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Abstract
We present the nonconforming virtual element method for the fourth-order singular
perturbation problem. The virtual element proposed in this paper is a variant of the
C0-continuous nonconforming virtual element presented in our previous work and
allows to compute two different projection operators that are used for the construc-
tion of the discrete scheme. We show the optimal convergence in the energy norm for
the nonconforming virtual element method. Further, the lowest order nonconforming
method is proved to be uniformly convergent with respect to the perturbation parame-
ter. Finally, we verify the convergence for the nonconforming virtual element method
by some numerical tests.
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1 Introduction

Let � ⊂ R
2 be a convex polygonal domain with boundary ∂�. We consider the

following fourth-order singular perturbation problem of the form:
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{
ε2�2u − �u = f, in �,

u = ∂u
∂n = 0, on ∂�,

(1.1)

where f ∈ L2(�), n is the unit outward normal vector along the boundary ∂� and
ε is a real number such that 0 < ε ≤ 1. It is obvious that the differential equa-
tion (1.1) formally degenerates to the Poisson equation when ε tends to zero. Hence,
problem (1.1) is a plate model which may degenerate toward an elastic membrane
problem.

For fourth-order problems, C1-continuity must be required in the construction of
conforming finite elements, that makes the element complicated. By contrast, non-
conforming finite elements are of great interest. However, some of them are not
uniformly convergent for problem (1.1) with respect to the perturbation parameter
ε, such as the well-known Morley element [25]. Hence, some modified elements for
problem (1.1) have been proposed in order to obtain the uniform convergence. For
example, Nilssen et al. [26] presented a nine-parameter C0 triangular element. Wang
et al. [30] derived a modified Morley element method by using the triangular Morley
element or rectangular Morley element, where the discrete variational formulation
was changed by the linear or bilinear approximation of finite element functions in
the lower part of the bilinear form. Later, Wang and Meng [29] extended this method
to three dimensions. In fact, the non-C0 rectangular Morley element was shown to
be uniformly convergent in the energy norm with respect to the perturbation param-
eter in [28], where a C0 extended high-order rectangular Morley element was also
presented. Chen et al. [17] proposed two non-C0 nonconforming elements with dou-
ble set parameters. An anisotropic nonconforming element was constructed by the
double set parameter method in [16]. Following [26], Guzman et al. [20] presented a
family of nonconforming elements by adding bubble functions to Lagrange elements.
For further works on nonconforming plate elements with uniform convergency, see
the references [12, 13, 31]. In addition, see [6, 21] for a C0 interior penalty method
or a tailored finite point method.

Recently, the virtual element method (VEM) has aroused a vast concern because
of its high flexibility of the mesh handling and properties of the scheme by avoid-
ing an explicit construction of the discrete shape function. The VEM can deal with
the polygonal meshes, see [4] for the basic principle of VEM. The nonconforming
VEM is also developed in [3] where the nonconforming virtual element is first con-
structed for Poisson problem. Especially for the fourth-order problems, it is much
easier to treat the C1-continuity and construct the virtual element with any order
of convergence. For example, Brezzi and Marini proposed a conforming VEM with
any order of convergence for the plate bending problem in [9]. In [33], we pre-
sented a nonconforming VEM for the plate bending problem, where a C0-continuous
nonconforming virtual element was constructed for any order of accuracy. Like the
classical nonconforming finite elements, it relaxes the continuity requirement for the
function space to some extent. Further, the fully nonconforming virtual element for
fourth-order elliptic problems was designed in [2, 34] by different ways, which can
be taken as the extension of the well-known Morley element to polygonal meshes.
However, the Morley-type virtual element [2, 34] should not be uniformly conver-
gent for problem (1.1) with respect to ε like the Morley element, since they both
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contain the same types of the degrees of freedom. As a generalization of Morley-type
virtual element [2, 34], a uniform construction of the fully Hm-nonconforming vir-
tual elements of any order k is developed for the m-harmonic equation in R

n with
constraints m ≤ n and k ≥ m in [15]. Besides, we also mention that the nonconform-
ing virtual element presented in [3] has been applied to solve other problems such
as general elliptic problems[11], convection-diffusion-reaction problem [5], Stokes
problem [10, 23], linear elasticity problem [32], and parabolic problem [24, 36]. For
further development on nonconforming VEM, we refer to the recent paper [35] where
the divergence-free nonconforming VEM for the Stokes problem is presented.

In this paper, we develop the nonconforming VEM for the fourth-order singu-
lar perturbation problem (1.1) based on the C0-continuous nonconforming virtual
element presented in [33]. Specifically, taking inspiration from the idea of [1, 18],
we enlarge the original shape function space and then use a projection operator to
impose a restrictive condition for the enlarged shape function space. Accordingly, the
modified virtual element space has the same dimension as the original one and the
original degrees of freedom are unisolvent for the modified virtual element space.
Moreover, we are able to compute two different projection operators that are used for
the construction of the discrete scheme. Then we follow the argument in an abstract
framework from [33] and prove the optimal error estimate in the energy norm asso-
ciated with the bilinear form for the proposed nonconforming VEM. It is worth
mentioning that, for the lowest order case k = 2, the error estimate for the proposed
nonconforming method is proved to be uniform with respect to parameter ε. Finally,
we verify the convergence for the nonconforming VEM by two numerical tests. The
first one confirms the optimal convergence for the problem without boundary layers,
and the other reflects the uniform convergence for the problem with boundary layers.

Throughout the paper, let S be any given open subset of �. (·, ·)S and ‖ · ‖S

denote the usual integral inner product and the corresponding norm of both L2(S)

and L2(S)2, respectively. For a positive integer m, we shall use the common notation
for the Sobolev spaces Hm(S) and Hm

0 (S) with the corresponding norms ‖ · ‖m,S

and | · |m,S (see, e.g., [19]). If S = �, the subscript will be omitted. For a given
nonnegative integer k, Pk(S) denotes the space of polynomials of order k or less.

For an edge or element S, we denote |S| its length or area, hS its diameter, and xS

its barycenter. For integer l ≥ 0, let MS
l denote the set of scaled monomials

MS
l =

{(
x − xS

hS

)β
; |β| ≤ l

}
,

where β = (β1, . . . , βd) is the nonnegative multi-index, |β| = β1 + · · · + βd and

xβ = x
β1
1 · · · xβd

d .

