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Vector versions of Prony’s algorithm
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Abstract
Given the scalar sequence {fm}∞m=0 that satisfies

fm =
k∑

i=1

aiζ
m
i , m = 0, 1, . . . ,

where ai, ζi ∈ C and ζi are distinct, the algorithm of Prony concerns the determina-
tion of the ai and the ζi from a finite number of the fm. This algorithm is also related
to Padé approximants from the infinite power series

∑∞
j=0fj z

j . In this work, we dis-

cuss ways of extending Prony’s algorithm to sequences of vectors {f m}∞m=0 in C
N

that satisfy

f m =
k∑

i=1

aiζ
m
i , m = 0, 1, . . . ,

where ai ∈ C
N and ζi ∈ C. Two distinct problems arise depending on whether

the vectors ai are linearly independent or not. We consider different approaches that
enable us to determine the ai and ζi for these two problems, and develop suitable
methods. We concentrate especially on extensions that take into account the possibil-
ity of the components of the ai being coupled. One of the applications we consider
concerns the case in which

f m =
r∑

i=1

aiζ
m
i , m = 0, 1, . . . , r large,

and we would like to approximate/determine of a number of the pairs (ζi, ai ) for
which |ζi | are largest. We present the related theory and provide numerical examples
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that confirm this theory. This application can be extended to the more general case in
which

f m =
r∑

i=1

pi (m)ζm
i , m = 0, 1, . . . ,

where pi (m) ∈ C
N are some (vector-valued) polynomials in m, and ζi ∈ C are

distinct. Finally, the methods suggested here can be extended to vector sequences in
infinite dimensional spaces in a straightforward manner.

Keywords Prony algorithm · Padé approximants · Vector-valued rational
approximations

Mathematics subject classification (2010) 65F20 · 65F50 · 65H10

1 Introduction

Consider a function f (t) that is a sum of exponential functions given as

f (t) =
k∑

i=1

γi exp(ηi t), γi �= 0, ηi distinct. (1.1)

We wish to determine the γi and ηi . To achieve this, we compute f (t) at the equidis-
tant points tm = t0 + mh, m = 0, 1, . . . , with some fixed h > 0. This gives rise to
the system of equations

f (tm) =
k∑

i=1

γi exp(ηi tm), m = 0, 1, . . . . (1.2)

Letting fm = f (tm), ai = γi exp(ηi t0), and ζi = exp(ηih), these equations become

fm =
k∑

i=1

aiζ
m
i , m = 0, 1, . . . . (1.3)

Clearly, ai, ζi ∈ C, i = 1, . . . , k, are independent of m, and ζi are distinct. We would
like to determine the ai and the ζi from the fm, from which, we will be able obtain
the γi and ηi in general. Since there are 2k unknowns in this problem, we need 2k
equations, and these can be taken from (1.3). Let us choose those equations with
m = 0, 1, . . . , 2k − 1, for example. The well-known algorithm of Prony [15] solves
these equations and obtains the ai and ζi as follows:

1. Solve the k × k linear system

k−1∑

j=0

fm+j uj = −fm+k, m = 0, 1, . . . , k − 1, (1.4)

for u0, u1, . . . , uk−1, and set uk = 1.
2. Obtain ζ1, . . . , ζk as the roots of the polynomial equation

∑k
j=0uj ζ

j = 0.
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3. With ζ1, . . . , ζk available, solve the k × k linear system

k∑

i=1

aiζ
m
i = fm, m = 0, 1, . . . , k − 1, (1.5)

for a1, . . . , ak . Written in full, this system reads

V T a = f , (1.6)

where

V =

⎡

⎢⎢⎢⎣

1 ζ1 · · · ζ k−1
1

1 ζ2 · · · ζ k−1
2

...
...

...
1 ζk · · · ζ k−1

k

⎤

⎥⎥⎥⎦ , a = [a1, a2, . . . , ak]T , f = [f0, f1, . . . , fk−1]T .

(1.7)
Here V is a Vandermonde matrix. (Note that V is nonsingular since the ζi are
distinct.)

The equations (1.4) that provide the uj can be obtained as follows: Starting with

u(ζ ) =
k∏

i=1

(ζ − ζi) =
k∑

j=0

uj ζ
j , uk = 1,

and invoking (1.3), we have, for m = 0, 1, . . . ,

k∑

j=0

ujfm+j =
k∑

j=0

uj

k∑

i=1

aiζ
m+j
i

=
k∑

i=1

aiζ
m
i

k∑

j=0

uj ζ
j
i

=
k∑

i=1

aiζ
m
i u(ζi)

= 0.

The ai can also be determined—without having to solve the system in (1.6)
numerically—by resorting to the connection between Prony’s algorithm with the
Padé table. We present a detailed discussion of this issue in the next section.

In Section 3, we introduce four procedures that extend Prony’s algorithm to
sequences of vectors {f m}∞m=0 [as opposed to sequences of scalars {fm}∞m=0 in (1.3)],
and consider the numerical implementations of these procedures under different cir-
cumstances. In Section 4, we discuss the connection of these procedures with some
vector-valued rational approximation procedures and discuss an additional appli-
cation that is closely related to, and yet outside the realm of, Prony’s algorithm.
Specifically, the problem we are interested in involves the determination of a number
of those ζj that have largest modulus. The approach of Section 2 involving rational
approximations is used throughout. In Section 6, we provide numerical examples that
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illustrate the use of the approach of Section 4 and that confirm the theory presented
there. The relation of Prony’s algorithm to Padé approximants was discussed origi-
nally by Weiss and McDonough [26]. The results of [26] were generalized by Sidi
[18, 19] to cover the cases in which

fm =
s∑

i=1

ai(m)ζm
i , m = 0, 1, . . . , ; ai(m) polynomials in m,

which occur when the polynomial u(ζ ) has at least one multiple root. Padé approx-
imants continue to play a crucial role in these generalizations too. For Padé
approximants, see Baker and Graves-Morris [1] and Gilewicz [7]. For a very effec-
tive procedure for computing Padé approximants, see Trefethen [25, Chapter 27]. For
a detailed summary that includes some of the results of [18] and [19], see also Sidi
[22, Chapter 17].

The algorithm of Prony and its various generalizations are discussed and applied
in a variety of contexts and in numerous areas. It is known (see [18]) that Prony’s
algorithm does not always have a solution when the set {fm}2k−1

m=0 is arbitrary, that is,
when the fm are not necessarily as in (1.3). This implies that the problem of deter-
mining the parameters ζi, ai is not always stable numerically. To circumvent this
problem, Prony’s algorithm has been modified in several ways, giving rise to some
very effective methods that cope successfully with the problem of numerical insta-
bility. Among these, we mention the multiple signal classification method (MUSIC)
of Schmidt [17], estimation of signal parameters via rotational invariance techniques
(ESPRIT) of Roy and Kailath [16], fast ESPRIT algorithms of Potts and Tasche [14],
the matrix pencil method of Hua and Sarkar [10] and Golub, Milanfar, and Varah [8],
the annihilating vector method of Dragotti, Vetterli, and Blu [6], and the approximate
Prony method of Potts and Tasche [13]. Recently, Prony’s algorithm has also been
extended to the solution of sparse multivariate problems in the papers by Ben-Or and
Tiwari [2], Cuyt and Lee [4], and Cuyt, Lee, and Yang [5], for example. Another
interesting modification of Prony’s algorithm has been developed for sparse eigen-
function expansions in the works of Peter and Plonka [11] and Plonka and Tasche
[12].

