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Abstract
The integral version of the fractional Laplacian on a bounded domain is discretized
by a Galerkin approximation based on piecewise linear functions on a quasiuniform
mesh. We show that the inverse of the associated stiffness matrix can be approximated
by blockwise low-rank matrices at an exponential rate in the block rank.
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1 Introduction

Fractional differential operators are non-local operators with many applications in
science and technology and interesting mathematical properties; a discussion of some
of their features can be found, e.g., in [51]. The non-local nature of such opera-
tors implies for numerical discretizations that the resulting system matrices are fully
populated. Efficient matrix compression techniques are therefore necessary. Vari-
ous data-sparse representations of discretizations of classical integral operators have
been proposed in the past. We mention techniques based on multipole expansions,
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panel clustering, wavelet compression techniques, the mosaic-skeleton method, the
adaptive cross approximation (ACA) method, and the hybrid cross approximation
(HCA); we refer to [23] for a more detailed literature review in the context of clas-
sical boundary element methods (BEM). In fact, many of these data-sparse methods
may be understood as specific incarnations of H-matrices, which were introduced in
[29, 31, 35, 36] as blockwise low-rank matrices. Although many of the abovemen-
tioned techniques were originally developed for applications in BEM, the underlying
reason for their success is the so-called “asymptotic smoothness” of the kernel func-
tion, which is given for a much broader class of problems. We refer to [20] and
references therein, where the question of approximability is discussed for pseudod-
ifferential operators. Discretizations of integral versions of the fractional Laplacian
such as the one considered in the present paper, (1.6), are therefore amenable to data-
sparse representations with O(N logβ N) complexity, where N is the matrix size and
β ≥ 0. This compressibility has recently been observed in [61] and in [4], where an
analysis and implementation of a panel clustering type matrix-vector multiplication
for the stiffness matrix is presented.

The above discussion argued the compressibility of (discretized) fractional differ-
ential operators as a result of “asymptotic smoothness” of the kernel of the associated
integral operator. Fractional differential operators admit several other representa-
tions (see, e.g., [47, Thm. 1.1]), for example, semigroup theoretical characterizations.
Then, the Riesz-Dunford calculus may be brought to bear, which allows one to
express fractional operators as suitable contour integrals. We note that also inverses
of fractional operators can be obtained in this way. Compressed operators are then
obtained by approximating the contour integral by a quadrature, i.e., as a sum of
operators. For large classes of operators, these quadrature errors are O(e−bMβ

) for
some b, β > 0, where M is the number of quadrature points [26, 40]. In turn, fully
discrete numerical schemes can be derived from this by discretizing the M operator
appearing in the quadrature. We refer to [8, 9, 21, 41, 42] for more details.

The purpose of the present paper is to show that also the inverse of the stiff-
ness matrix of a discretization of the integral version of the fractional Laplacian can
be represented in the H-matrix format, using the same underlying block structure
as employed to compress the stiffness matrix. One reason for studying the com-
pressibility of the inverses (or the closely related question of compressibility of the
LU -factors) are recent developments in fast (approximate) arithmetic for data-sparse
matrix formats. For example, H-matrices come with an (approximate) arithmetic
with log-linear complexity, which includes, in particular, the (approximate) inversion
and factorization of matrices. These (approximate) inverses/factors could be used
either as direct solvers or as preconditioners, as advocated, for example, in a BEM
context in [6, 30, 32, 33, 48] and in [49] in the context of fractional differential equa-
tions. Although our compressibility result for the inverse of the fractional Laplacian,
Theorem 2.5 does not prove that the use of an H-matrix arithmetic will be success-
ful; it indicates that the H-matrix format based on the standard admissibility criterion
considered here is a good choice to base the arithmetic on.

We point out that the class of H-matrices is not the only one for which inver-
sion and factorization algorithms have been devised. Related to H-matrices and
its arithmetic are “hierarchically semiseparable matrices” [50, 59, 60] and the idea
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of “recursive skeletonization” [34, 43, 44]; for discretizations of partial differen-
tial equations (PDEs), we mention [27, 44, 52, 56], and particular applications to
boundary integral equations are [18, 45, 53].

The underlying structure of our proof is similar to that in [23, 24] for the classi-
cal single layer and hypersingular operators of BEM. There it is exploited that these
operators are traces of potentials; i.e., they are related to functions that solve an ellip-
tic PDE. The connection of [23, 24] with the present article is given by the works of
[15, 16, 58], which show that fractional powers of certain elliptic operators posed in
R

d can be realized as the Dirichlet-to-Neumann maps for (degenerate) PDEs posed
in R

d+1.

1.1 The fractional Laplacian and the Caffarelli-Silvestre extension

In this section, we briefly introduce the fractional Laplacian; the discussion will
remain somewhat formal as the pertinent function spaces (e.g., ˜Hs(Ω)) and lifting
operators (e.g., L) will be defined in subsequent sections.

For s ∈ (0, 1), the fractional Laplacian in full space R
d is classically defined

through the Fourier transform, (−Δu)s := F−1
(|ξ |2sF(u)

)

. As discussed in the
survey [47], several equivalent definitions are available. For example, for suitable u,
a pointwise characterization is given in terms of a principal value integral:

(−Δu)s(x) = C(d, s) P.V.
∫

Rd

u(x) − u(y)

|x − y|d+2s
dy, C(d, s) := −22s Γ (s + d/2)

πd/2Γ (−s)
.

The constant C(d, s) and ds in (1.1) below are given in [13, Thm. 3.1] and [47,
Thm. 1.1]. Caffarelli and Silvestre [15] characterized this operator as the Dirichlet-
to-Neumann operator of a (degenerate) elliptic PDE. That is, they proved with ds :=
21−2s |Γ (s)|/Γ (1 − s)

(−Δu)s(x) = −ds lim
xd+1→0+ x1−2s

d+1 ∂xd+1(Lu)(x, xd+1), x ∈ R
d, (1.1)

where the extension Lu is a function that solves

div(x1−2s
d+1 ∇Lu) = 0 in R

d+1+ , trLu = u. (1.2)

In (1.1) and (1.2), the half-space is defined as Rd+1+ := {(x, xd+1) | x ∈ R
d , xd+1 >

0}, its boundary R
d × {0} is identified with R

d , and tr denotes the trace operator. In
weak form, the combination of (1.1) and (1.2) therefore yields

ds

∫

R
d+1+

x1−2s
d+1 ∇Lu · ∇Lv =

∫

Rd

(−Δu)sv ∀v ∈ C∞
0 (Rd+1). (1.3)

For suitable u and v belonging to Sobolev spaces as dictated by the double
integral (1.5), we also have (cf. [47, Thm. 1.1, (e), (g)])

ds

∫

R
d+1+

x1−2s
d+1 ∇Lu · ∇Lv =

∫

Rd

(−Δu)sv (1.4)

= C(d, s)

2

∫

Rd×Rd

(u(x) − u(y))(v(x) − v(y))

|x − y|d+2s
dx dy, (1.5)
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which is a form that is amenable to Galerkin discretizations.
The fractional Laplacian on a bounded domain Ω ⊂ R

d can be defined in one of
several non-equivalent ways. We consider the integral fractional Laplacian with the
exterior “boundary” condition u ≡ 0 in Ωc, which reads, cf., e.g., the discussions in
[2, 51]

(−Δu)sI (x) = C(d, s)P.V.
∫

Rd

u(x) − u(y)

|x − y|d+2s
dy, x ∈ Ω (1.6)

and the understanding that u = 0 on Ωc. Important for the further developments is
that this version of the fractional Laplacian still admits the interpretation (1.1) as a
Dirichlet-to-Neumann map for arguments u ∈ ˜Hs(Ω), where

˜Hs(Ω) :=
{

u ∈ Hs(Rd) | u ≡ 0 on R
d \ Ω

}

. (1.7)

For a measurable subset M of Rd , we will use standard Lebesgue and Sobolev spaces
L2(M) and H 1(M). Sobolev spaces of non-integer order s ∈ (0, 1) are defined via
the Sobolev-Slobodecki norms

‖u‖2
Hs(M) = ‖u‖2

L2(M)
+ |u|2Hs(M) = ‖u‖2

L2(M)
+

∫

M

∫

M

|u(x) − u(y)|2
|x − y|d+2s

dxdy.

