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Abstract
In this paper, we consider a total variation–based image denoising model that is able
to alleviate the well-known staircasing phenomenon possessed by the Rudin-Osher-
Fatemi model (Rudin et al., Phys. D 60, 259–268, 1992). To minimize this variational
model, we employ augmented Lagrangian method (ALM). Convergence analysis
is established for the proposed algorithm. Numerical experiments are presented to
demonstrate the features of the proposed model and also show the efficiency of the
proposed numerical method.
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1 Introduction

Image denoising aims to remove the noise part of a given image in order to get a
clean one inside which meaningful signals should be largely retained. This is a typ-
ical inverse problem, and to treat such a problem, an appropriate regularizer should
often be employed. In the literature, one of the most famous variational models for
this problem was given by Rudin, Osher, and Fatemi (ROF) [30], where the total vari-
ation was used as the regularizer. The appealing feature of this regularizer lies in its
ability of allowing discontinuous solution of the variational model, and thus object
boundary can be captured. Ever since this remarkable work, the total variation–based
regularizer has been adopted to dealing with different imaging tasks [8, 14, 15, 17,
19]. Moreover, numerous variational models have been proposed by using different

Communicated by: Raymond H. Chan

� Wei Zhu
wzhu7@ua.edu

1 Department of Mathematics, University of Alabama, Box 870350, Tuscaloosa, AL 35487, USA

Advances in Computational Mathematics (2019) 45:3217–3239

Published online: 29 November 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-019-09734-5&domain=pdf
http://orcid.org/0000-0001-5352-0251
mailto: wzhu7@ua.edu


W. Zhu

forms of regularizers in the field of mathematical imaging [3, 16, 18, 23, 24, 27, 28].
Despite its effectiveness of removing noise while keeping object boundaries, the

ROF model bears several undesirable properties. For instance, in [25], Meyer pointed
out that the ROF model cannot preserve image contrast and object corners, and also
in [7], Bellettini, Caselles, and Novaga studied what kind of shapes can be maintained
by the ROF model, which suggests that the ROF model will smear object corners.
More importantly, the ROF model also suffers from the staircase effect, that is, the
denoised image presents blocky pieces or piecewise constant regions, even for origi-
nally smooth parts inside the given image, which surely leads to visually unpleasant
denoised results.

To fix the staircasing phemomenon, quite a few of higher order variational mod-
els have been developed [9, 18, 23, 31, 35], which is due to the fact that piecewise
constant functions could lead to large magnitude of their second-order derivatives.
Precisely, in [9], Bredies et al. developed a novel term called total generalized vari-
ation as a regularizer for dealing with inverse problems in mathematical imaging,
including image denoising. As this new regularizer utilizes higher order derivatives,
the proposed model successfully suppress the staircase effect. In [18], Chan et al.
proposed adding a nonlinear fourth-order diffusive term in order to reduce the stair-
case effect. In [23], instead of total variation, second-order derivatives were directly
incorporated into the denoising model, and as a result, the blocky phenomenon can
also be largely removed. In [31], Euler’s elastica was used as the regularizer for the
purpose of image denoising, and the staircase issue was also well solved. Moreover,
in [35], the authors proposed using the L1-norm of mean curvature of image surface
as the regularizer for the noise removal problem.

Even though all the above higher order models can successfully ameliorate the
staircase effect, one has to deal with more complicated models than the ROF model.
It is often challenging to develop efficient numerical methods for these higher
order models, which has attracted lots of research attention during the past decade.
Many efficient algorithms have been developed to handle these higher order, highly
nonlinear, and/or non-differentiable models [4, 13, 20, 31, 34].

In this paper, we intend to develop a first-order image denoising model to reduce
the staircase effect while removing noise and keeping object boundaries effectively.
More precisely, just like ROF, only the first-order derivative will be employed in the
model. As discussed above, the remarkable feature of the ROF model is its capability
of preserving jumps, and this is mainly due to its total variation regularizer. There-
fore, for the noise removal problem, we still want to keep this nice feature. However,
this regularizer cannot avoid the staircase effect, and this issue reminds us that the
total variation might not be appropriately applied for each region inside the given
noisy image. Note that the staircase often occurs at locations with relatively small
gradient of image intensity, since locations with large gradient usually indicate object
boundaries. In some sense, the total variation is too weak to suppress the blocky
effect in smooth regions. Therefore, to reduce the staircase phenomenon, a regular-
izer that requires higher regularity than the total variation should be imposed on such
regions, i.e., the regions with relatively small gradient. Based on these arguments,
we propose employing different types of regularizers for different regions of image
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gradient. Specifically, we plan to apply Lp-norm of image gradient with p > 1 for
regions with small gradient, while retaining the total variation for regions with large
gradient. This choice could help alleviate the staircase effect. For instance, just as the
celebrated Mumford-Shah model [26], if one chooses L2-norm of gradient as the reg-
ularizer, a smooth solution could be obtained. In this work, we only apply Lp-norm
of image gradient with p > 1 for regions with small gradient in order to alleviate the
staircase phenomenon.

In fact, similar idea was also proposed in other works [12, 32]. In [12], Chang
and Che considered three total variation types of image denoising models, where
the Lp-norm of the first-order partial derivatives with p = 1/2, 1, 2 were used as
regularizers respectively, and then obtained the denoised image by taking a com-
bination of the results from the three models in order to maintain the merits of
each model. In [32], Vese studied a class of total variation-based image denois-
ing and deblurring models. Specifically, instead of the total variation

∫ |Du|, she
proposed using

∫
φ(|Du|) as the regularizer, where φ is some specially designed

function. In this work, Vese showed the existence and uniqueness of the minimizer
of the corresponding models in the space of functions of bounded variation and
also numerically tested the proposed models for the case of the potential function
φ(z) = √

ε + z2. As a matter of fact, the model that will be discussed in this paper
can be regarded as special cases in Vese’s work [32]. However, the main theme of our
work focuses on the point that our model is able to reduce the staircase effect besides
removing noise and keeping edges effectively. Moreover, the potential functions φ

employed in our model is different from the one that was tested numerically in Vese’s
work.

