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Abstract
We consider model order reduction based on proper orthogonal decomposition
(POD) for unsteady incompressible Navier-Stokes problems, assuming that the snap-
shots are given by spatially adapted finite element solutions. We propose two
approaches of deriving stable POD-Galerkin reduced-order models for this context.
In the first approach, the pressure term and the continuity equation are eliminated
by imposing a weak incompressibility constraint with respect to a pressure reference
space. In the second approach, we derive an inf-sup stable velocity-pressure reduced-
order model by enriching the velocity-reduced space with supremizers computed on a
velocity reference space. For problems with inhomogeneous Dirichlet conditions, we
show how suitable lifting functions can be obtained from standard adaptive finite ele-
ment computations. We provide a numerical comparison of the considered methods
for a regularized lid-driven cavity problem.
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1 Introduction

Many tasks in computational fluid dynamics involving incompressible and multi-
phase flow are challenging since the underlying system of equations are expensive
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to solve. Two ways to decrease the associated simulation costs are spatially adaptive
discretizations and model order reduction. Our approach to simulation-based model
order reduction combines both strategies.

The novelty of this paper consists of the application of model order reduction
based on proper orthogonal decomposition with space-adapted snapshots [18, 41] to
the context of simulation of unsteady flow problems governed by the incompressible
Navier-Stokes equations. As a result, the challenge of deriving a stable reduced-order
model arises, since for space-adapted snapshots the weak divergence-free property
only holds true in the respective adapted finite element space. For this reason, the
contribution of this paper lies in proposing two approaches to formulating a sta-
ble reduced-order model. In the first approach, we use a projection of either the
velocity snapshot data or the velocity POD basis onto a reference space. The projec-
tion is constructed in such a way that the resulting velocity POD modes are weakly
divergence-free with respect to a pressure reference space. Consequently, the pres-
sure term in the weak form of the Navier-Stokes system vanishes and the continuity
equation is fulfilled by construction. This approach can be viewed as a generalization
of the method of [34] to space-adapted snapshots. The second approach is a Galerkin
projection of the primitive equations onto a POD space for the pressure field and an
enriched POD space for the velocity field, in the spirit of [6, 33]. The enrichment
functions are computed from the pressure POD in order to achieve inf-sup stability
with respect to a pair of reference velocity and pressure spaces.

An efficient and sufficiently accurate reduction of the high-fidelity systems by
POD reduced-order models based on space-adapted snapshots allows to use these
models in a multi-query scenario like uncertainty quantification, where an ensemble
of simulations is required to estimate statistical quantities, or optimal control, where
a system of equations has to be solved repeatedly in order to find a minimum of a
given cost functional. We intend to study this in future work.

Reduced-order modeling is applied to flow systems in the pioneering works [8,
29]. POD model order reduction for optimal control of fluids is studied in [31], for
example. An adaptive control strategy within optimal control of flows is given in
[1]. In order to adapt the reduced-order model for a flow control problem within the
optimization, a trust-region POD framework is proposed in [4]. A theoretical inves-
tigation providing error estimates for POD approximations of a general equation in
fluid dynamics is carried out in [24]. Reduced basis methods using an offline/online
procedure are applied to parametrized Navier-Stokes equations in [30] addressing
the pressure treatment and stability issues. POD-Galerkin reduced-order modeling
for incompressible flows with stochastic Dirichlet boundary conditions is studied
in [40]. We refer to [26] for a general review on model order reduction for fluid
dynamics in the case of static spatial discretizations. Recently, stabilization tech-
niques for reduced-order methods for parametrized incompressible Navier-Stokes
equations, where the full-order approximation is based on finite volume schemes, are
investigated in [35].

A number of publications have considered model order reduction by projec-
tion onto a reduced space generated from space-adapted snapshots: Reduced basis
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methods with space-adapted snapshots are considered by [3, 36] in the context of
parametrized partial differential equations. The authors derive estimates of the error
with respect to the infinite-dimensional truth solution. The key ingredient for these
estimates is the use of a wavelet discretization scheme, which allows a numeri-
cal approximation of the dual norm of the infinite-dimensional residual. A different
approach is taken by [46–48], where bounds for the dual norm of the residual are
provided for the case of minimum-residual mixed formulations of parametrized ellip-
tic partial differential equations. An adaptive Galerkin finite element formulation is
considered in [41], where computational issues of POD-Galerkin modeling in the
presence of space-adapted snapshots are resolved by resorting to a common finite
element mesh. Thus, an exact representation of the snapshots in the associated com-
mon finite element space is ensured. In the case of hierarchical, nested meshes, the
construction of a common finite element mesh is given by an overlay of all adapted
meshes and is cheap to construct. An a priori error analysis as well as an infinite-
dimensional perspective in the context of evolution equations is provided by [18].
This view also allows finite element discretizations in which the overlay of the
adapted meshes leads to cut elements. For this case, a numerical implementation of
the snapshot gramian is provided which, however, can be computationally demand-
ing. In contrary to the just mentioned offline adaptive strategies, an online adaptive
method is proposed in [12] which provides a reduced-order analogon to h-refinement
and is based on a splitting of the reduced basis vectors.

Our work is structured as follows: In Section 2, we introduce the basic problem
setting of an incompressible Navier-Stokes problem in strong and weak form. For
ease of presentation, we first consider the setting with homogeneous Dirichlet bound-
ary conditions. We provide an implicit Euler discretization in time and an adaptive
Taylor-Hood finite element discretization in space. The adaptivity is achieved by
combining residual-based error estimation, Dörfler marking, and newest vertex bisec-
tion. Section 3 introduces the fundamental concepts required to build a POD-reduced
basis from a set of functions. This section also defines an abstract reduced-order
model, providing a framework for the following developments. Section 4 proposes
a reduced-order model for the velocity field. It is based on a POD basis which is
divergence-free in a weak sense with respect to a reference pressure space. A cou-
pled velocity-pressure reduced-order model is introduced in Section 5. In order to
ensure its stability, a set of supremizer functions is added to the velocity POD basis.
A detailed presentation of the incorporation of inhomogeneous Dirichlet data is
given in Section 6. Finally, the benchmark problem of a regularized lid-driven cavity
flow serves as numerical test setting in Section 7, in order to compare the methods
regarding accuracy and computation time.

2 Problem setting

We consider an unsteady incompressible flow problem governed by the Navier-
Stokes equations in a bounded domain Ω ⊂ R

2 with boundary ∂Ω over a time
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interval [0, T ] with T > 0. The governing equations for the velocity field y =
(y1, y2) and pressure p are

yt + (y · ∇)y − Re−1Δy + ∇p = f in (0, T ) × Ω, (1a)

∇ · y = 0 in (0, T ) × Ω, (1b)

y = 0 in (0, T ) × ∂Ω, (1c)

y = y0 in {0} × Ω, (1d)

where Re is the Reynolds number, f denotes a given body force, and y0 is an initial
velocity field with ∇ · y0 = 0 in Ω .

2.1 Weak formulation

The finite element and reduced-order models considered in this work are based on a
weak form of the problem given by (1). We provide the necessary functional analytic
framework by introducing Hilbert spaces V = H 1

0 (Ω), Q = L2
0(Ω) = {q ∈ L2(Ω) :∫

Ω
qdx = 0} and W 1

� (0, T ;V) = {v ∈ L2(0, T ;V) : vt ∈ L1(0, T ;V ′)}. For clarity,
we use the same notation for vector-valued functions, meaning that all components of
a vector-valued function belong to the corresponding scalar function space. The same
holds for vector- and scalar-valued operators. As short-hand notations we use (·, ·) :=
(·, ·)L2(Ω) and 〈·, ·〉 = 〈·, ·〉V ′,V . We define (u, v)V = (∇u, ∇v) and ‖v‖2

V = (v, v)V
for all u, v ∈ V and we set (p, q)Q = (p, q) and ‖q‖Q = ‖q‖L2(Ω) for all p, q ∈
Q. We introduce the space Hdiv = {w ∈ L2(Ω) : ∇ · w = 0, (w · ν�)|∂Ω = 0},
where ν� denotes the outward unit normal vector. Finally, we introduce the notations
a(u, v) := Re−1(u, v)V , c(w, u, v) := ((w · ∇)u, v) and b(v, q) := −(q, ∇ · v).

