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Abstract

Based on our previous research, we investigate spectral collocation method for
system of weakly singular Volterra integral equations. The provided convergence
analysis shows that global convergence order is related to regularity of the solution
to this system, and the local convergence order on collocation points only depends
on the regularity of kernel functions. Numerical experiments are carried out to con-
firm these theoretical results. Numerical methods are developed to solve nonlinear
system of weakly singular Volterra integral equations and high-order weakly singular
Volterra integro-differential equations.
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1 Introduction

Systems of weakly singular Volterra integral equations (VIEs) appear for example in
the spatial discretization of partial VIEs [8]. Weakly singular equations are widely
applied in fractional calculus [9, 13, 14]. Many high-order weakly singular Volterra
integro-differential equations (VIDEs) can be transformed to be system of weakly
singular VIEs [3]. Waveform and time point relaxation methods were developed to
solve large systems of nonlinear systems of weakly singular VIDEs [4, 15]. Dis-
continuous piecewise polynomial collocation methods were investigated for solving
system of weakly singular VIEs of the first kind [12]. A hybrid collocation method
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[6] was developed for weakly singular VIEs. Collocation method was proposed to
solve fractional differential equations involving non-singular kernel [1]. Spectral
methods [5] are the numerical methods with high precision, which are widely used
to solve Volterra-type integral equations [7, 18, 19]. In [2], spectral method was
proposed to solve a system of fractional differential equations within a fractional
derivative involving the Mittag-Leffler kernel. In our previous research, we have
investigated the spectral collocation methods for weakly singular VIE with propor-
tional delay [11], and the system of VIEs with smooth kernel functions [10]. Based
on the findings, we investigate a spectral collocation method for a system of weakly
singular VIEs in this paper.
The system of weakly singular VIEs considered in this paper is

Y1) =g@t) + 7y, t €[0,1], (1)
where

Y(©) =), y20), - yu O], ()

g(t) = [g1(), g2(t), -+, g ()] 3)

where AT means the transposed matrix of A. The integral operator ¥ is defined as

YY) = /O Th(t — 5) - K(t, )ly(s)ds
M M M T
= | D VigG)®, D Vagi) @), -+ Y Vig)@®) | . @)
g=1 g=1 g=1
where
h(t —s) = [(t =) " Iyoem. 0 < ppg < 1,1 < p.g < M, ©)

and we assume that at least one of 1, 1 < p < M is not zero. The kernel functions
are
K(z,5) :=[Kpg(t, )lpyxm, (t,8) € A:i={(t,5):0<s <t <1} (6)
We define
h(t —s5) - K(,s) := [t — ) HPa Kpy(t, $)mxm- @)

The integral operator V), is defined as

t
Vg (g) (@) ::/() (¢ _S)iﬂqupq(tvs))’q(s)dss l<p.g=M. (3)

If the given functions are smooth on their own definition domain, then the solution to
system (1) is continuous but not smooth on their own definition domain (see Lemma 2
in this paper).

In this paper, we assume that the given functions possess continuous derivatives of
order at least m. Chebyshev Gauss-Lobatto points of order N are selected as collo-
cation points. We provide convergence analysis to show that the global convergence
order is log(N)N"’1 where = max{upp : 1 < p < M}, and the local convergence
order on collocation points is log(N)N ~". If the solution to system (1) is smooth,
namely, y(¢) possesses continuous derivatives of order at least m, then global con-
vergence order is log(N)N!="~" ¥ 0 < r < 1. These convergence analysis results
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show that the global convergence order depends on the regularity of the solution to
system (1) and the local convergence order depends on the regularity of given func-
tions (especially kernel functions). It is worth noting that N and m are independent of
each other. We carry out numerical experiments to confirm these theoretical results.
We also investigate the numerical experiments for high-order VIDEs with weakly
singular kernels which can be transformed to be a system of weakly singular VIEs.
Numerical schemes are developed for the nonlinear system of weakly singular VIEs
and nonlinear high-order VIDEs.

This paper is organized as follows. Numerical methods are demonstrated in
Section 2. Useful lemmas for convergence analysis are prepared in Section 3. Con-
vergence analysis is presented in Section 4. Numerical experiments are carried out in
Section 5. Finally, we end with conclusion and future work in Section 6.

2 Spectral collocation method

Numerical scheme for system (1) is derived in this section.
Let

1
tizzi(x,'—l—l),i:O,l,---,N, )
where {x,-}fV: o 18 the set of Chebyshev Gauss-Lobatto points of order N in standard
interval [—1, 1]. System (1) holds at #;,
y(ti) = gt) + V()i =0,1,--- , N. (10)
Approximate y,(#;) by y,;. Then, y(#;) can be approximated by
yi = [yiis y2iv o ymil (11)
Note that
YiLi(t) = [yii, y2i. -+ ymil " Li@) = [y Li(0), yoi Li(6), -+ yai LiO17, (12)

where L ;(t) is the jth Lagrange interpolation basic function associated with points
{t:},. Let

N
Y@ =) yiLi) =y, 0. (13)
j=0
Then,
N T
VWO =Y viLio =Yoo o] syo. as
Jj=0
Approximate (10) by
i ~gt) + V(M) (@), i =0,1,---  N. (15)
Let _
s(ti, v) = %(v +1),vel=1,1], (16)
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which can change the interval [0, #;] to the standard interval [—1, 1]. Use Gauss
quadrature formula to approximate integral terms in (15),

T
M
%Wymr{ZWMwng Sy e (@), -+ ZWW%M} VM), (A7)
g=1

g=1

where

I=pipg N
i () @ = (5) X K s ()59 () wf” = Vi@, )
k=1

v, wl k = 0,1,---, N are Gauss points and weights of order N, correspond-
ing to weight function a)o’_"ﬂq (x) == (1 +x)°1 — x)"*ra, x € [—1, 1]. Finally,
we obtain a discrete system with unknown elements yp;, p = 1,2,--- ,M,i =
0,1,---,N,

vi=gw) + 7V y")@w),i=0,1,--- N (19)
Solving this system, we can obtain the numerical solution yN (t) to approximate y(z).