To minimize our model, we propose using the augmented Lagrangian method
(ALM) [21, 29]. Recently, ALM has been successfully applied for non-differentiable,
nonlinear, and higher-order variational models [5, 31, 34, 36–38]. An appealing fea-
ture of using ALM lies in the fact that the minimization of our model amounts to the
seek of saddle point of some augmented Lagrangian functional, which can be carried
out by minimizing several relatively simpler functionals repeatedly and alternatingly.
In fact, these functionals either have closed-form solution or can be solved using fast
solvers like FFTs.

As discussed later, the proposed model only involves the first-order derivative, and
it can be regarded as a variant of the ROFmodel. Therefore, one might not expect that
the proposed model could achieve as good results as those higher order models [9,
18, 23, 31, 35]. However, with almost the same numerical cost as ROF, the proposed
model could alleviate the staircase effect while also removing noise and keeping
edges.

The rest of the paper is organized as follows. In the next section, we present our
variational model for the noise removal problem, where total variation–based regu-
larizer is piecewisely defined according to image gradient. In Section 3, we address
how to minimize the proposed models using ALM, which is followed by the conver-
gence analysis of the numerical algorithm. We then present numerical experiments
in Section 4, which validate the features of the proposed models, especially the
reduction of staircase effect, and Section 5 is devoted to our conclusions.
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2 A total variation–based image denoisingmodel

As discussed in the introduction, by applying the ROF model, the staircasing phe-
nomenon is often unavoidable, which is mainly due to the total variation–based
regularizer. Note that this effect often happens in regions with relatively small gra-
dient of image intensity, since locations with large gradient often refer to object
boundaries. Therefore, to reduce the staircase effect, some stronger regularizer than
the total variation should be imposed. At the same time, we also want to keep total
variation for region with large gradient in order to keep object boundaries. Based
on this discussion, we propose the minimization of the following functional for the
image denoising problem:

E(u) = λ

∫

�

φp,a(|∇u|) + 1

2

∫

�

(f − u)2, (1)

where p > 1 and the potential function φp,a is given as follows:

φp,a(x) =

⎧
⎪⎨

⎪⎩

1
pap−1 |x|p, |x| ≤ a;

|x| − (1 − 1
p
)a, |x| > a.

Here, the parameter a defines regions with small or large gradient. With this parame-
ter a, the domain will be decomposed into two parts. On one hand, in the region with
|∇u| > a, the total variation is employed as the regularizer in order to keep edges. In
fact, |∇u| takes large magnitude along edges. On the other hand, in the region with
|∇u| ≤ a, some higher power of |∇u| is utilized to impose smooth constraint on
u in such a region. For instance, when p = 2, in this region, the associated Euler-
Lagrange equation reads −λ

a
�u+u = f , and then the function u should be smooth,

which explains that this type of regularizer could alleviate the staircase effect. Note
that the staircase effect is often observed in regions with relatively small magnitude
of gradient.

One can easily check that the function φp,a is convex over R for p > 1. We
present the graph of this function with a = 2 for p = 1, 3/2, 2 respectively in Fig. 1
for illustration. The case of p = 1 corresponds to the function for the original total
variation regularizer. In fact, the case of p = 2 was explicitly given in Vese’s work
[32]. Moreover, for this case, φp,a(x) is the Huber function [22], which is also the
Moreau envelope of the function φ(x) = |x|.

For an analytical study of the proposed model (Eq. 1), one could follow the dis-
cussion in Vese’s work [32]. We here only present the key point, and the detailed
discussion can be found in [2, 32].

Let u ∈ BV (�), then its distributional gradient Du defines a Radon measure.
By the Radon-Nikodym theorem, one has the decomposition Du = ∇udx + Dsu,
where dx is the Lebesgue measure, ∇u = d(Du)

dx ∈ L1(�), and Dsu and dx are
mutually singular. Moreover, as shown by Ambrosio [1], the singular part Dsu can
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Fig. 1 The plots of φp,a(x) with
a = 2 for p = 1, 3/2, 2
respectively

be further decomposed as a “jump” part and a “Cantor” part. For this, one defines the
approximate upper limit u+(x) and lower limit u−(x) as follows:

u+(x) = inf{t ∈ [−∞, ∞] : lim
r→0

dx({u > t} ∩ B(x, r))

r2
= 0},

u+(x) = sup{t ∈ [−∞, ∞] : lim
r→0

dx({u < t} ∩ B(x, r))

r2
= 0}.

