.2120e+01

5any 35,620 112,000 172,843 51,366 4.8399e+05 7.0990e+01

4wht 40,099 127,982 200,208 58,037 5.6224e+05 8.6080e+01

4qy1 48,138 154,450 241,906 70,948 6.7187e+05 1.0895e+02

4by9 49,984 209,296 318,007 99,517 4.2904e+05 1.4133e+02

4u8u 59,163 196,422 303,695 91,414 8.1057e+05 1.4600e+02

4y5z 86,922 283,224 442,363 128,651 1.2061e+06 2.0266e+02

N represents the number of balls (atoms). n0, n1, and n2 represent the number of intersection points, the
number of circular arcs (or circles), and the number of spherical patches on the boundary

Fig. 6 The run time for volume computation with respect to the number of atoms, implemented in Matlab
on a mac with processor 2.5-GHz Intel Core i7
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Remark 5 In the high-dimensional space E
d with d > 3, it is difficult to compute

the surface volumes of the boundary components on Γ in a general case. As a conse-
quence, one cannot compute the analytical volume easily based on the BPB diagram,
unless the boundary components are known. Nevertheless, the same difficulty exists
for the power diagram.

In the next section, we will discuss about another application of the BPB diagram
for characterizing molecular surfaces.

4 Characterization of molecules

For the sake of completeness, we introduce briefly how the BPB diagram can be used
to characterize molecules in E

3 .

4.1 Singularity problem

In computational chemistry, the “smooth” molecular surface [25] is actually defined
as the level set of a signed distance function, which strictly speaking is not always
smooth. The related singularities have caused trouble when meshing or visual-
izing molecular surfaces. Some meshing algorithms of molecular surfaces even
fail when the surface contains singularities. However, the BPB diagram allows us
to compute all surface singularities a priori, which was first introduced in our pre-
vious work [15, 26]. In the following content, we will briefly present the basic
idea.

In an implicit solvation model, the solute molecule is commonly regarded as a
union of atomic balls, such as the van der Waals balls with radii rv,i . Meanwhile,
the solvent molecules are simply idealized as spherical probes with radius rp. The
solvent-excluded surface (SES), denoted by Γses, is the boundary of the cavity where
solvent probes can not touch (the solute atoms and the solvent probes can not over-
lap). We take Γ as the boundary of the union of balls with atomic centers and radii
ri = rv,i + rp. Then, the SES can be represented mathematically as the following
level set:

Γses := f −1
Γ (−rp), (54)

where fΓ is the signed distance defined in Eq. 7. Figure 7 illustrates the signed
distance of the benzene molecule in the XY plane. The SES is the so-called smooth
molecular surface, which however might have plenty of singularities.

The BPB diagram gives a partition of the union of balls, based on the signed
distance to different boundary components. As a consequence, given any point x in
the union, one can find conveniently its closest point(s) on Γ by determining which
BPB cell this point lies in. Note that any point x ∈ Γses is a singularity (in the sense
that fΓ is nondifferentiable at x) if and only if x has more than one closest points on
Γ . However, the number of closest points can be counted directly as soon as the BPB
diagram is constructed, which means that all surface singularities can be computed a
priori.
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Fig. 7 Boundary surface Γ (left) of benzene molecule with rp = 1Å and the signed distance fΓ (right) in
the XY plane where the color represents the distance value

Figure 8 illustrates the SES of a protein (generated by our MolSurfComp pack-
age [27]), where the green curves highlight singularities. It is well known that Γses
is composed of three types of patches: convex spherical patches (in red), toroidal
patches (in yellow), and concave spherical patches (in blue). These patches corre-
spond respectively to the 2-patches, the 1-patches (circular arcs in yellow), and the

Fig. 8 The SES of the molecule 1mbg with 905 atoms and the probe radius rp = 1Å. The green arcs are
SES-singularities, computed by our MolSurfComp package
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0-patches (intersection points in blue) on Γ . With the same notations as previously,
we can write each SES-patch corresponding to the k-patch γ

(k)
i ⊂ Γ , denoted by

P
(k)
i , as follows:

P
(k)
i

:= R(γ
(k)
i ) ∩ f −1

Γ (−rp) = R(γ
(k)
i ) ∩ f −1

γ
(k)
i

(−rp), k = 0, 1, 2. (55)

where R(γ
(k)
i ) is the BPB cell and f

γ
(k)
i

is the signed distance to γ
(k)
i . The above

formula is computable as soon as the BPB cell is given (see [15] for details). In
particular, the singularities on each SES-patch lie on the boundary of the BPB cell,
because any interior point of the BPB cell has only one closest point on Γ .

Remark 6 Generally speaking, given an arbitrary surface in 3D, the signed distance
from one point to the surface is expensive to compute. However, in the special case
for balls, the BPB diagram allows to compute this value directly.