2 Padé approximants and Prony’s algorithm

Let f (z) = ∑∞
j=0fj z

j be a formal power series. When it exists, the [m/n] Padé
approximant from f (z), which we denote fm,n(z), is defined as follows:

fm,n(z) = P(z)

Q(z)
; P ∈ πm, Q ∈ πn, Q(0) = 1, (2.1)

f (z) − fm,n(z) = O(zm+n+1) as z → 0. (2.2)

It is easy to realize that (2.2) implies

Q(z)f (z) − P(z) = O(zm+n+1) as z → 0. (2.3)
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Letting P(z) = ∑m
i=0piz

i and Q(z) = ∑n
j=0qj z

j , q0 = 1, it follows from (2.3) that
the pi and qi satisfy the m + n + 1 linear equations

min(i,n)∑

j=0

fi−j qj = pi, i = 0, 1, . . . , m, (2.4)

min(i,n)∑

j=0

fi−j qj = 0, i = m + 1, . . . , m + n, (2.5)

and that

fm,n(z) =
∑n

j=0qj z
j sm−j (z)∑n

j=0qj zj
, (2.6)

where

sr (z) =
r∑

j=0

fj z
j , r = 0, 1, . . . ; sr (z) ≡ 0 if r < 0. (2.7)

It is known that, if it exists, fm,n(z) is unique. It is also known that if f (z) is a
rational function (having no pole at z = 0) with degree of numerator and degree of
denominator (after complete reduction) being m and n, respectively, then fm,n(z) ≡
f (z); that is, Padé approximants reproduce rational functions from whose Maclaurin
series they are derived.

The algorithm of Prony described in the preceding section is related to fk−1,k(z)

from f (z) = ∑∞
j=0fj z

j , with the fj as in (1.3), as follows: First, note that f (z) is
a rational function with degree of numerator equal to k − 1 at most and degree of
denominator equal to k:

f (z) =
∞∑

j=0

fj z
j =

∞∑

j=0

(
k∑

i=1

aiζ
j
i

)
zj =

k∑

i=1

ai

∞∑

j=0

(ζiz)
j =

k∑

i=1

ai

1 − ζiz
. (2.8)

Therefore, fk−1,k(z) ≡ f (z). Let the partial fraction decomposition of fk−1,k(z) be
as in

fk−1,k(z) = P(z)

Q(z)
=

k∑

i=1

wi

z − zi

, (2.9)

where zi are the zeros of the denominator polynomial Q(z). Then the ai and ζi in
Prony’s algorithm are given as

ζi = z−1
i , ai = −wiz

−1
i , i = 1, . . . , k. (2.10)

It is easy to realize that the polynomial u(ζ ) in Prony’s algorithm and the denominator
polynomial Q(z) of fk−1,k(z) are related via

u(ζ ) = ζ kQ(ζ−1) ⇔ uj = qk−j , j = 0, 1, . . . , k. (2.11)
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As a result, we do not need to solve the linear system in (1.6) to obtain the ai because
the wi in (2.10) can be computed from

wi = Resfk−1,k(z)
∣∣
z=zi

= P(z)

Q′(z)

∣∣∣∣
z=zi

=
∑k

j=0 qj z
j sk−1−j (z)

∑k
j=0 jqj zj−1

∣∣∣∣∣
z=zi

, i =1, . . . , k.

(2.12)
When expressed in terms of the uj instead of the qj , this can also be written as

wi =
∑k

j=0uj z
k−j sj−1(z)

∑k
j=0(k − j)uj zk−j−1

∣∣∣∣
z=zi

, i = 1, . . . , k. (2.13)

3 Extensions of Prony’s algorithm to vector sequences

3.1 Introduction and a naive approach

Let {f m}∞m=0 be a given sequence of vectors in C
N such that

f m =
k∑

i=1

aiζ
m
i , m = 0, 1, . . . , (3.1)

where ai ∈ C
N \ {0} and ζi ∈ C, i = 1, . . . , k, are independent of m, and ζi are

distinct. Here, N can be arbitrarily large. We would like to determine the ai and the
ζi via our knowledge of the f m.

Before proceeding to the solution of this problem, we present an application
that gives rise to a vector sequence of the form described in (3.1). Let f (x, t) be
a physical quantity that is known, or conjectured, to be of the form f (x, t) =∑k

i=1γi(x) exp(ηi t). Here x and t may denote, for example, location and time,
respectively. The function f (x, t) is being measured at different locations xr , r =
1, . . . , N, and at different times tm = t0 + mh, m = 0, 1, . . . , for some h > 0. Thus,

f (xr , tm) =
k∑

i=1

γi(xr ) exp(ηi tm), m = 0, 1, . . . ,

which, upon letting

f m = [f (x1, tm), . . . , f (xN, tm)]T
and

ai = [γi(x1) exp(ηi t0), . . . , γi(xN) exp(ηi t0)]T , ζi = exp(ηih), i = 1, . . . , k,

results in (3.1).
It is clear that we can apply Prony’s algorithm to the sequence {f m}∞m=0 com-

ponentwise. That is, we can apply it separately to each of the scalar sequences
{fi,m}∞m=0, i = 1, . . . , N . Given the fact that the f m satisfy (3.1), the ζi produced for
each i are the same. Clearly, for this implementation, we need 2k of the f m, precisely
as in the scalar case.
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This approach has a serious drawback, however. In the presence of errors
(noise and floating-point errors and others) in the given f m, the polynomials
u(ζ ) and hence their zeros ζi produced from each application of the (scalar) Prony
algorithm will be different. In addition, the possible coupling of the different com-
ponents fi,m, i = 1, . . . , N, of the vectors f m is lost in the process. Retaining
this coupling when it exists may have a beneficial effect, and we aim at this
below.

Throughout the remainder of this work, we use lowercase italic letters to denote
vectors and uppercase italic letters to denote matrices. In addition, we use the stan-
dard Euclidean inner product (· , ·) and the vector norm ‖ · ‖ induced by it; thus
(x, y) = x∗y and ‖x‖ = √

x∗x.

3.2 Vectorized algorithms for determining u(ζ ) = ∑k
j=0uj ζ

j

By applying Prony’s algorithm to the sequence {f m}∞m=0 componentwise, we realize
that ζ1, . . . , ζk are the roots of the polynomial u(ζ ) = ∑k

j=0uj ζ
j , whose coefficients

satisfy the vector equations

k∑

j=0

ujf m+j = 0, m = 0, 1, . . . . (3.2)

Clearly, for each m, we have N scalar homogeneous linear equations satisfied
by the uj . We aim at solving these equations by normalizing the uj suitably. After
determining the uj , we solve u(ζ ) = 0 and obtain ζ1, . . . , ζk , as before. With the ζi

available, we next determine the ai as the solution to (3.1).
We now want to propose ways—different than that resulting from the naive

approach above—of determining a polynomial u(ζ ) that is good for all of the
sequences {fi,m}∞m=0, such that we have only one set of ζ1, . . . , ζk for all N com-
ponents fi,m, i = 1, . . . , N, of the f m, and the coupling of these components is
preserved. This can be done in different ways.