Thus, if u ∈ L1(�), with respect to the Lebesgure measure, almost all the points
in � are Lebesgue points, that is, u(x) = u+(x) = u−(x), a.e.x. Set Su = {x ∈
� : u−(x) < u+(x)}, which is the complement of the set of Lebesgue points. Su is
countably rectifiable, and one could define the normal nu(x) for H 1 − a.e.x ∈ �,
where H 1 denotes the Hausdorff measure of dimension one. Then, in [1], Ambrosio
showed that

Du = ∇udx + (u+ − u−)nuH
1|Su + Cu,

where Cu is the Cantor part of Dsu, and one could get the following:
∫

�

|Du| =
∫

�

|∇u|dx +
∫

Su

|u+ − u−|dH1 +
∫

�\Su

|Cu|,

As discussed in [32], the proposed model (Eq. 1) can be expressed as follows:

RE(u)=λ

∫

�

φp,a(|∇u|)+ λ

∫

Su

(u+−u−)dH 1+ λ

∫

�−Su

|Cu|dx+ 1

2

∫

�

(f −u)2, (2)

It is easy to see that there exist b > 0, c > 0 such that cz − b ≤ φp,a(z) ≤ cz + b

for any z > 0. Then, based on Vese’s work in [32], one could obtained the following
existence theorem:
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Theorem The functional RE(u) (Eq. 2) has a unique minimizer in the space BV(�).

3 Augmented lagrangianmethod for the proposedmodel

To minimize the functional (1), one could directly solve its Euler-Lagrange equation,
which can be expressed as follows:

− λ∇ ·
(

φ′
p,a(|∇u|) ∇u

|∇u|
)

+ u = f . (3)

Specifically, one may employ the associated gradient flow to find the solution of this
equation.

In this work, we intend to minimize the functional (1) using augmented
Lagrangian method (ALM). In fact, during the past years, ALM has been success-
fully applied for minimizing non-differentiable or/and higher order models [31, 34,
36]. The most appealing feature of using ALM is its simplicity, that is, the original
minimization problem can be converted to a constrained optimization one, and the
seek of the saddle point of the latter problem amounts to solving several relatively
simple functionals repeatedly and alternatingly. Precisely, for the minimization of
functional (1), as in [34], we propose an equivalent constrained optimization problem
as follows:

minq,u

{

λ

∫

�

φp,a(|q|) + 1

2
(f − u)2

}

,

subject to q = ∇u, (4)

and design an augmented Lagrangian functional as follows:

L(q, u; λ1) = λ

∫

�

φp,a(|q|) + 1

2
(f − u)2

+ r1

2

∫

�

|q − ∇u|2 +
∫

�

λ1 · (q − ∇u) (5)

where λ1 ∈ R
2 is a Lagrange multiplier and r1 > 0 is a penalty parameter to be

chosen in the numerical implementation.
Based on the theory of optimization, the minimizer of the functional (1) corre-

sponds to the saddle point of the augmented Lagrangian functional (5). To find the
saddle point, we employ the standard iterative strategy, that is, we minimize the cor-
responding subproblem for each of q and u respectively by fixing the other one, and
then update the Lagrange multiplier λ1; this process will be repeated until the two
variables are convergent, which indicates the saddle point will be approximated. This
iterative method for approximating the saddle point of the functional (5) is given in
Algorithm 1.
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Algorithm 1 Augmented Lagrangian method for the minimization of the proposed
model (Eq. 1).

1. Initialization: u0, q0 and λ01. For k ≥ 1, do the following steps (Step 2 ∼ 4):
2. Compute the minimizer uk, qk for the associated subproblems with the fixed

Lagrangian multiplier λk−1
1 :

uk = argminuL(u, qk−1; λk−1
1 ); (6)

qk = argminqL(uk, q; λk−1
1 ); (7)

3. Update the Lagrangian multiplier λ1

λk
1 = λk−1

1 + r1(q
k − ∇uk), (8)

4. Measure the relative residual (Eq. 36) and stop the iteration if it is smaller than
a given threshold εr .

Specifically, the two subproblems to be minimized for the variables q and u are
given as follows:

ε1(u) = 1

2

∫

�

(f − u)2 + r1

2

∫

�

|q − ∇u|2 +
∫

�

λ1 · (q − ∇u); (9)

ε2(q) = λ

∫

�

φp,a(|q|) + r1

2

∫

�

|q − ∇u|2 +
∫

�

λ1 · (q − ∇u). (10)

As discussed in [31, 34, 36], the minimizer of ε1(u) is determined by the correspond-
ing Euler-Lagrange equation as follows:

− r1�u + u = f − ∇ · (r1q + λ1), (11)

which is a linear elliptic equation with constant coefficients, and thus can be solved
using FFTs.

For the subproblem of q, in this work, we only consider the cases p = 3
2 , 2 and 3.

In fact, the minimizers of ε2(q) for these three cases all have closed-form solutions.
In what follows, we discuss the minimizer of ε2(q) for the case p = 2. For p = 2,
the potential function φ2,a reads as follow:

φ2,a(x) =
⎧
⎨

⎩

1
2a x2, |x| ≤ a;

|x| − 1
2a, |x| > a.

and the minimizer of ε2(q) can be described in the following proposition. In fact, this
proposition is a well-known fact in optimization [6], where one could derive it using
the proximal mapping. For the convenience of reading, we keep a direct proof here.

Proposition If p = 2, the minimizer of ε2(q) is given as follows:

Argminqε2(q) =

⎧
⎪⎨

⎪⎩

r1
r1+λ/a

q∗, if |q∗| ≤ a + λ
r1

;

(1 − λ
r1|q∗| )q

∗, if |q∗| > a + λ
r1
.

(12)
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where q∗ = ∇u − λ1/r1.

Proof Note that ε2(q) can be written as follows:

ε2(q) = λ

∫

�

φ2,a(|q|) + r1

2

∫

�

|q − q∗|2 + c̃,

with q∗ = ∇u − λ1/r1 and c̃ is independent of q. Since there is no spatial derivative
of q involved, we can get the minimizer of the functional by finding that of the
integrand pointwisely. For simplicity, denote the integrand function by g(q), that is,
g(q) = λφ2,a(|q|) + r1

2 |q − q∗|2. As φ2,a(x) is an increasing function for x ≥ 0, it
is easy to see that the minimizer of g(q) must assume the form sq∗ with s ∈ [0, 1].
Therefore, we just need to study the minimizer of a new function h(s) = g(sq∗)
with s ∈ [0, 1]. For this, the following two cases need to be considered: (1) |q∗| ≤ a;
(2) |q∗| > a.