In order to solve discrete system (19) easily by computer, we write it in matrix
form. Let

= [y]07y117' ,le’)’ZO,"' ’y2N7.“ 7)}M0"" 7)’MN]T7 (20)
and
= [gl(to)s gl(tl)v R gl(tN)s gZ(IO)s ) gZ(IN), M) 8M(t0), R gM(tN)]T
(21)
Our goal is to write (19) into matrix form
vV =g"¥ + K'Y (22)
The row of KV corresponding to ypi and g, (%) is
[ap107 a])l]5 Tt 7a])]Na apZO, ttt 9a])2N5 Tt 7apM07 Tt apMN]’
where
4 I—pipg N
Apgj = (5) Z Kpg (ti, s(ti, vpgk) L j (s(ti, Vpgk) W pgk,
k=0
and vpgr, Wpgk, k = 0,1,---, N are Gauss points and weights of order N,

corresponding to weight function w® ~#74 (x) := (1 + x)°(1 — x)"#r4.

3 Lemmas

Useful lemmas for convergence analysis are prepared in this section.
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Lemma 1 [3] Assume that v(t) is nonnegative function on [0, 1], and u(t) satisfies
t
u(t) <v() +A/ (t —s) Mu(s)ds,t €[0,1], A > 0. (23)
0

Then, there exists constant C independent of u(t) and v(t) such that
u(t) < Cu(t). (24)

Here after, denote by C(0, 1) the space of continuous functions on [0, 1], and
C"™(0, 1) the space of functions on [0, 1] possessing continuous derivatives of order
at least m.

Assume that A(t) := [apq(t)]px o is a matrix of P rows and Q columns, whose
element at pth row and gth column is a,,(¢). A(t) € C(0, 1) means that a,q (1) €
CO,1),1<p<P,1<qg<Q.ForA()e C(@,1),define

A :=max{lap, ()] : 1 <p =P, 1=q =0} (25)
It is clear that |A(#)] is a continuous function on [0, 1]. Let
[ Allzoeo,1) == max{|A()] : ¢ € [0, 1]}. (26)
It is worth noting that
lapg =A@t €[0,1],1<p=P, 1=qg=0. (27)

The space of functions C™" (0, 1), where m is a nonnegative integer and 0 < r <
1, is equipped the norm

10k u(z1) — 3% u(rr)|

llllcmr,1) ;= max sup |8 u(t)] max  sup p . (28)
O<k=mo<s<1 O<k=m g<z;,1p<1 |t — 12
Specially,
lu(t1) — u(r2)|
lullcor@. 1y := lullLe@) + sup —————. (29)
©.1) 0<ty,12<1 |T1 - T2|r

If u(r) € C"™*+10, 1), thenforVO0 < r < 1,
10k u(z1) — oFu(ro)|

lullens o) = max - sup 10fu()] + max  sup

’

<mo<i<1 0<k<m <7, 1<1 IT1 — ©af”
(30)
which means that u(¢) € C™" (0, 1). Therefore, we conclude that
c"™*10,1) € C™"(0, 1) holds for VO < r < 1. 3D
For u(t) = [ui(?), - ,upy®]’, let u@t) € (C% (0, 1) means u,(t) €
co©0,1),p=1,---, M, where r := min{r{, r2, - - - , r}. Define
lup(t1) —up(n2)l
lallcor@,ym = llallzeo,1) +  max  sup { }. (32)
(€ (0,1) 0,1 P=M o<1y 1y<I 1) — 0"
It is worth noting that
lupllcorp 0.1y = Il cor,iym- p =1, M. (33)
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Lemma 2 Assume that v(t) = [v1 (@), - -+ , vy 0)]F € C(0, 1), and
u(t) = v(t) + 7 (), (34)

where the integral operator ¥ is defined by (4) with continuous kernels K(t, s) €
C(A). Then, there exists constant C independent of v(t) and u(t) such that

lu@®)| = Clv(n)], (35)

andu(t) € (CO1=#(0, )M, where p := max{u,p : 1 < p < M}.
Proof From (34),

M
up(t) = vp(t) + Y fot =) THraK g (t, s)ug(s)ds,

iz (36)
p=12,--- M.
Then,
M
0] < oy + Y /0 (1 = )91 K p (1, )llitg (5)1ds,
=1
p=1,2,-~-,3\4. (37)
Let
fi=max{ipg i 1 < p,qg < M}, (38)
and
IK(t, s)| ;= max{|Kp4(,5)|: 1 < p,qg < M}. 39
In view of (27), from (37), we have
lup()] < v, )]+ M [ — )M K@, 5)[Juls)|ds, 40)
p=12--- M.
Then,
| max, lup@)| <  max lp)] + M [ (t — )"FK(t, 5)|[u(s)|ds, 1)
namely,
lu()] < V(O] + M [t — ) "H Kz, 5)||u(s)|ds. (42)