We differentiate between two cases: (i) a1, . . . , ak are linearly independent,
(ii) a1, . . . , ak are linearly dependent.

3.2.1 The case a1, . . . , ak are linearly independent

When the vectors ai are linearly independent, which can occur only when k ≤ N , it
suffices to consider only one of the equations in (3.2). Let us choose that with m = 0.
We thus solve the N × (k + 1) homogeneous linear system

k∑

j=0

ujf j = 0 ⇔ F ku = 0, (3.3)

where we have defined

Fp = [f 0 | f 1 | · · · |f p ] ∈ C
N×(p+1), u = [u0, u1, . . . , uk]T . (3.4)
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In order for this approach to be valid, we need to show that the system of N equations
in (3.3) has a unique solution normalized such that uk = 1. With this normalization,
(3.3) becomes

k−1∑

j=0

ujf j = −f k ⇔ F k−1u
′ = −f k, u′ = [u0, u1, . . . , uk−1]T . (3.5)

Define the matrices A ∈ C
N×k and V ∈ C

k×k as in

A = [ a1 | a2 | · · · | ak ], V =

⎡

⎢⎢⎢⎣

1 ζ1 · · · ζ k−1
1

1 ζ2 · · · ζ k−1
2

...
...

...
1 ζk · · · ζ k−1

k

⎤

⎥⎥⎥⎦ . (3.6)

Then the matrix F k−1 in (3.5) is of the form

F k−1 = AV . (3.7)

Since the matrix V is nonsingular because the ζi are distinct, we have rank(F k−1) =
rank(A) = k. Therefore, (3.5) has a unique solution for u′.

The solution of (3.3) can be achieved in one of the following ways:

1. Solution via linear least-squares: Setting uk = 1 in (3.3), we can use standard
least squares to solve (3.5) for u′. Thus,

min
u′ ‖F k−1u

′ + f k‖ ⇒ u′ = −F+
k−1f k . (3.8)

Here K+ denotes the Moore–Penrose generalized inverse of the matrix K . This
amounts to forcing the vector

∑k
j=0ujf j to be orthogonal to the subspace

span{f 0, f 1, . . . , f k−1}.
Since F k−1 has full column rank, we can solve (3.8) via QR factorization of

F k , namely, via

F k = QkRk, Qk unitary, Rk upper triangular, (3.9)

Qk = [ q0 | q1 | · · · | qk ] ∈ C
N×(k+1), q∗

i qj = δij , (3.10)

and

Rk =

⎡

⎢⎢⎢⎣

r00 r01 · · · r0k
r11 · · · r1k

. . .
...

rkk

⎤

⎥⎥⎥⎦ , rii > 0 ∀ i ≤ k. (3.11)

Noting that

Qk = [Qk−1 | qk ]; Rk =
[

Rk−1 ρk

0T rkk

]
, ρk = [r0k, r1k, . . . , rk−1,k]T ∈ C

k,

(3.12)
we have that u′ ultimately satisfies the k × k nonsingular upper triangular linear
system

Rk−1u
′ = −ρk, (3.13)

which can be solved by back substitution.
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This method turns out to be a special case of that derived from the vector-
valued rational approximation procedure called SMPE, which we describe in the
next section. The algorithm that uses the QR factorization described above also
resembles an analogous algorithm used in [13] for the scalar Prony problem.

2. Solution via singular value decomposition: Note that the least-squares problem
in (3.8) is unconstrained. We can also obtain the uj (with a different normaliza-
tion) as the solution to the following constrained least-squares problem:

min
u

‖F ku‖ subject to ‖u‖ = 1. (3.14)

The solution for u is now the right singular vector of F k corresponding to its
smallest singular value (which is now zero, since the system F ku = 0 is con-
sistent). Of course, this can be achieved via the singular value decomposition
(SVD) of F k . The uj are now normalized via

∑k
j=0|uj |2 = 1.

Now, as suggested by Chan [3], the SVD of the N × (k + 1) matrix F k can
be obtained in a convenient way from the SVD of the (k + 1) × (k + 1) matrix
Rk that results from the QR factorization of F k in (3.9)–(3.11).1

Let Rk = W�V ∗ be the SVD of Rk , where all three matrices W , V , and
� are square, W and V are unitary, and � = diag(σ0, σ1, . . . , σk), σ0 ≥
σ1 ≥ · · · ≥ σk being the singular values of Rk . Then F k = U�V ∗ is the
SVD of F k because U = QkW is unitary. In fact, the singular values and the
corresponding right singular vectors of F k are precisely those of Rk . Thus, if
V = [ v0 | v1 | · · · | vk ], then, for i = 0, 1, . . . , k, vi is the right singular vector
of F k corresponding to the singular value σi .

Therefore, by the way the σi are ordered in the matrix �, σk is the smallest
singular value of F k and, therefore, the solution to (3.14) is u = vk . In addition,
σk = 0 because the linear system F ku = 0 is consistent in our case. [Of course,
when errors are present in the f m, then σk > 0 will hold in general. Nevertheless,
we can take the vector vk as our (approximate) solution for u.]

3. Solution via Gaussian elimination with partial pivoting: Setting uk = 1 in
(3.3), we have the N × k system (3.5). Choosing k linearly independent vectors
g1, . . . , gk in C

N , and taking the inner product of these vectors with (3.5), we
obtain the k × k linear system

k−1∑

j=0

(gi , f j )uj = −(gi , f k), i = 1, . . . , k. (3.15)

Letting
G = [g1 | g2 | · · · | gk ] ∈ C

N×k,

we can express this system in matrix form as follows:

G∗F k−1u
′ = −G∗f k . (3.16)

Of course, we should also make sure that the matrix G is such that G∗F k−1 ∈
C

k×k is nonsingular; that rank(G) = rank(F k−1) = k is not sufficient. Taking

1Note that Rk is a much smaller matrix to handle than F k in case N >> k.
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the gi to be k standard basis vectors amounts to picking k of the N scalar equa-
tions from (3.5). A good strategy amounting precisely to this approach is to use
Gaussian elimination with partial pivoting on the matrix F k . Thus, there exists
a permutation matrix P ∈ C

N×N depending on k, implying G∗ = P in (3.16),
such that

PF k−1u
′ = −Pf k, PF k = LkU k, (3.17)

where Lk is a lower trapezoidal matrix and U k is an upper triangular matrix. We
have

Lk =
[

L′
k

L′′
k

]
, L′

k ∈ C
(k+1)×(k+1), L′′

k ∈ C
(N−k−1)×(k+1),

L′
k being lower triangular with ones along its diagonal. (As a result of partial

pivoting, all entries of Lk below the diagonal are at most unity in modulus.) In
addition, Lk and U k can be partitioned as in

Lk =
[

L′
k−1 0

L′′
k−1 lk

]
, lk ∈ C

N−k; U k =
[

U k−1 σ k

0T σkk

]
, σ k ∈ C

k, (3.18)

U k−1 being nonsingular. With these developments, the first k of the N equations
in (3.17) give the k × k nonsingular upper triangular linear system

U k−1u
′ = −σ k, (3.19)

which can be solved for u′ by back substitution.
This method turns out to be a special case of that derived from the vector-

valued rational approximation procedure called SMMPE, which we describe in
the next section.