Case 1. If |q∗| ≤ a, by the definition of φ2,a , h(s) = λ
2a |q∗|2s2 + r1

2 |q∗|2(s − 1)2.
One can find the minimum value of h(s) occurs at s0 = r1

r1+λ/a
, which lies

inside (0, 1).
Case 2. If |q∗| > a, h(s) can be expressed as follows:

h(s) =
⎧
⎨

⎩

λ
2a |q∗|2s2 + r1

2 |q∗|2(s − 1)2, if 0 ≤ s|q∗| ≤ a;

λ|q∗|s − λ
2a + r1

2 |q∗|2(s − 1)2, if a < s|q∗| ≤ |q∗|.
It easy to see that h(s) is convex on [0, 1) (note that φ2,a(x) is convex). Therefore,

the minimum value of h occurs at either the two end points or the critical point. As
in case 1, if 0 ≤ s|q∗| ≤ a, that is, in the interval [0, a/|q∗|], h(s) could take on its
minimum value at s0 = r1

r1+λ/a
. One may check that s0 ∈ [0, a/|q∗|] if and only if

|q∗| ≤ a + λ
r1
. In another word, if |q∗| ≤ a + λ

r1
, s0 is a critical point of h(s) in [0, 1),

and thus is a minimizer.
Similarly, for a < s|q∗| ≤ |q∗| or s ∈ (a/|q∗|, 1], h(s) assumes its minimum

value at s1 = 1 − λ
r1|q∗| if s1 ∈ (a/|q∗|, 1], which is equivalent to be |q∗| > a + λ

r1
.

Combining both of the above cases, we have if |q∗| ≤ a + λ
r1
, s0 is a minimizer of

h(s) on [0, 1), while if |q∗| > a + λ
r1
, then s1 is the minimizer.

Therefore, the minimizer of ε2(q) can be expressed as follows:

Argminqε2(q) =

⎧
⎪⎨

⎪⎩

r1
r1+λ/a

q∗, if |q∗| ≤ a + λ
r1

;

(1 − λ
r1|q∗| )q

∗, if |q∗| > a + λ
r1
.

(13)

which completes the proof.
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We here only derive the minimizer of ε2(q) for the case p = 2, in fact, the
same procedure can be employed for the cases p = 3

2 and p = 3. Specifically, the
minimizer for the case p = 3

2 reads as follow:

Argminqε2(q) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
2r1

√
a|q∗|√

λ2+4r21a|q∗|+λ

)2

q∗, if |q∗| ≤ a + λ
r1

;

(1 − λ
r1|q∗| )q

∗, if |q∗| > a + λ
r1
.

(14)

and the one for p = 3

Argminqε2(q) =

⎧
⎪⎨

⎪⎩

2√
1+4λ|q∗|/(r1a2)+1

q∗, if |q∗| ≤ a + λ
r1

;

(1 − λ
r1|q∗| )q

∗, if |q∗| > a + λ
r1
.

(15)

Remark In fact, as discussed in [34], the subproblem ε2(q) for the ROF model has
the form as follows:

ε2(q) = λ

∫

�

|q| + r1

2

∫

�

|q − ∇u|2 +
∫

�

λ1 · (q − ∇u) (16)

and its minimizer reads as follow:

Argminqε2(q) =

⎧
⎪⎨

⎪⎩

0, if |q∗| ≤ λ
r1

;

(1 − λ
r1|q∗| )q

∗, if |q∗| > λ
r1
.

(17)

with q∗ being defined as in (12). One can see that the ROF model allows 0 for its
minimizer when |q∗| ≤ λ

r1
, while for the new model, the minimizer takes on 0 only

for the case q∗ = 0. This shows the major difference between the two models and
also demonstrates that the new model is able to reduce the staircasing phenomenon.

In what follows, we provide the convergence result of the proposed ALM dis-
cussed in Algorithm 1. By starting with the initial guess of the variables u, q, and
λ1, one could get a sequence of {(uk, qk; λk

1)}, k = 1, 2, ... In what follows, as
in [21, 34], we establish the convergence result for the sequence {uk} for the case
p = 2. In fact, a similar convergence result can be found in the discrete setting in
[10].

Theorem Let {(uk, qk; λk
1)}, k = 1, 2, ... be the sequence generated by the algo-

rithm summarized in Algorithm 1. If (u∗, q∗; λ∗
1) is a saddle point of the augmented

Lagrangian functional L(u, q; λ1), then one gets

lim
k→∞ uk = u∗. (18)
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Proof For convenience, in what follows, we denote 〈f, g〉 = ∫
�
fg and ‖f ‖2 =∫

�
|f |2, where f, g can be vector functions.
Since (u∗, q∗; λ∗

1) is a saddle point of the functional L(u, q; λ1), that is,

L(u∗, q∗; λ1) ≤ L(u∗, q∗; λ∗
1) ≤ L(u, q; λ∗

1), for any u, q, and λ1, (19)

by using the same argument as in [34], one can get q∗ = ∇u∗. As u∗ =
argminuL(u, q∗; λ∗

