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Abstract
In this paper, using the first-order Nédélec conforming edge element space of
the second type, we develop and analyze a continuous interior penalty finite
element method (CIP-FEM) for the time-harmonic Maxwell equation in the three-
dimensional space. Compared with the standard finite element methods, the novelty
of the proposed method is that we penalize the jumps of the tangential component
of its vorticity field. It is proved that if the penalty parameter is a complex number
with negative imaginary part, then the CIP-FEM is well-posed without any mesh con-
straint. The error estimates for the CIP-FEM are derived. Numerical experiments are
presented to verify our theoretical results.
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1 Introduction

This paper develops and analyzes the following time-harmonic Maxwell equation
with the standard impedance boundary condition:

curl curl E − κ2E = f in Ω, (1)

curl E × ν − iκλET = g on ∂Ω, (2)

where Ω ⊂ R
3 is a bounded C2-domain and star-shaped with respect to Bγ (x0),

i = √−1 denotes the imaginary unit while ν denotes the unit outward normal to ∂Ω ,
and ET := (ν × E) × ν is the tangential component of the electric field E. κ > 0
is called wave number and λ > 0 is known as the impedance constant. The right
hand side f is the current density which is divergence free, i.e., div f = 0. The
boundary condition is the standard impedance boundary condition which requires g ·
ν = 0, thus, gT = g. The above time-harmonic Maxwell equation is of considerable
importance in the engineering and scientific computation. Throughout this paper, we
use notations A � B and A � B for the inequalities A ≤ CB and A ≥ CB, where C

is a positive number independent of the mesh size and wave number κ , but the value
of which can take on different values in different occurrences. A � B is a shorthand
notation for the statement A ≤ CB and B ≤ CA. For simplicity, we suppose λ � 1,
κ > 1.

The large wave number κ implies the strong indefiniteness of the problem (1)–(2),
which brings difficulties both in theoretical analysis and numerical simulation. In
[10], the convergence rate of a Trefftz-discontinuous Galerkin approximation method
for the homogeneous time-harmonic Maxwell equations with impedance bound-
ary conditions has been derived. Trefftz type methods are non-polynomial finite
element methods which are based on special approximation spaces. Functions in
these approximation spaces are the local solutions of the considered PDEs. For the
time-harmonic Maxwell equation with Dirichlet boundary condition, various finite
element methods were developed. In [15, 19], the authors analyzed the error esti-
mates for the Nédélec edge elements. Meanwhile, the interior penalty discontinuous
Galerkin (IPDG) method for the time-harmonic equation was introduced and ana-
lyzed in [11]. Moreover, stabilized mixed discontinuous Galerkin methods proposed
in [12, 17] are based on a mixed formulation of the boundary value problem, which
is chosen to provide control on the divergence of the electric field. Furthermore,
Brenner, Li, and Sung introduced a locally divergence-free method for the two-
dimensional time-harmonic Maxwell equation in [3], where they used the locally
divergence-free Crouzeix-Raviart nonconforming P1 vector fields and included a
consistency term involving the jumps of the vector fields across element boundaries.
It can also be extended to general three-dimensional domains, but the construction
of the locally divergence basis is more complicated (cf. Section 9.3 of [5]). Recently,
Feng and Wu [7] proposed and analyzed an interior penalty discontinuous Galerkin
(IPDG) method for the problem (1)–(2), which is uniquely solvable without any
mesh constraint. Although the DG methods exhibit several advantages over the stan-
dard finite element methods, such as flexibilities in constructing trial and test spaces,
one obvious disadvantage is that the dimension of the approximation DG space is
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much larger than the dimension of the corresponding conforming space. For the hp

finite element discretizations of time-harmonic Maxwell equation, the wavenumber
explicit analysis are performed in [14, 16].

Our objective in this paper is to propose a continuous interior penalty finite ele-
ment method (CIP-FEM) for the time-harmonic Maxwell equation (1)–(2). We use
the lowest order space of the second family of Nédélec edge element as the approx-
imation space, but modify the sesquilinear of the classic finite element method by
adding a penalty term on the jumps of the tangential component of its vorticity field,
i.e.,

J (Eh, F h) := −i
∑

F∈EI
h

γFhF 〈�curl Eh × νF �, �curl F h × νF �〉F ,

where γF � γ for a positive constant γ and γ > 0 is an adjustable parameter. Note
that if the parameter γF is replaced by a complex number with positive real part and
negative imaginary part, the ideas of the paper can still be applied. Here we set its
real part to be zero in the theoretical analysis for the ease of presentation. For the
Helmholtz equation, it has been proved in [18] that CIP-FEM performs much better
than the standard finite element method, the idea of which was originally proposed
by Douglas and Dupont [6] for the second-order elliptic and parabolic problems.
However, comparing with the CIP-FEM for the Helmholtz problem, the kernel space
of the operator curl is not empty which means that the analysis of the CIP-FEM
for the time-harmonic Maxwell equation is more tricky than that for the Helmholtz
equation. We find that the CIP-FEM for the time-harmonic Maxwell equation attains
a unique solution for any κ > 0, h > 0. Let Eh be the CIP-FEM solution of the
problem (1)–(2). We can derive that the following stability estimate holds for any
quasi-uniform meshes:

κ2‖Eh‖20,Ω + ‖curl Eh‖20,Ω � C2
stab‖f ‖20,Ω + Cstab

λ
‖g‖20,∂Ω (3)

where Cstab := 1
κ

+ 1
κ2hλ

+ 1
κ3h2γ

. Moreover, we have the following error estimates:

� E − Eh�h � Cκh(1 + γ )
(
κh + Cstabκ

3h2
)
M(f , g) (4)

where M(f , g) := ‖f ‖0,Ω + κ−2 ‖curlf ‖0,Ω + κ−2 ‖f × ν‖1/2,∂Ω + ‖g‖0,∂Ω +
κ−1 ‖g‖1/2,∂Ω ,Cκh denote a generic constant depending on κhwhich will be defined
in Section 4 and the energy norm � · �h is defined as

� v�h :=
(
‖v‖2curl,h + κ2‖v‖20,Ω + κλ‖vT ‖20,∂Ω

) 1
2
, (5)

where the definition of ‖ · ‖curl,h can be found in (8). We would like to mention that
the corresponding error estimate (5.23) in [7] is shown as

‖E − Eh‖DG � κh + Ĉsta(1 + γ1)(κ
3h2 + κ2h

3
2 )M(f , g), (6)
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where the norm of ‖ · ‖DG is defined as follows

‖v‖2DG =
∑

K∈Th

‖curl v‖20,K + ‖v‖20,Ω

+
∑

F∈EI
h

(
γ0,F
hF

‖�vT �‖20,F + γ1,FhF‖�curl v × νF �‖20,F
)

, (7)

γ0,F and γ1,F are the penalty parameters to the terms on the jumps of the tangential
component of its electric and vorticity field, respectively. γ1 = minF∈EI

h
{γ1,F } and

we refer to (5.22) in [7] the definition of Ĉsta. Comparing with the estimate (5.23) in
[7], the lost of half order of h in the theoretical analysis is remedied in our paper.