The weak form of (1) reads as follows: For given f ∈ L2(0, T ;V ′) and y0 ∈
Hdiv, find a velocity y ∈ W 1

� (0, T ;V) satisfying y(0) = y0 and a pressure p ∈
L2(0, T ;Q) such that

d

dt
(y(t), v)+c(y(t), y(t), v)+a(y(t), v)+b(v, p(t)) = 〈f (t), v〉 ∀v ∈ V, (2a)

b(y(t), q) = 0 ∀q ∈ Q, (2b)

for almost all t ∈ (0, T ). For existence and uniqueness of a solution to (2), we refer
to [38, chapter 3, theorems 3.1 and 3.2].

2.2 Discretization

We first discretize in time and then discretize in space. This allows us to use a differ-
ent finite element space at each time instance. We apply the implicit Euler scheme to
discretize (2) in time. To this end, we introduce a time grid 0 = t0 < · · · < tn = T

with n ∈ N. For simplicity, we assume an equidistant spacing with a time step size
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Δt = T/n. The time-discrete system consists of finding sequences y1, . . . , yn ∈ V
and p1, . . . , pn ∈ Q, for given y0 = y0 ∈ Hdiv, satisfying the system

(yj − yj−1

Δt
, v

)
+c(yj , yj , v)+a(yj , v)+b(v, pj ) = 〈f (tj ), v〉 ∀v ∈ V, (3a)

b(yj , q) = 0 ∀q ∈ Q (3b)

for j = 1, . . . , n. Note that we have applied the box rule in order to approximate
the right-hand side time integral. An initial pressure field can be obtained from an
additional pressure Poisson equation, if required (see e.g., [20]).

For the spatial discretization, we utilize adaptive finite elements based on LBB
stable P2−P1 Taylor-Hood elements. For each time instance, we use spatially adapted
finite element spaces {V 1, . . . , V n} ⊂ V and {Q1, . . . , Qn} ⊂ Q, which we specify
in Section 2.3. The fully discrete Navier-Stokes problems read as follows: Given
y0

h = y0 ∈ Hdiv, find y1
h ∈ V 1, . . . , yn

h ∈ V n and p1
h ∈ Q1, . . . , pn

h ∈ Qn such that

(y
j
h − y

j−1
h

Δt
, v

)
+c(y

j
h, y

j
h, v)+a(y

j
h, v) + b(v, p

j
h) = 〈f (tj ), v〉 ∀v ∈ V j ,(4a)

b(y
j
h, q) = 0 ∀q ∈ Qj (4b)

for j = 1, . . . , n. In each step of the implicit Euler method, we compute an inner
product of the velocity y

j−1
h at the previous time level with test functions v ∈ V j

of the current time level. Alternatively, it is possible to interpret the inner product as
an L2(Ω)-projection of y

j−1
h onto V j under a weak divergence-free constraint with

respect to Qj (see [9, Lemma 4.1]). For existence of a unique solution to (4), we
refer to [38, Chapter 3, §5 Scheme 5.1].

2.3 Adaptive finite element method

In the following, we describe the choice of the mixed finite element pairs (V 1, Q1),

. . . , (V n, Qn). As a starting point, we define an initial finite element grid T init
h . We

obtain adapted grids T j
h by refining this initial grid. For each adapted grid, we can

define a corresponding Taylor-Hood finite element pair (V j , Qj ). The procedure that
leads to the individual finite element pairs for a given initial grid can be described by
the standard solve-estimate-mark-refine cycle. The details for each of these steps are
provided in Algorithm 1, an explanation is given below.

For each j , the first part of the adaptive procedure is the solution of the system of
equations (4) given a mixed finite element pair (V j , Qj ). The solution of (4) leads
to a non-linear algebraic saddle point problem, which must be solved for the velocity
and pressure at the new time instance, given the velocity at the old time instance. We
solve the non-linear system with Newton’s method, using a standard sparse direct
solver for the solution of the linear systems in each Newton iteration.
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The error estimation relies on a residual based a posteriori error estimator in the
spirit of [2]. In particular, we obtain error indicators for the spatial error at each
time step by adding the discrete time derivative to an error estimator for the station-
ary Navier-Stokes problem in [23, section 4.4], or, equivalently, adding a convection
term to an error estimator for the unsteady Stokes problem in [43, section 5.4]. The
resulting estimator can also be found in [42, section IV.2.2.]. It is given by

η
j

T =
(

h2
T

∥
∥
∥
∥
y

j
h − y

j−1
h

Δt
+ y

j
h · ∇y

j
h − Re−1Δy

j
h + ∇p

j
h − f (tj )

∥
∥
∥
∥

2

L2(T )

+
∥
∥
∥∇ · y

j
h

∥
∥
∥

2

L2(T )
+ 1

2

∑

E∈∂T \∂Ω

hE
∥
∥
∥
[−Re−1∇y

j
h · ν� + p

j
hν�

]
E

∥
∥
∥

2

L2(E)

) 1
2

(5)

for all T ∈ T j
h and for j = 1, . . . , n, assuming f (tj ) ∈ L2(Ω). Here, h2

T is the
triangle area, hE is the edge length, and [·]E denotes a jump over the edge E .

We use the Dörfler criterion [15] as a marking strategy. This means, for refine-
ment, we select the smallest subset T j

hD of T j
h fulfilling the requirement:

∑

T ∈T j
hD

η
j

T ≥ (1 − θ)
∑

T ∈T j
h

η
j

T , (6)

where θ ∈ (0, 1) is the refinement parameter.
As a refinement procedure, we use the newest vertex bisection method [27], which

has the advantage that the resulting meshes are nested. The smallest common mesh
of two adapted meshes is their overlay [13, 37].
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In order to construct the starting mesh for the next time step, we mark every tri-
angle of the current triangulation T j

h and perform one coarsening step. We unite the
result with T init

h in order to guarantee that the mesh does not become coarser than the
initial mesh. This strategy ensures that it is possible to reach the initial mesh T init

h

after a finite number of time steps. Although this choice might lead to a finer triangu-
lation compared with starting from the initial triangulation T init

h in each time step, we
expect the advantage that only a small number of refinement steps are needed when
proceeding from one time step to the other.

3 POD-Galerkin modeling

In practice, solving (4) can easily lead to large non-linear algebraic systems of equa-
tions, which are computationally expensive to solve. For this reason, we apply model
order reduction in order to replace the high-dimensional systems of equations by a
low-dimensional approximation, which represents the original problem reasonably
well. We use proper orthogonal decomposition (POD) in order to provide low-
dimensional approximation spaces and use them in a Galerkin framework to derive
the reduced-order models. In the following, we first provide a general description
of POD. Then, we introduce an abstract Galerkin model, which provides a common
foundation for the concrete models described in Sections 4 and 5.

In order to formulate the POD, assume a set of functions u1, . . . , un ∈ X is given,
where X is a Hilbert space. In the context of model order reduction, these func-
tions are usually called snapshots. They could, for instance, be infinite-dimensional
velocity or pressure fields of the time-discrete problem (3) or corresponding finite-
dimensional approximations. In principle, the number of time instances and the
number of snapshots could be chosen differently. However, for the sake of simplicity
we take the same number n of snapshots as the number of time instances in the scope
of this work.