More generally, if necessary, we will identify subsets ω ⊂ R
d with ω × {0} ⊂ R

d+1.
In particular, for u, v ∈ ˜Hs(Ω), the representations (1.4) and (1.5) are both valid.

2 Main results

2.1 Model problem and discretization

For a polyhedral Lipschitz domain Ω ⊂ R
d and s ∈ (0, 1), we are interested in

calculating the trace u on Ω ⊂ R
d of a function u defined on R

d+1+ , where u solves

−div
(

x1−2s
d+1 ∇u

)

= 0 in R
d+1+ ,

− limxd+1→0+ x1−2s
d+1 ∂xd+1u = f on Ω,

u = 0 on R
d \ Ω .

(2.8)

Our variational formulation of (2.8) is based on the spaces ˜Hs(Ω): Find u ∈ ˜Hs(Ω)

such that
∫

R
d+1+

x1−2s
d+1 ∇Lu · ∇Lv dx =

∫

Ω

fv dx for all v ∈ ˜Hs(Ω). (2.9)

Here, L is the harmonic extension operator associated with the PDE given in (2.8).
It has already appeared in (1.2) and is formally defined in (3.18). We will show in
Section 3 ahead that the left-hand side of the above equation introduces a bounded
and elliptic bilinear form. Hence, the Lax-Milgram Lemma proves that the variational
formulation (2.9) is well posed. Given a quasiuniform mesh Th on Ω with mesh width
h, we discretize problem (2.9) using the conforming finite element space

S1
0 (Th) :=

{

u ∈ C(Rd) | supp u ⊂ Ω and u|K ∈ P1∀K ∈ Th

}

⊂ ˜Hs(Ω),
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where P1 denotes the space of polynomials of degree 1. We emphasize that S1
0 (Th)

is the “standard” space of piecewise linear functions on Ω that are extended by zero
outside Ω . Obviously, there is a unique solution uh ∈ S1

0 (Th) of the linear system
∫

R
d+1+

x1−2s
d+1 ∇Luh · ∇Lvh dx =

∫

Ω

f vh dx for all vh∈ S1
0 (Th). (2.10)

If we consider the nodal basis (ψj )
N
j=1 of S1

0 (Th), we can write Eq. (2.10) as

Ax = b.

Our goal is to derive an H-matrix approximation of the inverse A−1.

Remark 2.1 Computationally, the bilinear form (2.10) is not easily accessible. In the
present paper, we use it only as a theoretical tool. For computational purposes, one
possibility is to employ (1.5). For this representation of the bilinear form, the entries
of the stiffness matrix A can be computed [1, 4].

2.2 Blockwise low-rank approximation

Let us introduce the necessary notation. Let I = {1, . . . , N} be the set of indices of
the nodal basis (ψj )

N
j=1 of S1

0 (Th). A cluster τ is a subset of I. For a cluster τ , we

say that B0
Rτ

⊂ R
d is a bounding box if

(i) B0
Rτ

is a hypercube with side length Rτ ,

(ii) supp(ψj ) ⊂ B0
Rτ

for all j ∈ τ .

For an admissibility parameter η > 0, a pair of clusters (τ, σ ) is called η-admissible,
if there exist bounding boxes B0

Rτ
of τ and B0

Rσ
of σ such that

max
{

diam(B0
Rτ

), diam(B0
Rσ

)
}

≤ η dist
(

B0
Rτ

, B0
Rσ

)

. (2.11)

For a partition P of I × I and an admissibility parameter η > 0, a matrix BH ∈
R

N×N is said to be a blockwise rank-r matrix if for every η-admissible cluster pair
(τ, σ ), the block BH|τ×σ is of rank r . The next theorem is the first main result of this
work. For two admissible clusters, the associated matrix block of the inverse A−1 of
the matrix associated to the linear system of problem (2.8) can be approximated by
low-rank matrices with an error that is exponentially small in the rank.

Theorem 2.2 Let η > 0 be a fixed admissibility parameter and q ∈ (0, 1). Let (τ, σ )

be a cluster pair with η-admissible bounding boxes. Then, for each k ∈ N, there exist
matricesXτσ ∈ R

|τ |×r andYτσ ∈ R
|σ |×r with rank r ≤ Cdim(2+η)d+1q−(d+1)kd+2

such that

‖A−1|τ×σ − XτσY�
τσ ‖2 ≤ CapxN

1+d
d qk . (2.12)

The constants Cdim and Capx depend only on d , Ω , the shape regularity of Th, and
on s.
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Theorem 2.2 shows that individual blocks of A−1 can be approximated by low-
rank matrices. H-matrices are blockwise low-rank matrices where the blocks are
organized in a tree structure, which affords the fast arithmetic of H-matrices. The
block cluster tree is based on a tree structure for the index set I, which we described
next.

Definition 2.3 (cluster tree) A cluster tree with leaf size nleaf ∈ N is a binary tree TI
with root I such that for each cluster τ ∈ TI the following dichotomy holds: either
τ is a leaf of the tree and |τ | ≤ nleaf or there exist two so-called sons τ ′, τ ′′ ∈ TI
that are disjoint subsets of τ with τ = τ ′∪̇τ ′′. The level function level : TI → N0 is
inductively defined by level(I) = 0 and level(τ ′) := level(τ ) + 1 for τ ′ a son of τ .
The depth of a cluster tree is depth(TI) := maxτ∈TI level(τ ).

Definition 2.4 (far field, near field, and sparsity constant) A partition P of I × I
is said to be based on the cluster tree TI , if P ⊂ TI × TI . For such a partition P

and fixed admissibility parameter η > 0, we define the far field and the near field as

Pfar := {(τ, σ ) ∈ P : (τ, σ ) is η-admissible}, Pnear := P \Pfar. (2.13)

The sparsity constant Csp, introduced in [29, 38, 39], of such a partition is defined by

Csp := max

{

max
τ∈TI

|{σ ∈ TI : τ × σ ∈ Pfar}|, max
σ∈TI

|{τ ∈ TI : τ × σ ∈ Pfar}|
}

.

(2.14)

The following Theorem 2.5 shows that the matrix A−1 can be approximated by
blockwise rank-r matrices at an exponential rate in the block rank r:

Theorem 2.5 Fix the admissibility parameter η > 0. Let a partition P of I × I be
based on a cluster tree TI . Then, there is a blockwise rank-r matrix BH such that

‖A−1 − BH‖2 ≤ CapxCspN
(d+1)/d depth(TI)e−br1/(d+2)

. (2.15)

The constant Capx depends only on Ω , d , the shape regularity of the quasiuniform
triangulation Th, and on s, while the constant b > 0 additionally depends on η.

Proof As it is shown in [29], [36, Lemma 6.32], norm bounds for a block matrix
that is based on a cluster tree can be inferred from norm bounds for the blocks. This
allows one to prove Theorem 2.5 based on the results of Theorem 2.2 (see, e.g., the
proof of [22, Thm. 2] for details).

Remark 2.6 For quasiuniform meshes with O(N) elements, typical clustering strate-
gies such as the “geometric clustering” described in [36] lead to fairly balanced
cluster trees TI with depthTI = O(log N) and a sparsity constant Csp that is
bounded uniformly in N . We refer to [29, 36, 38, 39] for the fact that the memory
requirement to store BH is O

(

(r + nleaf)N log N
)

.
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3 The Beppo-Levi spaceB1
α(R

d+1
+ )

In the present section, we formulate a functional framework for the lifting operator
L of (1.2). We will work in the Beppo-Levi space

B1
α(Rd+1+ ) :=

{

u ∈ C∞
0 (Rd+1+ )′ | ∇u ∈ L2

α(Rd+1+ )
}

of all distributions C∞
0 (Rd+1+ )′ having all first-order partial derivatives in L2

α(Rd+1+ )

for

α = 1 − 2s ∈ (−1, 1), (3.16)

where L2
α(Rd+1+ ) is defined as the set of measurable functions u such that

‖u‖2
L2

α(Rd+1+ )
=

∫

R
d+1+

xα
d+1|u(x)|2 dx < ∞.

We denote by L2
α,bdd(R

d+1+ ) the set of functions that are in L2
α on every bounded

subset of R
d+1+ . By tr : C∞(Rd+1+ ) → C∞(Rd), we denote the trace operator

(tr u)(x1, . . . , xd) := u(x1, . . . , xd, 0). The following result, which is an extension to
weighted spaces of the well-known result [19, Cor. 2.1], shows that the distributions
in B1

α(Rd+1+ ) are actually functions. Its proof will be given below in Section 3.1.