In practice, the “rule of thumb” is to use 8–10 grid points per wave length, which
means that the mesh size h must satisfy the constraint κh � 1. The estimate (4)
indicates that the error is not completely controlled by the product κh and it provides
evidences of the existence of so-called pollution effect, which can also be observed in
the numerical experiments. Moreover, we may obtain the following improved error
estimates in the regime κ3h2 � 1:

�E − Eh�h � (κh + κ3h2)M(f , g).

The remainder of this paper is organized as follows: In Section 2, we precisely
define the CIP-FEM for the time-harmonic Maxwell equation and give some nota-
tions in the next section. Section 3 is devoted to the stability estimates for our
CIP-FEM scheme. In Section 4, the stability and regularity results for the Maxwell
equations (1)–(2) are given and the error estimates of the CIP-FEM for the time-
harmonic Maxwell equation are derived for any κ > 0, h > 0, and γ > 0.
The improved results under the mesh condition that κ3h2 is small enough are also
included. Finally, in Section 5, numerical experiments are demonstrated to confirm
our theoretical analysis.

2 Continuous interior penalty finite element method

To formulate the CIP-FEM for the time-harmonic Maxwell equation, we first intro-
duce some notations. We consider a subdivision of Ω into a mesh consisting of shape
regular tetrahedra in R

3, and denote the collection of tetrahedra by Th. In this paper,
we investigate quasi-uniform meshes. Let hK be the diameter of tetrahedron K and
h := maxK∈Th

hK . The collection of faces is denoted by Eh, while the collection of
interior faces by EI

h and the collection of boundary faces by EB
h . We also define the

jump �v� of v on an interior face F = ∂K+ ∩ ∂K− as

�v�|F :=
{

v|K+ − v|K− if the global label of K+ is bigger,
v|K− − v|K+ if the global label of K− is bigger.

For every F = ∂K+ ∩ ∂K− ∈ EI
h , let νF be the unit outward normal to the face

F of the element K+ if the global label of K+ is bigger and of the element K−
if the other way around. Throughout this paper, we use the standard notations and
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definitions for Sobolev spaces (see, e.g., Adams [1]). In particular, (·, ·)Q and 〈·, ·〉Σ
for Q ⊂ Ω and Σ ⊂ ∂Ω denote the L2-inner product on complex-valued L2(Q)

and L2(Σ) spaces, respectively. For a given function space W , let W = (W)3. In
particular,L2(Ω) = (L2(Ω))3 andH s(Ω) = (Hs(Ω))3. Denote by ‖·‖s,Ω the norm
on H s(Ω) or Hs(Ω). Let H(curl, Ω) := {u ∈ L2(Ω), curl u ∈ L2(Ω)}, the norm
of which is defined as follows:

‖v‖H(curl,Ω) :=
(
‖v‖20,Ω + ‖curl v‖20,Ω

) 1
2 ∀v ∈ H(curl, Ω).

In the following, we define the “energy” space V as

V := H(curl, Ω) ∩ ΠK∈Th
H 2(K).

The semi-norm of the space V on Th are defined as follows:

‖v‖curl,h :=
⎛

⎝ ∑
K∈Th

‖curl v‖20,K + ∑

F∈EI
h

γFhF‖�curl v × νF �‖20,F

⎞

⎠

1
2

, (8)

where γF � γ for a positive constant γ . Let V h be the approximation space which
is defined as

V h := {vh ∈ H(curl; Ω) : vh|K ∈ (P1(K))3, ∀K ∈ Th},
where P1(K) denotes the set of linear polynomials on K; in fact, V h is the lowest
order space of the second type of Nédélec edge element. Then our CIP-FEM for the
problem (1)–(2) is to find Eh ∈ V h such that

ah(Eh, F h) = (f , F h) + 〈g, (F h)T 〉∂Ω ∀F h ∈ V h, (9)

where

ah(Eh, F h) := bh(Eh, F h) − κ2(Eh, F h) − iκλ〈(Eh)T , (F h)T 〉∂Ω (10)

and

bh(Eh, F h) := (curl Eh, curl F h) + J (Eh, F h). (11)

It is clear that this is a consistent discretization formulation which means that if E ∈
H 2(Ω), then

ah(E − Eh, F h) = 0 ∀F h ∈ V h. (12)

3 Stability estimates for CIP-FEM

We first derive the stability estimates for our CIP-FEM. Note that Eh is piecewise
linear on Th and hence curl curl Eh = 0 on each element K ∈ Th. We first bound
‖curl Eh‖0,Ω by using integration by parts on each element.
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Lemma 3.1 For any 0 < ε < 1, there exists a constant cε which depends only on ε

such that

‖curl Eh‖20,Ω ≤ εκ2‖Eh‖20,Ω + cε

h
‖(Eh)T ‖20,∂Ω

+ cε

κ2h2γ

∑

F∈EI
h

γFhF‖�curl Eh × νF �‖20,F .

Proof Note that curl curl Eh = 0 on each element K ∈ Th. By the Green’s formula
we have

‖curl Eh‖20,Ω =
∑

K∈Th

∫

∂K

(curl Eh × ν)(Eh)T

=
∑

F∈Eh

∫

F
�curl Eh × νF �(Eh)T

≤
∑

F∈EB
h

‖curl Eh‖0,F‖(Eh)T ‖0,F +
∑

F∈EI
h

‖�curl Eh × νF �‖0,F‖(Eh)T ‖0,F .

From the trace inequality, the inverse inequality, and Young’s inequality, we may get

‖curl Eh‖20,Ω ≤ ε‖curl Eh‖20,Ω + C

εh
‖(Eh)T ‖20,∂Ω

+ε(1 − ε)κ2‖Eh‖20,Ω + C

ε(1 − ε)κ2h2γ

∑

F∈EI
h

γFhF‖�curl Eh × νF �‖20,F ,

which implies that Lemma 3.1 holds.