The POD method consists of finding functions φ1, . . . , φR ∈ X with R ≤ n,
which solve the equality-constrained minimization problem:

min
φ1,...,φR

n∑

j=1

αj

∥
∥
∥
∥
∥
uj −

R∑

i=1

(uj , φi)X φi

∥
∥
∥
∥
∥

2

X

s.t. (φi, φj )X = δij for 1 ≤ i, j ≤ R, (7)

with {αj }nj=1 denoting non-negative weights and δij the Kronecker symbol. This
minimization problem can be solved using a generalized eigenvalue decomposition of
a snapshot Gramian (see [34] for instance). The functions φ1, . . . , φR are called POD
basis functions. If R ≤ dim(span(u1, . . . , un)), then φ1, . . . , φR ∈ span(u1, . . . , un).
An R-dimensional POD space is given by span(φ1, . . . , φR).

In order to derive a reduced-order model (ROM) of the time-discrete weak form
(3), we introduce abstract reduced spaces VR ⊂ V and QR ⊂ Q for the velocity
and pressure, respectively. The index R is related, but not necessarily equal, to the
dimensions of VR or QR . Concrete choices of VR and QR are provided in Sections 4
and 5.
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Replacing the original spaces V and Q in (3) with the respective reduced spaces
VR and QR leads to the following abstract reduced-order problem: For given y0

R =
y0 ∈ Hdiv, find y1

R, . . . , yn
R ∈ VR and p1

R, . . . , pn
R ∈ QR such that

(y
j
R−y

j−1
R

Δt
, v

)
+c

(
y

j
R, y

j
R, v

)+a
(
y

j
R, v

)+b
(
v, p

j
R

) = 〈f (tj ), v〉 ∀v ∈ VR,

(8a)

b
(
y

j
R, q

) = 0 ∀q ∈ QR (8b)

for j = 1, . . . , n. We note that (8) constitutes a system of algebraic equations for
the expansion coefficients of the reduced solutions. In this view, the system does not
depend on the full spatial dimension of (4) (see [34, part III, section 1]).

The stability of equation (8) is not guaranteed for all pairs of VR and QR . In the
following, we provide two choices for (VR, QR) which result in stable reduced-order
models.

The first approach is a velocity reduced-order model, presented in Section 4. It
relies on a reference pressure finite element space paired with a velocity POD space,
where the POD basis functions are weakly divergence-free with respect to the ref-
erence pressure space. This enables a cancelation of the pressure term in (8a), and
the continuity equation (8b) is fulfilled by construction. The stability of the resulting
system is then given by [14, 38].

The second approach is a velocity-pressure reduced-order model, investigated in
Section 5. It combines a pressure POD space with a velocity POD space which is
augmented by supremizer functions in order to achieve stability (see [6, 33]).

In the following, we make use of a reference velocity space Ṽ ⊂ V and an associ-
ated reference pressure space Q̃ ⊂ Q, such that the pair (Ṽ , Q̃) is inf-sup stable. We
do not impose further assumptions on these reference spaces and they are therefore
kept general. One choice could be to take the common finite element spaces Ṽ and Q̃

which contain all finite element spaces, i.e., V 1, . . . , V n ⊂ Ṽ and Q1, . . . , Qn ⊂ Q̃.
For example, if the meshes T 1

h , . . . , T n
h are obtained by successive newest vertex

bisections applied to a common coarse grid, then the spaces Ṽ and Q̃ can be con-
structed using the overlay of all meshes. However, it is also possible to choose Ṽ and
Q̃ which are independent of the snapshot spaces.

4 Velocity reduced-order model

Our goal is to derive a reduced-order model which only contains the velocity as an
unknown. This can be achieved with a weakly divergence-free POD basis. If the given
snapshots are weakly divergence-free with respect to one and the same test space,
then this property carries over to the POD basis (see [22, 34, 44]). An analysis of a
general POD-Galerkin flow model can be found in [24], for example.

The challenge in the context of adaptive spatial discretizations is that “weakly
divergence-free” refers to the test space, which can be a different space at each time
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instance, in general. In particular, the solutions y
j
h ∈ V j , j = 1, . . . , n of (4) fulfill a

weak divergence-free property with respect to the corresponding pressure spaces Qj :

b(y
j
h, q) = 0 ∀q ∈ Qj, j = 1, . . . , n.

However, y
j
h is not necessarily weakly divergence-free with respect to the other

spaces Qi for i �= j . As a consequence, no weak divergence-free property can be
guaranteed for arbitrary linear combinations of snapshots. This means, if we com-
pute a POD of y1

h, . . . , y
n
h, then the resulting POD basis functions are not necessarily

weakly divergence-free. Therefore, we use y1
h, . . . , y

n
h to construct a modified veloc-

ity POD basis which is weakly divergence-free with respect to a reference pressure
space. This allows an elimination of the pressure term in (8a), and the continuity
equation (8b) is fulfilled by construction. As a result, we directly obtain a velocity
reduced-order model.

We introduce two approaches to constructing a suitable modified velocity POD
basis. The first approach is based on projected snapshots, meaning that we first
project the snapshots such that they are weakly divergence-free and then compute a
POD basis from the projected snapshots (first-project-then-reduce, Section 4.2). The
second approach is based on projected POD basis functions, implying that we first
compute a POD basis from the original snapshots and then project the POD basis
functions such that they fulfill a weak divergence-free property (first-reduce-then-
project, Section 4.3).

4.1 Optimal projection onto a weakly divergence-free space

Our aim is to define weakly divergence-free approximations in a more general sense.
We provide a procedure that can be applied to problems with inhomogeneous Dirich-
let data as well. To this end, we introduce a Dirichlet lifting function g , which will be
specified in Section 6. In the context of homogeneous Dirichlet data, we set g = 0.
We would like to approximate a function u ∈ X with a function ũ ∈ Ṽ ⊂ X such
that ũ + g is weakly divergence-free with respect to a space Q̃. More precisely, we
want to solve the following equality-constrained minimization problem:

Problem 1 For given u ∈ X and sufficiently smooth g , find ũ ∈ Ṽ ⊂ X which
solves

min
v∈Ṽ

1

2
‖v − u‖2

X subject to b(v + g, q) = 0 ∀q ∈ Q̃.

Note that Problem 1 has a unique solution ũ ∈ Ṽ . We define the projection
u → Pg(u) = ũ. In order to compute the solution to Problem 1, the usual Lagrange
approach can be followed (see e.g., [21]). The resulting system is the following saddle
point problem:
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Problem 2 For given u ∈ X and sufficiently smooth g , find ũ ∈ Ṽ ⊂ X and λ ∈ Q̃

such that

(ũ, w)X + b(w, λ) = (u, w)X ∀w ∈ Ṽ ,

b(ũ, q) = −b(g, q) ∀q ∈ Q̃.

Note that the solution ũ ∈ Ṽ to Problem 2 is unique. If Ṽ and Q̃ form an inf-
sup stable pair of spaces, then the uniqueness of λ ∈ Q̃ in Problem 2 is given. If we
choose X = V , then Problem 2 is a Stokes problem. For the choice X = L2(Ω),
Problem 2 is a weak formulation of the Leray projection (see e.g., [14, 38]).