Lemma 3.1 For α ∈ (− 1, 1), there holds B1
α(Rd+1+ ) ⊂ L2

α,bdd(R
d+1+ ). Furthermore,

for α ∈ [0, 1) one has u ∈ L2
0,bdd(R

d+1+ ).

We additionally define the space

Bs(Rd) :=
{

u ∈ L2
loc(R

d) | |u|Hs(Rd) < ∞
}

.

From now on, we fix a hypercube K := K ′ × (0, bd+1), K ′ = ∏d
j=1(aj , bj ). Then,

using Lemma 3.1, one can show that B1
α(Rd+1+ ) and Bs(Rd) are Hilbert spaces when

endowed with the norms

‖u‖2
B1

α (Rd+1+ )
:= ‖u‖2

L2
α(K)

+ ‖∇u‖2
L2

α(Rd+1+ )
,

‖u‖2
Bs (Rd)

:= ‖u‖2
L2(K ′) + |u|2

Hs(Rd)
.

(3.17)

There holds the following density result, which can be found for bounded domains
in [46, Thm. 11.11] even for higher Sobolev regularity. In the present case of first-
order regularity and unbounded domains, we give a short proof below in Section 3.1.

Lemma 3.2 For α ∈ (− 1, 1), the set C∞(Rd+1+ )∩B1
α(Rd+1+ ) is dense in B1

α(Rd+1+ ).

The trace operator can be extended to the spaces B1
α(Rd+1+ ) as will also be shown

below in Section 3.1. Analogous trace theorems in Sobolev spaces on smooth and
bounded domains are given for s = 1/2 in [14, Prop. 1.8] and for s ∈ (0, 1) \ 1

2
in [17, Prop. 2.1].
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Lemma 3.3 For α ∈ (− 1, 1), the trace operator is a bounded linear operator tr :
B1

α(Rd+1+ ) → Bs(Rd), where s is given by (3.16).

We define the Hilbert space B1
α,0(R

d+1+ ) := ker(tr). The following Poincaré
inequality holds on this space. The proof will be given below in Section 3.1.

Corollary 3.4 For all u ∈ B1
α,0(R

d+1+ ), there holds ‖u‖B1
α(Rd+1+ )

� ‖∇u‖
L2

α(Rd+1+ )
.

For a function u ∈ Hs(Rd), we define the minimum norm extension or harmonic
extension Lu ∈ B1

α(Rd+1+ ) as

Lu = arg min
u∈B1

α(Rd+1+ )
tr u=u

‖∇u‖
L2

α(Rd+1+ )
. (3.18)

We can characterize Lu by
∫

R
d+1+

x1−2s
d+1 ∇Lu · ∇v dx = 0 for all v ∈ B1

α,0(R
d+1+ ),

trLu = u.
(3.19)

In view of the previous developments, the minimum norm extension exists uniquely
and satisfies

‖Lu‖B1
α (Rd+1+ )

� ‖u‖Hs(Rd). (3.20)

Indeed, using the extension operator E from Lemma 3.9, which is a right inverse of
the trace operator tr, the minimum norm extension can be written as Lu = Eu + u
and u ∈ B1

α,0(R
d+1+ ) is given by

∫

R
d+1+

x1−2s
d+1 ∇u · ∇v dx = −

∫

R
d+1+

x1−2s
d+1 ∇Eu · ∇v dx for all v ∈ B1

α,0(R
d+1+ ).

This equation is uniquely solvable due to the Lax-Milgram theorem and Corol-
lary 3.4, and this also implies the stability (3.20). Due to (3.19), we see that a
variational form of our original problem (2.8) is actually given by (2.9). Next, we
show that problem (2.9) is well posed. We mention that ellipticity has already been
shown in [15, eq. (3.7)] using Fourier methods.

Lemma 3.5 Problem (2.9) has a unique solution u ∈ ˜Hs(Ω), and

‖u‖Hs(Rd) � ‖f ‖H−s (Ω),

where H−s(Ω) is the dual space of ˜Hs(Ω).

Proof Due to [2, Prop. 2.4], there holds the Poincaré inequality ‖u‖L2(Ω) �
|u|Hs(Rd) for all u ∈ ˜Hs(Ω). We conclude that ‖u‖Hs (Rd) � |u|Hs(Rd) for all
u ∈ ˜Hs(Ω). Combining this Poincaré inequality with the trace estimate (3.28), we
obtain the ellipticity of the bilinear form on the left-hand side of (2.9). The continuity
of this bilinear form follows from (3.20).
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3.1 Technical details and proofs

Define the Sobolev space H 1
α (Rd+1+ ) as the space of functions u such that

‖u‖2
L2

α(Rd+1+ )
+ ‖∇u‖2

L2
α(Rd+1+ )

< ∞.

We start with a density result, whose proof is based on ideas from [46, Thm. 11.11].

Lemma 3.6 For α ∈ (− 1, 1), the space C∞(Rd+1+ ) ∩ H 1
α (Rd+1+ ) is dense in

H 1
α (Rd+1+ ).

Proof By [28, Thm. 1], the space C∞(Rd+1+ ) ∩ H 1
α(Rd+1+ ) is dense in H 1

α(Rd+1+ ).
Hence, without loss of generality, we may assume that u ∈ C∞(Rd+1+ ) ∩ H 1

α(Rd+1+ ).
For h > 0, define the function uh by

uh(x1, . . . , xd+1) :=
{

u(x1, . . . , xd+1) if h < xd+1
u(x1, . . . , xd, h) if xd+1 ≤ h.

By construction, uh ∈ C(Rd+1+ ) ∩ H 1
α(Rd+1+ ) and

‖u − uh‖2
H 1

α (Rd+1+ )
= ‖u − uh‖2

H 1
α (Rd×(0,h))

= ‖u − uh‖2
L2

α(Rd×(0,h))
+ ‖∇u‖2

L2
α(Rd×(0,h))

� ‖u‖2
H 1

α (Rd×(0,h))
+ ‖uh‖2

L2
α(Rd×(0,h))

. (3.21)

By Lebesgue dominated convergence, we have limh→0 ‖u‖H 1
α (Rd×(0,h)) = 0. Hence,

we focus on showing limh→0 ‖uh‖L2
α(Rd×(0,h)) = 0. To that end, we use a 1D trace

inequality: For v ∈ C1(0, ∞), we have v(h) = v(y) − ∫ y

h
v′(t) dt so that

∫ h+1

y=h

yαv2(h) dy ≤ 2
∫ h+1

y=h

yαv2(y) dy + 2
∫ h+1

y=h

yα

∣

∣

∣

∣

∫ y

t=h

|v′(t)| dt

∣

∣

∣

∣

2

dy

� ‖v‖2
L2

α(h,h+1)
+

∫ h+1

y=h

yαy1−α

∫ h+1

t=h

tα |v′(t)|2 dt dy

� ‖v‖2
L2

α(h,h+1)
+ ‖v′‖2

L2
α(h,h+1)

.

Since there exists C > 0 such that for h ∈ (0, 1], we have C−1 ≤ ∫ h+1
h

tα dt ≤ C,
we can conclude

|v(h)|2 ≤ C2
trace

[

‖v‖2
L2

α(h,h+1)
+ ‖v′‖2

L2
α(h,h+1)

]

. (3.22)

With this, we estimate

‖uh‖2
L2

α(Rd×(0,h))
=

∫ h

0
xα
d+1

∫

y∈Rd

uh(y, h)2 dy dxd+1 = hα+1

α+1

∫

y∈Rd

u(y, h)2 dy

(3.21)

� C2
traceh

α+1‖u‖2
H 1

α (Rd×(h,h+1))
� C2

traceh
α+1‖u‖2

H 1
α (Rd+1+ )

.
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As α + 1 > 0, we conclude that limh→ ‖uh‖L2
α(Rd×(0,h)) = 0. Since uh is only

piecewise smooth, we perform, as a last step, a mollification step. The above shows
that, given ε > 0, we can fix h such that

‖u − uh‖
H 1

α

(

R
d+1+

) ≤ ε. (3.23)

Let χh ∈ C∞(Rd+1) be of the form χh(x1, . . . , xd+1) = χ̃h(xd+1) for some χ̃h ∈
C∞(R) with supp χ̃h ⊂ ([−h/2, h/2]) and χ̃h ≡ 1 on [0, h/4]. For δ > 0 define

ũδ := χhuh+[(1−χh)uh]�ρδ for a mollifier ρδ . Then, ũδ ∈ C∞(Rd+1+ )∩H 1
α(Rd+1+ ),

cf. [28], and

‖uh − ũδ‖
H 1

α

(

R
d+1+

) = ‖(1 − χh)uh − [(1 − χh)uh] ∗ ρδ‖H 1
α (Rd+1). (3.24)

Note that h is already fixed. Standard results about mollification, cf., e.g., [28], show
that the term ‖(1 − χh)uh − [(1 − χh)uh] � ρδ‖H 1

α (Rd+1) converges to zero for δ →
0. Hence, choosing δ small enough, we obtain from (3.23) and (3.24) that ‖u −
ũδ‖

H 1
α

(

R
d+1+

) ≤ 2ε, which proves the result.