4.2 Medial axis of molecule

The medial axis of an object is the set of all points having more than one closest point
on the object’s boundary. According to the definition of BPB cells, we can claim that
the medial axis of a molecule is part of the boundaries of BPB cells. The concept of
medial axis was first introduced by Blum [28] and was originally referred to as the
topological skeleton. It has been shown that the medial axis of an object is always
homotopy equivalent to the object itself [29] and the medial axis is useful for shape
descriptions. As a consequence, it is potentially a good idea to use the medial axes of
molecules for classifying their structures.

In fact, the theory on the BPB diagram allows us to compute the medial axis of
3-balls. As mentioned above, the boundary of the union of 3-balls is composed of k-
patches with k = 0, 1, 2. Given a k-patch γ

(k)
i , let i = I(γ

(k)
i ) be the indices of the

3-balls generating this k-patch. In the case when k = 1, 2, according to Corollary 1,
we can claim that conv(ci) is part of the medial axis. The reason is that ∀x ∈ conv(ci),
any point on γ

(k)
i is a closest point of x. In other words, x has infinite number of

closest points. In the case when k = 0, given an arbitrary intersection point γ
(0)
i , it

Fig. 9 Molecule 1yjo (left) and its medial axis (right), composed of red points, yellow line segments, and
blue faces, which are part of the boundaries of BPB cells
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is easy to find that the set ∂R(γ
(0)
i ) ∩ Vor(γ (0)

i ) is part of the medial axis, where Vor
represent the classical Voronoi cell (see Section 2.3).

For the sake of illustration, we provide a simple example of the medial axis of
molecule 1yjo in Fig. 9. As mentioned above, the molecule and its medial axis are
homotopy equivalent.

5 Conclusion

In this article, we have introduced the so-called boundary-partition-based (BPB)
Voronoi diagram of d-balls in the Euclidean space Ed , which can be seen as an alter-
native partition to the power diagram. We have studied the properties of this diagram
and presented its applications. Compared to the power diagram, the BPB diagram is
more convenient to be implemented for volume computations of balls, avoiding the
possibly complicated computation of power cells. In addition, this BPB diagram can
be used to compute singularities on molecular surfaces and to compute the molecular
medial axis for possible structure classification in the context of protein–ligand bind-
ing affinity prediction. At this moment, these applications are restricted to E

2 and E
3

just like the power diagram. We expect nevertheless possible applications in higher
dimensions.
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Appendix 1. Proof of Claim 2.2

First, we consider a sphere Sit � x for a fixed 1 ≤ t ≤ m. According to the definition
(24) and Eq. 26, we can compute

|ζs(x) − cit |2 − |x − cit |2
= |xns + α(x)v|2 − 2 (vt , xns + α(x)v)

=
(
α2(x)|v|2 + x2

)
+ 2xα(x) (ns , v) − 2α(x)(v, vt ) − 2x(vt ,ns)

= 2α(x)(v, v − vt ) − 2x(vt ,ns)

= 2x

[
−(vt ,ns) + x

|v|2(2 − α(x))
(v, v − vt )

]
,

(56)

where in the third and forth equality, we use the fact that α2(x)|v|2 +x2 = 2α(x)|v|2
and (ns , v) = 0 as vr ∈ As .
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Since (x + λvt ,ns) ≤ bs, ∀λ ≥ 0, we know that (vt ,ns) ≤ 0. In the case of
(vt ,ns) < 0, according to Eq. 56, there exists a small enough number εit > 0 such
that ∀x ∈ [0, εit ],

|ζs(x) − cit | ≥ |x − cit | = rit .

Besides, in the case of (vt ,ns) = 0 implying vt ∈ As , according to Eq. 28 and (56),
we have ∀0 ≤ x ≤ |v|,

|ζs(x) − cit | ≥ |x − cit | = rit .

In particular, when t = t0, we have both (vt ,ns) = 0 and (v, v − vt ) = 0. As a
consequence,

|ζs(x) − cit | = |x − cit | = rit ,

which means that ζs(x) ∈ Sit0
. So far, we have proved that ∀x ∈ [0, εit ], ζs(x) does

not lie in the interior of Sit and lies on the sphere Sit0
.

Second, we consider a sphere Sj �∈ {Si1 , Si2 , . . . , Sim} that does not contain x. In
this case, we have |x − cj | − rj > 0. Therefore, there exists a small number εj > 0
such that ∀x ∈ [0, εj ],

|ζs(x) − x| ≤ 1

2
(|x − cj | − rj ).

This yields that ∀x ∈ [0, εj ],

|ζs(x) − cj | ≥ |x − cj | − |ζs(x) − x| ≥ 1

2
(|x − cj | + rj ) > rj ,

that is to say, ζs(x) lies outside the sphere Sj .
In summary, there exists a possibly small number ε > 0 such that ∀x ∈ [0, ε],

ζs(x) does not cross any sphere Si and lies on the sphere Sit0
, which implies that

ζs(x) ∈ Γ .