Then we may derive some reverse inequalities by takingF h = Eh in (9). Actually,
we have

Lemma 3.2 Let Eh be the solution of (9), then there hold

κ2‖Eh‖20,Ω ≤ 2‖curl Eh‖20,Ω + C

κ2
‖f ‖20,Ω + C

κλ
‖g‖20,∂Ω, (13)

∑

F∈EI
h

γFhF‖�curl Eh × νF �‖20,F + κλ‖(Eh)T ‖20,∂Ω

≤ C

κ
‖f ‖0,Ω‖curl Eh‖0,Ω + C

κ2
‖f ‖20,Ω + C

κλ
‖g‖20,∂Ω . (14)

Proof Taking F h = Eh in (9) yields

bh(Eh, Eh) − κ2(Eh, Eh) − iκλ〈(Eh)T , (Eh)T 〉∂Ω = (f , Eh) + 〈g, (Eh)T 〉∂Ω .
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Therefore, by taking real part and imaginary part of the above equation, we get

κ2‖Eh‖20,Ω − ‖curl Eh‖20,Ω ≤ |(f , Eh) + 〈g, (Eh)T 〉∂Ω | , (15)
∑

F∈EI
h

γFhF‖�curl Eh × νF �‖20,F +κλ‖(Eh)T ‖20,∂Ω ≤ |(f , Eh)+〈g, (Eh)T 〉∂Ω | .(16)

By (16) and Young’s inequality , we obtain
∑

F∈EI
h

γFhF‖�curl Eh × νF �‖20,F + κλ‖(Eh)T ‖20,∂Ω

≤ ‖f ‖0,Ω‖Eh‖0,Ω + 1

2κλ
‖g‖20,∂Ω + κλ

2
‖(Eh)T ‖20,∂Ω,

which implies

∑

F∈EI
h

γFhF‖�curl Eh × νF �‖20,F + κλ

2
‖(Eh)T ‖20,∂Ω

≤ ‖f ‖0,Ω‖Eh‖0,Ω + 1

2κλ
‖g‖20,∂Ω . (17)

On the other hand, by (15) and Young’s inequality, we have

κ2‖Eh‖20,Ω ≤ ‖curl Eh‖20,Ω +‖f ‖0,Ω‖Eh‖0,Ω + 1

2κλ
‖g‖20,∂Ω + κλ

2
‖(Eh)T ‖20,∂Ω .

Combining the above estimate with (17) and using Young’s inequality yields

κ2‖Eh‖20,Ω ≤ ‖curl Eh‖20,Ω + 2‖f ‖0,Ω‖Eh‖0,Ω + 1

κλ
‖g‖20,∂Ω

≤ ‖curl Eh‖20,Ω + 2

κ2
‖f ‖20,Ω + κ2

2
‖Eh‖20,Ω + 1

κλ
‖g‖20,∂Ω,

which indicates that (13) holds. Plugging (13) into the right-hand side of (17) and
utilizing Young’s inequality, we get

∑

F∈EI
h

γFhF‖�curl Eh × νF �‖20,F + κλ

2
‖(Eh)T ‖20,∂Ω

≤ C

κ
‖f ‖0,Ω

(
‖curl Eh‖0,Ω + 1

κ
‖f ‖0,Ω + 1

(κλ)
1
2

‖g‖0,∂Ω

)
+ 1

2κλ
‖g‖20,∂Ω

≤ C

κ
‖f ‖0,Ω‖curl Eh‖0,Ω + C

κ2
‖f ‖20,Ω + C

κλ
‖g‖20,∂Ω,

which completes the proof of the lemma.

Remark 1 If γF is replaced by a complex number with positive real part and negative
imaginary part, (15) and (16) still hold, which indicate that Lemma 3.2 is still true
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under this situation. In fact, the theoretical analysis for CIP-FEM can be extended to
the case when γF is a complex number with positive real part and negative imaginary
part.

Combining Lemma 3.1 and Lemma 3.2 together, we may further derive the
following stability estimates for our CIP-FEM.

Theorem 3.1 Let Eh be the solution of (9), then there hold the following stability
estimates:

κ2‖Eh‖20,Ω + ‖curl Eh‖20,Ω � C2
stab‖f ‖20,Ω + Cstab

λ
‖g‖20,∂Ω, (18)

and

∑

F∈EI
h

γFhF‖�curl Eh × νF �‖20,F + κλ‖(Eh)T ‖20,∂Ω � Cstab

κ
‖f ‖20,Ω + 1

κλ
‖g‖20,∂Ω, (19)

here

Cstab := 1

κ
+ 1

κ2hλ
+ 1

κ3h2γ
.

Proof By taking ε = 1
3 in Lemma 3.1, applying Lemma 3.2, and using Young’s

inequality, we have

‖curl Eh‖20,Ω ≤ 1

3
κ2‖Eh‖20,Ω + C

h
‖(Eh)T ‖20,∂Ω

+ C

κ2h2γ

∑

F∈EI
h

γFhF‖�curl Eh × νF �‖20,F

≤ 1

3

(
2‖curl Eh‖20,Ω + C

κ2
‖f ‖20,Ω + C

κλ
‖g‖20,∂Ω

)

+C

(
1

κhλ
+ 1

κ2h2γ

)(
1

κ
‖f ‖0,Ω‖curl Eh‖0,Ω + 1

κ2
‖f ‖20,Ω + 1

κλ
‖g‖20,∂Ω

)

≤ 2

3
‖curl Eh‖20,Ω + C

κ

(
1

κhλ
+ 1

κ2h2γ

)
‖f ‖0,Ω‖curl Eh‖0,Ω

+C

(
1 + 1

κhλ
+ 1

κ2h2γ

)(
1

κ2
‖f ‖20,Ω + 1

κλ
‖g‖20,∂Ω

)

≤ 5

6
‖curl Eh‖20,Ω + C

(
1 + 1

κhλ
+ 1

κ2h2γ

)2 1

κ2
‖f ‖20,Ω

+C

(
1 + 1

κhλ
+ 1

κ2h2γ

)
1

κλ
‖g‖20,∂Ω .
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Hence,

‖curl Eh‖20,Ω � C2
stab‖f ‖20,Ω + Cstab

λ
‖g‖20,∂Ω,

which, together with Lemma 3.2, concludes the proof of this theorem.

4 Error estimates

In this section, we first recall the regularity estimates for the Maxwell equations (1)–
(2) with explicit dependence on the wave number κ . Then we introduce an elliptic
projection of the solution E of the problem (1)–(2), and give some estimates for the
projection. Furthermore, by exploiting the stability estimates derived in the above
section, we may get the error estimates for our CIP-FEM. In what follows, for brevity
we denote Cκh a generic constant depending on κh, the value of which belongs to
the set {1 + √

κh, 1 + κh + κ2h2}.

4.1 Stability and regularity estimates

We first recall the following H 1 and L2 estimates from [9] and [7].

Theorem 4.1 LetE be the solution of the problem (1)–(2) andΩ ⊂ R
3 be a bounded

C2-domain and star-shaped with respect to Bγ (x0). Then

‖curlE‖1,Ω + κ ‖curlE‖0,Ω + κ ‖E‖1,Ω + κ2 ‖E‖0,Ω
� κ(‖f ‖0,Ω + ‖g‖0,∂Ω) + ‖g‖ 1

2 ,∂Ω
,

where

‖g‖ 1
2 ,∂Ω

= inf
v∈H 1(Ω)

v=g on ∂Ω

‖v‖1,Ω . (20)

The following theorem gives H 2 estimates with explicit dependence on κ for (1)–
(2), which plays an important role in the error estimates of our CIP-FEM.