Next, we show that the trace operator tr extends continuously to weighted Sobolev
spaces.

Lemma 3.7 Let α ∈ (− 1, 1). The trace operator tr has a unique extension as a
bounded linear operator H 1

α (Rd+1+ ) → L2(Rd), and there holds the trace inequality

‖ tr u‖L2(Ω) ≤ Ctr

(

‖u‖L2
α(Ω+) + ‖u‖(1−α)/2

L2
α(Ω+)

· ‖∂d+1u‖(1+α)/2
L2

α(Ω+)

)

(3.25)

for all measurable subsets Ω ⊆ R
d , where Ω+ := Ω × (0, ∞). The constant Ctr

does not depend on Ω . If the support of u is contained in a strip R
d × [0, bd+1] with

bd+1 > 1, then there holds the multiplicative trace inequality

‖ tr u‖L2(Ω) ≤ Ctr‖u‖(1−α)/2
L2

α(Ω+)
· ‖∂d+1u‖(1+α)/2

L2
α(Ω+)

. (3.26)

Proof In order to prove all statements of the lemma, we note that due to Lemma 3.6,
it is sufficient to show the multiplicative estimate (3.26) for smooth functions u ∈
C∞(Rd+1+ ) ∩ H 1

α(Rd+1+ ). The estimate (3.25) then follows with the aid of (3.25) by
multiplication with an appropriate cut-off function. Using the abbreviation v(x) =
u(x1, . . . , xd, x), we note that due to Hölder’s inequality

|v(0)| ≤ |v(y)| + |∫ y

0 v′(t) dt| � |v(y)| + y(1−α)/2‖v′‖L2
α(R+).

A one-dimensional trace inequality and a scaling argument show for y > 0

|v(y)|2 � y−1
∫ 2y

y |v(t)|2 dt + y
∫ 2y

y |v′(t)|2 dt .

For t ∈ (y, 2y), we have 1 ≤ y−αtα if α ∈ [0, 1) and 1 ≤ 2−αy−αtα if α ∈ (−1, 0),
and we conclude

|v(y)|2 � y−1−α‖v‖2
L2

α(R+)
+ y1−α‖v′‖2

L2
α(R+)

.
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If ‖v′‖L2
α(R+) �= 0, we select y = ‖v‖L2

α(R+) · ‖v′‖−1
L2

α(R+)
and get

|v(0)|2 � ‖v‖1−α

L2
α(R+)

· ‖v′‖1+α

L2
α(R+)

. (3.27)

We note that (3.27) is also valid if ‖v′‖L2
α(R+) = 0 since our assumption suppu ⊆

R
d × [0, bd+1] implies in this degenerate case v ≡ 0. Integrating u(·, 0) over Ω and

using (3.27) shows (3.26).

Lemma 3.8 Let α ∈ (− 1, 1) and s be given by (3.16). The trace operator tr is
bounded as tr : H 1

α(Rd+1+ ) → Hs(Rd), and

| tr u|Hs(Rd) � ‖∇u‖
L2

α(Rd+1+ )
. (3.28)

Proof Due to Lemma 3.6, it suffices to show (3.28) for u ∈ C∞(Rd+1+ )∩H 1
α(Rd+1+ ).

Combining (3.28) with Lemma 3.7 then proves that tr : H 1
α (Rd+1+ ) → Hs(Rd) is

bounded. Upon writing y = x + rφ with polar coordinates r > 0, φ ∈ Sd−1 :=
∂B1(0) ⊂ R

d , we obtain with the triangle inequality and symmetry arguments

| tr u|2
Hs(Rd)

=
∫

Rd

∫

Rd

|u(x, 0) − u(y, 0)|2
|x − y|d+2s

dy dx

�
∫

Rd

∫

Rd

|u(
x+y

2 ,
|x−y|

2 ) − u(x, 0)|2
|x − y|d+2s

dy dx

∼
∫

x∈Rd

∫

φ∈Sd−1

∫ ∞

r=0

|u(x + r
2φ, r

2 ) − u(x, 0)|2
r1+2s

dr dφ dx.

The fundamental theorem of calculus gives

u(x + r
2φ, r

2 ) − u(x, 0) =
∫ r

0
∇xu(x + y

2 φ,
y
2 ) · φ + ∂d+1u(x + y

2 φ,
y
2 ) dy,

and the weighted Hardy inequality from [62, I, Thm. 9.16] (cf. also [54, (1.1)]) then
implies

∫ ∞

r=0

|u(x + r
2φ, r

2 ) − u(x, 0)|2
r1+2s

�
∫ ∞

r=0
r1−2s |∇xu(x + r

2φ, r
2 ) · φ

+∂d+1u(x + r
2φ, r

2 )|2.

Hence,

| tr u|2
Hs(Rd)

�
∫

x∈Rd

∫

φ∈Sd−1

∫ ∞

r=0
r1−2s |∇u(x+ r

2φ, r
2 )|2 dr dφ dx�‖∇u‖2

L2
α(Rd+1+ )

,

which proves (3.28).

Next, we will show that the trace operator tr : H 1
α(Rd+1+ ) → Hs(Rd) is actually

onto. To that end, we generalize ideas from [25].
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Lemma 3.9 Let α ∈ (− 1, 1) and s be given by (3.16). There exists a bounded linear
operator E : Hs(Rd) → H 1

α (Rd+1+ ) that is a right inverse of the trace operator tr.
Furthermore, there exists a constant C > 0 such that for all h > 0

‖Eu‖L2
α(Rd×(0,h)) ≤ Ch1−s‖u‖L2(Rd).

Proof Let ρ ∈ C∞
0 (Rd) and η ∈ C∞(R) with supp η ⊂ (− 1, 1) and η ≡ 1 in

(− 1/2, 1/2). We denote a point in R
d+1+ by (x, t) with x ∈ R

d . Define the extension
operator as the mollification Eu(x, t) := η(t)(ρt �u)(x), where ρt (y) := t−dρ(y/t).
Since ‖ρt � u‖L2(Rd) � ‖u‖L2(Rd ) uniformly in t > 0 (cf., e.g., [3, Thm. 2.29]), we
immediately obtain the postulated estimate

‖Eu‖2
L2

α(Rd×(0,h))
≤ ‖η‖2

L∞

∫ h

0
tα‖ρt � u‖2

L2(Rd)
dt � h2(1−s)‖u‖2

L2(Rd )
.

Since η is compactly supported, this also shows ‖Eu‖
L2

α(Rd+1+ )
� ‖u‖L2(Rd ). For the

desired statement that E : Hs(Rd) → H 1
α (Rd+1+ ) is bounded, it suffices to prove

‖∇x(ρt � u)‖2
L2

α(Rd+1+ )
+ ‖∂t (ρt � u)‖2

L2
α(Rd+1+ )

� |u|2
Hs(Rd )

.

To that end, we calculate

∂t(ρt � u)(x)=− dt−d−1
∫

Rd

u(y)ρ

(

x−y

t

)

dy−t−d−2
∫

Rd

u(y)∇ρ

(

x−y

t

)

·(x−y)dy.

Integration by parts shows
∫

Rd ∇ρ(z) · z dz = − d , which yields

− dt−d−1
∫

Rd

ρ

(

x − y

t

)

dy = − dt−1 = t−d−2
∫

Rd

∇ρ

(

x − y

t

)

· (x − y) dy.

Hence, we can write

∂t (ρt � u)(x) = dt−d−1
∫

Rd [u(y) − u(x)]ρ ( x−y
t

)

dy

−t−d−2
∫

Rd [u(y) − u(x)]∇ρ
( x−y

t

) · (x − y) dy.