Appendix 2. Proof of Claim 3.1

Recall the definition of the face

Fij := conv

(
γ

(0)
i , cI(γ

(1)
ij )

)
, 1 ≤ i ≤ n0, 1 ≤ j ≤ Ki . (57)

Given a nondegenerate intersection point γ
(0)
i and the associated 1-patch γ

(1)
ij , the

(d − 1)-face Fij is actually a subset of R̃0, since, according to Lemma 3, Fij is a

subset of R(γ
(0)
i ). Further, taking any point y ∈ γ

(1)
ij , we have the following result:

R(y) = conv

(
y, cI(γ

(1)
ij )

)
⊆ R

(
γ

(1)
ij

)
. (58)

As y tends to γ
(0)
i , R(y) tends to Fij . Any interior point of R(y) has y as a unique

closest point, which implies that the interior of R(y) lies completely outside R̃0. For
any point x ∈ Fij , we can then find a sequence of points {xn} outside R̃0 converging
to x. Therefore, we have Fij ⊆ ∂R̃0.
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It is sufficient to prove that any point x ∈ ∂R̃0 belongs to either some face Fij or
some set F0 with dim(F0) ≤ d − 2. ∂R̃0 can be divided into two sets

U1 := {x ∈ ∂R̃0 | all closest points of x belong to P̃0}, (59)

and

U2 := {x ∈ ∂R̃0 | there exists a closest point of x not contained in P̃0}. (60)

In the following content, we prove that if x ∈ U1, then x belongs to a certain face
Fij , while if x ∈ U2, then x belongs to F0 which will be defined later.

Step 1: In the case of x ∈ U1, we can find a sequence of points {xn} in Ω\R0 such
that xn tends to x. Correspondingly, there exists a sequence of points {an} on Γ ,
where an is one closest point of xn. Since x has finitely many closest points in P̃0
and the total number of k-patches is finite, we can extract a subsequence of an such
that this subsequence lies on some k-patch γ (k) with k ≥ 1 and converges to some
nondegenerate intersection point γ

(0)
i . Without loss of generality, we can therefore

suppose that an tends to γ
(0)
i and an ∈ γ (k), ∀n. As a consequence, γ

(0)
i is on the

boundary of γ (k) and further, there exists a 1-patch γ
(1)
ij on γ (k), satisfying

cI(γ (k)) ⊆ cI(γ
(1)
ij )

. (61)

Due to the fact that

xn ∈ conv
(
an, cI(γ (k))

)
, (62)

we then have

x ∈ conv
(
γ

(0)
i , cI(γ (k))

)
⊆ conv

(
γ

(0)
i , cI(γ

(1)
ij )

)
= Fij , (63)

by taking n → ∞.
Step 2: In the case of x ∈ U2, we want to prove that x belongs to some F0.

According to the definition of U2, x has at least one closest point a that is not
a nondegenerate intersection point. Here, we mention the fact that for any point
y belonging to the open line segment ax with endpoints a and x, a is the unique
closest point of y on Γ , which can be easily proven by contradiction.

On the one hand, if a is not an intersection point, then a lies on some k-patch γ (k)

with k ≥ 1. According to Theorem 1, we know that

R(a) = conv
(
a, cI(γ (k))

)
. (64)

Considering that the latter convex hull, we obtain that x ∈ conv(cI(γ (k))) of dimen-
sion dim(conv(cI(γ (k)))) ≤ d−2, since otherwise, x will has a unique closest point on
Γ . On the other hand, if a is a degenerate intersection point, then we have a ∈ ΛI(a)
with dim

(
ΛI(a)

) ≤ d − 1. Since R(a) ⊆ ΛI(a) according to Theorem 1, it holds
that dim (R(a)) ≤ d − 1. Here, we actually have a ∈ R(a) and R(a) is a convex set
from Lemma 3. Due to the fact mentioned above, we obtain that x ∈ R(a) only lies
on ∂R(a) of dimension dim (∂R(a)) ≤ d − 2.

Adv Comput Math (2020)  46: 44 Page 23 of 25 44



As the number of k-patches and degenerate intersection points are finite, we can
conclude that

x ∈
⋃
k≥1

conv(cI(γ (k)))
⋃

γ
(0)
i �∈P̃0

∂R(γ
(0)
i ), ∀x ∈ U2, (65)

where γ
(0)
i in the second union is taken as all degenerate intersection points. Note

that the union on the right-hand side of Eq. 65 is of dimension less than or equal to
d − 2. This implies that dim(U2) ≤ d − 2. Therefore, we can define F0 = U2, which
satisfies dim(F0) ≤ d − 2.
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