2 The continuous problem

In order to define weak solution of problem (1.1), it could be convenient to split the
associated bilinear form a(u, v) as

a(u, v) = ε2a�(u, v) + a∇(u, v) = ε2(D2u, D2v) + (∇u, ∇v).
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In addition, aK
�(u, v), aK∇ (u, v), and aK(u, v) are the restrictions of bilinear forms

a�(u, v), a∇(u, v), and a(u, v) on the subset K , respectively. The weak formulation
of problem (1.1) reads: find u ∈ H 2

0 (�) such that

a(u, v) = (f, v), ∀ v ∈ H 2
0 (�). (2.1)

Associated with the bilinear form a(u, v), we define the energy norm ||| · ||| by
|||v|||2 = ε2|v|22 + |v|21.

Obviously for v ∈ H 2
0 (�), it is indeed a norm. With this choice of norm, it is easy to

see that the bilinear form a(·, ·) is bounded and coercive, i.e., there exist two constants
M and α such that

a(u, v) ≤ M|||u||||||v|||, ∀ u, v ∈ H 2
0 (�),

a(v, v) ≥ α|||v|||2, ∀ v ∈ H 2
0 (�),

where α = M = 1 in the present setting. Hence, Eq. (2.1) has a unique solution, see,
e.g., [19].

3 The nonconforming virtual element

We present the local shape function space for the C0-continuous nonconforming vir-
tual element from [33]. For k ≥ 2 and a convex polygon K with n edges, the local
shape function space V K

h is defined by

V K
h = {v ∈ H 2(K); �2v ∈ Pk−4(K), v|e ∈ Pk(e), �v|e ∈ Pk−2(e), ∀e ⊂ ∂K},

with the usual convention that P−1(K) = P−2(K) = {0}.
As is shown in [33, Section 4.1], a function in V K

h can be uniquely determined by
the following degrees of freedom:

• The values of v(a), ∀ vertex a, (3.1)

• The moments
1

he

∫
e

qvds, ∀q ∈ Me
k−2, ∀ edge e, (3.2)

• The moments
∫

e

q
∂v

∂ne

ds, ∀q ∈ Me
k−2, ∀ edge e, (3.3)

• The moments
1

h2K

∫
K

qvdx, ∀q ∈ MK
k−4, (3.4)

where ne denotes a given unit normal vector of edge e. Here, the dimension of V K
h

and the total number of the above degrees of freedom are

NK
V = n(2k − 1) + 1

2
(k − 2)(k − 3).

Following some ideas in [1, 18], we introduce a new space WK
h to be used in place

of V K
h . To this end, we enlarge V K

h to

Ṽ K
h = {v ∈ H 2(K); �2v ∈ Pk−2(K), v|e ∈ Pk(e), �v|e ∈ Pk−2(e), ∀e ⊂ ∂K}.
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Then the dimension of Ṽ K
h is

ÑK
V = n(2k − 1) + 1

2
k(k − 1)

and a function in Ṽ K
h can be uniquely determined by the following degrees of

freedom:

• The values of v(a), ∀ vertex a, (3.5)

• The moments
1

he

∫
e

qvds, ∀q ∈ Me
k−2, ∀ edge e, (3.6)

• The moments
∫

e

q
∂v

∂ne

ds, ∀q ∈ Me
k−2, ∀ edge e, (3.7)

• The moments
1

h2K

∫
K

qvdx, ∀q ∈ MK
k−2. (3.8)

Using the degrees of freedom (3.5)–(3.8), one can exactly compute aK
�(ψ, q)

when ψ ∈ Ṽ K
h and q ∈ Pk(K). Then we can define a projection operator

�K
� : Ṽ K

h → Pk(K) ⊆ Ṽ K
h by finding the solution �K

�ψ of
⎧⎪⎨
⎪⎩

aK
�(�K

�ψ, q) = aK
�(ψ, q), ∀q ∈ Pk(K),

̂�K
�ψ = ψ̂,∫

∂K
∇�K

�ψds = ∫
∂K

∇ψds,

for any given ψ ∈ Ṽ K
h , such that �K

�v = v for v ∈ Pk(K) and �K
� is computable

from the degrees of freedom (3.5)–(3.8), where the quasi-average ψ̂ is defined by

ψ̂ = 1

n

n∑
i=1

ψ(ai),

and ai (i = 1, 2, . . . , n) are the vertices of K . For the details, see [33].
Finally we restrict Ṽ K

h to a subspace WK
h having the same dimension as the origi-

nal V K
h , but where the moments of orders k − 3 and k − 2 of w and �K

�w coincide
for w ∈ WK

h . More precisely, we set

WK
h =

{
w ∈ Ṽ K

h ; (w − �K
�w, q)K = 0, ∀q ∈ Pk−2(K)/Pk−4(K)

}
, (3.9)

where the symbol Pk−2(K)/Pk−4(K) denotes the subspace of Pk−2(K) containing
polynomials that are L2(K)-orthogonal to Pk−4(K).

Following the discussion in [33, Section 4.3], it is easily verified that the projection
�K

� from WK
h to Pk(K) can still be exactly computed by using only the degrees of

freedom (3.1)–(3.4). Then we have the unisolvence result.

Lemma 3.1 The degrees of freedom (3.1)–(3.4) are unisolvent for WK
h .
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Proof Without checking the independence of the additional 2k − 3 conditions in
Eq. (3.9), the dimension NK

W of WK
h satisfies at least

NK
W ≥ ÑK

V − (2k − 3) = n(2k − 1) + 1

2
(k − 2)(k − 3), (3.10)

where n is the total number of edges of K .
For any given function w ∈ WK

h with the vanishing degrees of freedom (3.1)–
(3.4), it is immediate to see that �K

�w is zero since �K
�w is exactly computed by the

degrees of freedom (3.1)–(3.4). Thus, from the definition (3.9) of WK
h , it yields that

the moments of degrees k−3 and k−2 ofw are also zero onK . This impliesw is zero

as a function in Ṽ K
h with the vanishing degrees of freedom (3.5)–(3.8) and, together

with inequality (3.10), the dimension of WK
h is equal to n(2k−1)+ (k−2)(k−3)/2.

Therefore, the degrees of freedom (3.1)–(3.4) are unisolvent for WK
h .

Remark 3.1 According to the definition of WK
h , for w ∈ WK

h , the L2-projection
P K

k−2w onto the polynomial space Pk−2(K) is computable by the degrees of freedom
(3.1)–(3.4).

In Fig. 1, we show the degrees of freedom for the first two low-order elements
with k = 2 and 3. For any w ∈ WK

h , when k = 2, we have w|e ∈ P2(e) and
�w|e ∈ P0(e), and when k = 3, w|e ∈ P3(e) and �w|e ∈ P1(e), on each edge
e ⊂ ∂K .