Next, we calculate for 1 ≤ j ≤ d

∂xj (ρt � u)(x) = t−d−1
∫

Rd

u(y)
(

∂xj ρ
)

(

x − y

t

)

dy.

Integration by parts also shows that
∫

(∂xj ρ)(z) dz = 0, which yields

∂xj (ρt � u)(x) = t−d−1
∫

Rd

[u(y) − u(x)] (

∂xj ρ
)

(

x − y

t

)

dy.

Due to the support properties of ρ, we conclude

|∂t (ρt � u)(x)| + |∇x(ρt � u)(x)| � t−d−1
∫

Bt (x)

|u(x) − u(y)| dy,
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where Br(x) ⊂ R
d denotes the ball of radius t centered at x. Using polar coordinates

and Hardy’s inequality gives

∫ ∞

0
tα

(

|∂t (ρt � u)(x)|2 + |∇x (ρt � u)(x)|2
)

dt �
∫ ∞

0
tα

(

t−d−1
∫

Bt (x)

|u(y) − u(x)| dy

)2

dt

≤
∫ ∞

0

(

t−1
∫

Bt (x)

|u(y) − u(x)|
|x − y|d−α/2 dy

)2

dt

=
∫ ∞

0

(

t−1
∫

Bt (0)

|u(x) − u(x − z)|
|z|d−α/2

dz

)2

dt

=
∫ ∞

0

(

t−1
∫ t

r=0

∫

φ∈Ss−1

|u(x) − u(x − rφ))|
r1−α/2 dφ dr

)2

dt

�
∫ ∞

t=0

(∫

φ∈Sd−1

|u(x) − u(x − tφ))|
t1−α/2 dφ

)2

dt

�
∫

Rd

|u(x) − u(y)|2
|x − y|d+2s

dy.

Integrating this estimate over x ∈ R
d concludes the proof.

We are in position to prove Lemma 3.1.

Proof of Lemma 3.1 The proof follows a standard procedure. Since it involves
functions in a half-space, we present some details.

Step 1: Let ρ ∈ C∞
0 (Rd+1) be a symmetric, non-negative function with supp ρ ⊂

B1(0) and set ρε(x) := ε−dρ(x/ε). Introduce the translation operator τh by
τhϕ(x) := ϕ(x − hed+1) with ed+1 = (0, 0, . . . , 0, 1) ∈ R

d+1. Define for ε > 0 the
smoothing operator Aε by Aεϕ = ρε � (τ2εϕ) and the regularized distribution uε by

〈uε, ϕ〉 := 〈u,Aεϕ〉 = 〈u, ρε � (τ2εϕ)〉,
where we view ϕ ∈ C∞

0 (Rd+1+ ) as an element of ϕ ∈ C∞
0 (Rd+1) in the canonical

way. Note that uε ∈ C∞(Rd+1+ ) by standard arguments and suppuε ⊂ R
d × (ε, ∞).

We also note that

lim
ε→0

〈uε, ϕ〉 = 〈u, ϕ〉 ∀ϕ ∈ C∞
0 (Rd+1+ ). (3.29)

Step 2: For α ∈ [0, 1), we claim

‖x−α/2
d+1 Aε(x

α/2
d+1ϕ)‖

L2(Rd+1+ )
≤ ‖ϕ‖

L2(Rd+1+ )
∀ϕ ∈ C∞

0 (Rd+1+ ). (3.30)

To see this, we start by noting

sup
(x,z)

x>ε,−ε<z<ε, x−2ε−z>0

x−α/2(x − 2ε − z)α/2 ≤ 1. (3.31)
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We observe x
α/2
d+1ϕ ∈ C∞

0 (Rd+1+ ) and suppAε(x
α/2
d+1ϕ) ⊂ R

d × (ε, ∞) and write

x
−α/2
d+1 Aε(x

α/2
d+1ϕ)(x) = x

−α/2
d+1

∫

z∈Bε(0)

ρε(z)(xd+1 − 2ε − zd+1)
α/2ϕ(x − 2εed+1 − z) dz.

From (3.31) and ρε ≥ 0, we get

‖x−α/2
d+1 Aε(x

α/2
d+1ϕ)‖

L2(Rd+1+ )
≤ ‖Aε(|ϕ|)‖

L2(Rd+1+ )
≤ ‖ϕ‖

L2(Rd+1+ )
.

Step 3: For α ∈ [0, 1), we have for every ε > 0

‖∇uε‖L2
α(Rd+1+ )

≤ C‖∇u‖
L2

α(Rd+1+ )
. (3.32)

To see (3.32), fix a bounded open ω ⊂ R
d+1+ . We compute for ϕ ∈ C∞

0 (ω) and

ε > 0, noting that x
α/2
d+1ϕ ∈ C∞

0 (ω),
∣

∣

∣〈xα/2
d+1∇uε, ϕ〉

∣

∣

∣ =
∣

∣

∣〈∇uε, x
α/2
d+1ϕ〉

∣

∣

∣ =
∣

∣

∣− 〈uε, ∇(x
α/2
d+1ϕ)〉

∣

∣

∣

=
∣

∣

∣− 〈u,Aε∇(x
α/2
d+1ϕ)〉

∣

∣

∣ =
∣

∣

∣− 〈u, ∇(Aε(x
α/2
d+1ϕ))〉

∣

∣

∣

=
∣

∣

∣〈∇u,Aε(x
α/2
d+1ϕ)〉

∣

∣

∣

≤ ‖∇u‖
L2

α(Rd+1+ )
‖x−α/2

d+1 Aε(x
α/2
d+1ϕ)‖

L2(Rd+1+ )

Step 2≤ ‖∇u‖
L2

α(Rd+1+ )
‖ϕ‖L2(ω).

Combining this with the observation

‖xα/2
d+1∇uε‖L2(ω) = sup

ϕ∈(C∞
0 (ω))d

〈xα/2
d+1∇uε, ϕ〉
‖ϕ‖L2(ω)

(3.33)

gives us ‖∇uε‖L2
α(ω) ≤ ‖∇u‖

L2
α(Rd+1+ )

. The claim (3.32) now follows since ω is

arbitrary.

Step 4: For α ∈ (− 1, 0], we have for every bounded open ω ⊂ R
d+1+ the existence

of Cω > 0 such that for ε ∈ (0, 1]
‖∇uε‖L2(ω) ≤ Cω‖∇u‖

L2
α(Rd+1+ )

.

The proof follows by inspecting the procedure of step 3 and essentially using step 2
with α = 0 there.

Step 5: Steps 3 and 4 show that u ∈ H 1
loc(R

d+1+ ): Fix a bounded, open, and connected
ω ⊂ R

d+1+ with � ⊂ R
d+1+ . Fix a ϕ ∈ C∞

0 (ω) with (ϕ, 1)L2(ω) �= 0. Exploiting the
norm equivalence

‖v‖H 1(ω) ∼ ‖∇v‖L2(ω) + |(ϕ, v)L2(ω)| ∀v ∈ H 1(ω),

we infer from steps 3 and 4, and the observation limε→0(uε, ϕ)L2(ω) = 〈u, ϕ〉 that
(uε)ε∈(0,1] is uniformly bounded in H 1(ω). Thus, a subsequence converges weakly in
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H 1(ω) and strongly in L2(ω) to a limit, which is the representation of the distribution
u on ω.

Step 6: Claim: For any bounded open ω ⊂ R
d+1+ , we have u ∈ L2

α(ω). It suffices to
show norm bounds for bounded open sets of the form ω = ω0 ×(0, 1) with ω0 ⊂ R

d .
For that, consider again the regularized functions uε and assume, additionally (with
the aid of a cut-off function), that uε(x, xd+1) = 0 for xd+1 ≥ 1 and x ∈ R

d . Then
for xd+1 ∈ (0, 1), we have

uε(x, xd+1) = −
∫ 1

xd+1

∂d+1uε(x, t) dt . (3.34)

For α ∈ (− 1, 0], we square, multiply by xα
d+1, and integrate to get

‖uε‖2
L2

α(ω)
≤ C‖∂d+1uε‖2

L2(ω)
.

Since ‖∂d+1uε‖L2(ω) can be controlled uniformly in ε ∈ (0, 1] by steps 4 and 5,
the proof is complete for α ∈ (− 1, 0]. For α ∈ [0, 1), we square (3.34), use a
Cauchy-Schwarz inequality on the right-hand side, and integrate to get

‖uε‖2
L2(ω)

≤ Cα‖∂d+1uε‖2
L2(ω)

.