4.2 Reduced-order modeling based on projected snapshots

The basic idea is to project the original velocity solutions of (4) in order to obtain
functions which are weakly divergence-free with respect to the reference pressure
space Q̃. Consequently, a resulting POD basis inherits this property by construction
(first-project-then-reduce). For given snapshots y1

h ∈ V 1, . . . , yn
h ∈ V n, we solve

Problem 2 with g = 0. Then, the projected snapshots ỹ1 = P0(y
1
h), . . . , ỹ

n =
P0(y

n
h) live in

Ṽdiv := {v ∈ Ṽ : b(v, q) = 0 ∀q ∈ Q̃}. (9)

From these projected snapshots ỹ1, . . . , ỹn, we compute a POD basis according to
(7) with Hilbert space X = V , snapshot weights α1 = · · · = αn = Δt and
POD dimension Ry ≤ dim(span(ỹ1, . . . , ỹn)). The resulting POD space VR :=
span(φ1, . . . , φRy ) fulfills the property VR ⊂ Ṽdiv ⊂ Ṽ . Thus, b(w, q) = 0 holds
true for all w ∈ VR and all q ∈ Q̃. Consequently, for this choice of VR in (8),
together with QR = Q̃, the pressure term vanishes and the continuity equation is
fulfilled by construction. The resulting velocity ROM reads as follows: For given
y0

R = y0 ∈ Hdiv, find y1
R, . . . , yn

R ∈ VR such that

(y
j
R − y

j−1
R

Δt
, w

)
+ c(y

j
R, y

j
R, w) + a(y

j
R, w) = 〈f (tj ), v〉 ∀w ∈ VR, (10)

for j = 1, . . . , n.
Concerning the computational complexity, we note that Problem 1 has to be solved

for each snapshot, which means the solution of a saddle point problem with reference
spaces Ṽ and Q̃, followed by the computation of a POD basis for the velocity field.
Concerning the online computational costs, in each time step we solve a non-linear
algebraic system of equations with Newton’s method. In each Newton step, we need
to build a Jacobian matrix and a right-hand side and, subsequently, solve a dense
linear system using a direct method. Therefore, we find that solving the velocity
ROM (10) is of order O(R3

y ).

4.3 Reduced-order modeling based on projected POD basis functions

The basic idea of this approach is to compute a POD basis from the original
velocity solutions of (4) and project the resulting POD basis functions onto a
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weakly divergence-free space (first-reduce-then-project). For given snapshots y1
h ∈

V 1, . . . , yn
h ∈ V n, we define interpolated snapshots ŷj = I

Ṽ
y

j
h ∈ Ṽ for j =

1, . . . , n, where I
Ṽ

denotes the Lagrange interpolation operator onto the velocity ref-
erence space Ṽ . From these interpolated snapshots, we compute POD basis functions
φ̂1, . . . , φ̂Ry ∈ Ṽ according to (7) with Hilbert space X = V , snapshot weights
α1 = · · · = αn = Δt and POD dimension Ry ≤ dim(span(ŷ1, . . . , ŷn)). These POD
basis functions in general do not live in Ṽdiv. Thus, they are projected onto the space
Ṽdiv by solving Problem 2 with g = 0. Then, the projected POD basis functions
φ1 = P0(φ̂

1), . . . , φRy = P0(φ̂
Ry ) live in Ṽdiv. Choosing VR := span

(
φ1, . . . , φRy

)

in (8) together with QR = Q̃ leads to a velocity ROM of the form (10). Note that,
in general, the reduced space constructed in this approach does not coincide with the
reduced space constructed according to Section 4.2.

The computational complexity of the approach described in this subsection com-
prises the computation of a POD basis and, afterwards, the solution of Problem 1 for
each POD basis function, i.e. Ry times. This makes the current approach cheaper than
the approach of Section 4.2, which required n solutions of Problem 1, and Ry ≤ n.
Otherwise the costs of setting up and solving the reduced-order model are equivalent.

Remark 1 Obviously, the velocity ROM (10) only depends on the velocity variable
and the pressure is eliminated. However, many applications require an approximate
pressure field. For example, the pressure is needed for the computation of lift and
drag coefficients of an airfoil or for low-order modeling of shear flows (see e.g., [28]).
In the case of snapshot generation on static spatial meshes, it is possible to recon-
struct a reduced pressure afterwards by solving a discrete reduced pressure Poisson
equation, see [40], for example. A transfer of this concept to the case of space-
adapted snapshots is not carried out within the scope of this work. In the following
Section 5, we introduce a reduced-order model which depends on both velocity and
pressure. Thus, it delivers directly a reduced pressure approximation without any
post-processing recovery.

5 Velocity-pressure reduced-order model

We want to derive a POD-Galerkin model which can be solved for reduced-order
representations of the velocity and pressure fields. To this end, we need to choose
reduced spaces such that the reduced-order model resulting from (8) becomes inf-sup
stable. We obtain a suitable pressure reduced space by a truncated POD of a set of
pressure snapshots. For the velocity reduced space, we take a truncated POD basis of
a set of velocity snapshots and add suitable functions to guarantee the fulfillment of
the inf-sup stability criterion, compare [6, 33].

5.1 POD spaces

Let y1
h ∈ V 1, . . . , yn

h ∈ V n and p1
h ∈ Q1, . . . , pn

h ∈ Qn be the solutions of the fully

discrete problem (4). We define interpolated velocity snapshots ŷj = I
Ṽ
y

j
h ∈ Ṽ and
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C. Gräßle et al.

interpolated pressure snapshots p̂j = I
Q̃

p
j
h ∈ Q̃ for j = 1, . . . , n, where I

Ṽ
and

I
Q̃

are Lagrange interpolation operators onto the velocity reference space Ṽ and the

pressure reference space Q̃, respectively.
In order to define a POD of the interpolated velocity snapshots in the sense of

Section 3, we specify a Hilbert space X = V , a set of snapshot weights α1 = · · · =
αn = Δt and a POD dimension Ry ≤ dim(span(ŷ1, . . . , ŷn)). As a result, we obtain
velocity POD basis functions φ1 . . . , φRy ∈ span(ŷ1, . . . , ŷn). For the pressure, we
choose the space X = Q, a set of weights α1 = · · · = αn = Δt and a POD
dimension Rp ≤ dim(span(p̂1, . . . , p̂n)). A POD provides pressure POD basis func-
tions ψ1 . . . , ψRp ∈ span(p̂1, . . . , p̂n). The POD bases approximate the respective
interpolated snapshots optimally in the sense of (7).

5.2 Stabilization with supremizer functions

The stability of the velocity-pressure reduced-order model provided by (8) depends
on the choice of the subspaces VR and QR . We use QR = span(ψ1 . . . , ψRp ) as a
pressure subspace, with basis functions according to Section 5.1. In order to derive a
stable reduced-order model, we define the velocity subspace:

VR := span(φ1, . . . , φRy , φ̄1, . . . , φ̄Rp ), (11)

where the basis functions φ1, . . . , φRy are defined in Section 5.1 and the additional
basis functions φ̄1, . . . , φ̄Rp ∈ Ṽ are chosen such that an inf-sup stability constraint
can be verified.

We express the inf-sup stability constraint as follows: There exists a βR > 0
defined by

βR := inf
q∈QR
q �=0

sup
w∈VR
w �=0

b(w, q)

‖w‖V‖q‖Q .

In the following, we show how suitable functions φ̄1, . . . , φ̄Rp can be found such
that the stability condition is fulfilled [6, 33].