Theorem 4.2 Let Ω ⊂ R
3 be a bounded C2-domain and star-shaped with respect

to Bγ (x0). In addition to the assumptions made on f , g in Section 1, we assume that

f ∈ H 1(Ω) and g ∈ H
1
2 (∂Ω). Then there exists one constant C independent of κ ,

but depending on Ω and λ, such that

‖E‖2,Ω � κM(f , g) (21)

where

M(f , g) := ‖f ‖0,Ω + κ−2 ‖curlf ‖0,Ω + κ−2 ‖f × ν‖1/2,∂Ω

+ ‖g‖0,∂Ω + κ−1 ‖g‖1/2,∂Ω .

Proof Taking m = 2 in [13, Theorem 3.4] and using Theorem 2.2 in [13] completes
the proof of the theorem.
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4.2 H(curl,Ω)-elliptic projection and its error estimates

Let E be the solution of the problem (1)–(2) and Ẽh ∈ V h be its H (curl, Ω)-elliptic
projection, which is defined as follows:

âh(E − Ẽh, F h) = 0 ∀F h ∈ V h, (22)

where
âh(v, w) := bh(v, w) + κ2(v, w) − iκλ〈vT , wT 〉∂Ω .

The following lemma gives the continuity and coercivity of the sesquilinear form
âh. The proof is straightforward, so we omit it.

Lemma 4.1 For any v, w ∈ V , there hold

|̂ah(v, w)| ≤ �v �h �w�h, (23)

Re âh(v, v) − Im âh(v, v) = �v�2
h. (24)

Denote πN as the interpolation onto the second-type Nédélec edge element space
V h. The following lemma gives the interpolation error estimates.

Lemma 4.2 Suppose E ∈ H 2(Ω). Then

‖E − πNE‖0,Ω � h2‖E‖2,Ω, (25)

‖(E − πNE)T ‖0,∂Ω + h
1
2 ‖(E − πNE)T ‖ 1

2 ,∂Ω
� h

3
2 ‖E‖2,Ω, (26)

‖E − πNE‖H(curl,Ω) � h‖E‖H 1(curl,Ω), (27)

�E − πNE�h � (1 + γ )
1
2 h‖E‖H 1(curl,Ω) + Cκh(κh)

1
2 h‖E‖2,Ω, (28)

where H 1(curl, Ω) := {u ∈ H 1(Ω), curl u ∈ H 1(Ω)}, the norm of space
H 1(curl, Ω) is defined as follows:

‖v‖H 1(curl,Ω) :=
(
‖v‖21,Ω + ‖curl v‖21,Ω

) 1
2 ∀v ∈ H 1(curl, Ω).

Proof It follows from [15] that (25)–(27) hold. (28) follows from (25)–(27), the
definition (5) of the norm�·�h, and the trace inequality. The proof is completed.

Next, we derive error estimates for E − Ẽh. Denote by Êh := πNE and �h :=
Ẽh − Êh. The following theorem gives the error estimate in the energy norm.

Theorem 4.3 Suppose that the solution of problem (1)–(2) is H 2 regular, then there
hold

� E − Ẽh�h � �E − Êh�h � (1 + γ )
1
2 h‖E‖H 1(curl,Ω) + Cκh(κh)

1
2 h‖E‖2,Ω . (29)

Proof From (22), we have

âh(�h, �h) = âh(E − Êh, �h). (30)
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From Lemma 4.1 and (30), we may get

��h�
2
h = Re âh(�h, �h) − Im âh(�h, �h)

= Re âh(E − Êh, �h) − Im âh(E − Êh, �h)

� �E − Êh �h ��h �h .

This means that

� �h�h � �E − Êh�h, (31)

which, together with the triangle inequality, yields

�E − Ẽh�h � �E − Êh �h .

Then the proof of the theorem follows from (28).

Next we use the duality argument to estimate the L2 norm of E − Ẽh. Let
Uh := {u ∈ H 1(Ω) : u|K ∈ P2(K), ∀K ∈ Th}, where P2(K) is the set of
quadratic polynomials on K . Let U0

h := Uh ∩ H 1
0 (Ω) and V 0

h := V h ∩ H0(curl, Ω)

where H0(curl, Ω) := {u ∈ H(curl, Ω), u × ν = 0 on ∂Ω}. Obviously ∇Uh and
∇U0

h are subspaces of V h and V 0
h, respectively. The following lemma gives both the

Helmholtz decomposition and discrete Helmholtz decomposition for each vh ∈ V h.

Lemma 4.3
(i) For vh ∈ V 0

h, there exist r ∈ H 1
0 (Ω), rh ∈ U0

h , w ∈ H0(curl, Ω), and wh ∈
V 0

h, such that

vh = ∇r + w = ∇rh + wh, (32)

div w = 0 in Ω, (wh, ∇ψh) = 0 ∀ψh ∈ U0
h , (33)

‖w − wh‖0,Ω � h‖curl vh‖0,Ω . (34)

(ii) For vh ∈ V h, there exist r ∈ H 1(Ω), rh ∈ Uh, w ∈ H(curl, Ω), and wh ∈
V h, such that

vh = ∇r + w = ∇rh + wh, (35)

div w = 0 in Ω, w · ν = 0 on ∂Ω, (wh, ∇ψh) = 0 ∀ψh ∈ Uh, (36)

‖w − wh‖0,Ω � h‖curl vh‖0,Ω . (37)

Proof For the first part of the lemma, we refer to [15, Theorem 3.45],
[15, Lemma 7.6], or [11, Lemma 4.4]. The second part may be proved by using
[15, Remark 3.46] and following the proof of [15, Lemma 7.6]. We omit the
details.

In order to remedy the lost half order of h in the error estimates in [7], we
need the following Lemmas 4.4-4.7 to establish the building blocks of the proof for
Theorem 4.4.

The following lemma converts the estimate ‖E−Ẽh‖0,Ω to the estimate of ‖(E−
Ẽh)T ‖0,∂Ω .
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Lemma 4.4 Let Ẽh be the solution to (22), then

‖E − Ẽh‖0,Ω � h
1
2 ‖(E − Ẽh)T ‖0,∂Ω + h

1
2 ‖(E − Êh)T ‖0,∂Ω + ‖E − Êh‖0,Ω

+Cκh (1 + γ )
1
2 h � E − Êh �h . (38)

Proof Recall that we denote by �h := Ẽh − Êh where Êh := πNE. According to
Proposition 4.5 in [11], there exists �c

h ∈ H0(curl, Ω) ∩ V h such that

‖�h − �c
h‖0,Ω + h‖curl (�h − �c

h)‖0,Ω � h
1
2 ‖(�h)T ‖0,∂Ω, (39)

From Lemma 4.3(i), we have the following discrete Helmholtz decomposition
for �c

h:

�c
h = w0

h + ∇r0h, (40)

where r0h ∈ U0
h and w0

h∈ V 0
h is discrete divergence free. Moreover, there exists w0 ∈

H0(curl, Ω) such that div w0 = 0, curlw0 = curl�c
h, and

‖w0
h − w0‖0,Ω � h‖curl w0

h‖0,Ω = h‖curl �c
h‖0,Ω . (41)

From (22), we know that

(E − Ẽh, ∇φ0
h) = 0 ∀φ0

h ∈ U0
h . (42)

Next, we introduce the following dual problem:

curl curl � + κ2� = w0 in Ω, (43)

curl � × ν + iκλ�T = 0 on ∂Ω . (44)

It is obvious that � satisfies the following weak formulation:

a(�, v) = (w0, v) ∀v ∈ H(curl, Ω), (45)

where
a(�, v) := (curl �, curl v) + κ2(�, v) + iκλ〈�T , vT 〉∂Ω .