Again, steps 3 and 5 allow us to control the right-hand side uniformly in ε.

Proof of Lemma 3.2 We choose an open cover
(

Uj

)

j∈N of R
d+1+ by bounded sets

and a partition of unity
(

ψj

)

j∈N subordinate to this cover. For u ∈ B1
α(Rd+1+ ), we

have uψj ∈ H 1
α(Rd+1+ ), and according to Lemma 3.6, uψj can be approximated

to arbitrary accuracy by a function ϕj ∈ C∞(Rd+1+ ) ∩ H 1
α(Rd+1+ ) in the norm of

H 1
α (Rd+1+ ) and hence also in the norm of B1

α(Rd+1+ ). By construction, only a finite

number of ϕj overlap, and hence,
∑∞

j=0 ϕj ∈ C∞(Rd+1+ ) ∩ B1
α(Rd+1+ ).

Proof of Lemma 3.3 Using an appropriate cut-off function, this is a simple conse-
quence of Lemmas 3.2, 3.7, and 3.8.

Proof of Corollary 3.4 Due to the density result of Lemma 3.2 and the definition of
the trace operator, it suffices to show

‖u‖L2
α(K) � ‖ tr u‖L2(K ′) + ‖∇u‖L2

α(K)

for all u ∈ C∞(Rd+1+ ). Using the abbreviation v(x) = u(x1, . . . , xd, x), we note that
due to Hölder’s inequality,

|v(x)|2 � |v(0)|2 + |∫ x

0 v′(t) dt|2 � |v(0)|2 + x1−α‖v′‖2
L2

α(0,bd+1)
.

Multiplying the last equation by xα and integrating over K finishes the proof.
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4 H-matrix approximability

For any subset D ⊂ R
d+1+ , define the space

Hh(D) :=
{

u ∈ H 1
α(D) | ∃̃u ∈ B1

α(Rd+1+ ), tr ũ∈ S1
0 (Th)⊂ ˜Hs(Ω) s.t. u|D = ũ|D,

a(̃u, v) = 0 for all v ∈ B1
α,0(R

d+1+ )
}

and the space with additional orthogonality

Hh,0(D) :=
{

u ∈H 1
α (D) | ∃̃u ∈ B1

α(Rd+1+ ), tr ũ ∈ S1
0 (Th)⊂ ˜Hs(Ω) s.t. u|D = ũ|D,

a(̃u, v)=0 ∀v ∈ B1
α,0(R

d+1+ ), and

a(̃u, v)=0 ∀v∈B1
α(Rd+1+ ), tr v∈S1

0 (Th)⊂ ˜Hs(Ω), supp(tr v)⊂D∩R
d
}

.

where we define the bilinear form

a(u, v) :=
∫

R
d+1+

xα
d+1∇u · ∇v dx.

Define the cubes with side length R (henceforth called “box”) by

BR := B0
R × (0, R) ⊂ R

d+1. (4.35)

We say that two boxes BR1 and BR2 are concentric if their projections on R
d , i.e., the

corresponding cubes B0
R1

and B0
R2

, share the same barycenter and are concentric. For

h > 0, we define on H 1
α (BR) the norm

|||u|||2h,R :=
(

h

R

)2

‖∇u‖2
L2

α(BR)
+ 1

R2 ‖u‖2
L2

α(BR)
.

We have the following Caccioppoli-type inequality.

Lemma 4.1 Let Ω ⊂ R
d be a Lipschitz domain. Let R ∈ (0, 8 diam(Ω)), δ ∈ (0, 1),

and h > 0 such that 16h ≤ δR. Let BR and B(1+δ)R be two concentric boxes. Then,
there exists a constant C > 0 depending only on Ω , d , the γ -shape regularity of Th,
and s (i.e., α) such that for all u ∈ Hh,0(B(1+δ)R), there holds

‖∇u‖L2
α(BR) ≤ C

1 + δ

δ
|||u|||h,(1+δ)R. (4.36)

Proof In the proof, various boxes will appear. They will always be assumed to be
concentric to BR . Choose a function η ∈ W 1,∞(Rd+1) with (tr η)|Ω ∈ S1

0 (Th), η ≡ 1
on BR , supp(η) ⊂ B(1+δ/4)R, 0 ≤ η ≤ 1, and ‖∇η‖∞ � (δR)−1. We calculate

‖∇u‖2
L2

α(BR)
≤ ‖∇(ηu)‖2

L2
α(B(1+δ)R)

=
∫

B(1+δ)R

xα
d+1∇(ηu) · ∇(ηu) dx

=
∫

B(1+δ)R

xα
d+1u

2 (∇η)2 dx +
∫

B(1+δ)R

xα
d+1∇u · ∇(η2u) dx.
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We first deal with the last integral on the right-hand side. Due to the support
properties of η and the orthogonality properties of space Hh,0(B(1+δ)R), we see

∫

B(1+δ)R

xα
d+1∇u · ∇(η2u) dx =

∫

(1+δ)R

xα
d+1∇u · ∇

(

η̃E(tr(η2u) − Ih tr(η2u))
)

dx

≤ ‖∇u‖L2
α(B(1+δ)R) · ‖∇

(

η̃E(tr(η2u) − Ih tr(η2u))
)

‖L2
α(B(1+δ)R)

where η̃ is a cut-off function with support contained B0
(1+3δ/4)R × (0, 3δR/4) and

η̃ ≡ 1 on B0
(1+δ/2)R

× (0, δR/2) such that ‖∇η̃‖∞ � (δR)−1. Furthermore, Ih :
C(Ω) ∩ H 1

0 (Ω) → S1
0 (Th) is the usual nodal interpolation operator (extended by

zero outside Ω). Then, using Lemma 3.9, we obtain

‖∇
(

η̃E(tr(η2u) − Ih tr(η2u))
)

‖L2
α(B(1+δ)R)

≤ ‖∇
(

E(tr(η2u) − Ih tr(η2u))
)

‖L2
α(B(1+δ)R)

+ (δR)−1 ‖E(tr(η2u) − Ih tr(η2u))‖L2
α(B0

(1+3δ/4)R
×(0,3δR/4))

� ‖ tr(η2u) − Ih tr(η2u)‖Hs(Rd) + (δR)−s ‖ tr(η2u) − Ih tr(η2u)‖L2(Rd ).

For r ∈ [0, 1], it holds

‖ tr(η2u) − Ih tr(η2u)‖2
Hr (Rd)

� h4−2r
∑

K∈Th

| tr(η2u)|2
H 2(K)

, (4.37)

and a short calculation, cf. [22], and an inverse estimate show that

| tr(η2u)|2
H 2(K)

� 1

(δR)2 ‖∇ tr(ηu)‖2
L2(K)

+ 1

(δR)4 ‖ tr u‖2
L2(K)

� h2s−2

(δR)2
‖ tr(ηu)‖2

Hs(K) + 1

(δR)4
‖ tr u‖2

L2(K)
.

By the support properties of η, the sum in (4.37) extends over elements K ∩
B(1+δ/4)R �= ∅. As h ≤ (δR)/16, it holds

⋃

K∩B0
(1+δ/4)R �=∅ K ⊂ B0

(1+δ/2)R. Then,

using h/(δR) ≤ 1, we conclude that

‖∇
(

η̃E(tr(η2u) − Ih tr(η2u))
)

‖L2
α(B(1+δ)R) � h

(δR)
‖ tr(ηu)‖Hs(Rd)

+ h2−s

(δR)2 ‖ tr u‖L2(B0
(1+δ/2)R

).