3.2.2 The case a1, . . . , ak are linearly dependent

When the vectors a1, . . . , ak are linearly dependent, the methods proposed above
cannot be applied. This situation happens naturally when k > N . It may happen even
when k ≤ N .2 The method we propose next is applicable in these cases; actually, it
can be applied always, whether a1, . . . , ak are linearly dependent or not.

Choose an arbitrary vector g and take its inner product with the equations in (3.2),
and consider those equations with m = 0, 1, . . . , k − 1. This gives the k × k linear
system

k−1∑

j=0

(g, f m+j )uj = −(g, f m+k), m = 0, 1, . . . , k − 1, (3.20)

2Such vector sequences can always be generated by a linear recursion of the form

m∑

j=0

Ajf k+j = 0, k = 0, 1, . . . ,

where Aj ∈ C
N×N , j = 0, 1, . . . , m, Am is nonsingular, and A0 �= O. For details, see the note by Sidi

[24], for example.
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for u0, u1, . . . , uk−1,with uk = 1 as before. This amounts to equating the projections
along g of the k vectors

∑k
j=0 ujf m+j , m = 0, 1, . . . , k − 1, to zero. [As we will

see shortly, the vector g must be such that (3.24) must be satisfied.] To show that a
unique solution for the uj is provided by this system, we need to show that the matrix
of this system, namely, the matrix

T̂ k−1 =

⎡

⎢⎢⎢⎣

(g, f 0) (g, f 1) · · · (g, f k−1)

(g, f 1) (g, f 2) · · · (g, f k)
...

...
...

(g, f k−1) (g, f k) · · · (g, f 2k−2)

⎤

⎥⎥⎥⎦ , (3.21)

is nonsingular. Now, it can easily be verified that

T̂ k−1 = V diag[(g, a1), . . . , (g, ak)]V T , (3.22)

where V is the Vandermonde matrix defined in (3.6). Since all three matrices here
are k × k, we have that

det T̂ k−1 =
[ k∏

i=1

(g, ai )

]
(detV )2, (3.23)

which is nonzero if and only if

k∏

i=1

(g, ai ) �= 0. (3.24)

Thus, T̂ k−1 is nonsingular provided (3.24) is satisfied.
This method turns out to be a special case of that derived from the vector-valued

rational approximation procedure called STEA, which we describe in the next section.

3.3 Determination of a1, . . . , ak

With the uj and hence the ζi determined, we turn to the problem of determining
the ai . We do this basically as explained in Section 2, by resorting to the Padé
approximant approach.

It is clear that the vector-valued rational function

f k−1,k(z) =
∑k

j=0 uj z
k−j sj−1(z)

∑k
j=0 uj zk−j

, (3.25)

where

sm(z) =
m∑

j=0

f j z
j , m = 0, 1, . . . ; sm(z) ≡ 0 if m < 0, (3.26)
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is the [k − 1/k] Padé approximant to f (z) = ∑∞
j=0 f j z

j componentwise, and has
the partial fraction decomposition

f k−1,k(z) =
k∑

i=1

wi

z − zi

. (3.27)

In addition, by (2.8), we also have

f (z) =
k∑

i=1

ai

1 − ζiz
, (3.28)

and, therefore,

f k−1,k(z) ≡ f (z). (3.29)

Consequently,

ζi = z−1
i , ai = −wiz

−1
i , i = 1, . . . , k, (3.30)

the wi being computed as in

wi = Resf k−1,k(z)
∣∣
z=zi

=
∑k

j=0 uj z
k−j sj−1(z)

∑k
j=0(k − j)uj zk−j−1

∣∣∣∣
z=zi

, i = 1, . . . , k. (3.31)

Remark When everything—the determination of the ζi and the ai—is taken into
account, it is seen that the necessary input for the algorithms described above is

• the k + 1 vectors f 0, f 1, . . . , f k in case a1, . . . , ak are linearly independent,
• the 2k vectors f 0, f 1, . . . , f 2k−1 in case a1, . . . , ak are linearly dependent.

4 Prony-like algorithms for vector problems via vector-valued
rational approximations

4.1 A reduced Prony problem

In this section, we again consider vector sequences {f m}∞m=0 that satisfy

f m =
r∑

i=1

aiζ
m
i , m = 0, 1, . . . , (4.1)

where ai ∈ C
N and ζi ∈ C are independent of m, ζi are distinct, and r may be

very large, even infinite. Of course, when r = ∞, the methods we discussed in the
previous section cannot be applied for determining all of the ζi and ai . Similarly,
when r is finite but very large, the application of the methods we discussed in the
previous section for determining all of the ζi and ai becomes very expensive. In
view of this limitation, we change/reduce the classical Prony problem as follows:
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Approximate the k largest (in modulus) ζi and the corresponding ai , instead of all r

of the pairs (ζi, ai ). Ordering the ζi such that

|ζ1| ≥ |ζ2| ≥ · · · ≥ |ζr |, (4.2)

we would like to approximate the pairs (ζi, ai ), i = 1, . . . , k, with k < r . Of course,
this amounts to approximating f m in (4.1) by the sum

∑k
i=1 aiζ

m
i .

We can achieve our goal by using some vector-valued rational approximation pro-
cedures when the ζi are such that |ζk| > |ζk+1|.3 In particular, we can use SMPE,
SMMPE, and STEA, three procedures that were developed and analyzed in Sidi [20].
The connection of these procedures with Krylov subspace methods was shown in
Sidi [21]. SMPE has been applied by Wu, Li, and Li [27] to problems in reanalysis
of structures and by Wu and Zhong [28] to nonlinear differential equations with a
small parameter. For an extensive summary, see also Sidi [23, Chapters 12, 14]. We
introduce the essentials of this subject that are relevant to our aim next.