Let {Th}h be a family of decompositions of � into polygonal elements and Eh

denote the set of edges of Th, where h stands for the maximum of the diameters of
elements in Th. We also assume that each polygon K ∈ Th is convex such that the
definitions of shape function spaces in Section 3 are meaningful. Following [4], we
make the following assumption on the family of decompositions:

H0 There exists a positive constant r such that, for every h, and every K ∈ Th,

• the ratio between the shortest edge and the diameter hK of K is bigger than
r ,

• K is star-shaped with respect to all the points of a ball of radius ≥ rhK .

Fig. 1 Local degrees of freedom for the first two low-order elements. k = 2 (left) and k = 3 (right)
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For any K ∈ Th, nK (tK) always denotes its unit outward normal (counterclock-
wise tangential) vector along the boundary ∂K . We shall use the notation ne (te) for
a unit normal (tangential) of an edge e ∈ Eh, whose orientation is chosen arbitrarily
but fixed for internal edges and coinciding with the outward normal (tangential) of �

for boundary edges.
For an internal edge e shared by K , L ∈ Th such that ne points from K to L, we

defined the jump of function w through the edge e by

[[w]] = (w|K)|e − (w|L)|e.
For the boundary edge e, set [[w]] = w|e.

Observe that for w ∈ WK
h , the restriction of w to the boundary of K is uniquely

determined by the degrees of freedom (3.1)–(3.2), where K is an element in Th.
Therefore, for every decomposition Th and k ≥ 2, we define the global virtual
element space Wh as

Wh =
{
w ∈ H 1

0 (�); w|K ∈ WK
h , ∀K ∈ Th,

∫
e

q[[ ∂w

∂ne

]]ds = 0,

∀q ∈ Pk−2(e), ∀e ∈ Eh

}
.

According to the previous discussion, the global degrees of freedom for Wh can then
be taken as

• The values of w(a), ∀ internal vertex a, (3.11)

• The moments
1

he

∫
e

qwds, ∀q ∈ Me
k−2, ∀ internal edge e, (3.12)

• The moments
∫

e

q
∂w

∂ne

ds, ∀q ∈ Me
k−2, ∀ internal edge e, (3.13)

• The moments
1

h2K

∫
K

qwdx, ∀q ∈ MK
k−4, ∀ element K . (3.14)

Note that here Wh � H 2
0 (�) but Wh is C0-continuous. Thus, the virtual element

space Wh is nonconforming. As it happens for the local space WK
h , the dimension

of Wh coincides with the total number of degrees of freedom (3.11)–(3.14), which is
given by

N = NV + 2(k − 1)NE + (k − 2)(k − 3)

2
NK,

where NV is the number of internal vertices of Th, NE is the number of internal
edges, and NK is the number of elements. The unisolvence for the local space WK

h

given in Lemma 3.1 implies the unisolvence for the global space Wh.
Next we define an interpolation operator in Wh having optimal approximation

properties. To this end, for each element K ∈ Th, we denote by χi the operator
associated with the ith local degree of freedom, i = 1, 2, . . . , NK

W . It follows easily
from the above construction that for every smooth enough function w, there exists a
unique element wI ∈ WK

h such that

χi(w − wI ) = 0, i = 1, 2, . . . , NK
W .
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For the interpolation error, we have the following estimate, of which the proof is
given in the Appendix.

Lemma 3.2 For every K ∈ Th and every w ∈ Hs(K) with 2 ≤ s ≤ k + 1, it holds
that

‖w − wI‖m,K ≤ Chs−m
K |w|s,K, m = 0, 1, 2.

Remark 3.2 We mention the works from [7, 14] where the interpolation error for the
H 1-conforming virtual element [4] is rigorously proved by different ways. However,
it is not clear whether those techniques used in [7, 14] can be applied for the interpo-
lation error analysis for the C0-continuousH 2-nonconforming virtual element. Thus,
in the Appendix, we display another way to estimate the interpolation error for the
virtual element presented here.

In what follows, we need a lower order estimate for the interpolation error, but the
dependence on the function is weaker. As is shown in [26], following the standard
trace inequality

‖w‖∂K̂ ≤ C‖w‖
1
2

K̂
‖w‖

1
2

1,K̂
, ∀K ∈ Th (3.15)

and the Bramble-Hilbert argument, we obtain

‖w − wI‖1 ≤ Ch
1
2 |w|

1
2
1 |w|

1
2
2 , for w ∈ H 2

0 (�), (3.16)

where K̂ is the reference polygon defined by the transformation x = hK x̂.

Remark 3.3 The proof of trace inequality (3.15) is immediate. To this end, we estab-
lish a virtual triangulation TK̂ of K̂ such that TK̂ is regular and quasi-uniform, and
the size of each triangle is comparable with that of K̂ with hK̂ = 1, which is due to
the mesh assumption H0. Note that each edge of K̂ is a side of a certain triangle in
TK̂ . Thus, for each edge ê of K̂ , we have the following trace inequality:

‖w‖2
ê

≤ C‖w‖Kê
‖w‖1,Kê

, ê ⊂ ∂Kê, Kê ∈ TK̂ ,

where the constant C depends only on the mesh regularity parameter r and the quasi-
uniformity, but is independent of h. Therefore, we have

‖w‖2
∂K̂

=
∑

ê⊂∂K̂

‖w‖2
ê

≤ C
∑

ê⊂∂K̂

‖w‖Kê
‖w‖1,Kê

≤ C‖w‖K̂‖w‖1,K̂ .

In addition, we need to introduce a local approximation with optimal approxima-
tion properties. In view of the mesh regularity assumptionH0, we have the following
result. For the details, see [8].

Lemma 3.3 For every K ∈ Th and every w ∈ Hs(K) with 2 ≤ s ≤ k + 1, there
exists a polynomial wπ ∈ Pk(K) such that

‖w − wπ‖m,K ≤ Chs−m
K |w|s,K, m = 0, 1, 2.
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4 The discretization and error analysis

We are now in a position to construct a symmetric and computable discrete bilinear
form ah(·, ·). To start with, we define �K∇ : WK

h → Pk(K) ⊂ WK
h as the solution of

{
aK∇ (�K∇ ψ, q) = aK∇ (ψ, q), ∀q ∈ Pk(K),

̂�K∇ ψ = ψ̂,
(4.1)

where ψ ∈ WK
h . The projection �K∇ is computable by the degrees of freedom (3.1)–

(3.4). Indeed, we have

aK∇ (ψ, q) = (∇ψ, ∇q)K = −
∫

K

�qψdx +
∫

∂K

∂q

∂nK

ψds. (4.2)

Note that �q ∈ Pk−2(K), then the first term in the right hand side of Eq. (4.2) can
be obtained from the degrees of freedom (3.4) and

∫
K

qψdx =
∫

K

q�K
�ψdx, ∀q ∈ Pk−2(K)/Pk−4(K),

once the projection �K
� has been computed. The second term in the right hand

side of Eq. (4.2) is computable as we can easily compute ψ on each edge e by the
degrees of freedom (3.1)–(3.2). Hence, all terms in the right hand side of Eq. (4.2)
are computable using only the degrees of freedom of ψ .