We introduce a linear map T : Q → Ṽ by the following problem: For given
q ∈ Q, find Tq ∈ Ṽ such that

(Tq, w)V = b(w, q) ∀w ∈ Ṽ . (12)

From the Riesz representation theorem follows:

‖Tq‖
Ṽ

= sup
w∈Ṽ
w �=0

b(w, q)

‖w‖V = sup
w∈Ṽ
w �=0

(Tq, w)V
‖w‖V ∀q ∈ Q, (13)

which means that

Tq = arg sup
w∈Ṽ
w �=0

(Tq, w)V
‖w‖V ∀q ∈ Q. (14)

Therefore, we enrich the velocity space with functions φ̄i = Tψi for i = 1, . . . , Rp .
To show that the stability condition is fulfilled for the proposed choice of enrich-

ment functions, we relate the stability constant βR of the reduced-order model with
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the stability constant β̃h of the reference spaces (Ṽ , Q̃) (see [5, 10, 25]). We proceed
like Proposition 2 of [6] and Lemma 3.1 of [33]:

0 < β̃h := inf
q∈Q̃
q �=0

sup
w∈Ṽ
w �=0

b(w, q)

‖w‖V‖q‖Q
QR⊂Q̃≤ inf

q∈QR
q �=0

sup
w∈Ṽ
w �=0

b(w, q)

‖w‖V‖q‖Q

(13),(14)= inf
q∈QR
q �=0

b(Tq, q)

‖Tq‖V‖q‖Q ≤ inf
q∈QR
q �=0

sup
w∈{Tp : p∈QR}

w �=0

b(w, q)

‖w‖V‖q‖Q
(11)≤ inf

q∈QR
q �=0

sup
w∈VR
w �=0

b(w, q)

‖w‖V‖q‖Q = βR .

The final relation 0 < β̃h ≤ βR states that the POD model with an enriched velocity
space is inf-sup stable as long as (Ṽ , Q̃) is an inf-sup stable pair of spaces.

Note that (12) allows a computation of the stabilizer functions based on the
pressure snapshots instead of the pressure POD. Section 5.1 states that ψ1, . . . ,

ψRp ∈ span(p̂1, . . . , p̂n). Consequently, for each r = 1, . . . , Rp we can write

φ̄r = Tψr = T

n∑

j=1

p̂j ξ
j
r =

n∑

j=1

(Tp̂j )ξ
j
r , (15)

where the coefficients ξ1
r , . . . , ξn

r can be obtained from the pressure POD computa-
tion. This means, in a first step, we compute Tp̂1, . . . ,Tp̂n via (12). This involves
the solution of a linear system of equations on the reference finite element space for
each pressure snapshot. In a second step, we compute φ̄1, . . . , φ̄Rp by linearly com-
bining Tp̂1, . . . ,Tp̂n according to (15). The result is equivalent to the supremizers
obtained from the pressure POD basis functions.

5.3 Complexity

Concerning the complexity of constructing a reduced-order model, there are two
main differences between the velocity ROM approach and the velocity-pressure
ROM approach. First of all, in the velocity ROM approach a POD basis is com-
puted only for the velocity variable, whereas in the velocity-pressure ROM approach
an additional POD basis is computed for the pressure snapshots. Second, the con-
struction of divergence-free POD modes in the velocity ROM approach requires the
solution of Problem 2, whose complexity depends on dim(Ṽ ) + dim(Q̃). In contrast,
the construction of the supremizer functions in the velocity-pressure ROM approach
requires the solution of equation (12), whose complexity depends on dim(Ṽ ).

For the complexity of solving a velocity-pressure reduced-order model, we con-
centrate on the setup and solution of a linear system in a Newton step. The setup
of the system matrix and right-hand side involves the third-order tensor originating
from the convective terms. The solution of the linear system requires the factoriza-
tion of a dense matrix which contains a zero block in case of the velocity-pressure
approach. As a result, the complexity of solving a velocity-pressure ROM is of order
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O((Ry + Rp)3) while the complexity of solving a velocity ROM is only of order
O(R3

y ).

Remark 2 Since the computation of supremizer functions can be expensive in
practical applications, we like to mention some variations and alternatives to the
stabilization using supremizer enrichment. In [6], an approximate supremizer com-
putation is proposed which enables an efficient offline-online decomposition while
preserving stability properties. An alternative to stabilization with supremizers is
given in [7, 11, 45] as a velocity-pressure reduced-order model with a residual-based
stabilization approach. A transfer of the supremizer stabilization technique to the
context of finite volume approximations is carried out in [35], where a comparison to
a stabilization based on a pressure Poisson equation in the online phase is provided.

6 Inhomogeneous Dirichlet data

So far, we have studied the incompressible Navier-Stokes problem with homo-
geneous Dirichlet boundary conditions. In the following, we extend the scope to
problems involving inhomogeneous Dirichlet data. The main idea is to subtract a suit-
able chosen lifting function from the snapshot data leading to homogeneous Dirichlet
boundary conditions for the reduced basis functions and then add the lifting function
in the expansion of the velocity field. For PDEs with a single parametrized Dirich-
let boundary this is referred to as control function method in [17] and generalized to
multiple parameters in [19, 40].

In the context of POD-Galerkin modeling based on adaptive finite element snap-
shots, the main challenge is to find such lifting functions for each space-adapted
snapshot. For the derivation of a velocity POD-Galerkin model, we further must
ensure that these continuous extensions fulfill the correct weak divergence-free
property.

Another alternative to handle inhomogeneous Dirichlet conditions is the penalty
method [17], where the snapshot data is not homogenized but the inhomogeneous
Dirichlet data is enforced in a weak form in the Galerkin projection. Moreover, in
[19], a different approach is proposed which uses a modification of the POD basis
utilizing a QR decomposition such that some of the reduced basis functions fulfill
the homogeneous and some fulfill the inhomogeneous boundary data. A transfer of
these approaches to the case of space-adapted snapshots is not carried out within the
scope of this work.

We extend (1) to the case of inhomogeneous Dirichlet boundary conditions by
introducing Dirichlet boundary data yD : [0, T ) × ∂Ω → R. The resulting problem
reads as follows: Find a velocity field y̌ and a pressure field p such that

y̌ t + (y̌ · ∇)y̌ − Re−1Δy̌ + ∇p = f in (0, T ) × Ω, (16a)

∇ · y̌ = 0 in (0, T ) × Ω, (16b)

y̌ = yD in (0, T ) × ∂Ω, (16c)

y̌ = y0 in {0} × Ω, (16d)

2414



POD-MOR with space-adapted snapshots for incompressible flows

where ∇ · y0 = 0 in Ω and y0 = yD(0) on ∂Ω . In the following, we derive a homog-
enized version of this problem, which provides a foundation for the subsequent finite
element discretization and reduced-order modeling.

6.1 Homogenized equations

We assume that the function yD is sufficiently regular, so that it can be continuously
extended by a function g : [0, T )×Ω̄ → R with g(t)|∂Ω = yD(t) for t ∈ (0, T ). The
regularity requirements on g are such that a unique weak solution exists (see [32]).
In Section 6.2, we provide a concrete choice of g by computation.

We homogenize (16) by subtracting the boundary function from the inhomo-
geneous velocity solution such that the homogeneous velocity field is given by
y = y̌ − g . Substituting y̌ in (16), we obtain the following homogenized problem:
Find y and p such that

yt + (y · ∇)y + (g · ∇)y + (y · ∇)g − Re−1Δy + ∇p

= f − (g · ∇)g + Re−1Δg − gt in (0, T ) × Ω, (17a)

∇ · y = −∇ · g in (0, T ) × Ω, (17b)

y = 0 in (0, T ) × ∂Ω, (17c)

y = y0 − g in {0} × Ω, (17d)

where ∇ · y0 = 0 in Ω and y0 = g(0) on ∂Ω . We proceed like in Section 2, but now
using the homogenized equations.