4.2 Vector-valued rational approximations

We start by recalling that the series
∑∞

j=0 f j z
j represents the (rational) function

f (z) =
r∑

i=1

ai

1 − ζiz
, (4.3)

which can also be expressed as

f (z) =
r∑

i=1

wi

z − zi

; zi = ζ−1
i , wi = −aiζ

−1
i , i = 1, . . . , r . (4.4)

Therefore, (4.2) implies
|z1| ≤ |z2| · · · ≤ |zr |. (4.5)

[Clearly, the numerator of f (z) is a vector-valued polynomial of degree at most r−1,
while its denominator is a scalar polynomial of degree r .] We apply the three rational
approximation procedures mentioned above to the sequence of the partial sums

sm(z) =
m∑

j=0

f j z
j , m = 0, 1, . . . . (4.6)

All three procedures produce vector-valued rational functions sn,k(z) that approxi-
mate f (z) and that can be expressed in the form

sn,k(z) = pn,k(z)

qn,k(z)
=

∑k
j=0 uj z

k−j sn+j (z)
∑k

j=0 uj zk−j
, qn,k(0) = uk = 1, (4.7)

3A case of interest can be as follows: The first k of the ζi , namely, ζ1, . . . , ζk, are on the unit disk,
while the rest are in the interior of the unit disk. Thus, f m = f (1)

m + f (2)
m , with f (1)

m = ∑k
i=1 ai ζ

m
i and

f (2)
m = ∑r

i=k+1 ai ζ
m
i . Of these, f (1)

m is what we need to obtain/approximate, while f (2)
m is a transient,

that is, limm→∞ f (2)
m = 0.
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where the uj are scalars to be determined. It is clear that pn,k(z) is a vector-valued
polynomial of degree at most n + k, while qn,k(z) is a scalar polynomial of degree k.
In addition, for any set of u0, u1, . . . , uk−1,

f (z) − sn,k(z) =
∑k

j=0 uj z
k−j [f (z) − sn+j (z)]

∑k
j=0 uj zk−j

= O(zn+k+1) as z → 0; (4.8)

that is, sn,k(z) interpolates f (z) at z = 0 in the sense of Hermite n + k + 1 times,
thus has a Padé-like behavior; it is not a Padé approximant, however.4

Letting

F n,p = [f n | f n+1 | · · · | f n+p ] (4.9)

and

T̂ n,p =

⎡

⎢⎢⎢⎣

(g, f n) (g, f n+1) · · · (g, f n+p)

(g, f n+1) (g, f n+2) · · · (g, f n+p+1)
...

...
...

(g, f n+p) (g, f n+p+1) · · · (g, f n+2p)

⎤

⎥⎥⎥⎦ , (4.10)

we turn to the issue of determining u0, u1, . . . , uk−1 with the normalization uk = 1.

• For SMPE: Solve by least squares

k−1∑

j=0

f n+j uj = −f n+k ⇔ F n,k−1u
′ = −f n+k . (4.11)

This amounts to solving the minimization problem

min
u′ ‖F n,k−1u

′ + f n+k‖ ⇒ u′ = −F+
n,k−1f n+k, (4.12)

which amounts to forcing the vector
∑k−1

j=0 ujf n+j + f n+k to be orthogonal to
the subspace span{f n, f n+1, . . . , f n+k−1}, and results in the system of normal
equations

k−1∑

j=0

fi,j uj = −fi,k, i = 0, 1, . . . , k − 1; fi,j = (f n+i , f n+j ). (4.13)

The solution for u0, u1, . . . , uk−1 can be achieved precisely as described
in (3.8)–(3.13), by replacing F k−1 there by F n,k−1. [Note that the equa-
tions in (4.11) are not consistent, hence do not have a solution in the regular
sense.]

4Of course, in order for sn,k(z) to be a reasonable approximation to f (z), the uj should depend on f (z).
Thus, in case only the f j are known, the uj should depend on the f j . This is indeed the case for SMPE,
SMMPE, and STEA.
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• For SMMPE: Choose k linearly independent vectors g1, . . . , gk and demand
that the projection of the vector

∑k−1
j=0 f n+j uj + f n+k onto the subspace

span{g1, . . . , gk} vanish. This results in the system of equations

k−1∑

j=0

fi,j uj = −fi,k, i = 0, 1, . . . , k − 1; fi,j = (gi+1, f n+j ). (4.14)

The solution for u0, u1, . . . , uk−1 can be achieved precisely as described in
(3.17)–(3.19), by replacing F k−1 there by F n,k−1.

• For STEA: Choose a vector g and demand that the projections of the k vectors∑k−1
j=0 f m+j uj + f m+k , m = n, n + 1, . . . , n + k − 1, along g vanish. This

results in the system of equations

k−1∑

j=0

fi,j uj = −fi,k, i = 0, 1, . . . , k − 1; fi,j = (g, f n+i+j ). (4.15)

The solution for u0, u1, . . . , uk−1 can be achieved precisely as described in
(3.20)–(3.21), by replacing the matrix T̂ k−1 there by T̂ n,k−1.

Once u0, u1, . . . , uk−1 have been determined, the zeros ζ
(n,k)
i , i = 1, . . . , k, of

the polynomial u(ζ ) = ∑k
j=0 uj ζ

j (with uk = 1) are the required approximations

to ζi , i = 1, . . . , k.5

The linear equations in (4.13)–(4.15) that produce the uj in (4.7) also result in the
(unified) determinant representation for sn,k(z) from SMPE, SMMPE, and STEA,
given as

sn,k(z) =

∣∣∣∣∣∣∣∣∣∣∣

zksn(z) zk−1sn+1(z) · · · z0sn+k(z)

f0,0 f0,1 · · · f0,k
f1,0 f1,1 · · · f1,k
...

...
...

fk−1,0 fk−1,1 · · · fk−1,k

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

zk zk−1 · · · z0

f0,0 f0,1 · · · f0,k
f1,0 f1,1 · · · f1,k
...

...
...

fk−1,0 fk−1,1 · · · fk−1,k

∣∣∣∣∣∣∣∣∣∣∣

≡ p̂n,k(z)

q̂n,k(z)
, (4.16)

with

fi,j =
⎧
⎨

⎩

(f n+i , f n+j ) for SMPE,
(gi+1, f n+j ) for SMMPE,
(g, f n+i+j ) for STEA.

(4.17)

5In Section 4.4, we show that the ζi for each of the three methods can also be obtained by solv-
ing an associated generalized eigenvalue problem, without having to solve the polynomial equation
u(ζ ) = ∑k

j=0 uj ζ
j = 0.
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4.3 Montessus- and König-type convergence theory

The following theorem from [20] concerns the convergence properties of all three
interpolation procedures as n → ∞with k fixed.We also note that an interesting phe-
nomenon takes place concerning the ζi when the vectors ai are mutually orthogonal;
see (4.21)–(4.22) and also Remark 1 following the statement of the theorem.

Theorem 4.1 Let {f m} and f (z) be as in (4.1)–(4.5), and that, for some k < r ,

|ζk| > |ζk+1| ⇔ |zk| < |zk+1|.
Assume also that

a1, . . . , ak are linearly independent for SMPE and SMMPE,
∣∣∣∣∣∣∣∣∣

(g1, a1) (g1, a2) · · · (g1, ak)

(g2, a1) (g2, a2) · · · (g2, ak)
...

...
...

(gk, a1) (gk, a2) · · · (gk, ak)

∣∣∣∣∣∣∣∣∣

�= 0 for SMMPE,

(g, ai ) �= 0, i = 1, . . . , k, for STEA.