Taking v = � in (45), we can get

‖curl �‖20,Ω + κ2‖�‖20,Ω + iκλ ‖�T ‖20,∂Ω = (w0, �),

from which we can derive

κ2‖�‖20,Ω ≤
∥∥∥w0

∥∥∥
0,Ω

‖�‖0,Ω , (46)

and

‖curl �‖20,Ω ≤
∥∥∥w0

∥∥∥
0,Ω

‖�‖0,Ω . (47)

It is easy to find that (46) implies

‖�‖0,Ω � κ−2
∥∥∥w0

∥∥∥
0,Ω

,

which combines with (47) yields

‖curl �‖0,Ω � κ−1
∥∥∥w0

∥∥∥
0,Ω

.
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With the estimate of ‖�‖0,Ω and ‖curl �‖0,Ω , following the proof of Theorem 3.2
and Theorem 3.4 and using Theorem 2.2 in [13], we can get

κ‖�‖1,Ω + ‖curl �‖1,Ω � ‖w0‖0,Ω, (48)

and

‖�‖2,Ω � ‖w0‖0,Ω + κ−2‖w0‖1,Ω
� ‖w0‖0,Ω + κ−2‖ curlw0‖0,Ω = ‖w0‖0,Ω + κ−2‖curl �c

h‖0,Ω .(49)

Using (43)–(44), , and Green’s formula, we obtain

(E − Ẽh, w
0) = (E − Ẽh, curl curl � + κ2�)

= (curl (E − Ẽh), curl �) − iκλ〈(E − Ẽh)T , �T 〉∂Ω + κ2(E − Ẽh, �)

= âh(E − Ẽh, �) = âh(E − Ẽh, � − �̂h), (50)

where �̂h := πN� ∈ V h is the interpolation approximation of � in V h. From the
definition of bh(·, ·) and � · �h, we have

|bh(E − Ẽh, � − �̂h)| � �E − Ẽh �h

(‖ curl (� − �̂h)‖0,Ω
+(

∑

F∈EI
h

γ hF ||[curl (� − �̂h) × νF ]||20,F )
1
2 ). (51)

Obviously the first term in (51) can be bounded by �E − Ẽh �h h‖�‖H 1(curl,Ω);
next, we focus on the estimate of the second term in (51).

Let T := ∑
F∈EI

h
γ hF ||curl (� − �̂h)||20,F , using the triangle inequality, we get

T �
∑

F∈EI
h

hF ||curl � − Πhcurl �||20,F +
∑

F∈EI
h

hF ||Πhcurl � − curl �̂h)||20,F ,

(52)
where Πh is the L2 projection to the space (Uh)

3. Utilizing the properties of Πh [15],
we can derive

∑

F∈EI
h

hF ||curl � − Πhcurl �||20,F � h2‖�‖2
H 1(curl,Ω)

, (53)

while using the triangle inequality, inverse inequality, the properties of Πh [15], and
Lemma 4.2, we have

∑

F∈EI
h

hF ||Πhcurl � − curl �̂h)||20,F � ||Πhcurl � − curl �̂h)||20,Ω

� ||curl � − Πhcurl �||20,Ω + ||curl � − curl �̂h||20,Ω
� h2‖�‖2

H 1(curl,Ω)
. (54)

Combining (53), (54) to (52), we get

|bh(E − Ẽh, � − �̂h)| � �E − Ẽh �h (1 + γ )
1
2 h‖�‖H 1(curl,Ω). (55)
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Using (48)–(50), (55), and Lemma 4.2, we conclude that

(E − Ẽh, w
0) = bh(E − Ẽh, � − �̂h) + κ2(E − Ẽh, � − �̂h)

−iκλ〈(E − Ẽh)T , (� − �̂h)T 〉∂Ω

� �E − Ẽh �h (1 + γ )
1
2 h‖�‖H 1(curl,Ω)

+(κ2h2‖E − Ẽh‖0,Ω + κh
3
2 ‖(E − Ẽh‖0,∂Ω)‖�‖2,Ω

� Cκh(1 + γ )
1
2 h � E − Ẽh �h ‖w0‖0,Ω

+(h2� E−Ẽh �h +h
3
2 ‖(E−Ẽh)T ‖0,∂Ω)‖curl �c

h‖0,Ω .(56)

From the orthogonality of w0 and ∇r0h , by adding and subtracting �h + E + w0
h, we

may derive the following relation:

‖w0‖20,Ω = (E − Êh, w
0) − (�h − �c

h, w
0) − (w0

h − w0, w0) − (E − Ẽh, w
0),

which, together with (56) and Young’s inequality, gives

‖w0‖20,Ω � ‖E − Êh‖20,Ω + ‖�h − �c
h‖20,Ω + ‖w0

h − w0‖20,Ω
+Cκh(1 + γ )h2 � E − Ẽh�

2
h + h‖(E − Ẽh)T ‖20,∂Ω + h2‖curl �c

h‖20,Ω .

By (29), (39), (41), and Theorem 4.3, we have

‖w0‖0,Ω � ‖E − Êh‖0,Ω + h
1
2 ‖(�h)T ‖0,∂Ω + h‖curl �c

h‖0,Ω
+Cκh(1 + γ )

1
2 h � E − Êh �h +h

1
2 ‖(E − Ẽh)T ‖0,∂Ω . (57)

While using the triangle inequality, we get

h
1
2 ‖(�h)T ‖0,∂Ω ≤ h

1
2 (‖(E − Ẽh)T ‖0,∂Ω + ‖(E − Êh)T ‖0,∂Ω),

and from (39) and (31), we have

h‖curl �c
h‖0,Ω ≤ h‖curl (�h − �c

h)‖0,Ω + h‖curl �h‖0,Ω
� h

1
2 ‖(�h)T ‖0,∂Ω + h � E − Êh�h

� h
1
2 (‖(E − Ẽh)T ‖0,∂Ω + ‖(E − Êh)T ‖0,∂Ω) + h � E − Êh �h .