For each polygon K ∈ Th, we define

aK
h (vh, wh) = ε2aK

�(�K
�vh, �

K
�wh) + ε2h−2

K SK(vh − �K
�vh, wh − �K

�wh)

+aK∇ (�K∇ vh, �
K∇ wh)+SK(vh−�K∇ vh, wh−�K∇ wh), ∀vh, wh ∈WK

h ,

where the term SK(·, ·)will be chosen to be a symmetric and positive definite bilinear
form satisfying

C0a
K
�(vh, vh) ≤ h−2

K SK(vh, vh) ≤ C1a
K
�(vh, vh), ∀vh ∈ ker(�K

�), (4.3)

C0a
K∇ (vh, vh) ≤ SK(vh, vh) ≤ C1a

K∇ (vh, vh), ∀vh ∈ ker(�K∇ ). (4.4)

By using the properties of �K
� and �K∇ , the standard arguments [4, 9] show that

the bilinear form aK
h (·, ·) satisfies the k-consistency and stability, i.e.,

• k-consistency: for all p ∈ Pk(K) and vh ∈ WK
h , it holds that

aK
h (p, vh) = aK(p, vh).

• stability: there exist two positive constants α∗ and α∗, independent of h and ε,
such that

α∗aK(vh, vh) ≤ aK
h (vh, vh) ≤ α∗aK(vh, vh), ∀vh ∈ WK

h .
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The remaining thing is the choice of the bilinear form SK(·, ·) based on the degrees
of freedom such that (4.3–4.4) is satisfied. Observing that the degrees of freedom are
of the same dimension, we set

SK(vh, wh) =
NK

W∑
i=1

χi(vh)χi(wh).

In the usual way, the global bilinear form ah(·, ·) is given by

ah(vh, wh) =
∑

K∈Th

aK
h (vh, wh), ∀vh, wh ∈ Wh.

For the convenience of discussion, we reformulate the bilinear form a(·, ·) as
a(vh, wh) =

∑
K∈Th

aK(vh, wh)

such that it makes sense for vh, wh ∈ Wh.
The definition of the right hand side is simpler than that in [33]. For k ≥ 2, we can

simply take fh on each element K as the L2-projection of the load f onto the space
Pk−2(K), that is,

fh|K = P K
k−2f, K ∈ Th.

Now we introduce the discrete problem: find uh ∈ Wh such that

ah(uh, vh) = (fh, vh), ∀ vh ∈ Wh. (4.5)

Since Wh � H 2
0 (�), the VEM (4.5) is nonconforming. Note that the right hand side

is computable by the degrees of freedom (3.1)–(3.4), since

(fh, vh) =
∑

K∈Th

(P K
k−2f, vh)K =

∑
K∈Th

(f, P K
k−2vh)K

and P K
k−2vh is computable according to Remark 3.1.

In order to measure the error, for any s > 0, we introduce the brokenHs-seminorm

|vh|2s,h =
∑

K∈Th

|vh|2s,K, vh ∈ Wh,

and then define the discrete energy norm |||vh|||h = (ε2|vh|22,h + |vh|21,h)
1
2 , the restric-

tion of which on an element K is denoted by |||vh|||K . It can be shown that for the
space Wh, ||| · |||h is indeed a norm, see [33] for the details.

Following the arguments in [33], we have the following convergence theorem.

Theorem 4.1 The discrete problem (4.5) has a unique solution uh ∈ Wh. More-
over, for every approximation uI of u in Wh and for every approximation uπ of u in
discontinuous piecewise k-order polynomial space, we have

|||u − uh|||h ≤ C(|||u − uI |||h + |||u − uπ |||h + ‖f − fh‖W ′
h
+ Eh), (4.6)

Adv Comput Math (2020)  46: 1919 Page 10 of 23



where C is a positive constant depending only on α∗, α∗ and

‖f − fh‖W ′
h

= sup
vh∈Wh

(f − fh, vh)

|||vh|||h , Eh = sup
vh∈Wh

a(u, vh) − (f, vh)

|||vh|||h .

For ‖f − fh‖W ′
h
, we have the following estimates:

(fh, vh)K − (f, vh)K = (P K
k−2f, vh)K − (f, vh)K

= (P K
k−2f − f, vh − P K

0 vh)K

≤ Chk
K |f |k−1,K |||vh|||K, ∀vh ∈ Wh. (4.7)

Hence, for k ≥ 2, this ensures the optimal O(hk) error bound for data approxima-
tion.

In view of the following analysis, for k = 2, it is useful to obtain a variant
of this estimate (4.7), which is lower order with respect to h but requires a weaker
dependence on the function f . In fact,

(fh, vh)K − (f, vh)K = (P K
0 f, vh)K − (f, vh)K

= (P K
0 f − f, vh − P K

0 vh)K

≤ ChK‖f ‖K |||vh|||K, ∀vh ∈ Wh. (4.8)

The optimal interpolation error and approximation error estimates have been pre-
sented in Lemmas 3.2–3.3. From Theorem 4.1 and (4.7), we know that what remains
to do is to estimate the consistency error for the nonconforming VEM, which will be
presented in the following lemma.

Lemma 4.1 Assume that u ∈ Hk+1(�). Then we have the estimate

Eh ≤ Cεhk−1‖u‖k+1,

where Eh is the consistency error from inequality (4.6).

Proof The proof is the same as in [33, Lemma 5.2]. In order to be convenient for the
following discussion on the uniform convergence, we still give the proof.

For any vh ∈ Wh, from Green’s formula [19, 22], it holds that

∫
K

�u�vhdx =
∫

∂K

�u
∂vh

∂nK

ds −
∫

K

∇�u · ∇vhdx,

∫
K

(
2

∂2u

∂x1∂x2

∂2vh

∂x1∂x2
− ∂2u

∂x2
1

∂2vh

∂x2
2

− ∂2u

∂x2
2

∂2vh

∂x2
1

)
dx

=
∫

∂K

(
∂2u

∂nK∂tK

∂vh

∂tK
− ∂2u

∂t2K

∂vh

∂nK

)
ds.
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Noting that Wh ⊂ H 1
0 (�), then it implies

a(u, vh) − (f, vh) = ε2
∑

K∈Th

∫
∂K

(
�u − ∂2u

∂t2K

)
∂vh

∂nK

ds

= ε2
∑
e∈Eh

∫
e

(
�u − ∂2u

∂t2e

)
[[∂vh

∂ne

]]ds. (4.9)

Since ∫
e

[[∂vh

∂ne

]]pds = 0, ∀p ∈ Pk−2(e), ∀e ∈ Eh,

setting w|e = �u − ∂2u

∂t2e
, then we have

ε2
∫

e

w[[∂vh

∂ne

]]ds = ε2
∫

e

(w − P e
k−2w)[[∂vh

∂ne

− P e
0

(∂vh

∂ne

)
]]ds

≤ ε2‖w − P e
k−2w‖e‖[[∂vh

∂ne

− P e
0

(∂vh

∂ne

)
]]‖e, (4.10)

where P e
m denotes the L2-projection onto the space Pm(e) on edge e.