1), then for the function h(t) = L(u∗ + t (u − u∗), q∗; λ∗
1) for any

u and t ∈ [0, 1], one has h′(0) ≥ 0, and thus
〈
f − u∗, u∗ − u

〉 + 〈
r1(q

∗ − ∇u∗) + λ∗
1, ∇(u∗ − u)

〉 ≥ 0, for any u. (20)

Similarly, as q∗ = argminqL(u∗, q; λ∗
1), one gets

λ
〈
φ2,a(|q|) − φ2,a(|q∗|), 1〉 + 〈

r1(q
∗ − ∇u∗) + λ∗

1, q − q∗〉 ≥ 0, for any q. (21)

As uk = argminuL(u, qk−1; λk−1
1 ) and qk = argminqL(uk, q; λk−1

1 ), using the
same procedure, one obtains the following:

〈
f − uk, uk − u

〉
+

〈
r1(q

k−1 − ∇uk) + λk−1
1 , ∇(uk − u)

〉
≥ 0, for any u. (22)

and

λ
〈
φ2,a(|q|) − φ2,a(|qk|), 1

〉
+

〈
r1(q

k−∇uk) + λk−1
1 , q−qk

〉
≥0, for any q. (23)

For the convenience of presentation, let us introduce short notations duk = uk −
u∗, dqk = qk − q∗, and dλk

1 = λk
1 − λ∗

1. Then, adding the above four inequalities by
setting u = uk in (20), u = u∗ in (22), q = qk in (21), q = q∗ in (23) leads to the
following:

−
〈
duk, duk

〉
+

〈
∇(duk), r1(q

k−1 − ∇uk) + dλk−1
1

〉

+
〈
dqk, −r1(q

k − ∇uk) − dλk−1
1

〉
≥ 0. (24)

As λk
1 = λk−1

1 + r1(q
k −∇uk) and r1(q

k−1−∇uk) = r1(q
k −∇uk)+ r1(q

k−1−qk),
this inequality is simplified as follows:

−
∥
∥
∥duk

∥
∥
∥
2 +

〈
∇(duk), dλk

1 + r1(q
k−1 − qk)

〉
+

〈
dqk, −dλk

1

〉
≥ 0. (25)

and then

−
∥
∥
∥duk

∥
∥
∥
2 +

〈
∇(uk − qk), dλk

1

〉
+

〈
∇(duk), r1(q

k−1 − qk)
〉
≥ 0. (26)

As q∗ = ∇u∗ and ∇(duk) = dqk + (∇uk − qk) = dqk + 1
r1

(λk−1
1 − λk

1), one gets

−
∥
∥
∥duk

∥
∥
∥
2 + 1

r1

〈
λk−1
1 − λk

1, dλk
1

〉
+ r1

〈
dqk, qk−1 − qk

〉

+
〈
λk−1
1 − λk

1, q
k−1 − qk

〉
≥ 0. (27)
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As the inequality (23) holds for qk , we can also write down a similar inequality for
qk−1 as follows:

λ
〈
φ2,a(|q|)−φ2,a(|qk−1|),1

〉
+

〈
r1(q

k−1−∇uk−1)+λk−2
1 , q−qk−1

〉
≥0, for any q, (28)

Adding the two inequalities by setting q = qk−1 in (23) and q = qk in (28) gives the
following:

〈
λk
1, q

k−1 − qk
〉
+

〈
λk−1
1 , qk − qk−1

〉
≥ 0, (29)

that is,
〈
λk−1
1 − λk

1, q
k−1 − qk

〉
≤ 0. With this inequality, the one (27) leads to the

following:

−
∥
∥
∥duk

∥
∥
∥
2 + 1

r1

〈
λk−1
1 − λk

1, dλk
1

〉
+ r1

〈
dqk, qk−1 − qk

〉
≥ 0 (30)

Using the identities

〈
λk−1
1 − λk

1, dλk
1

〉
= 1

2

(∥
∥
∥dλk−1

1

∥
∥
∥
2 −

∥
∥
∥dλk

1

∥
∥
∥
2 −

∥
∥
∥λk−1

1 − λk
1

∥
∥
∥
2
)

〈
dqk, qk−1 − qk

〉
= 1

2

(∥
∥
∥dqk−1

∥
∥
∥
2 −

∥
∥
∥dqk

∥
∥
∥
2 −

∥
∥
∥qk−1 − qk

∥
∥
∥
2
)

one gets

(
1

2r1

∥
∥
∥dλk−1

1

∥
∥
∥
2 + r1

2

∥
∥
∥dqk−1

∥
∥
∥
2
)

−
(

1

2r1

∥
∥
∥dλk

1

∥
∥
∥
2 + r1

2

∥
∥
∥dqk

∥
∥
∥
2
)

≥
∥
∥
∥duk

∥
∥
∥
2 + 1

2r1

∥
∥
∥λk−1

1 − λk
1

∥
∥
∥
2 + r1

2

∥
∥
∥qk−1 − qk

∥
∥
∥
2
, (31)

which shows that the nonnegative sequence
{

1
2r1

∥
∥dλk

1

∥
∥2 + r1

2

∥
∥dqk

∥
∥2

}∞
k=1

is

decreasing and convergent, and therefore limk→∞
∥
∥uk − u∗∥∥ = 0.

Remark In this proof, we only use the convexity of φ2,a(x), and therefore the
conclusion also holds for the cases with p = 3

2 , 3.

4 Numerical implementation

In this section, we present the details of solving the equation (11) and updating the
variable q in the numerical implementation, which are similar as those in the works
[31, 34, 36].
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Let � = {(i, j)|1 ≤ i ≤ M, 1 ≤ j ≤ N} be the discretized image domain and
each point (i, j) is a grid point. We then define the discrete backward and forward
differential operators with periodic boundary condition as follows:

∂−
1 u(i,j) =

{
u(i,j) − u(i−1,j), 1 < i ≤ M;
u(1,j) − u(M,j), i = 1.