By Lemma 1, we obtain (35).
From [3] (page 432), we have u,(t) € C(0, 1). From (1),

M g t
up(t) = vp(t)-l-Z/ (t—s)"Hr K pi(t, s)ui(s)ds—l—/ (t=8)""Pr K pp(t, $)up(s)ds.
izp”? 0
(43)
It is worth noting that v, (¢) + ngp fé(r — s) i K i (t, s)u;(s)ds is continuous
on [0, 1]. From [3] (page 348), we have u,(t) € CO'I_“PP(O, H,p=12,---, M.
Then, u(r) € (C%1=#(0, 1)M. O

@ Springer



Spectral collocation method for system of weakly singular Volterra 2683

The interpolation operator I is defined by

N
In()(t) == Zu(ti)Li(t),t € [0, 1], (44)
i=0
where u(t) € C(0, 1). For the matrix w(?) := [u1 (), uz(t), --- , up ()17,
In)(t) := [Iy ) (@), Inu2) (@), -+, In(ua) (O] (45)

The identity operator is denoted by 1.

Lemma 3 [16, 17] Assume that u € C™"(0, 1). Then, there exists polynomial
Py (u)(t) of degree not exceeding N such that

I = Py)@) 0.1y < CN ™" fluellemr o, (46)

where constant C is independent of u(t).

Lemma 4 (1) [S1Ifu(t) € C(0, 1), then

I1In @)oo 0,1) < Clog(N)llullze<o,1)- 47)
(II) If u(r) € C™"(0, 1), then
I = In)@)ll0,1) < Clog(NIN ™" |lullemr(,1). (48)

() If u(t) € C™(0, 1), then
I — In) @Iz 0,1) < Clog(NN'" " ullgn-1r g1y, YO <7 < 1. (49)

Proof 1t is clear that
(I — In)(W)llLo,1) < I — Pn)W)llLeco,1) + I(PN — IN)@)llL>©,1)-  (50)
Note that Iy (Py(u)) = Py (u). Then,

I(Pn — IN)()llLo0,1) = [ IN(Pn — D) (W)l Lo (0,1)- (51
By (47),
I IN(Pn — D) lle,1) < Clog(N)II(Py — D@) 2> 0,1)- (52)
By Lemma 3, if u(¢) € C™" (0, 1), then
(I = Pn)@)llL=0.1) < CNT"" |lullemr.1)- (53)

Combining (50) with (51), (52), and (53) yields (48).
If u(r) € C™(0, 1), by (31), we have u(r) € C"~17(0,1),Y0 < r < 1. By (48),
we obtain (49). O]

Lemma 5 Assume that u(t) = [u1 (), uz(t), -, up ()17,
(D) If u(r) € (C(0, )M, then

lIn (@] z>0,1) < Clog(N)lullz=,1)- (54
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(I Ifup(t) € C"™'v(0,1), p=1,2,--- , M, then
17 = In) @) [ < 0.1) < Clog(N)N """ [[ull(cm.r 0,1y - (55)

wherer =min{r, : p=1,2,--- , M}.
(1) Ifu(r) € (C™(0, 1), then

I = In) @)l (0,1) < Clog(N)N' " lul| cm-1.r g 1ym, VO <7 < 1. (56)

Proof By (47),

Hn(up)@)| < N @p)llLeo,1) < Clog(N)|lupllLe©,1) < Clog(N)lullL=o,1)-
Then,
max |Iy(up) (@) < Clog(N)luallLxq,1),
I<p<M

which leads to (54).
By (48),

(I — In)()(@)] = max [(I — Iy)(u,)(@)]
l<p<M
< Cl NIYN—"p—m r
< lg)afo og(N) lwpllcmers 0,1y 57)
—r—m
< Clog(N)N | max llupllcmro,1)
< Clog(N)N~"""|[all(cmr.1)m>

which leads to (55).
Assume that u(r) € (C™(0, 1)), namely, up(t) e C"O,1),p=12,---, M.
By (49),forVO <r < 1,

(I = IN)()(1)] = max [(I — IN)(up)(1)]
I<p=M

< max Clog(N)N'"" " |lu,|l cm-1.r
15 i% plicm=1r(0,1) (58)
—r—m
< Clog(N)N lg)e;xM lupllem-1r0.1)
<C IOg(N)Nl_r_m ||“||(cm71,r(0,1))M7
which leads to (56). O
Lemma 6 [11] Let
t
u(t) = / (t —$)7"R(t, s)v(s)ds,t € [0, 1], (59)
0

where v(t), R(t, s) are continuous on their own definition domains. Then, u(t) €
CO1=r(0, 1) and |lull coa-r(o,1y < CllvliLe(o,1)-

Lemma 7 Let v(t) = [v1 (1), va(t), -, v ()] € Cc,1) and
[up(®), uz(@),---, u[,(t)]T =u(t) = Y (v)(t) with kernel functions K(¢, s) € C(A).
Then, u(r) € (CO17EO0, )M and |ullcor-igyn =< ClVlli=@.1), where
f=max{up, : 1 < p,qg < M}.
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Proof Letup,(t) := Vpy(vy)(2). By Lemma 6,
Upq () € CO,lf,u,,q (0,1), and ”qu”COvl—l‘pq 0,1 = C||Uq||L°°(0,l)- (60)