Choosing a cut-off function η2 with η2 ≡ 1 on B(1+δ/2)R and support contained in
B(1+3δ/4)R and employing the multiplicative trace inequality from Lemma 3.7, we
see

‖ tr u‖L2(B0
(1+δ/2)R

) ≤ ‖ tr(η2u)‖L2(B0
(1+3δ/4)R

) ≤ Ctr‖η2u‖s
L2

α(Rd+1)
‖∇(η2u)‖1−s

L2
α(Rd+1)

� 1

(δR)1−s
‖u‖L2

α(B(1+δ)R) + ‖u‖s
L2

α(B(1+δ)R)
‖∇u‖1−s

L2
α(B(1+δ)R)

.
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Together with the boundedness of the trace operator asserted in Lemma 3.8, i.e.,
‖ tr(ηu)‖Hs(Rd) � ‖u‖L2

α(B(1+δ)R) + ‖∇(ηu)‖L2
α(B(1+δ)R), this implies

∫

B(1+δ)R

xα
d+1∇u · ∇(η2u) dx � ‖∇u‖L2

α(B(1+δ)R) ·
( h

δR
‖u‖L2

α(B(1+δ)R)

+ h

δR
‖∇(ηu)‖L2

α(B(1+δ)R) + h2−s

(δR)2+(1−s)
‖u‖L2

α(B(1+δ)R)

+ h2−s

(δR)2
‖u‖s

L2
α(B(1+δ)R)

‖∇u‖1−s

L2
α(B(1+δ)R)

)

.

The four products on the right-hand side are estimated with Young’s inequality: the
first three ones using the form ab ≤ εa2 + 1

4ε
b2 and the last one with exponents 2

2−s

and 2
s
. We conclude that there are positive constants C1 and C2 such that

‖∇(ηu)‖2
L2

α (B(1+δ)R)
≤ C1

1

(δR)2
‖u‖2

L2
α(B(1+δ)R)

+C2
h2

(δR)2
‖∇u‖2

L2
α(B(1+δ)R)

+ 1

2
‖∇(ηu)‖2

L2
α(B(1+δ)R)

.

Subtracting the last term from the left-hand side finishes the proof.

Denote by Πh,R : (

H 1
α(BR), ||| · |||h,R

) → (

Hh,0(BR), ||| · |||h,R

)

the orthogonal
projection. For KH a shape regular triangulation of Rd+1+ of mesh width H , denote
by ΠH : H 1

α (Rd+1+ ) → S1(KH ) the quasi-interpolation operator from [55], defined
as

ΠH v :=
∑

nodes z of KH

Q0
zv(z)φz,

where φz denotes the nodal basis functions corresponding to the node z of KH , and
Q0

zv is an averaged Taylor polynomial of order 0 of v about the node z. This operator
has the local first-order approximation property

‖v − ΠH v‖L2
α(K) � H‖∇v‖L2

α(ωK), (4.38)

where ωK is the patch of elements touching the element K , cf. [55, Thm. 5.2].

Lemma 4.2 Let δ ∈ (0, 1) and R ∈ (0, 4 diam(Ω)) such that 16h ≤ δR. Let BR,
B(1+δ)R, and B(1+2δ)R be three concentric boxes. Let u ∈ Hh,0(B(1+2δ)R) and sup-
pose that 16H ≤ δR. Let η ∈ C∞

0 (Rd+1) with supp(η) ⊂ B(1+δ)R and η = 1 on BR.
Then it holds

(i) (u − Πh,RΠH (ηu))|BR ∈ Hh,0(BR);
(ii) |||u − Πh,RΠH (ηu)|||h,R ≤ Capp

1+2δ
δ

(

h
R

+ H
R

) |||u|||h,(1+2δ)R;

(iii) dim W ≤ Capp

(

(1+2δ)R
H

)d+1
, where W := Πh,RΠHηHh,0(B(1+2δ)R).
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Proof To see (4.2), note that if u ∈ Hh,0(B(1+2δ)R), then u ∈ Hh,0(BR), and Πh,R

maps into Hh,0(BR). To see (4.2), first note that due to the support properties of η

and the fact that Πh,R is the orthogonal projection, it holds

|||u − Πh,RΠH (ηu)|||2h,R = |||Πh,R(ηu − ΠH (ηu))|||2h,R ≤ |||ηu − ΠH (ηu)|||2h,R .

Furthermore, due to the approximation properties (4.38) of ΠH and the assumption
16H ≤ δR, we obtain

|||ηu − ΠH (ηu)|||2h,R = h2

R2 ‖∇(ηu − ΠH (ηu))‖2
L2

α(BR)
+ 1

R2 ‖ηu − ΠH (ηu)‖2
L2

α(BR)

�
(

h2

R2 + H 2

R2

)

‖∇(ηu)‖2
L2

α (B(1+δ)R)

�
(

h2

R2 + H 2

R2

)(

1

δ2R2 ‖u‖2
L2

α(B(1+δ)R)
+ ‖∇u‖2

L2
α(B(1+δ)R)

)

.

Applying Lemma 4.1 with˜δ = δ/(1+δ) and ˜R = (1+δ)R, i.e., (1+˜δ)˜R = (1+2δ)R,
shows

‖∇u‖2
L2

α(B(1+δ)R)
� (1 + 2δ)2

δ2 |||u|||2h,(1+2δ)R.

Together with the trivial estimate ‖u‖L2
α(B(1+δ)R) ≤ (1 + 2δ)R|||u|||h,(1+2δ)R we get

(4.2). Statement (4.2) follows from the local definition of the operator ΠH .

Lemma 4.3 Let q, κ ∈ (0, 1), R ∈ (0, 2 diam(Ω)), and k ∈ N. Assume

h ≤ κqR

64k max
{

1, Capp
} , (4.39)

where Capp is the constant from Lemma 4.2. Then, there exists a finite dimensional

subspace ̂Wk ofHh(B(1+κ)R) with dimension dim ̂Wk ≤ Cdim

(

1+κ−1

q

)d+1
kd+2 such

that for every u ∈ Hh,0(B(1+κ)R), there holds

min
v∈̂Wk

|||u − v|||h,R ≤ qk|||u|||h,(1+κ)R.

Proof Define H := κqR

64k max{1,Capp} . Then h ≤ H . Define δj := κ
k−j
k

for j =
0, . . . , k. This yields κ = δ0 > δ1 > · · · > δk = 0. We will apply Lemma 4.2 k times,
with ˜Rj = (1 + δj )R and ˜δj = 1

2k(1+δj )
. This may be done, as ˜Rj ≤ 4 diam(Ω),

˜δj < 1/2, and

16H ≤ R

4k max
{

1, Capp
} ≤ R

2k(1 + δj )
= ˜δjR ≤ ˜δj

˜Rj .
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Note that (1 + 2˜δj )˜Rj = (1 + δj−1)R. The first application of Lemma 4.2 yields a

function w1 in a subspace ̂W1 of Hh(B(1+δ1)R) with dim W1 ≤ Capp

(

(1+κ)R
H

)d+1

such that

|||u − w1|||h,(1+δ1)R ≤ 2Capp
1 + 2˜δ1

˜δ1

H

˜R1
|||u|||h,(1+2˜δ1)˜R1

= 8Capp
kH

R
|||u|||h,(1+δ0)R ≤ q|||u|||h,(1+δ0)R .

As u−w1 ∈ Hh(B(1+δ1)R), a second application of Lemma 4.2 yields a function w2
in a subspace W2 of Hh(B(1+δ2)R) such that

|||u − w1 − w2|||h,(1+δ2)R ≤ q|||u − w1|||h,(1+δ1)R ≤ q2|||u|||h,(1+δ0)R .

Applying k times Lemma 4.2, we obtain a function v = ∑k
j=1 wj that is an ele-

ment of the subspace Vk := ∑k
j=1 Wj of Hh(BR) and fulfills |||u − v|||h,R ≤

qk|||u|||h,(1+κ)R.

Proposition 4.4 Let η > 0 be a fixed admissibility parameter and q ∈ (0, 1).
Let (τ, σ ) be a cluster pair with admissible bounding boxes B0

Rτ
and B0

Rσ
, that

is, η dist
(

B0
Rτ

, B0
Rσ

)

≥ diam
(

B0
Rτ

)

. Then, for each k ∈ N, there exists a space

Vk ⊂ S1
0 (Th) with dim Vk ≤ Cdim(2 + η)d+1q−(d+1)kd+2 such that if f ∈ L2(Ω)

with supp(f ) ⊂ B0
Rσ

∩ Ω , then the solution uh of (2.10) satisfies

min
v∈Vk

‖uh − v‖L2(B0
Rτ

) ≤ Cboxh
−1qk‖f ‖L2(B0

Rσ
). (4.40)

Proof Set κ := (1 + η)−1. We distinguish two cases.

Case 1: Condition (4.39) is satisfied with R = Rτ :
As dist(BRτ , BRσ ) ≥ η−1diam(BRτ ) = η−1

√
dRτ , we conclude

dist(B(1+κ)Rτ , BRσ ) ≥ dist(BRτ , BRσ ) − κRτ

√
d = √

dRτ
1

η(1 + η)
> 0.