Then the following are true:

1. Define Kk = {z : |z| < |zk+1|}. Then sn,k(z) exists for all sufficiently large
n. It converges to f (z) as n → ∞ uniformly in z, in every compact subset of
Kk \ {z1, . . . , zk}, such that

sn,k(z) = f (z) + O(|z/zk+1|n) as n → ∞. (4.18)

2. The polynomial qn,k(z) exists for all sufficiently large n and

lim
n→∞ qn,k(z) =

k∏

i=1

(1 − ζiz)

as in

qn,k(z) =
k∏

i=1

(1 − ζiz) + O(|ζk+1/ζk|n) as n → ∞. (4.19)

qn,k(z) has k zeros z
(n,k)
1 , . . . , z

(n,k)
k , that converge to the poles z1, . . . , zk , as in

z
(n,k)
i − zi = O(|ζk+1/ζi |n) as n → ∞, i = 1, . . . , k. (4.20)

In case the vectors ai are mutually orthogonal, that is, (ai , aj ) = 0 if i �= j ,
these results for SMPE improve to read

qn,k(z) =
k∏

i=1

(1 − ζiz) + O(|ζk+1/ζk|2n) as n → ∞ (4.21)

and

z
(n,k)
i − zi = O(|ζk+1/ζi |2n) as n → ∞, i = 1, . . . , k. (4.22)
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3. The residues of sn,k(z) at its poles z
(n,k)
i , namely, w

(n,k)
i = Res sn,k(z)

∣∣
z=z

(n,k)
i

,

converge to the residues of f (z) at its poles zi , as in

w
(n,k)
i = −ziai + O(|ζk+1/ζi |n) as n → ∞, i = 1, . . . , k. (4.23)

Thus, there holds

ai = −w
(n,k)
i /z

(n,k)
i + O(|ζk+1/ζi |n) as n → ∞, i = 1, . . . , k. (4.24)

4. When k = r , we have

z
(n,r)
i = zi ⇒ ζ

(n,r)
i = ζi, i = 1, . . . , r .

We also have

w
(n,r)
i = wi ⇒ w

(n,r)
i /z

(n,r)
i = −ai , i = 1, . . . , r .

That is, the ζi and ai are reproduced exactly when k = r .6

Remarks:

1. By the relations ζi = 1/zi and ζ
(n,k)
i = 1/z(n,k)

i , the results in (4.20) and (4.22)

concerning the convergence of the z
(n,k)
i are, of course, the same as

ζ
(n,k)
i − ζi = O(|ζk+1/ζi |n) as n → ∞, i = 1, . . . , k, (4.25)

in general, and

ζ
(n,k)
i − ζi = O(|ζk+1/ζi |2n) as n → ∞, i = 1, . . . , k, (4.26)

respectively, in the case of SMPE when the ai are mutually orthogonal. No
change takes place in (4.23)–(4.24), however.

2. When |ζ1| = · · · = |ζk|, ζ
(n,k)
1 , . . . , ζ

(n,k)
k converge to the respective ζi at the

same rate, namely,

ζ
(n,k)
i −ζi =O(|ζk+1/ζ1|cn) as n → ∞; c=

{
2 if (ai , aj ) = 0 when i �=j,

1 otherwise.

As for the residues, we have

− ζ
(n,k)
i w

(n,k)
i = ai + O(|ζk+1/ζ1|n) as n → ∞. (4.27)

(See the case described in footnote.3)
3. To determine the uj , we need only (i)f m, n ≤ m ≤ n + k, for SMPE and

SMMPE, and (ii) f m, n ≤ m ≤ n + 2k − 1, for STEA. On the other hand, for
sn,k(z) in all three cases, we also need f m, 0 ≤ m ≤ n − 1. Therefore, we may
be led to think that these extra f m will also be needed for computing the residues
of f n,k(z). This is not the case, however, as we show next.

Letting

sn+j (z) = sn−1(z) + znxn,j (z), xn,j (z) =
n+j∑

i=n

f iz
i−n,

6We are thus back precisely at the vector versions of Prony’s algorithm developed in Section 3.
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we can express sn,k(z) in (4.7) as

sn,k(z) = sn−1(z) + zn

∑k
j=0 uj z

k−jxn,j (z)

qn,k(z)

= sn−1(z) + zn

∑k
p=0 hp,k(z)f n+p

qn,k(z)
, hp,k(z) =

k∑

j=p

uj z
k−j+p.

As a result,

Res sn,k(z)
∣∣
z=z

(n,k)
i

= zn

∑k
p=0 hp,k(z)f n+p

q ′
n,k(z)

∣∣∣∣
z=z

(n,k)
i

,

since the residue of sn−1(z) at every z is zero. Thus, the residues of f n,k(z) at

the poles z
(n,k)
i do not depend on f 0, f 1, . . . , f n−1.

4. These results show that, by taking n sufficiently large and by fixing k, we can
use {f m}n+k

m=n in case of SMPE and SMMPE and {f m}n+2k−1
m=n in case of STEA

to approximate (ζi, ai ) by (ζ
(n,k)
i , a

(n,k)
i ), i = 1, . . . , k. The rate of convergence

(as n increases) is best for (ζ1, a1), followed by (ζ2, a2), and so on.
5. The approach we have presented in this section is valid when the f m satisfy

f m =
r∑

i=1

aiζ
m
i + rm; rm = O(ρm) as m → ∞,

where
|ζ1| ≥ |ζ2| ≥ · · · ≥ |ζr | > ρ for some ρ > 0.

The first three parts of Theorem 4.1 hold in this case, both (i) when k < r and
(ii) when k = r with |ζr+1| ≡ ρ. Part 4 does not hold.

6. The approach we have presented in this section is valid also when the f m satisfy

f m ∼
∞∑

i=1

aiζ
m
i as m → ∞,

where
|ζ1| ≥ |ζ2| ≥ · · · , lim

i→∞ ζi = 0,

by which we mean
∥∥∥∥f m −

s−1∑

i=1

aiζ
m
i

∥∥∥∥ = O(|ζs |m) as m → ∞, ∀ s ≥ 0.

Theorem 4.1 holds in its entirety in this case.
7. In all cases, the vectors f m can be in an infinite dimensional inner product space

(for SMPE) or a normed space (for SMMPE and STEA). In particular, f m can
be functions fm(x) that are members of the L2 space of functions with inner
product (f i , f j ) = ∫ b

a
w(x)fi(x)fj (x) dx, for example. See [20] for details.

8. All the above concerning STEA is applicable when N = 1, that is, when the f m

(and, of course, the ai) are scalars. In this case, we are back at Padé approximants
hence Prony’s algorithm when k = r in Theorem 4.1. In addition, everything
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that we have mentioned in the preceding remarks applies to this case without any
changes.

9. In Section 3, one of the methods we suggested for determining the vector
u = [u0, u1, . . . , uk]T was based on the SVD of the matrix F k via (3.14). For
the reduced problem we have considered in this section, we now propose to
determine u via the SVD of the matrix F n,k = [f n | f n+1 | · · · | f n+k ] as the
solution to the constrained minimization problem

min
u

‖F n,ku‖ subject to ‖u‖ = 1

precisely as described in Section 3. With u obtained this way, (i) we compute
the approximations ζ

(n,k
i as the roots of the polynomial u(ζ ) = ∑k

j=0 uj ζ
j ,

(ii) we form the rational approximation sn,k(z) precisely as in (4.6)–(4.7), and
(iii) we proceed to the approximation of the ai via ai ≈ −w

(n,k)
i /z

(n,k)
i , where

w
(n,k)
i = Res sn,k(z)

∣∣
z=z

(n,k)
i

, with z
(n,k)
i = 1/ζ (n,k)

i .