On the one hand,

M
lup®] = /0 (t =) 711K pg (2, 5)|[vg (s)|ds
g=1

IA

M t
> gl /0 (t = 5)94]K py 1, 9)Ids

g=1
ClIvllLe(0,1)- (61)

IA

Then,
lupllLe@,1) < Clivlize©,1)- (62)
Let up :=max{up, : ¢ =1,2,---, M}. On the other hand,

|up(fl)_up(72)| }

su
P lti—mo|! =P

0<71,2<1

M
< sup ZM]

| mr
0<7,12<1 | ¢=1 lr1—72| r

(63)

— T—pp
0<71,12<1 | ¢=I 1= | 0P

= Mllupgllcoa-upq 0,1y = MllvgllLeo,1) = MIIVllLe,1)-

M
< sup { Z [t pg (T1) —tt pg (T2) |

Combining (62) with (63), by the definition of || - || ~0.1-x, ©.1)> We have

lup(t1) —up(r)|
lupllgoi-up = llupliLo@y + sup {— -

i, ) = Clvlizeon, (64)
O<ti.m<l |71 — T2 THP

which means that u, (1) € C%!=#7(0, 1). Then, we have u(t) € (C%!=#(0, 1))M.
From (61),

lu@®)| = max{lup()|: p=1,2,--- , M} < C|[VlLo(,1)- (65)
Then,
lullLo0,1) < ClIvilL=,1)- (66)
From (63),
Up(T1) —UH(T
ogixMoSffgsl | rr(l 1_) T2|lfip2)|} < ClIvlize,1)- (67)
Combine (66) with (67),

lup(t1) —up(z2)l

o — o } < ClIvliL>.1)- (68)
1 =T

llallcoi-i 1y = llullLe,1) + max  sup {
« . 0=p=M <z, 1,<1

O
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Lemma 8 [5]Assume that 0;" R(t) is continuous on its own definition domain, and
Py (¢) is polynomial of order not exceeding N. Then,

/11 0P (V)R(v) Py (v)dv — XN: R (v,‘:’ﬁ) Py (v,‘:’ﬂ) w,‘:’ﬁ

k=0
< CN7m||a[mR||L2aﬁ(_1’1)||PN||L°°(0,l)s (69)
where vg’ﬂ, w,‘:’ﬁ,k = 0,1,---, N are Gauss points and weights of order N

corresponding to weight function ® P (v) on interval [—1, 1].

Lemma 9 Assume that u (1) = [u{v(t), uév(t), cee u%(r)]T, where u,N(t), i =
1,2,---, M are polynomials of order not exceeding N. Then,
1 = 7M@) lle,n < CNT"18]" Kl o 0¥ <o, (70)

where 9]'K(t, s) 1= [0]' K pq (t, $)lmxm € C(A), and ¥ and VN are defined by (4)
and respectively, .

Proof Note that

T
N

=1y (1) = {i (Vie=viY) (') o, i (Va3 () 0. 3 (Vi) () (zﬂ :

q= g=1 p=1

(€3]
By Lemma 8,

|(Vpg = Vo) @)@ < CNT™M|9]K pg (2, 52, ')”Li&ﬂwq il @ Niieeci
S CN7TO K py (2, s(2, ')”L“(fl,l)”’lév”Loc(O,t)
< CNT"[[0K pg (2. ) | oo, 1l Il 2 0. (72)
S CN3K pq ||L°°(A)||u¢};]||L°C(O,I)
< CN™™|3" K| o a)y 0™ [ < 0, 1) -

Then,

2 (=) () 0] = 5 (v vi0) () 0

< 3% CNT K s UV (0.0
q=1
< CN7™[13"K| Lo (a) 0N || Lo 0. 1)-

(73)

Finally,
1V =¥ My@)|[L~0,1) = max [(¥ — ¥ N)@V)(@)|
0<r<1
N
= Vg — Vo) i) (74)
1g11)a<xMorgta§1| Z( pa UASIO]
CN™ m||3§"K||L°°(A)IIUNIILM(0,1)~

IA

@ Springer



Spectral collocation method for system of weakly singular Volterra 2687

4 Convergence analysis

In this section, we provide convergence analysis for the numerical method in
Section 2.

Theorem 1 Assume that y(t) is the solution to system (1), and the corresponding
numerical solution y" (t) obtained by numerical method in Section 2 exists and is
unique.

(I) If g(t) € (C(0, )M and 3K € C(A), then

ly — ¥V Iz, < Clog(N)N* Iyl (co.1-n (o, 1y (1 + N7 [0 K| oo (a))
(75)
and

max [y =¥ ()] < ClogWIN ™" ¥l oo 1w 17 Kllzca). (76)

() Ify(1) € (C™ (0, )M and 3"K(t, 5) € C(A), then

Iy =¥y llz>@.1) < Clog(N)N'"" Iyl cn-tr g 1yym (1 + N[0 K| Lo(a)), VO < r < 1.
a7

Convergence analysis result (75) shows that global convergence order is
log(N)N*~! which is related to the regularity of y(z). Convergence analysis result
(77) implies that better regularity of y(¢) will enhance the global convergence order
to log(N)N'="=" ¥ 0 < r < 1. Local convergence order on collocation points is
log(N) N~ which is only related to the regularity of K(z, s) with respect to variable
s. It is worth noting that N and m are independent of each other.