Using standard approximation estimates [19], it implies that, for each internal edge
e = ∂K+ ∩ ∂K−,

‖w − P e
k−2w‖e ≤ Chk− 3

2 ‖u‖k+1,K+∪K−, (4.11)

‖[[∂vh

∂ne

− P e
0

(∂vh

∂ne

)
]]‖e ≤ Ch

1
2 (‖vh‖22,K+ + ‖vh‖22,K−)

1
2 . (4.12)

For boundary edges, the adjustment is obvious.
Hence, combining (4.9)–(4.12), the proof is concluded.

Combining Lemmas 3.2–3.3, (4.7), Lemma 4.1, and Theorem 4.1, we obtain the
convergence for the nonconforming VEM (4.5) as follows.

Theorem 4.2 Assume f ∈ L2(�) ∩ Hk−1(�) and u ∈ H 2
0 (�) ∩ Hk+1(�) with

k ≥ 2. For the nonconforming VEM (4.5), we have the following error estimate

|||u − uh|||h ≤
{

C(εhk−1 + hk)|u|k+1 + hk‖f ‖k−1,

Chk−1(ε|u|k+1 + |u|k) + hk‖f ‖k−1.
(4.13)

From Theorem 4.2, we see that for problems without boundary layers, the estimate
(4.13) ensures the first-order convergence of the lowest order VEM. Further, it arrives
at the second-order convergence as ε tends to 0. However, the estimate (4.13) is not
uniform in ε for problems with boundary layers. Hence, we shall treat the dependence
of |u|2 and |u|3 on ε in the remaining.

Let u0 be the solution of the following boundary value problem:{ −�u0 = f, in �,

u0 = 0, on ∂�.

The following a priori regular estimate was presented in [26].
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Lemma 4.2 If � is convex, then

|u|2 + ε|u|3 ≤ Cε−1/2‖f ‖ and |u − u0|1 ≤ Cε1/2‖f ‖
for all f ∈ L2(�).

Theorem 4.3 Assume f ∈ L2(�) and u ∈ H 2
0 (�) ∩ H 3(�) is the corresponding

weak solution of Eq. (2.1). For the nonconforming VEM (4.5) with k = 2, we have
the following error estimate

|||u − uh|||h ≤ Ch1/2‖f ‖.

Proof We first show that

|||u − uI |||h ≤ Ch1/2‖f ‖. (4.14)

From the triangle inequality, Lemma 4.2, and the regularity ‖u0‖2 ≤ C‖f ‖, we
obtain

|u − uI |1 ≤ |u − u0 − (u − u0)I |1 + |u0 − (u0)I |1
≤ Ch

1
2 |u − u0|

1
2
1 |u − u0|

1
2
2 + Ch|u0|2

≤ Ch
1
2 ε

1
4 ‖f ‖ 1

2 (|u|
1
2
2 + |u0|

1
2
2 ) + Ch‖f ‖

≤ Ch
1
2 ε

1
4 ‖f ‖ 1

2 (ε− 1
4 ‖f ‖ 1

2 + ‖f ‖ 1
2 ) + Ch‖f ‖

≤ Ch
1
2 ‖f ‖ + Ch‖f ‖

≤ Ch
1
2 ‖f ‖,

where we have also used the fact that ε ≤ 1, h ≤ 1 and inequality (3.16).
For ε|u − uI |2,h, by applying Lemmas 3.2 and 4.2, it is not difficult to see that

ε|u − uI |2,h = ε|u − uI |
1
2
2,h|u − uI |

1
2
2,h

≤ Cε|u|
1
2
2 h

1
2 |u|

1
2
3

≤ Cεh
1
2 ε− 1

4 ‖f ‖ 1
2 ε− 3

4 ‖f ‖ 1
2

≤ Ch
1
2 ‖f ‖.

Similarly, we can obtain

|||u − uπ |||h ≤ Ch1/2‖f ‖. (4.15)

As in the proof of Lemma 4.1, we show that

a(u, vh) − (f, vh) = ε2
∑

K∈Th

∫
∂K

(
�u − ∂2u

∂t2K

)
∂vh

∂nK

ds

= ε2
∑
e∈Eh

∫
e

(
�u − ∂2u

∂t2e

)
[[∂vh

∂ne

]]ds.
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Fig. 2 The uniform rectangular (left) and unstructured polygonal (right) meshes

Setting w|e = �u − ∂2u

∂t2e
, then for the internal edge e = ∂K+ ∩ ∂K−, we use the

trace inequality (3.15) and the estimates (4.12) to obtain

ε2
∫

e

w[[∂vh

∂ne

]]ds = ε2
∫

e

(w − P K
0 w)[[∂vh

∂ne

− P e
0

∂vh

∂ne

]]ds

≤ ε2‖w − P K
0 w‖e‖[[∂vh

∂ne

− P e
0

∂vh

∂ne

]]‖e

≤ Cε2‖w‖
1
2
K |w|

1
2
1,Kh

1
2 (‖vh‖22,K+ + ‖vh‖22,K−)

1
2

≤ Cε2|u|
1
2
2,K |u|

1
2
3,Kh

1
2 (‖vh‖22,K+ + ‖vh‖22,K−)

1
2

≤ Ch
1
2 ε|u|

1
2
2,K |u|

1
2
3,K |||vh|||K,

where K is K+ or K−. For boundary edges, the adjustment is obvious. Then we have
the estimate

Eh ≤ Ch
1
2 ‖f ‖,

which, together with (4.14–4.15) and (4.8), concludes the proof.

