
Advances in Computational Mathematics (2019) 45:1551–1580
https://doi.org/10.1007/s10444-019-09678-w

Efficient numerical schemes with unconditional
energy stabilities for the modified phase field crystal
equation

Qi Li1 · Liquan Mei1 ·Xiaofeng Yang2 ·Yibao Li1

Published online: 2 March 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
We consider numerical approximations for the modified phase field crystal equa-
tion in this paper. The model is a nonlinear damped wave equation that includes
both diffusive dynamics and elastic interactions. To develop easy-to-implement
time-stepping schemes with unconditional energy stabilities, we adopt the “Invari-
ant Energy Quadratization” approach. By using the first-order backward Euler, the
second-order Crank–Nicolson, and the second-order BDF2 formulas, we obtain
three linear and symmetric positive definite schemes. We rigorously prove their
unconditional energy stabilities and implement a number of 2D and 3D numerical
experiments to demonstrate the accuracy, stability, and efficiency.
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1 Introduction

The phase field crystal (PFC) equation was proposed by Elder and Grant in [8, 9]
as a continuum model of crystalline phase to study the dynamics of atomic-scale
crystal growth on diffusive time scales. An order parameter (phase field variable) that
represents the concentration field of a coarse-grained temporal average of the density
of atoms is introduced to describe the phase transition from the liquid phase to the
crystal phase. More precisely, the density is relatively homogeneous in the liquid
phase and spatially periodic (i.e., crystalline) in the solid phase. Thus, a free energy
is postulated to generate the periodic structure of a crystal lattice, by incorporating
a specific form of the spatial gradients. The equation has been used to study various
phenomena, including elastic and plastic deformations, grain growth, dendritic and
eutectic solidification, and epitaxial growth [10, 19].

The PFC equation evolves only on diffusive time scales; thus, it does not contain
a mechanism for simulating elastic interactions, for example, the deformation prop-
erties of noncrystalline solids. In order to overcome this problem, Stefanovic et al.
[22, 23] introduced the modified phase field crystal (MPFC) equation that includes
both diffusive dynamics and elastic interactions. The MPFC equation is a sixth-order
nonlinear damped wave equation modeling a viscoelastic response to perturbations
to the density field. In this equation, perturbations in the density field are transmit-
ted by waves that travel essentially undamped up to a certain length scale determined
by the parameters. When this length scale is of the order of the size of the system, a
separation of elastic relaxation and diffusion time scales may be practically observed
[22]. Since the MPFC equation adds a wave operator for elastic interaction on the
basis of PFC equation, compared with the PFC equation, the MPFC equation has a
more complicated form which brings more difficulties in developing time-marching
schemes.

There have been a few works on the numerical approximation for the MPFC equa-
tion. Stefanovic et al., [23] employed a semi-implicit finite difference scheme with a
multigrid algorithm for solving the algebraic equations. They did not give any rele-
vant numerical analysis about unique solvability and energy stability. Wang andWise
[25] proposed a first-order energy stable convex splitting nonlinear scheme for the
MPFC equation. Subsequently, a second-order energy stable convex splitting scheme
was presented by Baskaran et al. in [1, 2]. Lee et al. [17] proposed first- and second-
order energy stable schemes based on a new convex splitting of energy functional
for the MPFC equation. Dehghan and Mohammadi [7] used a semi-implicit method
for the PFC and MPFC equations, which split the linear terms into backward and
forward pieces while treating the nonlinear term explicitly. Grasselli and Pierre [15]
proposed an energy stable and convergent finite element scheme for the MPFC equa-
tion, and their time discretization can be seen as a Crank–Nicolson scheme with a
second-order stabilization term. Guo and Xu [16] developed first- and second-order
energy stable schemes with adaptive time-stepping strategy for the MPFC equation.

Although there had been quite a few schemes developed for the MPFC equation, it
is worth noting that almost all those schemes were based on convex splitting approach
and thus nonlinear. Hence, the implementations are often complicated and the com-
putational costs are high. To obtain linear schemes for this model, the main difficulty
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is on how to discretize the quartic potential. One solution is to use the so-called lin-
ear stabilization approach [20, 26] that can introduce purely linear schemes and is
therefore easy to implement. Its stability, however, usually requires a special property
(generalized maximum principle) [20, 21] satisfied by the classical PDE solution and
the numerical solution, which is very hard to prove in general.