Proof Subtract (19) from (10),

y&) —yi = VW) — YN yV)@),i=0,1,-- ,N. (78)
Change the right-hand side of (78) as
Yy () — VNN (6) = Eit) + Ea (), (79)
where
Eo(t) :=y(t) —yV (1), (80)
E|(t) := ¥ (Eo) (1), (81)
Ex(t) == (¥ = vy ). (82)
Multiply L;(#) to both side of (78) and sumup fori =0toi = N,
I @) — yN (1) = In(V E) (1) + In(ED (@), (83)

which can be written as follows:
Eo() = = IN)( @) + Uy — DV E) () + INnED @) + 7V (Eo)(@).  (84)
By Lemma 2,
[Eo)] = CUU = INWM O] + Uy — D Eo) (D] + [InEDDD.  (85)
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Then,
IEollLoe0,1) < CUIU — IN)(¥)IL(0,1)
+ Iy — D@ Eo)) llz=©0,1) + 1IN ED |22 0,1))- (86)

From Lemma 2,y € (CO’I_“(O, )M where w = max{up, : 1 < p < M}. By
Lemma 5,

I — I .1) < Clog(N)N* Tyl (0.1 0, 1)y (87)

From Lemma 7, ¥ (Eg) € (C%!'=7(0, 1)) where fi := {upg :1 < p,qg < M}. By
Lemma 5,

Iy — DY Bo) 2.1y < Clog(NN 1|7 Eo)llcor gy (88)
By Lemma 7,

1V Eo)ll (co1-i0,1m < CIY Eo)llL=,1)- (89)
By (66),
17 (Eo)llL>(0,1) < CllEollL>(0,1)- (90)
Combine (88) with (89) and (90),
Iy — DY Eo))lI0.1) < Clog(N)N*~H|[Eg|lL(0,1).- 91
By Lemma 5,
N ED)Lo©.1) < Clog(N)E; |l Loo0.1)- (92)
By Lemma 9,
Il = 17 = 7MYy Izeo.1)
< CN7"18]"K] oo (a) Iy ll o0 0,1) (93)

< CN7TM9" K]l Lo (a) (1Yl Lo 0,1y + 1 Eoll L (0,1))-
Combine (92) with (93),
Tn EDIze©,1) < Clog(N)N "8 K|l zoo(a) (1Yl (0,1) + IEollz=(0,1)). (94)
Combine (86) with (87), (88), (91), and (94),

IEoll0,1) < Clog(NIN® iyl o, 1yym + Clog(N)NA=[Eq]l L (o,1)
+Clog(N)N |37 K| Lo a) (¥l 20,1y + IEoll L (0,1))-
(95)
For sufficient large N,

IEo |l o< 0,1 < C log(N)N“(|lyll (o110, 1yym + N =# [97 K | Lo () ¥l L 0.1)): (96)

which together with the inequality ||yl (co.1-x(0,1yy# = I¥ll o (0,1) yields (75).
From (85),

[Eo@)| < CUU — IN)(W )] + [Un — D Eo)) ()| + [INEDED.  (97)
Note that (I — Iy)(u)(#;) = 0 foru =y and ¥ (Eg). Then,
[Eo(7)| < ClIN(E1)(#)]. (98)
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By (94),
[IyE) @) < Clog(N)N™"™|37" K]l Loo(a) (¥l L 0,1) + IEollL0,1)).  (99)

In view of (75) and [[yllx(,1) < I¥llco1-u(o, 1+

v ED )] < Clog(N)N 107Kl oo (a) 1Yl 0110, 174

100
(1+ Clog(N)N (1 + NI |9mK(t, Y o). OO

For sufficient large N,
nED @) < Clog(N)N ™" 108" K] Loo(a) 1Y ll (c0.1-1 0, 1y)M » (101)
which together with (98) yields (76).
Ify(r) € C™(0, 1), then by (56),
I = )M =1 < ClogMN Nyl en-trg iy, VO < 7 < 1. (102)
Combine (86) with (91), (94), and (102),

IEollzo.1) < Clog(N)N'""""|lyll cm-1.r0, 1yym + C log(N)N*~[Eoll 220, 1)
+C log(N)N |37 K | Lo a) (¥l 2> 0,1) + IEollz>0,1))-
(103)
For sufficient large N,

IEollL0,1) < Clog(N)N'™" " [yl cm-tr 9,1y (1 + N" " [[07 K| Lo (a))-

(104)
This is (77). O

5 Numerical experiments
We carry out numerical experiments in this section.

Example 1 Let
g(t) =[g1(1), g1(1), g1 (O],
where g1 (1) = g2(t) = g3(t) = 1 +2¢Y/2 + 3123 + 4¢3/4 and

111 (t—5)"12 @t —5)"13 ¢ —5)~ V4
Kit,s)=|[111 | htt—s)=| @t—5)"13 ¢ —5)"V* @ —5)"Y2|. (105
111 (t—s) V4t —s)" V4 1 —5)~1/3

The corresponding exact solution is y(¢) = [I, 1, 117, We investigate the global
numerical errors
§WN) = lly = ¥Vl .,

where y» (¢) defined by (14) is the numerical solution to VIEs (1). It is worth noting
that the solution y(¢) € C™(0, 1) for sufficient large m. The convergence result (77)
shows that the global convergence order is log(N)N!="~" ¥ 0 < r < 1. Numerical
errors versus N are demonstrated in Table 1 and plotted in Fig. 1 which shows that
numerical solution possesses very high precision. Increasing N, numerical errors stay
near the level 10710,
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Table 1 Example 1: Error versus N