Hence, Luh ∈ Hh,0(B(1+κ)R). Lemma 4.3 implies that there is a space ̂Wk

with

min
v∈ ̂Wk

|||Luh − v|||h,Rτ ≤ qk|||Luh|||h,(1+κ)Rτ .

Now

|||Luh|||h,(1+κ)Rτ � (1 + 1

Rτ

)‖Luh‖B1
α(Rd+1+ )

� (1 + 1

Rτ

)‖Πf ‖L2(Ω),
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where the last estimate follows from (3.20) and Lemma 3.5. On the other
hand, employing an appropriate cut-off function and the multiplicative
trace estimate of Lemma 3.7 shows

‖uh − tr v‖L2(B0
Rτ

) � 1

Rτ

‖Luh − v‖L2
α(BRτ ) + ‖∇(Luh − v)‖L2

α(BRτ )

� Rτ

h
|||Luh − v|||h,Rτ .

Combining the last three chains of estimates, we get the desired result if
we set Vk := tr ̂Wk .

Case 2: Condition (4.39) is not satisfied with R = Rτ :
Select Vk :=

{

v|B0
Rτ

| v ∈ S1
0 (Th)

}

. The minimum in (4.40) is then zero

and

dim Vk �
(

Rτ

h

)d

≤
(

64k max
{

1, Capp
}

κq

)d

� kd(1 + η)dq−d .

Proof of Theorem 2.2 Suppose first that Cdim(2 + η)d+1q−(d+1)kd+2 ≥
min {|τ |, |σ |}. In the case min {|τ |, |σ |} = |τ |, we set Xτσ = I ∈ R

|τ |×|τ |
and Yτσ = A−1|�τ×σ . If min {|τ |, |σ |} = |σ |, we set Xτσ = A−1|τ×σ and
Yτσ = I ∈ R

|σ |×σ . Now suppose that Cdim(2 + η)d+1q−(d+1)kd+2 < min {|τ |, |σ |}.
For a cluster τ ⊂ I, we define Rτ := {

x ∈ R
N | xj = 0 ∀j /∈ τ

}

. According to [57],
there exist linear functionals λi such that λi(ψj ) = δij and

‖λi(w)ψi‖L2(Ω) � ‖w‖L2(supp(ψi)), (4.41)

where the hidden constant depends only on the shape regularity of Th. Define

Φτ :
{

R
τ → S1

0 (Th)

x �→ ∑

j∈τ xjψj
and Λτ :

{

L2(Ω) → R
τ

w �→ w
,

where wj = λj (w) for j ∈ τ and wj = 0 else. Note that hd/2‖x‖2 ∼ ‖Φτ (x)‖L2(Ω)

for x ∈ R
τ and that Φτ ◦ Λτ is bounded in L2(Ω). For Λ�

I , the adjoint of ΛI ,
this implies ‖Λ�

I‖RN →L2(Ω) � h−d/2. Let Vk be the space of Proposition 4.4. We
define the columns of Xτσ to be an orthogonal basis of the space {Λτw | w ∈ Vk}
and Yτσ := A−1|�τ×σXτσ . The ranks of Xτσ and Yτσ are then bounded by Cdim(2 +
η)d+1q−(d+1)kd+2. Now, for b ∈ R

σ , set f := Λ�
I (b). This yields bi = (f , ψi)Ω

and supp(f ) ⊂ BRσ ∩ Ω. According to Proposition 4.4, there exists an element
v ∈ Vk such that ‖uh − v‖L2(B

0
Rτ

∩Ω) � h−1qk‖f ‖L2(B0
Rσ

). This implies

‖Λτ uh − Λτ v‖2 � h−d/2‖Φτ ◦ Λτ(uh − v)‖L2(Ω) � h−d/2‖uh − v‖L2(B
0
Rτ

∩Ω)

� h−1−d/2qk‖f ‖L2(B
0
Rσ

) � h−1−dqk‖b‖2.

For z := XτσX�
τσ Λτuh, it holds

‖Λτ uh − z‖2 ≤ ‖Λτ uh − Λτ v‖2 � h−1−dqk‖b‖2.
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Fig. 1 Square domain. s = 0.25, 2674, and 17,130 elements

As Λτuh = A−1|τ×σb|σ , we obtain

‖(A−1|τ×σ − XτσY�
τσ )b|σ‖2 � N

1+d
d qk‖b‖2.

As b ∈ R
σ was arbitrary, the result follows.

5 Numerical experiments

We provide numerical experiments in two space dimensions, i.e., d = 2, that confirm
our theoretical findings. The indices I of the standard basis of the space S1

0(Th)

based on a quasiuniform triangulation of Ω are organized in a cluster tree TI that is
obtained by a geometric clustering; i.e., bounding boxes are split in half perpendicular
to their longest edge until the corresponding clusters are smaller than nleaf = 20. The
block cluster tree is based on that cluster tree using the admissibility parameter η = 2.
In order to calculate a blockwise rank-r approximation Br

H of A−1, we compute the
densely populated system matrix A using the MATLAB code presented in [1] and
its inverse A−1. On admissible cluster pairs, we compute a rank-r approximation
of the corresponding matrix block of A−1 by singular value decomposition, which
produces the best possible approximation of A−1 in the Frobenius norm (in the given
blockwise rank-r format). It goes without saying that this way of computing the H-
matrix approximation to A−1 has no practical relevance and is only done to illustrate
Theorem 2.5 and gauge the potential of the chosen format. In practice, the matrix A
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Fig. 2 Square domain. s = 0.5, 2674, and 17,130 elements

Fig. 3 Square domain. s = 0.75, 2674, and 17130 elements
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Fig. 4 L-shaped domain. s ∈ {0.25, 0.5, 0.75}, 6560 elements

has to be approximated during setup using kernel approximations for the far field by,
e.g., Taylor expansions, Chebyshev interpolation (see [36, Sec. 4]), or with black-box
techniques such as ACA [5] or HCA [12]. In practice, an H-matrix approximation
of A−1 can be obtained using (approximate) inversion or factorization techniques
discussed in the introduction.

We carried out experiments for s ∈ {0.25, 0.5, 0.75} on a square and an L-shaped
domain. On the square, we use a coarse mesh of 2674 elements, resulting in 358
admissible and 591 non-admissible blocks, and a fine mesh of 17,130 elements,
resulting in 5234 admissible and 5486 non-admissible blocks. On the L-shaped
domain, we use a mesh of 6560 elements, resulting in 640 admissible and 1332 non-
admissible blocks. Note that for a fixed mesh and cluster tree, Theorem 2.5 predicts
‖A−1 − Br

H‖2 � exp(−br1/4). However, in our experiments, we observe that the
error behaves like ‖A−1 −Br

H‖2 ∼ exp(− 10r1/3). Hence, we will plot the error log-
arithmically over the third root of the block rank r and include the reference curve
exp(− 10r1/3). Recalling the proof of Lemma 4.2, one discerns a possible reason for
the discrepancy between the proved convergence O(exp(− br1/4)) and the observed
O(exp(− br1/3)): Lemma 4.2 constructs approximations by function defined on
R

d+1+ and later, traces on R
d are taken (Figs. 1, 2, 3, and 4).

6 Conclusions and extensions

We have shown that the inverse A−1 of the stiffness matrix A of a Galerkin dis-
cretization of the fractional Laplacian can be approximated at an exponential rate in
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the block rank by H-matrices, using the standard admissibility criterion (2.11). The
following extensions are possible:

– We restricted our analysis to the discretization by piecewise linears. However, the
analysis generalizes to approximation by piecewise polynomials of fixed degree
p.

– We focused on the approximability of A−1 in the H-matrix format. Computation-
ally attractive are also factorizations such as H-LU or H-Cholesky factorizations.
The ability to find an approximate A ≈ LHUH has been shown for (classical)
FEM discretizations in [7, 22] and for non-local BEM matrices in [23, 24] with
techniques that generalize to the present case of the fractional Laplacian.

– Related to H-matrices is the format of H2-matrices discussed in [10, 11, 36, 37].
Using the techniques employed in [10, 22–24], one may also show that A−1 can
be approximated by H2-matrices at an exponential rate in the block rank.

Funding information MK was supported by Conicyt Chile through project FONDECYT 1170672. JMM
was supported by the Austrian Science Fund (FWF) project F 65.
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