Inserting above two inequalities into (57), we may derive

‖w0‖0,Ω � h
1
2 ‖(E − Ẽh)T ‖0,∂Ω + ‖E − Êh‖0,Ω + h

1
2 ‖(E − Êh)T ‖0,∂Ω

+Cκh(1 + γ )
1
2 h � E − Êh �h . (58)

By adding and subtracting Êh + Φc
h, using (42) and (40), we have

‖E − Ẽh‖20,Ω = (E − Ẽh, E − Êh) − (E − Ẽh, �h − �c
h)

−(E − Ẽh, w
0
h − w0) − (E − Ẽh, w

0).
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Hence,

‖E − Ẽh‖0,Ω � ‖E − Êh‖0,Ω + ‖�h − �c
h‖0,Ω + ‖w0

h − w0‖0,Ω + ‖w0‖0,Ω
� h

1
2 ‖(E − Ẽh)T ‖0,∂Ω + ‖E − Êh‖0,Ω + h

1
2 ‖(E − Êh)T ‖0,∂Ω

+Cκh(1 + γ )
1
2 h � E − Êh�h.

This completes the proof of the lemma.

Next we consider the term ‖(E − Ẽh)T ‖0,∂Ω . Note that (29) gives ‖(E −
Ẽh)T ‖0,∂Ω = O(h) which, together with (38), implies that ‖E − Ẽh‖0,Ω = O(h

3
2 ).

We can see that half a order of h is lost. In the following, we will improve the error
estimate of ‖E − Ẽh‖0,Ω through a better estimation for ‖(E − Ẽh)T ‖0,∂Ω .

For �h = Ẽh − Êh ∈ V h, according to Lemma 4.3(ii), we have the following
decompositions:

�h = ∇r + w = ∇rh + wh, (59)

where r ∈ H 1(Ω), rh ∈ Uh, w ∈ H 1(Ω), and wh ∈ V h, w are divergence free in
Ω , w · ν = 0 on ∂Ω , and there also holds

‖w − wh‖0,Ω � h‖curl �h‖0,Ω � h � E − Êh�h, (60)

where we have used (31) to derive the last inequality. The following lemma gives a
relationship between ‖(E − Ẽh)T ‖0,∂Ω and ‖w‖0,Ω .

Lemma 4.5

‖(E − Ẽh)T ‖0,∂Ω � ‖(E − Êh)T ‖0,∂Ω + κ
1
2 ‖E − Êh‖0,Ω

+Cκh(h
− 1

2 ‖w‖0,Ω + h
1
2 � E − Êh�h).

Proof Denote by

d(v, w) := κ2(v, w) − iκλ〈vT , wT 〉∂Ω .

Since bh(E − Ẽh, ∇rh) = 0, from (22), we have

d(E − Ẽh, ∇rh) = âh(E − Ẽh, ∇rh) = 0,

which implies

d(E − Ẽh, E − Ẽh) = d(E − Ẽh, E − Êh − wh)

and hence from the Cauchy’s inequality

|d(E − Ẽh, E − Ẽh)| � |d(E − Êh − wh, E − Êh − wh)|
which gives

κλ‖(E − Ẽh)T ‖20,∂Ω ≤ κλ‖(E − Êh)T ‖20,∂Ω + κλ‖(wh)T ‖20,∂Ω

+κ2‖E − Êh‖20,Ω + κ2‖wh‖20,Ω
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Then the proof of the lemma follows by noting ‖(wh)T ‖0,∂Ω � h− 1
2 ‖wh‖0,Ω , using

(60) and triangle inequality.

Now we give an estimate for ‖w‖0,Ω .

Lemma 4.6 For the divergence-free term w in the decomposition (59), it holds

‖w‖0,Ω � ‖E − Êh‖0,Ω + Cκh(1 + γ )
1
2 h � E − Êh �h +h

1
2 ‖(E − Êh)T ‖0,∂Ω . (61)

Proof We utilize the duality argument to estimate ‖w‖0,Ω , first we begin by
introducing the dual problem which is similar to (43)–(44):

curl curl z + κ2z = w in Ω, (62)

curl z × ν + iκλzT = 0 on ∂Ω, (63)

Similar to (48) and (49), noting that w · ν = 0 on ∂Ω and using Theorem 2.1 in [13],
we have the following regularity estimates for the above problem:

κ‖z‖1,Ω + ‖curl z‖1,Ω � ‖w‖0,Ω, (64)

‖z‖2,Ω � ‖w‖0,Ω + κ−2‖w‖1,Ω � ‖w‖0,Ω + κ−2‖ curl �h‖0,Ω . (65)

Similar to (50)–(56), we may deduce that

(E − Ẽh, w) = âh(E − Ẽh, z − πNz)

� Cκh(1 + γ )
1
2 h � E − Ẽh �h ‖w‖0,Ω

+(h2 � E − Ẽh �h +h
3
2 ‖(E − Ẽh)T ‖0,∂Ω)‖curl �h‖0,Ω .

Use (29), (31), and Lemma 4.5 to get

(E − Ẽh, w) � Cκh(1 + γ )
1
2 h � E − Êh �h ‖w‖0,Ω

+Cκh(h
2 � E − Êh �h +h‖w‖0,Ω) � E − Êh �h

+(‖(E−Êh)T ‖0,∂Ω + κ
1
2 ‖E−Êh‖0,Ω)h

3
2 � E − Êh�h .(66)

Since ‖w‖20,Ω = (�h, w) = (E − Êh, w) − (E − Ẽh, w), we have from (66) and
the Young’s inequality that

‖w‖20,Ω � ‖E − Êh‖20,Ω + Cκh(1 + γ )h2 � E − Êh�
2
h + h‖(E − Êh)T ‖20,∂Ω .

This completes the proof of the lemma.

By combining Lemmas 4.5 and 4.6, we obtain the following estimate for ‖(E −
Ẽh)T ‖0,∂Ω .

Lemma 4.7 Let Ẽh be the solution of (22), it holds

‖(E − Ẽh)T ‖0,∂Ω � Cκh(‖(E − Êh)T ‖0,∂Ω + h− 1
2 ‖E − Êh‖0,Ω

+(1 + γ )
1
2 h

1
2 � E − Êh�h). (67)

Finally we may get the error estimate of ‖E−Ẽh‖0,Ω by combining Lemmas 4.4,
4.7, and 4.2.
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Theorem 4.4 Let Ẽh be the solution of (22), then the following estimate holds:

‖E − Ẽh‖0,Ω � Cκh(1 + γ )h2‖E‖2,Ω . (68)

Proof It follows from Lemmas 4.4 and 4.7 that

‖E − Ẽh‖0,Ω � Cκh(h
1
2 ‖(E − Êh)T ‖0,∂Ω + ‖E − Êh‖0,Ω

+(1 + γ )
1
2 h � E − Êh�h).

Then the proof of the theorem follows by using Lemma 4.2.

Remark 2 The construction of H (curl, Ω)-elliptic projection (22) in this paper is
slightly different from the ones in [7, 18] which is due to the fact that the error
estimates in the above papers are based on different norms. For the Helmholtz case
in [18], the author derived the ‖ · ‖h-norm error estimate (4.18) in Theorem 4.4,
which is defined as ‖ · ‖h := (|v|21,Ω + J (v, v))1/2. Hence, the definition of elliptic

projection (4.2) in [18] does not involve an L2(Ω) term. For the Maxwell case in
[7], the error is estimated in the norm ‖ · ‖DG which is defined in (7), since an L2

norm is included in (7), the IPDG H (curl, Ω)-elliptic projection defined in (5.1) in
[7] involves an L2(Ω) term. In this paper, we give the error estimate in the energy
norm, the definition of which can be founded in (5). Hence, an L2(Ω) term with the
coefficient κ2 is included in the H (curl, Ω)-elliptic projection (22) to grantee the
coercivity (24).