∂+
1 u(i,j) =

{
u(i+1,j) − u(i,j), 1 ≤ i < M − 1;
u(1,j) − u(M,j), i = M .

∂−
2 u(i,j) =

{
u(i,j) − u(i,j−1), 1 < j ≤ N ;
u(i,1) − u(i,N), j = 1.

∂+
2 u(i,j) =

{
u(i,j+1) − u(i,j), 1 ≤ j < N ;
u(i,1) − u(i,N), j = N .

and the central difference operators and the gradient operators are defined accord-
ingly:

∂c
1u(i,j) = (∂−

1 u(i,j) + ∂+
1 u(i,j))/2,

∂c
2u(i,j) = (∂−

2 u(i,j) + ∂+
2 u(i,j))/2,

∇±u(i,j) = 〈∂±
1 u(i,j), ∂

±
2 u(i,j)〉.

Note that Eq. (11) is an elliptic equation with constant coefficients, one can use FFTs
to solve it. For this, Eq. (11) is discretized as follows:

− r1(∂
+
1 ∂−

1 u + ∂+
2 ∂−

2 u) + u = g, (32)

where g represents the right-hand side of Eq. (11). By applying Fourier transform to
both sides, one gets the following:

(1 + 2r1(2 − cos z1i − cos z2j ))Fu(i,j) = Fg(i,j), (33)

where z1i = 2π(i −1)/M, i = 1, · · ·, M and z2j = 2π(j −1)/N, j = 1, · · ·, N . Then
onceFu is calculated, u can be obtained using the discrete inverse Fourier transform.

As for the minimizer q = (q1, q2) of ε2(q), note that its two components
are defined on half-grids (i + 1

2 , j) and (i, j + 1
2 ) respectively, in the numeri-

cal implementation, we calculate q1 and q2 separately. In particular, one has the
following:

q1(i+ 1
2 ,j)

=

⎧
⎪⎨

⎪⎩

r1
r1+λ/a

q∗
1(i+ 1

2 ,j)
, if |q∗

i+ 1
2 ,j

| ≤ a + λ
r1

;

(1 − λ
r1|q∗

i+ 1
2 ,j

| )q
∗
1(i+ 1

2 ,j)
, if |q∗

i+ 1
2 ,j

| > a + λ
r1
.

(34)

and

q2(i,j+ 1
2 )

=

⎧
⎪⎨

⎪⎩

r1
r1+λ/a

q∗
2(i,j+ 1

2 )
, if |q∗

i,j+ 1
2
| ≤ a + λ

r1
;

(1 − λ
r1|q∗

i,j+ 1
2
| )q

∗
2(i,j+ 1

2 )
, if |q∗

i,j+ 1
2
| > a + λ

r1
.

(35)
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where q∗
i+ 1

2 ,j
= (∂+

1 u(i,j), (∂
c
2u(i,j) + ∂c

2u(i+1,j))/2) − (λ11(i+ 1
2 ,j)

, λ12(i+ 1
2 ,j)

)/r1

and q∗
i,j+ 1

2
= ((∂c

1u(i,j) + ∂c
1u(i,j+1))/2, ∂

+
2 u(i,j)) − (λ11(i,j+ 1

2 )
, λ12(i,j+ 1

2 )
)/r1.

After the variables u, q are updated, the Lagrange multiplier λ1 = (λ11, λ12) will
then be advanced at (i, j):

λk
11(i,j) = λk−1

11(i,j) + r1(q
k
1(i,j) − ∂−

1 uk
(i,j)),

λk
12(i,j) = λk−1

12(i,j) + r1(q
k
2(i,j) − ∂−

2 uk
(i,j)).

5 Numerical experiments

In this section, we present numerical experiments by applying the proposed model
for several images and also compare the results with the ones obtained using the ROF
model in order to show how the staircase effect can be alleviated.

In this work, we mainly compare the proposed model with ROF, as the proposed
model is merely a variant of ROF with a slight change, and as discussed in Remark 1,
the numerical cost for these two models is almost the same. As the proposed model
only employs the first-order derivative, one might not expect that it could achieve as
good results as those higher order models [9, 18, 23, 31, 35]. In fact, these models
have proved to be very successful for image denoising or other imaging problems.
To evaluate the performance of the proposed model, we also compare the proposed
model with the well-known total generalized variation (TGV) model by Bredies et al.
[9], which produces excellent denoising results while also suppressing the staircase
effect.

For a fair comparison, we also apply ALM for the minimization of the ROFmodel.
In fact, the algorithm for the ROF model only differs from the one for the proposed
model in the update of q in each iteration (see Remark 1). Moreover, we choose the
model parameter λ for the two models such that their removed noise parts, f − u,
have almost the same averaged Frobenius norm, which will be defined later.

As in [31, 36, 38], to monitor the convergence of the iterative process, we check
the following relative residual:

Rk = 1

|�| ‖q
k − ∇uk‖L1 , (36)

where k refers to the iteration number, |�| is the area of domain, and ‖ · ‖L1 denotes
the L1-norm on �. Specifically, for an image f = [fij ], 1 ≤ i ≤ m, 1 ≤ j ≤
n, ‖f ‖L1 = ∑M

i=1
∑N

j=1 |fij |. We also track the relative error of the Lagrange
multiplier as following:

‖λk
1 − λk−1

1 ‖L1

‖λk−1
1 ‖L1

, (37)

the relative error of the solution uk

‖uk − uk−1‖L1

‖uk−1‖L1
, (38)

3229



W. Zhu

and check the energy E(uk) versus the iteration number k. The value of these relative
errors can be used as a stop criterion to terminate the iterative process. For the purpose
of presentation, all the above quantities are shown in log scale, as shown in Figs. 7
and 8.