N 2 6 10 14 16 20

E(N) 1.33e—15 9.52e—13 591e—12 491le—11 3.11e—11 2.35e—11

In general case, it is impossible to obtain the expression of the exact solution to
VIEs (1). In order to effectively investigate the performance of numerical errors, we
define global numerical error

e(N) := max |yN () —g@t) — 7y (). (106)
tel0,1]
The corresponding local error is
8(N):= max [y () —g@®) — 7))l (107)
te{t}l,

Example 2 Consider system of weakly singular VIEs (1) with

g(t) = [sinz, cost, 17, (108)
and
sin(t + ) cos(t + ) el
K(,s) = | cos(t +s) sin(t + 0.5s) €'’ ) (109)
sin(t +s 4+ 1) cos(t +s5 — 1) e/~
Case I:

t=9)"" -9 @ —570!
ht—s)=| ¢t—5)"% =570 ¢ —5"01 |. (110)
=" -9 @ —570

10 ; ‘ - X .
e e
e S
10711 :— /// ;
N e, -
®
1072} .4
o S
5 :
i
107"% ®
107"
® @
10454"\ )
2 4 6 8 10 12 14 16 18 20
N

Fig.1 Example 1: Error versus N

@ Springer



Spectral collocation method for system of weakly singular Volterra 2691

Table2 Example 2: Errors versus N

N 2 6 10 14 16 20

€(N) for Case I 5.21e—00 7.67e—02 1.02e—03 5.13e—04 4.85e—04 2.08e—04
8(N) for Case I 1.81e—03 4.63e—11 1.71e—13 3.69e—13 8.53e—14 1.99e—13
€(N) for Case 11 1.27e+01 7.64e—00 2.72e—00 2.51e—00 3.03e—00 1.90e—00
8(N) for Case II 6.37e—04 5.31e—10 1.07e—14 1.87e—14 4.89e—15 6.44e—15

Case II:
(t— S)_O'9 (t — S)_O'9 (t — S)_0'9
ht—s)=| t—5)"% ¢t -5 ¢ —5)79 |. (111)
(t— S)_O'9 (t — S)_O'9 (t — S)_0'9

This example is to provide to underline the role of w in the performance of errors
decaying. From the convergence result, global convergence order is log(N)N*~! and
the local convergence order is log(N)N ™. In other words, if u is smaller, global
errors decay faster. The local convergence order on collocation points is independent
of u but depends on m, the regularity index of given functions especially kernel
functions. Numerical errors versus N are recorded in Table 2 and plotted in Fig. 2
which shows that global errors corresponding to u = 0.1 decay faster than the one
corresponding to u = 0.9, while there is no significant difference for local errors
between two cases.

Example 3 Consider VIEs (1) with

—0.1 —0.2
g(r) = [sint, cos ], h(r — 5) = [(f — ) (t—ys) i| .

(l _ S)_0‘2 (l _ S)—O.l

10
10° ‘\\\:/,/.,/
/,.//
,.”.
), V‘.\y.‘\\.H!.AH.\H.H\.HI.HV.rH 1
. ° ® e
g 10°F U
i A 111@ 11 g(N) for Case |
1y §(N) for Case |
v: €(N) for Case Il
10| o S(N) for Case Il
10 ¢
2500000904000
107" . . . . . : . ; J
2 4 6 8 10 12 14 16 18 20

Fig.2 Example 2: Errors versus N
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Table 3 Example 3: Error versus N

N 2 6 10 14 16 20

€(N) for Case I 3.14e—01 2.08e—03 5.13e—04 2.60e—04 2.45e—04 1.05e—04
8(N) for Case I 2.0le—04 2.6le—13 4.44e—15 5.33e—15 1.78e—15 4.44e—15
€(N) for Case II 3.46e—01 2.07e—03 5.12e—04 2.59e—04 2.45e—04 1.05e—04
8(N) for Case I 2.78e—03 2.49e—04 6.56e—05 2.45e—05 1.58e—05 6.83e—06

Case I:
12 12 _
|t s t K
K@, 5) = |:sin(t1/2 +5) cos(t!/? —s):| ’ (112)
Case II:
[t+s12 r—si/2
K, s) = |:sin(t+s1/2) cos(t —s1/2) |- (113)

The convergence analysis result (76) shows that local convergence order log(N)N "
depends on m, the regularity index of K(z, s) with respect to variable s. In order to
confirm this theoretical result, we carry out numerical experiments for two cases.
The kernel functions in Case I possess better regularity with respect variable s than
t, while it is opposite in Case II. Numerical errors versus N recorded in Table 3 and
plotted in Fig. 3 show that, if K(z, s) possess better regularity with respect to variable
s, local convergence order on collocation points will be higher. Global errors of Case
I and Case II perform similarly to each other. This confirm the theoretical result that
global convergence order depends on the regularity of y(¢).