4.3 Error estimates for the CIP-FEM

In this subsection, we use the stability estimates derived in Theorem 3.1 and the pro-
jection error estimates established in the above subsection to give the error estimates
for the scheme (9).

The following stability estimates for E from Theorems 4.1–4.2 will be used in the
error analysis:

κ ‖E‖0,Ω + ‖E‖1,Ω + κ−1 ‖E‖2,Ω � M(f , g) (69)

where M(f , g) is defined in Theorem 4.2. Recall that from Theorems 4.3 to 4.4, we
have the following error bounds for the elliptic projection:

� E − Ẽh�h � Cκh(1 + γ )
1
2 κhM(f ,g), ‖E − Ẽh‖0,Ω � Cκh(1 + γ )κh2M(f ,g). (70)

Combined with the stability estimates in Theorem 3.1, we can get the following error
estimate for our CIP-FEM.

Theorem 4.5 Let Eh be the CIP-FE solution to (9), we have

� E − Eh�h � Cκh(1 + γ )(κh + Cstabκ
3h2)M(f , g). (71)

Proof Denote by ξh := Eh − Ẽh. From (12) and (22), we obtain

ah(ξh, F h) = −2κ2(E − Ẽh, F h) ∀F h ∈ V h. (72)
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Then making use of Theorem 3.1 and (70), we have

�ξh�h � Cstabκ
2‖E − Ẽh‖0,Ω � CstabCκh(1 + γ )κ3h2M(f , g).

Hence, by (70) and the triangle inequality, we get

�E − Eh�h ≤ �E − Ẽh �h + � ξh �h

� Cκh((1 + γ )
1
2 κh + Cstab(1 + γ )κ3h2)M(f , g).

which concludes the proof of the theorem.

We can improve the stability estimates in Theorem 3.1 and the error estimates in
Theorem 4.5 under the condition that κ3h2 is small enough by using the so-called
stability-error iterative improvement developed in [8].

Theorem 4.6 Let Eh be the CIP-FE solution to (9). Assuming that γ � 1, then there
exists a constant C0 > 0 independent of κ and h such that when κ3h2 ≤ C0 the
following stability and error estimates hold:

� Eh�h � M(f , g), (73)

�E − Eh�h � (κh + κ3h2)M(f , g). (74)

Proof Suppose that there exists a constant Λ > 0 such that the following stability
estimate holds:

� Eh�h ≤ ΛM(f , g), ∀f ∈ L2(Ω) and M(f , g) < ∞. (75)

Then from (72) and (75) with f = −2κ2(E − Ẽh), we have for ξh = Eh − Ẽh,

�ξh�h � ΛM(κ2(E − Ẽh), 0)

= Λ(κ2‖E − Ẽh‖0,Ω + ‖ curl(E − Ẽh)‖0,Ω + ‖(E − Ẽh) × ν‖1/2,∂Ω).

From (70), we have

κ2‖E − Ẽh‖0,Ω + ‖ curl(E − Ẽh)‖0,Ω � (κ3h2 + κh)M(f , g).

On the other hand, it follows from the trace inequality, the inverse inequality,
Lemma 4.2, and (70) that

‖(E − Ẽh) × ν‖1/2,∂Ω ≤ ‖(E − Êh)T ‖1/2,∂Ω + ‖(Êh − Ẽh)T ‖1/2,∂Ω

� ‖(E − Êh)T ‖1/2,∂Ω + h−1‖Êh − Ẽh‖0,Ω
� ‖(E − Êh)T ‖1/2,∂Ω + h−1(‖Êh − E‖0,Ω + ‖E − Ẽh‖0,Ω)

� κhM(f , g).

Therefore, by combining the above three estimates, we have

�ξh�h � Λ(κh + κ3h2)M(f , g).

Then it follows from the above inequality, (70), and the triangle inequality that

� E − Eh�h � (κh + Λ(κh + κ3h2))M(f , g) (76)
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which implies that

� Eh�h ≤ �E �h + � E − Eh�h � (1 + κh + Λ(κh + κ3h2))M(f , g). (77)

Repeating the above process yields that there exists a constant C̃ independent of κ

and h, and a sequence of positive number Λj such that

� Eh�h ≤ ΛjM(f , g), (78)

with

Λj = C̃(1 + κh) + C̃(κh + κ3h2)Λj−1, j = 1, 2, . . . .

and noting from Theorem 3.1 that Λ0 � Cstab. A simple calculation yields that if
C̃(κh + κ3h2) ≤ θ for some positive constant θ < 1, then

lim
j→∞ Λj = C̃(1 + κh)

1 − C̃(κh + κ3h2)
, (79)

which implies (73). Then (74) follows from (76). This completes the proof of the
theorem.

Remark 3 We would like to mention that similar stability and error estimates of the
standard FEM for time-harmonic Maxwell equation are not straightforward as the
Helmholtz case in [18]. Recall that the stability and error estimates of the standard
FEM in [18] are proved by using Cauchy’s convergence test and taking the limit as
the penalty parameter tends to zero. In fact, the inequality (6.6) which is derived from
Theorem 5.1 in [18] plays an important role for the convergence of u

γ

h . However,
the stability estimate of Eh when κ3h2 is small imposes more strict condition on
the right hand side terms f and g. Unfortunately, similar result like (6.6) in [18]
can not be deduced for the time-harmonic Maxwell case. The stability estimate and
convergence analysis of the standard FEM for time-harmonic Maxwell equation need
further investigation which constitutes our future work.

5 Numerical results

In this section, we present two numerical examples to demonstrate the convergence
property of the CIP-FEM in three dimension. We employ the linear Nédélec edge
element of second type on shape regular tetrahedral meshes. Although the theories
presented in the above section give the bound on the Galerkin error in terms of the
data, we perform the relative error in our numerical experiments for simplicity. The
following implementation is based on a MATLAB software package iFEM (cf. [4]).

Example 5.1 We consider the time-harmonic Maxwell problem in a unit cube Ω =
[0, 1] × [0, 1] × [0, 1]:

curl curl E − κ2E = 0 in Ω,

curl E × ν − iκET = g on ∂Ω .
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Here g is chosen such that the exact solution is given by

E = (eiκz, eiκx, eiκy)T .