Table 1 The relative error on the rectangular meshes for Example 5.1

ε

h
0.353553 0.176777 0.088388 0.044194 0.022097 0.011049 Rate

20 0.823790 0.764662 0.461869 0.243241 0.123256 0.061835 0.9952

2−2 0.331237 0.460695 0.353670 0.206225 0.107778 0.054513 0.9835

2−4 0.301400 0.064592 0.024436 0.014416 0.007656 0.003889 0.9773

2−6 0.350617 0.096449 0.024485 0.006796 0.002405 0.001054 1.1902

2−8 0.352104 0.097687 0.024683 0.005979 0.001302 0.000303 2.1035

2−10 0.352371 0.097978 0.024970 0.006259 0.001553 0.000378 2.0387

Adv Comput Math (2020)  46: 1919 Page 14 of 23



Table 2 The relative error on the polygonal meshes for Example 5.1

ε

h
0.355304 0.197791 0.102512 0.049521 0.023756 0.012230 Rate

20 1.134582 0.915272 0.516979 0.268102 0.138576 0.069649 1.0362

2−2 0.322225 0.319815 0.196424 0.103555 0.053761 0.026952 1.0400

2−4 0.320965 0.073840 0.024606 0.011891 0.006268 0.003062 1.0790

2−6 0.361906 0.100991 0.029972 0.010308 0.004418 0.002124 1.1031

2−8 0.361873 0.097818 0.025555 0.005947 0.001276 0.000513 1.3724

2−10 0.362132 0.098193 0.025956 0.006340 0.001570 0.000381 2.1328

5 Numerical tests

In order to confirm the theoretical results developed in this paper, we carry out some
numerical tests for two different kinds of meshes, which are the uniform rectangular
and unstructured polygonal meshes, see Fig. 2. For the generation of the polygonal
meshes, we use the code PolyMesher [27]. For simplicity, we use the lowest order
element (k = 2) to solve problem (1.1) on the domain � = (0, 1) × (0, 1) in all
tests. The relative error is computed in the discrete energy norm

(ah(uh − uI , uh − uI )

ah(uI , uI )

) 1
2
.

For each fixed ε, the convergence rate with respect to h is computed by using the
numerical results over the last two meshes.

Example 5.1 [26] Consider problem (1.1) with f = ε2�2u − �u and u =
(sin(πx) sin(πy))2. We compute the relative error for different values of ε and mesh
size h. The numerical results for the rectangular and polygonal meshes are listed in
Tables 1 and 2, respectively.

As the exact solution u of Example 5.1 has no boundary layers, from Tables 1
and 2 we see that the nonconforming VEM (4.5) ensures the first-order convergence

Table 3 The relative error on the rectangular meshes for Example 5.2

ε

h
0.353553 0.176777 0.088388 0.044194 0.022097 0.011049 Rate

100 0.077916 0.055992 0.032847 0.017397 0.008867 0.004509 0.9757

10−1 0.084437 0.054721 0.048862 0.029083 0.015255 0.007726 0.9816

10−2 0.526614 0.367667 0.220245 0.126494 0.071078 0.037377 0.9273

10−3 0.593512 0.481776 0.360651 0.247767 0.152596 0.077915 0.9698

10−4 0.600000 0.494843 0.383800 0.284407 0.203865 0.141750 0.5243

10−5 0.600642 0.496133 0.386085 0.288087 0.209448 0.149928 0.4824
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Table 4 The relative error on the polygonal meshes for Example 5.2

ε

h
0.355304 0.197791 0.102512 0.049521 0.023756 0.012230 Rate

100 0.217230 0.162498 0.094796 0.050149 0.026121 0.013336 1.0125

10−1 0.058715 0.063935 0.045202 0.027532 0.013086 0.006316 1.0972

10−2 0.442064 0.303586 0.189184 0.113090 0.067755 0.036239 0.9425

10−3 0.504951 0.393573 0.307208 0.201594 0.120931 0.060807 1.0355

10−4 0.511565 0.404339 0.330023 0.231290 0.163008 0.112622 0.5569

10−5 0.512223 0.405411 0.332291 0.234325 0.167683 0.119197 0.5140

rate for all ε ∈ (0, 1). More precisely, as ε becomes small, it yields the second-
order convergence rate. Hence, these numerical results are in fact consistent with the
theoretical results presented in Theorem 4.2.

Example 5.2 [28] Consider problem (1.1) with f = 2x2 and u = ε(e−x1/ε +
e−x2/ε) − x2

1x2. The corresponding Dirichlet boundary condition holds. We note that
the exact solution u has boundary layers for sufficiently small ε. We compute the
relative error for different values of ε and mesh size h. The numerical results for the
rectangular and polygonal meshes are listed in Tables 3 and 4. From Tables 3 and 4,
we can see that the nonconforming VEM (4.5) ensures the 1/2-order convergence as
ε → 0. This is consistent with the theoretical result presented in Theorem 4.3.
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Appendix

First by using the bubble functions, we show some inverse inequalities for the local

virtual space Ṽ K
h on every K ∈ Th, of which the definition can be found in Section 3.

Similar ideas can be found in [14, 15]. These inverse inequalities are used to prove
the interpolation error estimates for the C0-continuous H 2-nonconforming virtual
element.

Lemma A.1 For every given K ∈ Th, it holds that

‖�2v‖K ≤ Ch−2
K ‖�v‖K, ∀v ∈ Ṽ K

h . (A.1)
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Proof For a given K ∈ Th, let λe ∈ P1(K) be the function associated with the edge
e of K defined by setting λe = −α(x − xe) · nK/|e| such that λe = 0 on e, where
the constant α > 0 is chosen to make sure ‖λe‖∞,K = 1. bK is the bubble function
on K obtained by multiplying all the edge functions λe, so bK vanishes on ∂K and
bK ≥ 0 in K where we have also used the fact that K is convex. With the help of bK ,

for any given v ∈ Ṽ K
h , we have

C‖�2v‖2K ≤ (b2K�2v, �2v)K = (�(b2K�2v), �v)K ≤ |b2K�2v|2,K‖�v‖K .

Observing the fact that �2v ∈ Pk−2(K), we use the inverse inequality on polynomial
space [7] to obtain

‖�2v‖2K ≤ Ch−2
K ‖�2v‖K‖�v‖K,

which leads to the inverse inequality (A.1).

Further, we use the edge bubble function to prove the so-called trace inverse

inequality for the local virtual space Ṽ K
h on every K ∈ Th.

Lemma A.2 For every given K ∈ Th and e ⊂ ∂K , it holds that

‖�v‖e ≤ Ch
− 1

2
K ‖�v‖K, ∀v ∈ Ṽ K

h . (A.2)

Proof For any given edge e of K , let be = bK/λe where bK is the bubble function on
K and λe the edge function defined in the proof of Lemma A.1. Obviously it holds
that be = 0 on ∂K\e and be ∈ Pn−1(K) in K , where n is the number of edges of K .