In order to derive a time-discrete weak form of the homogenized problem, we
implement the time integrals involving the Dirichlet data using the right rule, which
evaluates the Dirichlet data at the new time instance. For ease of notation, we define
f j := f (tj ) and gj := g(tj ) for j = 0, . . . , n. As a result, the time-discrete weak
form of the homogenized problem consists of finding sequences y1, . . . , yn ∈ V and
p1, . . . , pn ∈ Q, for given y0 = y0 − g0 with y0 ∈ Hdiv, such that

(yj − yj−1

Δt
, v

)
+ c(yj , yj , v) + c(gj , yj , v)+ c(yj , gj , v)+ a(yj , v) + b(v, pj )

= 〈f j , v〉 − c(gj , gj , v) − a(gj , v) −
(gj − gj−1

Δt
, v

)
∀v ∈ V,

(18a)

b(yj , q) = −b(gj , q) ∀q ∈ Q
(18b)

for j = 1, . . . , n.
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We utilize an adaptive finite element method, so that the fully discrete homog-
enized Navier-Stokes problem reads as follows: For given y0

h = y0 − g0 with
y0 ∈ Hdiv, find y1

h ∈ V 1, . . . , yn
h ∈ V n and p1

h ∈ Q1, . . . , pn
h ∈ Qn such that

(y
j
h − y

j−1
h

Δt
, v

)
+ c(y

j
h, y

j
h, v) + c(gj , y

j
h, v) + c(y

j
h, g

j , v) + a(y
j
h, v) + b(v, p

j
h)

= 〈f j , v〉 − c(gj , gj , v) − a(gj , v) −
(gj − gj−1

Δt
, v

)
∀v ∈ V j ,

(19a)

b(y
j
h, q) = −b(gj , q) ∀q ∈ Qj

(19b)

for j = 1, . . . , n.

6.2 Lifting function

Based on (19), we compute approximations to the inhomogeneous solutions y̌ (tj ) of
(16) by adding the continuous extension of the Dirichlet data, i.e., ŷ

j
h := y

j
h + gj

for j = 0, . . . , n. Regardless of the choice of lifting functions g0, . . . , gn, we can
guarantee that ŷ

0
h fulfills the initial condition (16d) and ŷ

1
h, . . . , ŷ

n
h fulfill the Dirich-

let condition (16c) by construction. Nevertheless, in order to solve (19) numerically,
concrete candidates of g0, . . . , gn must be fixed, at least implicitly. Our approach to
reduced-order modeling is not restricted to a particular choice. In the following, we
provide suitable candidates which can be realized without the need to modify usual
finite element codes.

Note that for the velocity finite element spaces it holds V j ⊂ V = H 1
0 (Ω).

Thus, for the context of inhomogeneous Dirichlet conditions, we start by introducing
the spaces V

j
D for j = 1, . . . , n, which denote the spaces spanned by the union

of the finite element basis functions of V j and the finite element basis functions
associated with the corresponding Dirichlet boundary nodes. We assume that in (19)
the integrals involving gj are approximated by a numerical quadrature which consists
of substituting the Lagrange interpolation of gj onto V

j
D and integrating the resulting

piecewise polynomials exactly. We assume that by a finite number of refinements
of any V 1

D, . . . , V n
D one can find a common reference finite element space ṼD such

that V 1
D, . . . , V n

D ⊂ ṼD. Now, for j = 1, . . . , n, we define lifting functions gj as a
sufficiently smooth continuous extension of the Dirichlet data yD(tj ) into the domain
Ω such that gj is zero at all nodes of the reference finite element space Ṽ . This is
equivalent to the standard approach of using an approximate Dirichlet lifting given
by a Lagrangian interpolation of the Dirichlet data onto the finite element space at
the boundary and a subsequent continuous extension using the finite element space
in the interior, because we have

{
gj = yD(t) at all Dirichlet nodes of V

j
D,

gj = 0 at all interior nodes of V
j
D,
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for j = 1, . . . , n. A disadvantage of the standard approach is that it implies a
Dirichlet lifting which satisfies the boundary data only in an approximate sense. Our
description, on the other hand, delivers an output which is exact at the boundary. In
particular, we have

⎧
⎪⎨

⎪⎩

ŷ
j
h = y

j
h at all interior nodes of ṼD

ŷ
j
h = gj at all Dirichlet nodes of ṼD

y
j
h = 0 at all Dirichlet nodes of ṼD.

This holds for all ṼD which fulfill our assumptions, without the need to specify a
concrete candidate of ṼD during the adaptive finite element simulation. When the
adaptive finite element simulation is finished and V 1

D, . . . , V n
D are available, some ṼD

can be computed by refinement and gj can be evaluated at all nodal points of ṼD.
Therefore, we are even able to formulate a finite element discretization of (18) on
(Ṽ , Q̃) using the same g0, . . . , gn as in (19). Moreover, we are able to solve (18) on
subspaces of (Ṽ , Q̃) using the same g0, . . . , gn as in (19).

Remark 3 In principle, it is possible to impose a weak divergence-free constraint on
the homogenized velocity finite element solution by using lifting functions which
are computed such that b(gj , q) = 0 for all q ∈ Qj and j = 0, . . . , n. But this
would require the solution of an additional stationary finite element problem for each
gj . Moreover, this would not automatically imply a weak divergence-free property
with respect to a reference pressure space Q̃. An alternative to the implicit choice of
the Dirichlet lifting function is its explicit choice at the level of the strong formula-
tion (17). Disadvantages would be a possibly larger support of such a lifting function
and the effort of actually finding a suitable function. Also in this case, it would be
attractive to impose a strong divergence-free constraint on gj , because this implies
a weakly divergence-free homogenized velocity field y

j
h. Still, finding a suitable

candidate may be challenging in general.

6.3 Velocity POD-Galerkinmodel

In the following, we derive a reduced-order model for the velocity field, based on
the semi-discretized problem (18). We introduce the projections P

V,Q
g according to

Problem 1 by

Problem 3 For given u ∈ X, sufficiently smooth g and given spaces V and Q, find
P
V,Q
g (u) = ũ ∈ V which solves

min
v∈V

1

2
‖v − u‖2

X subject to b(v + g, q) = 0 ∀q ∈ Q.

We use X = V in the following. By definition of this projection onto a divergence-
free space, we have b(P

V,Q
gj (0) + gj , q) = 0 for all q ∈ Q and j = 0, . . . , n. In

(18), we substitute gj = gj + P
V,Q
gj (0) − P

V,Q
gj (0) and reformulate the equations
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so that we can set ỹj = yj − P
V,Q
gj (0). We obtain the following problem, which is

equivalent to (18): For given ỹ0 = y0 − g̃0 with y0 ∈ Hdiv and g̃ j = gj + P
V,Q
gj (0)

for j = 0, . . . , n, find ỹ1, . . . , ỹn ∈ V and p1, . . . , pn ∈ Q such that
( ỹj − ỹj−1

Δt
, v

)
+ c(ỹj , ỹj , v) + c(g̃j , ỹj , v)+c(ỹj , g̃j , v)+a(ỹj , v) + b(v, pj )

= 〈f j , v〉 − c(g̃j , g̃j , v) − a(g̃j , v) −
( g̃ j − g̃ j−1

Δt
, v

)
∀v ∈ V,

(20a)

b(ỹj , q) = 0 ∀q ∈ Q
(20b)

for j = 1, . . . , n.
It can be shown that (19) is a discretization of (20) by replacing (V,Q) with

(V j , Qj ) for j = 1, . . . , n in (20). Then, the resulting solution holds ỹj = y
j
h −

P
V j ,Qj

gj (0) if g̃ j = gj + P
V j ,Qj

gj (0) for j = 0, . . . , n. In this way, (19) can be used
to obtain approximate solutions of (20).