Base on the common sense that high-order weakly singular Volterra integro-
differential equations can be transformed to be system (1), we consider the following

10°
C,
‘! 90 9.0 0 0 0. 5 o
10° |- ]
111@ 1 g(N) for Case |
g \ L 3(N) for Case |
w 0 ¢(N) for Case Il
- §(N) for Case Il
1070 -
3
o
06000600 .06400
il 9909900994099
2 4 6 8 10 12 14 16 18 20

N

Fig.3 Example 3: Errors versus N
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high-order VIDE
n—1 _ n t .
YO =g+ ) ajy P+ / (t =) MK, )y (s)ds,  (114)
i=0 i=0 Y0
with yD(0) = ¢;,i =0,1,---,n — 1. Let y;(t) := y©(¢), then
t
yi(t)=6i+]yz'+1(S)ds,i=0,1,~~,n—1- (115)
0
The system of VIEs corresponding to (114) is
t
yo(t) = Co-l-/O yi(s)ds,
t
(@) = ¢ +/O y2(s)ds,
t
Ya—1(t) = cu—i +f yn(s)ds,
0
n—1
W) = FO+ ) ait)e
i=0
n—1 t
+) ai() / Yit1(s)ds,
i=0 0
n t
+2/ (t —s) MK (t, s)yi(s)ds. (116)
i=0 70
Write them in matrix form,
t
y@) = g() +/O H(z, 5)y(s)ds, (117)
where
n—1
g(t) :=1[co.c1. -+ o1 (O + D ai(t)ei], (118)
i=0
and
0 1 0 0
0 0 1 0
H@,s):= | : : : - , (119)
0 0 0 B |
Ho(ta S) Hl(t’ S) HZ(I» S) e HN(I’ S)
HO(f, S) = (t - s)_MOKO(t’ S)’
Hi(t,s) :=a;(t) + (¢ —s) "Mt K1 (¢,8),i =1,2--- | N.
The discrete system for (117) is
vi =g + VNN @), i =0,1,--- N, (120)
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where 77N (yN)(tl-) is a matrix of dimension (n + 1) x 1, whose jth (1 < j < n)

element is
N N i
i v 0:0yy,,0.0)
% 2 Vip 2 Lyt v ~/0 v;(s)ds.
p=0 k=0
where v,ia’ﬂ ) and w,ia’ﬂ ) are N-order Jacobi Gauss points and weights in interval

[—1, 1] corresponding to the weight function o @B (x) = (1 — x)*(1 + x)P. The
n + 1-th element of ¥V (yV)(#;) is

n
S VNG @).
p=0
where

l—pug N
= I .0 —110.0 —110.0
VN<yo>(n)=(2’) Zyo,ZKo(n,sa,, T L (s (i, vg 0w

t
~ / (1=5)"0 Ko, $)y0(s)ds, (121)
0

and

VN () () =ap—1(6) Z Ypj Z LiGs (i, v ”)w>?
_() k:

0 (—up,0) 0
+(ly1mo Zy,,] Z Kyt st vy ""ONL s vy 7w 0

~ _/() (ap—l(tl) + (tl —5)" Mpr(tl,S)Yp(s))dss

p=12-,n
(122)
Example 4 Consider high-order VIDE (114) for the following two cases:
Case I:
Y'(t) = —cost —2t1/2 4 costy(t) + e’y (1) + fo ((t — )72y (s) (123)

+(t —5) Y3 cos(t +5)y'(s) + (t — s)" V4 =5y (s))ds,

with y(0) = 1, y'(0) = 0. The corresponding exact solution is y(z) = 1, ¢ € [0, 1].
Case II:

y'(t) = sin(t) + costy(t) +e'y' (1) + [o ((t — )" /2sin(t + 5)y(s)
+(t —5) VB cos(t 4+ 5)y'(s) + (t —s) " V4 =5y (s5))ds,

with y(0) = 1, y'(0) = 1.

It is worth noting that kernel functions and exact solution to Case I are sufficient
smooth. According to the convergence analysis result (77), global convergence order
is log(N)N'="=™ V0 < r < 1. It implies that a high precision numerical solution
will be obtained. The given functions in Case II are sufficient smooth. Then, the
solution to Case I lies in C%3/4(0, 1). The corresponding global convergence order is
log(N)N ~3/% which is slower than log(N) N '~ for Case I. The local convergence
order for Case II is log(N)N ™" which is similar to global convergence order for

(124)
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Table 4 Example 4: Error versus N

N 2 6 10 14 16 20

E(N) for Case I 3.11e—15 1.1le—15 1.00e—15 2.22e—15 2.22e—15 3.00e—15
€(N) for Case II 1.99e—00 1.34e—01 8.74e—03 5.32e—03 5.27e-03 2.38e—03
8(N) for Case II 1.26e—03 2.41e—10 5.68e—14 7.11e—14 8.53e—14 4.97e—14

Case II. Numerical errors recorded in Table 4 and plotted in Fig. 4 confirm these

theoretical results.

Nonlinear system of weakly singular VIEs is

j=1

j=1

Jj=1
Corresponding numerical scheme is

yi =g1t) + S1(N, 1),
yoi = g2(#) + S2(N, 1),

ymi = gm(ti) + Su(N, 1),

M
ym(6) = g () + 3 3 — )M Ky (t, 5, yi(s), -

M
V@) =g + fi =) TIK (5, yi(s), - ym(s))ds,

M
V2(t) = g2(t) + [3 3 (1 — $) P2 Kaj(t, 5, y1(5), -+, ym(s))ds,

(125)

» ym(s))ds.