4.4 A related generalized eigenvalue problem

We have seen that the poles of the rational functions sn,k(z), that is, the zeros z
(n,k)
i =

1/ζ (n,k)
i of the denominator polynomials qn,k(z) in (4.7), are the required approxi-

mations to zi = 1/ζi , i = 1, . . . , k. Since q̂n,k(z), the denominator determinant of
sn,k(z) in (4.16)–(4.17) is a constant multiple of qn,k(z), these z

(n,k)
i = 1/ζ (n,k)

i are
also the zeros of q̂n,k(z). Making the substitution z = 1/ζ in these denominator deter-
minants, we have that the ζ

(n,k)
i are the solution to ζ kq̂n,k(1/ζ ) = detM(ζ ) = 0,

where

M(ζ ) =

⎡

⎢⎢⎢⎢⎢⎣

ζ 0 ζ 1 · · · ζ k

f0,0 f0,1 · · · f0,k
f1,0 f1,1 · · · f1,k
...

...
...

fk−1,0 fk−1,1 · · · fk−1,k

⎤

⎥⎥⎥⎥⎥⎦
. (4.28)

Let us now preform the following elementary column transformations on M(ζ ),
which do not change the value of detM(ζ ):

For i = k, k − 1, . . . , 1 do
Multiply column i by ζ and subtract from column i + 1 and overwrite
column i + 1.

end do (i)

As a result of these column operations, which do not change the value of
ζ kq̂n,k(1/ζ ), we obtain ζ kq̂n,k(1/ζ ) = det M̂(ζ ) = 0, where

M̂(ζ ) =

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
f0,0 f0,1 − ζf0,0 f0,2 − ζf0,1 · · · f0,k − ζf0,k−1
f1,0 f1,1 − ζf1,0 f1,2 − ζf1,1 · · · f1,k − ζf1,k−1
...

...
...

...
fk−1,0 fk−1,1 − ζfk−1,0 fk−1,2 − ζfk−1,1 · · · fk−1,k − ζfk−1,k−1

⎤

⎥⎥⎥⎥⎥⎦
.

(4.29)
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By expanding det M̂(ζ ) with respect to its first row, we finally obtain the following
generalized eigenvalue problem satisfied by ζ

(n,k)
i , i = 1, . . . , k:

det(M1 − ζM0) = 0, (4.30)

where

M0 =

⎡

⎢⎢⎢⎣

f0,0 f0,1 · · · f0,k−1
f1,0 f1,1 · · · f1,k−1
...

...
...

fk−1,0 fk−1,1 · · · fk−1,k−1

⎤

⎥⎥⎥⎦ (4.31)

and

M1 =

⎡

⎢⎢⎢⎣

f0,1 f0,2 · · · f0,k
f1,1 f1,2 · · · f1,k
...

...
...

fk−1,1 fk−1,2 · · · fk−1,k

⎤

⎥⎥⎥⎦ . (4.32)

This problem can be solved by using standard numerical techniques.
We next show that, when applying the SMPE approach, the generalized eigenvalue

problem we have just discovered can also be formulated more simply in terms of
the QR factorization of the matrix F n,k , which we compute when implementing the
SMPE approach anyway.

Theorem 4.2 Let the QR factorization of the matrix F n,k = [f n|f n+1| · · · |f n+k]
be given as

F n,k = QkRk, Qk unitary, Rk upper triangular,

withQk andRk precisely of the forms in (3.10)–(3.11). Then, in the SMPE approach,

the ζ
(n,k)
i , i = 1, . . . , k, are also the solution of the generalized eigenvalue problem

det(N1 − ζN0) = 0, (4.33)

where N0 is obtained from Rk by crossing out the last column and the last row, while
N1 is obtained from Rk by crossing out the first column and the last row, that is,

N0 = Rk−1 =

⎡

⎢⎢⎢⎣

r00 r01 · · · r0,k−1
r11 · · · r1,k−1

. . .
...

rk−1,k−1

⎤

⎥⎥⎥⎦ (4.34)

and

N1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

r01 r02 · · · r0,k−1 r0k
r11 r12 · · · r1,k−1 r1k

. . .
. . .

...
...

. . .
...

...
rk−1,k−1 rk−1,k

⎤

⎥⎥⎥⎥⎥⎥⎦
. (4.35)
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Proof We start by noticing that

M0 = F ∗
n,k−1F n,k−1, M1 = F ∗

n,k−1F n+1,k−1.

Invoking now the that F n,k−1 = Qk−1Rk−1, we have

M0 = (Qk−1Rk−1)
∗Qk−1Rk−1 = R∗

k−1Rk−1 = R∗
k−1N0. (4.36)

Next, by the fact that

F n+1,k−1 = [Qk−1|qk]
[

N1

rkke
T
k

]
, ek = [0, 0, . . . , 0, 1]T ∈ C

k,

and that Q∗
k−1qk = 0, we have

M1 = (Qk−1Rk−1)
∗[Qk−1|qk]

[
N1

rkke
T
k

]
= R∗

k−1[I k×k|0]
[

N1

rkke
T
k

]
= R∗

k−1N1.

(4.37)
Substituting (4.36) and (4.37) in (4.30), and invoking the fact that Rk−1 is square and
nonsingular, we obtain (4.33).

5 Computational aspects of the new Prony-typemethods

We now summarize the computational aspects of the methods suggested by the
Montessus- and König-type convergence theories presented in Theorem 4.1 for the
vector-valued rational approximations sn,k summarized in Section 4.2. With the
sequence of vectors {f m} as in (4.1)–(4.2), to approximate the first k of the ζi and
the corresponding ai , we proceed as follows:

1. Determination of the uj

• When a1, . . . , ak are linearly independent:
Input the vectors f m, m = n, n + 1, . . . , n + k.

– Solve the (usually inconsistent) N × k linear system in (4.11) for
u0, u1, . . . , uk−1 by least squares as in (4.12) (using QR factorization of
the matrix F n,k). Set uk = 1. This is the SMPE approach.

– Choose linearly independent vectors g1, . . . , gk and form the k × k lin-
ear system in (4.14), and solve it for u0, u1, . . . , uk−1. Set uk = 1. This
is the SMMPE approach.

• When a1, . . . , ak are linearly dependent:
Input the vectors f m, m = n, n + 1, . . . , n + 2k − 1.
Choose a nonzero vector g and form the k × k linear system in (4.14), and
solve it for u0, u1, . . . , uk−1. Set uk = 1. This is the STEA approach.

2. Computation of the approximations ζ
(n,k)
i to ζi, i = 1, . . . , k

With the uj determined, compute the approximations ζ
(n,k)
i to the ζi as the zeros

of the polynomial u(ζ ) = ∑k
j=0 uj ζ

j .
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3. Computation of the approximations a
(n,k)
i to ai , i = 1, . . . , k

With the uj and the ζ
(n,k)
i available, compute the approximations a

(n,k)
i to the

ai , i = 1, . . . , k, via

a
(n,k)
i =−

[
zn−1

∑k
p=0 hp,k(z)f n+p

∑k
j=0(k − j)uj zk−j−1

]∣∣∣∣
z=1/ζ (n,k)

i

, hp,k(z)=
k∑

j=p

uj z
k−j+p.