For any given v ∈ Ṽ K
h , the norm equivalence on polynomial space on edge yields

‖�v‖e ≤ C‖be�v‖e, (A.3)

since �v ∈ Pk−2(e) on e. Moreover, we observe that

�(be�v) ∈ H−1(K) in K, be�v ∈ Pk+n−3(e) on e, be�v = 0 on ∂K\e,
be�v ∈ C0(∂K) on ∂K .

Thus, we have be�v ∈ H 1(K). Further, the trace inequality and the Poincaré-
Friedrichs inequality [7] imply

‖be�v‖e ≤ Ch
1
2
K |be�v|1,K,

which, together with inequality (A.3), leads to

‖�v‖e ≤ Ch
1
2
K |be�v|1,K . (A.4)

Let A = be�Ṽ K
h and w = be�v ∈ A. Because A is a finite dimensional subspace

of L2(K), it holds
C|w|21,K ≤ (bK∇w, ∇w)K,

where the constant C is independent of hK . Generally, for a finite dimensional
subspace V K ⊂ L2(K), it holds the norm equivalence

c‖b
1
2
Kφ‖K ≤ ‖φ‖K ≤ C‖b

1
2
Kφ‖K, ∀φ ∈ V K .
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Using the generalized scaling argument, it is easy to show the constants c and C are
indegendent of hK .

By using integration by parts, we have

C|w|21,K ≤ (bK∇w, ∇w)K = −(∇bK · ∇w, ∇w)K − (bK�w, w)K .

For �w, it holds the following identity:

�w = �be�v + be�
2v + 2∇be · ∇(�v)

= �be�v + be�
2v + 2b−1

e ∇be · (be∇(�v))

= �be�v + be�
2v + 2b−1

e ∇be · (∇w − �v∇be).

Thus, we have

C|w|21,K ≤ −(∇bK · ∇w, w)K − (bK�be�v, w)K − (bKbe�
2v, w)K

−2(λe∇be · ∇w, w)K + 2(λe∇be · ∇be�v, w)K .

For all the terms on the right hand side of the above inequality, the inverse inequality
on polynomial space and Lemma A.1 imply

−(∇bK · ∇w, w)K ≤ C1h
−1
K |w|1,K‖w‖K ≤ 1

4
C|w|21,K + C−1C2

1h
−2
K ‖w‖2K,

−(bK�be�v, w)K ≤ C2h
−2
K ‖�v‖K‖w‖K,

−(bKbe�
2v, w) ≤ ‖bKbe‖∞,K‖�2v‖K‖w‖K ≤ C3h

−2
K ‖�v‖K‖w‖K,

−2(λe∇be · ∇w, w)K ≤ C4h
−1
K |w|1,K‖w‖K ≤ 1

4
C|w|21,K + C−1C2

4h
−2
K ‖w‖2K,

2(λe∇be · ∇be�v, w)K ≤ C5h
−2
K ‖�v‖K‖w‖K .

Collecting up the above inequalities, we obtain

1

2
C|w|21,K ≤ C−1C2

1h
−2
K ‖w‖2K + C2h

−2
K ‖�v‖K‖w‖K + C3h

−2
K ‖�v‖K‖w‖K

+C−1C2
4h

−2
K ‖w‖2K + C5h

−2
K ‖�v‖K‖w‖K .

Therefore, observing w = be�v, we obtain

|be�v|1,K ≤ Ch−1
K ‖�v‖K,

which, together with inequality (A.4), yields (A.2).

We introduce the global space for the H 1-conforming virtual element [4] defined
by

Uh = {w ∈ H 1
0 (�); w|K ∈ UK

h , ∀K ∈ Th},
where

UK
h = {w ∈ H 2(K); �w ∈ Pk−2(K), w|e ∈ Pk(e), ∀e ⊂ ∂K}.

In [4], it has been shown that the following interpolation error estimates holds.
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Lemma A.3 For every w ∈ H 1
0 (�) ∩ Hs(�) with 2 ≤ s ≤ k + 1, there exists a

interpolation function wc
I ∈ Uh satisfying

wc
I (a) = w(a), ∀ vertex a,∫

e

wc
I qds =

∫
e

wqds, ∀q ∈ Me
k−2, ∀ edge e,

∫
K

wc
I qdx =

∫
K

wqdx, ∀q ∈ MK
k−2.

Further, it holds

‖w − wc
I‖m,K ≤ Chs−m|w|s,K, m = 0, 1, ∀K ∈ Th.

Next, we show an inverse inequality for the local virtual space UK
h on every K ∈

Th by using the bubble function defined in the proof of Lemma A.1.

Lemma A.4 For every given K ∈ Th, it holds that

|v|2,K ≤ Ch−1
K |v|1,K, ∀v ∈ UK

h . (A.5)

Proof For any given K ∈ Th and v ∈ UK
h , let φ = ∇v, then |φ|1,K = |v|2,K and

�φ = ∇(�v). Further, we have

C|φ|21,K ≤ (bK∇φ, ∇φ)K = −(∇bK · ∇φ, φ)K − (bK�φ, φ)K .

Here the constant C in the first inequality can be also shown to be independent of hK

by the similar argument in the proof of Lemma A.2. Thus, the inverse inequality on
polynomial space and the fact that �v ∈ Pk−2(K) imply

|v|22,K = |φ|21,K
≤ C(‖∇bK‖∞,K |φ|1,K + ‖�φ‖K)‖φ‖K

≤ C(h−1
K |φ|1,K + ‖�φ‖K)‖φ‖K

= C(h−1
K |v|2,K + |�v|1,K)|v|1,K

≤ Ch−1
K (|v|2,K + ‖�v‖K)|v|1,K

≤ Ch−1
K |v|2,K |v|1,K,

which leads to the inverse inequality (A.5).

With the above preparations, we show an approximation result for the global

virtual space Ṽh which is defined by the local space Ṽ K
h as follows:

Ṽh =
{
w ∈ H 1

0 (�); w|K ∈ Ṽ K
h , ∀K ∈ Th,

∫
e

q[[ ∂w

∂ne

]]ds = 0, ∀q ∈ Pk−2(e), ∀e ∈ Eh

}
.

To this end, we define the interpolation w̃I ∈ Ṽh for any w ∈ H 2
0 (�) by requir-

ing that the values of the degrees of freedom (3.5)–(3.8) of w̃I are equal to the
corresponding ones of w. Then we have the following interpolation error estimates.
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Lemma A.5 For every w ∈ H 2
0 (�) ∩ Hs(�) with 2 ≤ s ≤ k + 1, it holds that

‖w − w̃I‖m,K ≤ Chs−m|w|s,K, m = 0, 1, 2, ∀K ∈ Th.