The main purpose of this paper is to construct linear time-marching schemes
with unconditional energy stabilities, namely, the schemes preserve the thermo-
dynamically consistent dissipation law (energy stable) at the discrete level without
any constraints on the time step size. This goal is achieved by adopting the “Invariant
Energy Quadratization” (IEQ) approach (cf. [4–6, 12–14, 18, 27–34]). We pro-
pose three time discretization schemes based on the first-order backward Euler, the
second-order Crank–Nicolson, and the second-order BDF2, respectively. We further
show that these schemes satisfy modified energy laws and therefore unconditionally
energy stable. Moreover, at each time step, the schemes lead to a symmetric posi-
tive definite linear system and one can always solve it using the well-developed fast
matrix solvers efficiently.

The paper is organized as follows. In Section 2, the governing equation and corre-
sponding energy law are presented in the continuous case. In Section 3, we propose
three numerical schemes and prove the unconditional energy stability and the well-
posedness of the linear systems in the time semi-discrete case. The fully discrete
schemes and algorithm implementation are presented in Section 4. In Section 5, var-
ious numerical experiments in 2D and 3D are carried out to illustrate the accuracy,
energy stability, and efficiency of the proposed schemes. Finally, some concluding
remarks are given in Section 6.

2 Governing systems

Before introducing the governing equation, we first fix some notations that will be
used later. For each s ≥ 0, let (·, ·)s and ‖·‖s be the Hs(�) inner product and norm,
respectively. Note that H 0(�) = L2(�). In particular, we use (·, ·) and ‖·‖ to denote
the L2 inner product (·, ·)0 and norm ‖·‖0, respectively. We define Sobolev spaces
L2
0(�) = {v ∈ L2(�) | (v, 1) = 0}, L2

per (�) = {v ∈ L2(�) | v is periodic on ∂�},
H s

per (�) = {v ∈ Hs(�) | v is periodic on ∂�}, and denote by H−s
per (�) the dual

space of Hs
per (�).

We consider a free energy functional of Swift–Hohenberg type [8, 9, 24]

E(φ) =
∫

�

(
1

4
φ4 + 1

2
φ (1 + �)2 φ − ε

2
φ2

)
dx, (2.1)

where� is a domain inRd (d = 1, 2, 3), φ is the atomic density field, and 0 < ε < 1
is a positive constant with physical significance. Then the modified phase field crystal
(MPFC) equation is the pseudo-gradient flow

φtt + βφt = M�μ, (2.2)



1554 Q. Li et al.

where β > 0 is a constant, M > 0 is a constant mobility and μ is the chemical
potential defined as

μ := δE

δφ
= φ3 + (1 + �)2φ − εφ, (2.3)

and δE
δφ

denotes the variational derivative of E with respect to φ. We assume all
variables are periodic on ∂�, that is, the values of variables on the opposite facets
of a hypercube � ⊂ R

d (d = 1, 2, 3) are identified. The analysis is also true for
physical boundary conditions like Neumann type, or any other type of boundary
conditions which do not involve any boundary integrals in the variational formula-
tion of the equation. We use periodic boundary condition since that is used in most
analytical/numerical works of MPFC equation.

The mass conservation will hold provided the initial condition satisfying∫
�

φt (x, 0) dx = 0. To see this, by integrating (2.2) over � with the periodic
boundary condition for μ, we obtain

d

dt

∫
�

φt (x, t) dx + β

∫
�

φt (x, t) dx = M

∫
∂�

∇μ · n ds = 0, (2.4)

where n is the unit outward normal on the boundary ∂�. (2.4) is actually an ODE
system for time, and its solution is∫

�

φt (x, t) dx = e−βt

∫
�

φt (x, 0) dx. (2.5)

Thus, if the initial condition satisfies
∫
�

φt (x, 0) dx = 0, we obtain the mass
conservation ∫

�

φt (x, t) dx =
∫

�

φtt (x, t) dx = 0. (2.6)

We now derive the energy dissipation law for MPFC model (2.2) and (2.3), for
which the inverse Laplace operator (−�)−1 and H−1

per inner product are needed. Sup-

pose f ∈ L2
0(�), we define vf ∈ H 2

per (�) ∩ L2
0(�) to be the unique solution to the

periodic boundary value problem

− �vf = f in �. (2.7)

In this case, we define vf := (−�)−1f . Suppose that f, g ∈ L2
0(�), then we define

H−1
per inner product and norm

(f, g)−1 := (∇vf , ∇vg), ‖f ‖−1 := √
(f, f )−1. (2.8)

Note that, via integration by parts, we have the following identity

(f, g)−1 =
(
(−�)−1f, g

)
=

(
(−�)−1g, f

)
= (g, f )−1. (2.9)

We introduce a new variable ψ = φt . Since
∫
�

ψ dx = ∫
�

ψt dx = 0, i.e.,
ψ ∈ L2

0(�) and ψt ∈ L2
0(�), using the operator �−1, we rewrite the system (2.2)

and (2.3) as follows,

�−1ψt + β�−1ψ = M
(
φ3 + (1 + �)2φ − εφ

)
. (2.10)
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By taking the L2 inner product of (2.10) with 1
M

φt , we obtain the following energy
dissipation law

d

dt
E(φ, ψ) = − β

M
‖ψ‖2−1 ≤ 0, (2.11)

where the pseudo energy E(φ, ψ) is defined as

E(φ, ψ) := E(φ) + 1

2M
‖ψ‖2−1. (2.12)

This means that the pseudo energy E(φ, ψ) of the system (2.2) and (2.3) decays in
time.