We base the model equation on a discretization of (20) using the pair of refer-

ence spaces (Ṽ , Q̃) as test spaces together with g̃ j = gj + P
Ṽ ,Q̃

gj (0). The resulting
solutions are approximations to the solutions of (20) using the original pair of spaces
(V,Q). We have shown that the solutions of (20) using the original pair of spaces

(V,Q) are approximated by y
j
h − P

V j ,Qj

gj (0) for j = 1, . . . , n resulting from (19).
But these solutions are not weakly divergence-free with respect to the reference pair
of spaces (Ṽ , Q̃). Therefore, we have to modify them.

Following the velocity-ROM approach based on projected snapshots in

Section 4.2, we substitute y
j
h − P

V j ,Qj

gj (0) by their approximations P
Ṽ ,Q̃

gj (y
j
h) −

P
Ṽ ,Q̃

gj (0) for j = 1, . . . , n. Using now P
Ṽ ,Q̃

gj (y
j
h) − P

Ṽ ,Q̃

gj (0) as snapshots in a POD
yields POD basis functions

φi ∈ span
(
Pg1(y

1
h) − Pg1(0), . . . , Pgn(yn

h) − Pgn(0)
) ⊂ Ṽdiv ∀i = 1, . . . , Ry

for some Ry ≤ n, which define a POD space VR := span(φ1, . . . , φRy ) ⊂ Ṽdiv.
In the time-discrete equation (20), we use the pair (VR, Q̃) as test and trial spaces.

Consequently, the continuity equation is fulfilled by construction. For the pressure
term, we have b(v, pj ) = 0 for all v ∈ VR and all pj ∈ Q̃. The resulting reduced-
order model is given by the following set of equations: For y0

R = y0 − g̃0 with

y0 ∈ Hdiv and g̃ j = gj + P
Ṽ ,Q̃

gj (0) for j = 0, . . . , n, find y1
R, . . . , yn

R ∈ VR such
that

(y
j
R − y

j−1
R

Δt
, v

)
+ c(y

j
R, y

j
R, v) + c(g̃j , y

j
R, v) + c(y

j
R, g̃j , v) + a(y

j
R, v)

= 〈f j , v〉 − c(g̃j , g̃j , v) − a(g̃j , v) −
( g̃ j − g̃ j−1

Δt
, v

)
∀v ∈ VR (21)

for j = 1, . . . , n.
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Remark 4 Concerning the computational complexity, we have to additionally con-

sider the projections P
Ṽ ,Q̃

gj (0) for j = 0, . . . , n in comparison with the homogeneous
case. Therefore, the solution of Problem 1 has to be computed n+1 times additionally
to the projections of the homogeneous solutions y

j
h.

Following the velocity-ROM approach based on projected POD basis functions
in Section 4.3, we first introduce a set of modified homogeneous solutions ŷj −
P

Ṽ ,Q̃

gj (0), for j = 1, . . . , n. These modified snapshots can be constructed using e.g.,

a Lagrange interpolation of the original homogeneous solutions y
j
h onto the reference

space Ṽ and an approximation of P
V j ,Qj

gj (0) for j = 1, . . . , n. From these modified

snapshots, we compute a POD basis φ̂1, . . . , φ̂Ry ∈ Ṽ . Note that these modes are
in general not divergence-free. Thus, they are then projected onto the space Ṽdiv by
solving Problem 2 with g = 0. This leads to a divergence-free velocity POD space
VR = span{φ1, . . . , φRy } ⊂ Ṽdiv. Replacing (V,Q) by the pair (VR, Q̃) in (20) leads
to a reduced-order model of the form (21).

6.4 Velocity-pressure POD-Galerkinmodel

To derive a velocity-pressure reduced-order model of the homogenized problem (19),
we require a suitable inf-sup stable pair of reduced spaces. Since the homogenization
does not alter the bilinear form b(·, ·), the inf-sup stability criterion stays the same.
Therefore, we compute a pressure reduced space QR and a velocity reduced space
VR like in Section 5, but using Lagrange-interpolated velocity and pressure snapshots
of (19) instead of (4). We derive a stable POD-Galerkin model from the time-discrete
problem (18) by using the pair (QR, VR) as test and trial spaces.

We solve the reduced-order model for the POD approximations y1
R, . . . , yn

R of
the homogeneous velocity fields and the POD approximations p1

R, . . . , pn
R of the

pressure fields. Finally, y
j
R + gj is a time-discrete reduced-order approximation of

the velocity solution of the inhomogeneous problem.

7 Numerical example

We use a regularized lid-driven flow in a cavity as a numerical example. It describes
the evolution of a flow in a confined domain Ω = (0, 1) × (0, 1) with boundary
∂Ω during the time interval [0, 1]. The governing equations are the incompressible
Navier-Stokes equations with inhomogeneous Dirichlet data, as provided by (16).
We specify a Reynolds number Re = 100 and set f (t, x) = 0. We choose a reg-
ularized lid velocity according to [16, 23], which has a quadratic velocity profile in
x1-direction and leads to a smooth transition to a zero velocity at the upper corners. In
particular, it implies ∇ · y = 0 in the corners and avoids a singularity of the pressure
in the upper right corner. An additional regularization in time allows for a smooth
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startup from y0(x) = 0. Hence, the Dirichlet data is given by yD(t, x) = yt
D(t)yx

D(x)

for all (t, x) ∈ [0, 1] × ∂Ω , where

yt
D(t) =

{
1 − 1

4 (1 − cos((0.1 − t)π/0.1))2 if t ∈ [0, 0.1),

1 if t ∈ [0.1, 1],

yx
D(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − 1
4 (1 − cos((0.1 − x1)π/0.1))2 if x2 = 1, x1 ∈ [0, 0.1],

1 if x2 = 1, x1 ∈ (0.1, 0.9),

1 − 1
4 (1 − cos((x1 − 0.9)π/0.1))2 if x2 = 1, x1 ∈ [0.9, 1],

0 otherwise.

7.1 Discretization

We discretize the example problem using a space-adaptive extension of our Matlab
finite element code [39]. The initial finite element mesh T init

h is given by a criss-
cross triangulation of a 8 × 8 square pattern (see Fig. 1 on the left). We choose
ε = 0.01 as a stopping tolerance and θ = 0.1 as a refinement parameter in the
adaptive Algorithm 1. For the time discretization, we set the number of discrete time
intervals equal to n = 100, so that Δt = 0.01.

We run the fully discrete Navier-Stokes problem (19) with the provided discretiza-
tion parameters to compute a set of velocity and pressure solutions. Figure 2 presents
the components of the adaptive finite element solution at times t = 0.1, 0.3, 1.0 as
well as the corresponding adapted finite element meshes.

7.2 Model order reduction

We need to specify suitable Hilbert spaces and snapshot weights in order to define
the construction of POD basis functions from the adaptive finite element snapshots
according to Section 3. We also require a set of reference spaces to derive our
proposed reduced-order models.

Regarding the choice of Hilbert spaces, we choose the ones that are already used in
the weak form and in the finite element error estimator. This means, we take X = V

Fig. 1 Initial triangulation T init
h (left) and overlay of all adapted triangulations (right)
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Fig. 2 Adapted triangulations T j
h , corresponding finite element velocities y

j
h = (y

j

h,1, y
j

h,2)
T and

pressures p
j
h (top to bottom). The columns represent times t = 0.1, 0.3, 1.0 (left to right)

for the velocity POD and X = Q for the pressure POD in terms of (7) and we choose
X = V for the divergence-free projection in Problem 2.