Proof From Green’s formula [19, 22] it holds that

|w|22,K = (�w, �w)K +
∫

K

(
2

∂2w

∂x1∂x2

∂2w

∂x1∂x2
− ∂2w

∂x2
1

∂2w

∂x2
2

− ∂2w

∂x2
2

∂2w

∂x2
1

)
dx

=
∫

K

w�2wdx −
∫

∂K

w
∂�w

∂nK

ds +
∫

∂K

∂w

∂nK

(
�w − ∂2w

∂t2K

)
ds

+
∫

∂K

∂w

∂tK

∂2w

∂tK∂nK

ds,

where K ∈ Th. For the details, see [33, Remark 4.2]. Thus, for any given K ∈ Th,
we have

|wc
I − w̃I |22,K =

∫
K

(wc
I − w̃I )�

2(wc
I − w̃I )dx −

∫
∂K

(wc
I − w̃I )

∂�(wc
I − w̃I )

∂nK

ds

+
∫

∂K

∂(wc
I − w̃I )

∂nK

(
�(wc

I − w̃I ) − ∂2(wc
I − w̃I )

∂t2K

)
ds

+
∫

∂K

∂(wc
I − w̃I )

∂tK

∂2(wc
I − w̃I )

∂tK∂nK

ds.

Observing the fact that wc
I and w̃I belongs to Pk(e) on each edge e of K and are

uniquely determined by the same degrees of freedom (3.5)–(3.6) of w, we have

wc
I − w̃I = 0,

∂(wc
I − w̃I )

∂tK
= 0,

∂2(wc
I − w̃I )

∂t2K
= 0, on ∂K .

Then we obtain

|wc
I − w̃I |22,K =

∫
K

(wc
I − w̃I )�

2(wc
I − w̃I )dx +

∫
∂K

∂(wc
I − w̃I )

∂nK

�(wc
I − w̃I )ds,

which, together with the interpolation properties of w̃I , implies

|wc
I−w̃I |22,K =

∫
K

(wc
I−w)�2(wc

I−w̃I )dx+
∫

∂K

∂(wc
I − w)

∂nK

�(wc
I −w̃I )ds. (A.6)

For the first term in Eq. (A.6), we use the inverse inequality (A.1) and Lemma A.3 to
obtain ∫

K

(wc
I − w)�2(wc

I − w̃I )dx ≤ ‖w − wc
I‖K‖�2(wc

I − w̃I )‖K

≤ Ch−2
K ‖w − wc

I‖K‖�(wc
I − w̃I )‖K

≤ Chs−2
K |w|s,K |wc

I − w̃I |2,K . (A.7)

Adv Comput Math (2020)  46: 1919 Page 20 of 23



For the second term in Eq. (A.6), we use the trace inequality, Lemmas A.2–A.4 and
Lemma 3.3 to obtain

∫
e

∂(wc
I − w)

∂nK

�(wc
I − w̃I )ds ≤ ‖ ∂(wc

I − w)

∂nK

‖e‖�(wc
I − w̃I )‖e

≤ Ch
− 1

2
K (h

− 1
2

K |wc
I − w|1,K + h

1
2
K |wc

I − w|2,K )‖�(wc
I − w̃I )‖K

≤ C(h−1
K |wc

I − w|1,K + |wc
I − wπ |2,K + |wπ − w|2,K )|wc

I − w̃I |2,K
≤ C(h−1

K |wc
I − w|1,K + h−1

K |wc
I − wπ |1,K + |wπ − w|2,K )|wc

I − w̃I |2,K
≤ C(h−1

K |w − wc
I |1,K + h−1

K |w − wπ |1,K + |w − wπ |2,K )|wc
I − w̃I |2,K

≤ Chs−2
K |w|s,K |wc

I − w̃I |2,K , e ⊂ ∂K . (A.8)

Substituting (A.7)–(A.8) into (A.6), we obtain

|wc
I − w̃I |2,K ≤ Chs−2

K |w|s,K,

which, together with the triangle inequality, inverse inequality (A.5), Lemma 3.3, and
Lemma A.3, yields

|w − w̃I |2,K ≤ |w − wπ |2,K + |wπ − w̃c
I |2,K + |wc

I − w̃I |2,K
≤ |w − wπ |2,K + Ch−1

K |wπ − w̃c
I |1,K + |wc

I − w̃I |2,K
≤ |w − wπ |2,K + Ch−1

K (|wπ − w|1,K + |w−wc
I |1,K) + |wc

I −w̃I |2,K
≤ Chs−2

K |w|s,K .

By using the Poincaré-Friedrichs inequality [7] and the interpolation properties of
w̃I , we further obtain

‖w − w̃I‖K ≤ ChK |w − w̃I |1,K ≤ Ch2K |w − w̃I |2,K ≤ Chs
K |w|s,K .

The proof is complete.

Finally, we show the proof of Lemma 3.2 as follows.
The proof of Lemma 3.2 Observing the fact that the projection operator �K

� is
uniquely determined by the degrees of freedom (3.11)–(3.14) of wI which are also
the degrees of freedom of w̃I , we have

�K
�w̃I = �K

�wI = �K
�w.

By similar arguments in the proof of Eq. (A.6), the interpolation properties of w̃I and
wI imply

|w̃I − wI |22,K = (w̃I − wI , �
2(w̃I − wI ))K .
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For convenience, let φ = �2(w̃I − wI ) ∈ Pk−2(K). Recalling the definition (3.9)
ofWK

h , the property of�K
� , the Poincaré-Friedrichs inequality, and inverse inequality

(A.1), we obtain

|w̃I − wI |22,K = (w̃I − wI , φ − P K
k−4φ)K

= (w̃I − �K
�wI , φ − P K

k−4φ)K

= (w̃I − �K
�w̃I , φ − P K

k−4φ)K

≤ ‖w̃I − �K
�w̃I‖K‖φ − P K

k−4φ‖K

≤ Ch2K |w̃I − �K
�w̃I |2,K‖φ‖K

= Ch2K |(w̃I − wπ) − �K
�(w̃I − wπ |2,K‖�2(w̃I − wI )‖K

≤ C|w̃I − wπ |2,K‖�(w̃I − wI )‖K

≤ C(|w − w̃I |2,K + |w − wπ |2,K)|w̃I − wI |2,K,

which, together with Lemma 3.3 and Lemma A.5, leads to

|w̃I − wI |2,K ≤ Chs−2
K |w|s,K .

By using the triangle inequality and Lemma A.5, we obtain

|w − wI |2,K ≤ Chs−2
K |w|s,K .

By using the Poincaré-Friedrichs inequality [7] and the interpolation property of wI ,
we further obtain

‖w − wI‖K ≤ ChK |w − wI |1,K ≤ Ch2K |w − wI |2,K ≤ Chs
K |w|s,K .

The proof of Lemma 3.2 is complete.
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