In this example, we first verify the stability of our CIP-FEM. In Fig. 1, we plot the
following two ratios:

�Eh�h

�E�h

and
�EFEM

h �h

�E�h

Fig. 1 Left: �Eh�h

�E�h
and right:

�EFEM
h �h

�E�h
for κ = 1, 2, ...150 with h = 1

8 , 1
16 , respectively
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for κ = 1, 2, . . . 150 with h = 1
8 ,

1
16 respectively, where EFEM

h denotes the standard
finite element solution and the parameter γF in CIP-FEM is chosen as 0.01–0.08i. It
can been seen that the ratio �Eh �h /�E�h of CIP-FEM decreased with respect to
κ for fixed h while the ratio �EFEM

h �h/�E�h of standard FEM oscillates with κ ,
which confirms our theoretical analysis in Theorem 3.1 and indicates that CIP-FEM
is more stable than standard FEM. Figure 2 shows the ratio �Eh �h /�E�h of CIP-
FEM with respect to the wave number when the mesh condition satisfies κ3h2 = 5,
which is almost a constant as predicted in (73).

The left graph in Fig. 3 displays the relative error of the CIP-FEM with penalty
parameter γF = 0.1, γF = 0.01 − 0.08i, and γF = 0.01 + 0.08i respectively and
the relative error of the standard edge element solution in the energy norm when
the mesh condition is restricted to κh = 2.5. It shows that the relative error can
not be controlled by κh and increases with κ , which indicates the existence of the
pollution error. We would like to mention that the theoretical analysis of CIP-FEM
can be extended to the case when γF is a complex number with positive real part
and negative imaginary part; for the case that γF is a complex number with positive
imaginary part, the theoretical analysis in this paper do not hold. It can be seen from
the left graph in Fig. 3 that the CIP-FEMwith γF = 0.01+0.08i performs worse than
γF = 0.01 − 0.08i and γF = 0.1. Hence, in the following, we will avoid to choose
γF with positive imaginary part. The right graph in Fig. 3 displays the relative error
of the CIP-FEM with penalty parameter γF = 0.1 and γF = 0.01 − 0.08i based on
the mesh condition κ3h2 = 5. We observe that under this mesh condition, the relative
error does not increase with κ and is bounded by O(κh + κ3h2) which confirms the
error estimate (74).

Fig. 2 The ratio �Eh�h

�E�h
of CIP-FEM under the mesh condition κ3h2 = 5
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Fig. 3 Left: the relative error of CIP-FEM with three different penalty parameter γF and the relative error
of edge element solution in the energy norm under the mesh condition κh = 2.5. Right: the relative error of
CIP-FEM with two different penalty parameter γF in the energy norm under the mesh condition κ3h2 = 5

Another advantage of the CIP-FEM is the flexibility of tuning the penalty param-
eter γF . We may observe from the left graph of Fig. 3 that the CIP-FEM with the
penalty parameter γF = 0.01 − 0.08i performs better than the case with γF = 0.1
and the standard edge element solution. Although the pollution error has not been
eliminated, it is significantly reduced. For more detailed comparison between the
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CIP-FEM and standard edge element method, we consider the problem with wave
number κ = 32. In order to compare the phase error of the solutions, we restrict to
the line segment x = 0.5, y = 0.5 and 0 ≤ z ≤ 1 and observe the traces of the real
part of the first component of the CIP-FEM solution with γF = 0.01 − 0.08i and
standard edge element solution with mesh sizes h = 1/16 and h = 1/32, respec-
tively. The traces of the real part of the first component for the exact solution are also
plotted in blue line in Fig. 4. On the coarse mesh with h = 1/16, the shape of the
CIP-FEM solution is roughly the same as the exact solution, while the standard edge
element solution has a wrong shape. On the fine mesh with h = 1/32, the shape
of the CIP-FEM solution is almost the same as the exact solution, but the edge ele-
ment solution still does not match the exact solution very well. We should note that
this “optimal” penalty parameter is chosen from [7]. It is simply chosen from the set
{0.01(p + qi), −50 ≤ p, q ≤ 50}) to minimize the relative error in energy norm
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Fig. 4 Left: the traces of the real part of the first component of the CIP-FEM solution with γF = 0.01 −
0.08i for κ = 32 with mesh size h = 1/16 and h = 1/32 respectively. Right: the case for the standard
edge element solution
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for wave number κ = 20 and h = 1/10. The optimal penalty parameter can also be
obtained by the dispersion analysis [2], which is a subject worth of investigation.

Finally, we show the numbers of total degree of freedoms (DOFs) needed for
reducing the relative errors in energy norm to 30% for the edge element solution,
IPDG solution developed in [7], and our CIP-FEM. It can be seen from Table 1 that
our CIP-FEM needs less DOFs than the IPDG method, and much less for large wave
number κ than the edge element solution.

Example 5.2 We consider the time-harmonic Maxwell problem with the impedance
boundary condition:

curl curl E − κ2E = in Ω,

curl E × ν − iκET = g on ∂Ω .

Here Ω = [0, 1]× [0, 1]× [0, 1] is a unit cube, and f and g are chosen such that the
exact solution is given by

E = (sin(κy)J0(κr), cos(κz)J0(κr), iκJ0(κr))T

in polar coordinates, where r = √
x2 + y2 + z2 and J0(z) is Bessel function of the

first kind. Although we assume that the right-hand side f of the equation (1) is a
solenoidal current density, we find that the numerical results are also valid for the
case divf �= 0.

For fixed wave number κ , we first show the relative error in the energy norm with
respect to the CIP-FEM and standard edge element solution. The left graph in Fig. 5
displays the relative error of the CIP-FEM solution with γF = 0.1 in the energy norm
for κ = 10, 20, and 30, while the right one shows the relative error for the cases based
on the standard edge element method. We find that the relative error of the CIP-FEM
stays around 100% while the standard edge element method oscillates around 100%
when the mesh size is not small enough for the wave number κ , which confirms the
stability property of our theoretical analysis for the CIP-FEM and indicates that the
CIP-FEM is more stable than the standard edge element method especially for large
wave number κ .

Figure 6 displays the relative error in the energy norm according to different mesh
size conditions. The left one shows the relationship between the relative error and the
wave number κ under the mesh condition κh = 2.5 for the CIP-FEM and standard

Table 1 Numbers of total DOFs
needed for 30% relative errors in
energy norm for the edge
element solution, IPDG
solution, and our CIP-FEM

κ 10 20 30 40

FEM 9504 127008 649728 2208384

IPDG 12000 96000 324000 768000

CIP-FEM 8368 62048 204048 477376
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Fig. 5 The relative error of CIP-FEM and edge element solution against 1
h
in the energy norm for κ =

10, 20, 30, respectively (left to right)

edge element solutions. We may observe that although both the relative error of CIP-
FEM and edge element solution increase with κ , the CIP-FEM performs better than
the standard edge element solution. The right graph of Fig. 6 shows the relative error
of the CIP-FEM on the mesh condition κ3h2 = 5, from which we may see that the
relative error can be controlled under this mesh condition.
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Fig. 6 Left: the relative error of CIP-FEM and edge element solution in the energy norm under the mesh
condition κh = 2.5. Right: the relative error of CIP-FEM in the energy norm under the mesh condition
κ3h2 = 5
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