(5.1)

6 Numerical examples

In this section, we provide two examples that confirm some of the claims made in
Theorem 4.1.

Example 6.1 Consider the vector sequence {f m}, where f m = ∑8
i=1 aiζ

m
i , m =

0, 1, . . . , where

ζ1 = −1, ζ2 = −i, ζ3 = i, ζ4 = 1, ζ5 = −1/2, ζ6 = −i/2, ζ7 = i/2, ζ8 = 1/2,

and

a1 = [1, 1, 1, 1, 1, 1, 1, 1]T ,

a2 = [1, −1, 1, −1, 1, −1, 1, −1]T ,

a3 = [1, 1, −1, −1, 1, 1, −1, −1]T ,

a4 = [1, −1, −1, 1, 1, −1, −1, 1]T ,

a5 = [1, 1, 1, 1, −1, −1, −1, −1]T ,

a6 = [1, −1, 1, −1, −1, 1, −1, 1]T ,

a7 = [1, 1, −1, −1, −1, −1, 1, 1]T ,

a8 = [1, −1, −1, 1, −1, 1, 1, −1]T .
Note that the vectors ai are the consecutive columns of the Hadamard matrix H8
and hence are mutually orthogonal.7 Note also that ζ1, . . . , ζ4 are on the unit circle,
whereas ζ5, . . . , ζ8 are on the circle with radius 1/2, hence in the interior of the unit
circle.

First, we applied the SMPE approach to this example with k = 8 as explained in
Section 3 and obtained all the ζi with close to machine precision.

Next, we applied the SMPE approach with k = 4 and n = 5, 10, 15, 20. The
results of the computations are given in Table 1. Note that, Theorem 4.1 applies,
and, by (4.26) and (4.27), there hold limn→∞ ζ

(n,k)
i = ζi and limn→∞ a

(n,k)
i = ai ,

i = 1, . . . , 4, such that

ζ
(n,k)
i − ζi = O(2−2n)

a
(n,k)
i − ai = O(2−n)

as n → ∞, since |ζ5/ζi | = 1/2, i = 1, . . . , 4.

7For Hadamard matrices, see Hall [9], for example.
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Table 1 Numerical results for Example 6.1

n n = 5 n = 10 n = 15 n = 20

|ζ1 − ζ
(n,4)
1 | 2.29e − 04 2.24e − 07 2.18e − 10 2.13e − 13

‖a1 − a
(n,4)
1 ‖∞ 1.70e − 02 3.58e − 04 1.53e − 05 3.48e − 07

|ζ2 − ζ
(n,4)
2 | 2.29e − 04 2.24e − 07 2.18e − 10 2.13e − 13

‖a2 − a
(n,4)
2 ‖∞ 1.70e − 02 3.58e − 04 1.53e − 05 3.48e − 07

|ζ3 − ζ
(n,4)
3 | 2.29e − 04 2.24e − 07 2.18e − 10 2.13e − 13

‖a3 − a
(n,4)
3 ‖∞ 1.70e − 02 3.58e − 04 1.53e − 05 3.48e − 07

|ζ4 − ζ
(n,4)
4 | 2.29e − 04 2.24e − 07 2.18e − 10 2.13e − 13

‖a4 − a
(n,4)
4 ‖∞ 1.70e − 02 3.58e − 04 1.53e − 05 3.48e − 07

Example 6.2 Consider the vector sequence {f m}, where f m = ∑8
i=1aiζ

m
i , m =

0, 1, . . . , where

ζ1 = −1, ζ2 = −i, ζ3 = i, ζ4 = 1, ζ5 = −1/2, ζ6 = −i/2, ζ7 = i/2, ζ8 = 1/2,

as in Example 6.1, and

a1 = [1, 1, 1, 1, 1, 1, 1, 1]T ,

a2 = [2, 2, 2, 2, 2, 2, 2, 2]T
a3 = [1, 1/2, 1, 1/2, 1, 1/2, 1, 1/2]T ,

a4 = [−2, −1, −2, −1, −2, −1, −2, −1]T ,

a5 = [1, 2, 1, 2, 1, 2, 1, 2]T ,

a6 = [1, 1, 1, 1, 2, 2, 2, 2]T ,

a7 = [2, 2, 2, 2, 1, 1, 1, 1]T ,

a8 = [3, 2, 3, 2, 3, 2, 3, 2]T .
Note that the vectors a1, . . . , a8 form a linearly dependent set, a1, a3, and a6

being linearly independent. Actually, we have a2 = 2a1, a4 = −2a3, a5 =
3a1 − 2a3, a7 = 3a1 − a6, and a8 = a1 + 2a3. Thus, a1, . . . , a4 form a linearly
dependent set too. Note also that, as in Example 6.1, ζ1, . . . , ζ4 are on the unit circle,
whereas ζ5, . . . , ζ8 are on the circle with radius 1/2, hence in the interior of the unit
circle.

First, we applied the STEA approach to this example with k = 8 as explained in
Section 3 and obtained all the ζi with close to machine precision.

Next, we applied the STEA approach with k = 4 and n = 5, 10, 15, 20 also
choosing g = [1, 1, . . . , 1]T . [Note that, with this choice of g, (g, ai ) �= 0, for
i = 1, . . . , 8, as required in the STEA approach.] The results of the computations
are given in Table 2. Note that, Theorem 4.1 applies, and, by (4.25) and (4.27), there
hold limn→∞ ζ

(n,k)
i = ζi and limn→∞ a

(n,k)
i = ai , i = 1, . . . , 4, such that

ζ
(n,k)
i − ζi = O(2−n)

a
(n,k)
i − ai = O(2−n)

as n → ∞, since |ζ5/ζi | = 1/2, i = 1, . . . , 4.
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Table 2 Numerical results for Example 6.2

n = 5 n = 10 n = 15 n = 20

|ζ1 − ζ
(n,4)
1 | 7.67e − 04 1.22e − 04 4.25e − 06 1.89e − 07

‖a1 − a
(n,4)
1 ‖∞ 1.04e − 02 2.01e − 03 9.30e − 05 8.97e − 06

|ζ2 − ζ
(n,4)
2 | 3.23e − 03 2.40e − 05 3.09e − 06 3.70e − 07

‖a2 − a
(n,4)
2 ‖∞ 1.76e − 02 1.02e − 03 1.29e − 04 9.43e − 06

|ζ3 − ζ
(n,4)
3 | 2.20e − 04 1.29e − 04 5.81e − 06 2.93e − 07

‖a3 − a
(n,4)
3 ‖∞ 2.11e − 02 1.20e − 03 1.61e − 04 1.22e − 05

|ζ4 − ζ
(n,4)
4 | 2.04e − 03 6.40e − 05 8.24e − 06 5.04e − 07

‖a4 − a
(n,4)
4 ‖∞ 6.53e − 02 3.95e − 03 2.28e − 04 1.43e − 05
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