Regarding the choice of weights, we interpret the sum in the POD minimization
problem (7) as a quadrature of a time integral. A reasonable choice is αj = Δt
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for j = 1, . . . , n, which is equivalent to a right-sided rectangle quadrature rule.
This complies with the interpretation of the implicit Euler scheme as a discontinuous
Galerkin method.

We define the reference pair of finite element spaces (Ṽ , Q̃) ⊂ (V,Q) as the
pair of finite element space which corresponds to the overlay of all adapted meshes.
Figure 1 on the right provides a plot of the overlay of all snapshot meshes of the
example simulation. The chosen reference spaces are able to exactly represent all
functions in the adapted finite element spaces. Our methods also cover other choices
of reference spaces, which enables the decoupling of the POD spatial mesh from the
snapshot meshes. However, this can lead to additional interpolation errors depending
on the respective resolution.

7.3 Accuracy

We compare the considered approaches to model order reduction regarding their
accuracy depending on the number of velocity basis functions. In the case of the
velocity-pressure model, we set the number of pressure basis functions and the num-
ber of stabilizer functions equal to the number of velocity POD basis functions.
Descriptions of the tested methods are given in Table 1.

We measure the error in the reduced-order velocity approximations with the
relative norm implied by the velocity POD, namely

rel erry =
⎛

⎝
n∑

j=1

Δt‖yj
h − y

j
R‖2

V

⎞

⎠

1
2

/

⎛

⎝
n∑

j=1

Δt‖yj
h‖2

V

⎞

⎠

1
2

. (22)

The results are provided in Fig. 3.
We observe that the relative errors of our proposed approaches show an exponen-

tial decay up to Ry = 6. Thereafter, the decay stagnates at an error slightly above

Table 1 Descriptions of reduced-order approximations

method description

unstable ROM velocity-pressure reduced-order model of Section 5, but no supremizers

naive ROM velocity reduced-order model of Section 4.2, but using Lagrange interpolations
instead of divergence-free projections of the FE solutions

div-free ROM(1) velocity reduced-order model of Section 4.2

div-free ROM(2) velocity reduced-order model of Section 4.3

div-free POD optimal approximation of the adaptive FE solutions in terms of the reduced basis
of Section 4.3

stabilized ROM(1) velocity-pressure reduced-order model of Section 5

stabilized ROM(2) velocity-pressure reduced-order model of Section 5, but computed from the
pressure snapshots according to (15)

stabilized POD optimal approximation of the adaptive FE solutions in terms of the reduced basis
of Section 5

2422



POD-MOR with space-adapted snapshots for incompressible flows

Fig. 3 Relative velocity errors of different reduced-order approximations in the sense of (22), depending
on the number of velocity POD basis functions

10−3. The stagnation of the relative errors in the div-free ROMs and the stabilized
ROMs is due to the use of space-adapted snapshots and is related to the finite element
discretization error. For more details, we refer to [18, 41].

The divergence-free velocity reduced-order models and the stabilized velocity-
pressure reduced-order models perform similar in terms of accuracy depending on the
number of velocity basis functions. Considering the additional degrees of freedom
associated with the pressure basis functions and the stabilizing functions, however,
the velocity-pressure models are more expensive than the velocity models at the same
number of velocity basis.

Both variants of the stabilized velocity-pressure reduced-order model give exactly
the same results, in accordance with (15). The difference between the two variants of
the divergence-free velocity reduced-order model is in the order of about 1% of the
error and, therefore, visually not distinguishable.

Reference curves are given by the projections of the finite element velocity solu-
tions onto the velocity bases used in the reduced-order models. We observe that the
errors of the proposed reduced-order models are close to the corresponding optimal
errors up to the point where the convergence of the reduced-order model stagnates.

To compare our approaches with less sophisticated methods. A naive reduced-
order model is derived by using a non-divergence-free velocity basis and neglecting
the pressure term and the continuity equation. Nevertheless, the Dirichlet condition is
implemented with a weakly divergence-free function, as usual in POD-Galerkin mod-
eling with fixed discretization spaces. The initial convergence of the naive approach
is on par with our approach, but if the number of basis functions is increased, the

2423
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solution starts to diverge. As a second simple alternative, we introduce a velocity-
pressure model without stabilizers. Such a model provides a reduced-order solution,
but the magnitude of its relative error is of order 1 and, thus, not satisfactory.

7.4 Cost

We present computation times of the setup and solution of selected reduced-order
models to illustrate the main differences in their computational complexity. We
restrict our consideration to a fixed number of velocity basis functions, namely
Ry = 30. The results are presented in Table 2.

Regarding the finite element solution times, we have proved that our adaptive
finite element implementation is reasonably efficient by verifying that most of the
computation time is spent solving linear systems of equations within the Newton
iteration. As initial guess for the Newton iteration, we use the solution at the previous
time instance, which is sufficiently accurate to give fast convergence in all our test
cases. Considering the total setup times of the proposed methods, we find that they
are roughly the same and dominated by the cost of computing the snapshots.

The time to solve the reduced-order model for the time-discrete coefficients of the
reduced basis expansion is mainly affected by the setup and solution of the reduced-
order linear systems appearing within the nonlinear iteration. The setup costs of the
corresponding matrices and right-hand sides are dominated by the third-order con-
vective tensor, whose dimension is equal to the number of velocity unknowns. The
solution costs amount to factorizing a dense matrix. Because the velocity models have
a smaller number of unknowns, they are significantly more efficient than the velocity-
pressure models in terms of solution time. This is also reflected in the measured
solution times. The comparison of the full-order simulation with the reduced-order
solution gives a speedup factor of 3760 for the div-free method and a factor of 1253
for the stabilized approach. In view of multi-query scenarios like uncertainty quan-
tification or optimal control, where the underlying systems are solved repeatedly, we
expect a large gain concerning the computational expenses.

Table 2 Computation times in seconds for selected reduced-order models using Ry = 30

Div-free ROM(2) Stabilized ROM(1) Naive ROM

FE solution 488.87 488.87 488.87

Reference FE space 37.32 37.32 37.32

Velocity POD 0.97 0.99 0.97

Pressure POD – 0.14 –

Div-free projection 3.10 – 0.86

Supremizers – 0.59 –

ROM setup 1.59 4.51 1.59

ROM solution 0.13 0.39 0.13
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8 Conclusions

In this work, we have extended the framework of POD model order reduction
for space-adapted snapshots to incompressible flow problems described by the
Navier-Stokes equations. In order to derive a stable POD reduced-order model, two
approaches are proposed.

In the first approach, a velocity reduced-order model is derived by projecting
the velocity snapshots or, alternatively, the POD basis functions onto a weakly
divergence-free space. In this way, the continuity equation in the POD reduced-order
model is fulfilled by construction and the pressure term vanishes. The structural
advantage of this approach is that the resulting reduced-order velocity solution is
weakly divergence-free with respect to a pressure finite element space regardless of
the number of reduced basis functions.

In the second approach, a pair of reduced spaces for the velocity and for the pres-
sure are constructed. Stability is ensured by augmenting the velocity reduced space
with pressure supremizer functions. The advantage of this method is that it directly
delivers a reduced-order approximation of the pressure field, which is required in
many practical applications. The reduced-order velocity, however, is only weakly
divergence-free with respect to the pressure reduced space. Moreover, the velocity-
pressure reduced-order model is less efficient than the velocity reduced-order model
due to the additional degrees of freedom associated with the pressure basis and the
supremizers.

Our numerical experiments show that the results of both approaches are very sim-
ilar in terms of the error between the reduced-order velocity solution and the finite
element velocity solution depending on the number of velocity POD basis functions.
This implies that the velocity reduced-order model is significantly more efficient than
the velocity-pressure reduced-order model in terms of computation time.
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