10 T T

1@ E(N) for Case |
g(N) for Case Il
3(N) for Case Il

Errors

5| ®

10718L l//.‘\\.l“.“‘."\.//l.”.".\\.’ly.‘H.\\\.”’.H.\l.\u.u

Fig.4 Example 4: Errors versus N

(126)
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Table 5 Example 5: Error versus N

N 2 6 10 14 16 20
€(N) 1.25e—-01 1.84e—02 5.13e—03 3.46e—03 3.54e—03 1.66e—03
8(N) 5.59e—-03 1.01e—04 1.33e—06 3.81e—07 2.07e-07 8.61e—08

where S,(N, ), p=1,2,---, M are defined as
M N . . . .
Sp(N, ti) ZZ (/2" 12 K ity sty o),y (st o)), - ypg (s v ) s wf?,
j=1k=0

vy /| w,f/ are N + 1-order Jacobi Gauss points in interval [—1, 1] corresponding to
weight function o0 (x) := (1 — x)"Hri (1 4+ x)°.

Example 5 Consider nonlinear VIEs (1) as follows:

yi(t) =sint + [5((t — )72 sin(z — s + y1(5) + y2(s) — ¥3(5))
+(t — )7 B cos(t + 5 + yi(s) — y2(5) + y3(5))
+(t — s)" V4 cos(ts + yi(s) — y2(s) — y3(s))ds /5,

y2(t) = cost + fot((l — )14 COS(l +s5+ yl ($)y2(s) + y2(s)y3(s) + y1(5)y3(s))
+(t — )" Vsin(t — s + i 2(s) + %2 2(s) + ¥3(s))
+(t — 5)" V2 cos(ts + yi(s) + y3(s) — y3(s)))ds /5,

y3(t) = sin 0.5t + [5((r — )73 sin(t % 5 + y1(s)y2(s) — y2(8)¥3(5) + y1(8)¥3(5))
+(@t —5)" 2 cos(ts + yi (s) ¥3(8) + y3(s))

+(t —5)" Y4 cos(t — 5 + y? (s) y3(s) — y2(s)))ds/5.
(127)

Numerical errors versus N recorded in Table 5 and plotted in Fig. 5 show that global
numerical errors decay slower that the local errors. This is similar to the linear case.

The nonlinear high-order weakly singular VIDE is
13
YO = FE .y @y, /0 (t =) 7"K (.5, Y()ds), (128

with y?(0) = ¢;,i =0,1,---,n — 1, where
Y(s) = [y(5), ¥/ (), -+, y " )],
The corresponding system of VIEs is

yo(t) = co + [y y1(s)ds,

Ynt(6) = a1 + [ yn(s)ds, (129)

yu(t) = F(t, y0@), y1(t), -+ yu—1 (), fo(t =) THK (2,5, Y (5))ds),
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10 ;
e g(N)
1 o 8N
100 Q5N |]
®
. *e,,
102} . ]
> . ® g, o ® \.m.m.,,,.”.
10° ® ¢ g
o
S 1074L AL ]
5 (23
ol 9,,,‘ ]
/0,,/0
10°} E
9094
. A IPY
107k 0.9
10_B L L L L L L L L
2 4 6 8 10 12 14 16 18 20

Fig.5 Example 5: Errors versus N

where y; (1) := y© (1), Y(s) := [vo(s), y1(s), - - -, y»(s)]. Then, numerical scheme
is

N
i 0,0 0,0
o =co+% Y v s v "Nw?,
k=0

(130)

N
i 0,0 0,0
Yneti = ot + 5 3 N s v " Dw?,
k=0

yui = F 9 @ yN @), Y @), SN, 1)),

where
AN (—1.0) (=0, (—1.0)
i - > - —H,
SN, ;) = (5) DK s, v ), YV (st v )w Y,
k=0

> —u,0 —u,0 —u,0 —u,0
V@, v ") = [yév (s (tf,v,(c . ))),yfv (s <ti,v£ a ))) oY (s (tf,v,i a )))]

Example 6 Consider nonlinear VIDE (128) as follows:

y"(t) =sin <t+y(t)+y/(t)) + % cos (/ (t —s5)" 2 cos(t + 5+ y(s) + y'(s) — (y”(s))2> ds) .
0

(131)
Table6 Example 6: Errors versus N
N 2 6 10 14 16 20
€(N) 8.31e—02 1.78e—02 2.05e—03 2.09e—04 1.25e—04 2.23e—05
8(N) 6.66e—16 3.33e—16 4.44e—16 1.72e—15 3.33e—16 5.00e—16
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| ST ‘=@ g(N)
107 S~ == 3(N)
’./.~
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4 .’.’.‘hr-
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Fig.6 Example 6: Errors versus N

Numerical errors versus N recorded in Table 6 and plotted in Fig. 6 show that global
errors decay slower than local errors. This is also similar to the linear case.

6 Conclusion and future work

In [11], we have investigated the spectral collocation method for a weakly singu-
lar VIE with proportional delay. In [10], we investigated the spectral collocation
method for a system of VIEs with smooth kernels. Based on the valuable research
findings in these work, we investigate the spectral collocation method for the sys-
tem of weakly singular VIEs in the present paper. The convergence analysis results
are that the global convergence order depends on the regularity of the solution lying
in this system, and the local convergence order only depends on the regularity of
given functions especially the kernel functions with respect to variable s. Numerical
experiments are carried out to confirm these theoretical results. Numerical examples
include system of linear and nonlinear weakly singular VIEs and linear and nonlinear
high-order VIDEs.

The convergence analysis result (76) shows that the high convergence order at
collocation points is obtained, only if that kernel functions possess better regularity
with respect to variable s. Based on this result, our future work will focus on the
piecewise fractional polynomial collocation method for weakly singular VIEs.
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