In all of the experiments presented in this paper, the added noise is Gaussian noise
with zero mean and standard deviation σ , i.e., the added noise n ∼ N(0, σ 2). For a
fair comparison, we employ the Frobenius norm to measure the removed part. Specif-
ically, for f = [fij], 1 ≤ i ≤ m, 1 ≤ j ≤ n, and the averaged Frobenius norm of f

reads ‖f ‖F =
√∑M

i=1
∑N

j=1 |fij|2/MN. We then choose the regularization parame-
ters for our model and the ROF model so that their removed noise parts have almost
the same Frobenius norm.

We first consider a synthetic image in Fig. 2. The cleaned images show that, just
as ROF, the proposed model is able to remove noise effectively, while also keeping
the jumps or edges. More importantly, the proposed model alleviates the staircase
effect largely. In fact, these features of the proposed model is due to the proposed
regularizer. Specifically, along edges with relatively large gradient, the regularizer
takes the form of total variation, and hence edge location can be preserved; while
in regions with relatively small gradient, we use Lp-norm of gradient as the reg-
ularizer with p > 1, which imposes higher regularity than total variation on the
image. Specifically, when p = 2, the associated Euler-Lagrange equation includes
the Laplace operator in such regions, which surely helps smooth the image. As
discussed previously, the staircase phenomenon is the result of over-sharpening in
regions with relatively small magnitude of gradient. Therefore, in these regions, we

Fig. 2 A noise-free cartoon image , the noisy one, and the denoised images by ROF and by the proposed
model with p = 1.5, 2, 3, respectively. In this experiment, the standard deviation of added noise is σ = 15.
The additive noise n has the norm ‖n‖F = 15.03, and the removed noise part has the norm ‖f − u‖F =
15.18 for both our model and ROF

3230



A first-order image denoising model for staircase reduction

propose adding more higher regularity requirement than the total variation in order
to reduce the staircase effect.

In Fig. 3, we apply our model to a real image “Barbara” with p = 1.5, 2, 3.
The results again demonstrate that the proposed model is capable of removing noise
and keeping edge. Moreover, there exists no salient difference among the results for
different p. However, the choice of the parameter a is different. Specifically, we used
a = 8 for p = 1.5, a = 5 for p = 2, and a = 4 for p = 3. This is because when p is
large, we narrow the regions on which we impose the p−Laplace operator in order
to avoid the over-smoothness, while when p is small, we expand the region with the
new regularizer.

For a better comparison, in Fig. 4, the zoomed-in “forehead” obtained by the two
models are presented, which shows that the proposed model ameliorates the staircase
effect adequately.

To further test the proposed model, in Fig. 5, we present the zoomed-in “fore-
head” part obtained by the two models for different level of Gaussian noise, that is,
σ = 10, 15, and 20, respectively. These results again show that the proposed model
is able to alleviate the staircase effect mostly. However, once the noise level (σ ) is
high, it will affect the output of the proposed model. In these experiments, as we use
the same parameter a = 5, and therefore if the added noise is high at some region,
the total variation–based regularizer will be employed and the smoothing effect will
be weakened, and it thus keeps some ridge on the “forehead.” One can surely choose
a large regularization parameter λ to remove such ridges; however, it could also
over-smooth some meaningful signals. Therefore, in this sense, the proposed model

Fig. 3 The noise-free image “Barbara,” the noisy image, and the denoised ones by ROF and by the pro-
posed model with p = 1.5, 2, 3, respectively. In this experiment, the standard deviation of added noise
is σ = 10. The additive noise n has the norm ‖n‖F = 9.98, and the removed noise part has the norm
‖f − u‖F = 12.45 for both our model and ROF
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Fig. 4 The comparison of the zoomed-in “forehead” part obtained by the ROF model and the proposed
model with p = 1.5, 2, 3, respectively. The staircase effect clearly presents in the result by ROF, while it
is largely reduced by the new model

is more appliable for images with relatively lower level of noise, for instance, the
standard deviation σ = 10.

In Fig. 6, we compare the performance of the proposed model with p = 2 and
σ = 10 by using different parameter a. The results demonstrate that if a = 2, there
exists some ridges on the “forehead,” while for a = 8, the denoised image looks
more fuzzy than the choice a = 5. In fact, if a is small, the proposed model is close
to ROF, since only some region is imposed the new regularizer, and this explains why
the denoised image still keeps ridges; and if a is large, the Laplace operator will be
applied for a large region, and thus overly smooths signals in that region.

To show the convergence of the iterative process of the proposed ALM, in Fig. 7,
we list the plots of relative residual (36), the relative error of Lagrange multiplier
(37), the relative error of uk (38), and the energy E(uk) versus iteration by applying
the proposed model with p = 2 for “Barbara” with σ = 10. Note that, after 1000
iterations, the relative error of uk is as small as 3.13 × 10−16, which is close to
the precision of floating-point numbers in Matlab. These results illustrate that the
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Fig. 5 The comparison of the zoomed-in “forehead” part obtained by the ROF model and the proposed
model with p = 2 for different Gaussian noise level σ = 10, 15, 20 (from left to right). The staircase
effect clearly presents in the result by ROF, while it is largely reduced by the new model

Fig. 6 The comparison of the zoomed-in “forehead” part obtained by the proposed model with p = 2 for
the image contaminated with Gaussian noise σ = 10 but with different a = 2, 5, 8 (from left to right)
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Fig. 7 The plots of relative residual (36), relative error of Lagrange multiplier (37), relative error in uk

(38) and energy E(uk) for the example “Barbara” contaminated by Gaussian noise with σ = 10 by using
our model with p = 2. All the quantities are presented in log scale. Note that the relative error of uk arrives
at 3.13 × 10−16, which is close to the precision of floating-point numbers in Matlab

iterative process converges to a saddle point of the augmented Lagrangian functional
(Eq. 5), and thus the minimizer of the proposed model.

In Fig. 8, we also present the plots of relative error of uk versus iteration for the
ROF model and the proposed model with p = 2 when they are applied for “Barbara”
with σ = 10. These plots show that, by using ALM, the proposed model has a strong
tendency to converge to the minimizer, while the ROF model could experience slow
convergence after some iterations. This is mainly due to the employment of a strongly
convex regularizer, that is, the L2 regularizer, for regions with relative small gradient.

In Figs. 9 and 10, we apply the proposed model for another real image “peppers.”
These results again demonstrate that the model is able to remove noise and keep
edge efficiently, while also alleviating the staircase effect. Specifically, in the selected
zoomed-in region, the proposed model can successfully preserve the shadow on the
pepper.

To further compare the quality of the cleaned images by the two models, we list
in Table 1 the peak signal-to-noise ratio (PSNR) and the structural similarity index
measure (SSIM) [33] for the above experiments. PSNR and SSIM are two commonly
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Fig. 8 The comparison of convergence of relative error in uk (38) for the ROF model and the proposed
model with p = 2 when applied to “Barbara” with σ = 10. Note that the vertical quantity is shown in log
scale

used objective image metrics to assess the quality of denoised image. In fact, PSNR
measures the mean squared difference between a noise-free image and the denoised
one. As it is a least square–based measure, it prefers over-smoothed results. On the
other hand, SSIM takes into account the following three comparisons: luminance,
contrast, and structure [33], and it thus measures the similarity of high-frequency
signals like edges between the two images. From Table 1, one can see that ROF

Fig. 9 The noise-free image “peppers,” the noisy image, and the denoised ones by ROF and by the pro-
posed model with p = 1.5, 2, 3, respectively. In this experiment, the standard deviation of added noise
is σ = 10. The additive noise n has the norm ‖n‖F = 9.98, and the removed noise part has the norm
‖f − u‖F = 10.6 for both our model and ROF

3235



W. Zhu

Fig. 10 The comparison of the zoomed-in patch of “peppers” obtained by the ROFmodel and the proposed
model with p = 1.5, 2, 3, respectively. The staircase effect clearly presents in the result by ROF, while it
is largely reduced by the new model

produces a slightly higher PSNR than the proposed models. However, it is easy to
see that the proposed model generates higher SSIM than ROF.

In Figs. 11 and 12, we further compare the results obtained by the proposed
method with p = 2 and the well-known TGV (total generalized variation) model [9],
and the associated values of the PSNR and SSIM in Table 1. To have a fair compar-
ison, for each model and for each experiment, the additive noise and the removed

Table 1 The comparison of PSNR and SSIM for ROF, TGV, and the proposed model

PSNR SSIM

p = 3/2 p = 2 p = 3 ROF TGV p = 3/2 p = 2 p = 3 ROF TGV

Fig. 2, σ = 15 34.01 34.01 34.04 33.31 35.18 0.7502 0.7488 0.7440 0.6793 0.7832

Fig. 3, σ = 10 28.11 28.12 28.10 28.17 28.84 0.7519 0.7513 0.7501 0.7206 0.7710

Fig. 9, σ = 10 31.84 31.80 31.71 32.02 32.75 0.7562 0.7600 0.7575 0.6553 0.7698
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Fig. 11 The comparison of the TGV (total generalized variation) model [9] and the proposed model with
p = 2. The norms of the additive noise and the removed noise part for both models are as follows:
‖n‖F = 15.03, ‖f − u‖F = 15.18 for the first example, ‖n‖F = 9.98, ‖f − u‖F = 12.45 for the second
example, and ‖n‖F = 9.98, ‖f − u‖F = 10.65 for the third example

Fig. 12 The comparison of the zoomed-in patches of “Barbara” and “peppers” obtained by the TGV (total
generalized variation) model [9] and the proposed model with p = 2 for the Gaussian noise level σ = 10
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noise part have almost the same norm. As expected, these figures justify that TGV
generates more smooth solution than the proposed model, since it uses higher order
derivatives, and as shown in Table 1, TGV also leads to higher values of PSNR and
SSIM than the proposed model. On the other hand, with a careful checking of the
plots in Figs. 11 and 12, especially for the “Cartoon” image and at the top right
part of the “forehead” of “Barbara,” one could see that TGV produces slightly over-
smoothed results. Moreover, as the TGV model involves second order derivatives, it
often requires more computational effort than the proposed model.

6 Conclusion

In this paper, we consider a variational image denoising model with the aim to ame-
liorate the staircase effect that is intrinsic to the well-known ROF model. Different
from the ROF model, this model applies different type of regularizers for regions
with different magnitude of gradient of image intensity, and as a result, edges can
be preserved just as the ROF, while smooth regions will not be over-sharpened. To
minimize the associated functional, we develop a fast algorithm using the augmented
Lagrangian method. The convergence analysis of the proposed algorithm is also pro-
vided. Numerical experients are listed to justify the features of the proposed model
and also demonstrate the efficiency of the proposed algorithm.
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