Remark 1 Note that in [3, 11, 25], the MPFC equation is written in another version,
namely,

β̃φtt + φt = M�μ, β̃ > 0, (2.13)

which expresses the model as a perturbed parabolic equation. In this paper, we focus
on the version (2.2), but all numerical schemes and analysis can be also true for the
version (2.13).

3 Numerical schemes

In this section, we develop a set of time-marching schemes to solve the system (2.2)–
(2.3) by using the IEQ approach. Its essential idea is to transform the nonlinear
potential into a simple quadratic form in terms of some new variables. Such simple
way of quadratization has the following advantages: (i) the complicated nonlinear
potential is transferred to quadratic polynomial form that is much easier to handle;
(ii) the derivative of the quadratic polynomial is linear, which provides the fundamen-
tal support for linearization method; (iii) the quadratic formulation in terms of new
variables can automatically preserve the positivity ( or boundedness from below) of
the nonlinear potentials [29, 32]. To this end, we introduce two auxiliary functions as
follows,

p = �−1ψ, U = √
F(φ) + B, (3.1)

where F(φ) = 1
4φ

4 − ε
2φ

2 is a nonlinear potential, and B is a positive constant to
ensure F(φ) + B > 0, ∀φ ∈ R. In turn, the free energy functional (2.1) can be
rewritten as

Ê(φ,U) =
∫

�

(
U2 + 1

2
φ (1 + �)2 φ − B

)
dx, (3.2)

and the pseudo energy (2.12) becomes

Ê(φ, U, p) = Ê(φ,U) + 1

2M
‖∇p‖2. (3.3)
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Now, we have a new but equivalent PDE system as follows:

ψt + βψ = M�μ, (3.4a)

μ = H(φ)U + (1 + �)2φ, (3.4b)

ψ = φt , (3.4c)

Ut = 1

2
H(φ)φt , (3.4d)

where

H(φ) = f (φ)√
F(φ) + B

, f (φ) = F ′(φ). (3.4e)

(3.4d) is an ODE system for time; thus, U does not need any boundary conditions.
Therefore, the system (3.4a)–(3.4d) form a closed PDE system for the variables φ,

μ, ψ , and U with the periodic boundary conditions and the following compatible
initial conditions,

φ|(t=0) = φ0, ψ |(t=0) = 0, U |(t=0) =
√

F(φ0) + B, (3.5)

where we simply set the initial profile of ψ to be zero point-wise.
The new system (3.4) in terms of the new variables still follows an energy dissipa-

tive law. By applying the inverse Laplace operator �−1 to (3.4a), taking the L2 inner
product of it with φt

M
, of (3.4b) with φt , using (3.4c) and (3.4d), and summing them

up, we can obtain the following energy dissipation law of the new system (3.4) as

d

dt
Ê(φ, U, p) = − β

M
‖∇p‖2 ≤ 0. (3.6)

Remark 2 We note that the transformed system (3.4) is equivalent with the original
system (2.2)–(2.3). The energy (3.3) and its dissipation law (3.6) for the transformed
system are equivalent with the original energy (2.12) and dissipation law (2.11).
Therefore, in the following sections, we will propose numerical approximation for
the transformed system (3.4) and show the numerical schemes preserve the properties
of mass conservation and energy dissipations, accordingly.

Remark 3 For the nonlinear potential F(φ) = 1
4φ

4 − ε
2φ

2, by taking B = ε2

4 , we
can obtain f (φ) = φ3 − εφ, U = 1

2 (φ
2 − ε) and H(φ) = 2φ.

We now develop time-marching numerical schemes to solve the new system (3.4).
The proof of the unconditional energy stability of the schemes follows the similar
lines as in the derivation of the energy law (3.6). Let δt > 0 denote the time step size
and set tn = nδt for 0 ≤ n ≤ NT with the final time T = NT δt, and un denote the
numerical approximation of u(tn).

3.1 The first-order scheme

We first develop a first-order scheme derived by the backward Euler method.
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Scheme 1 Assuming that (φn, ψn, Un) are already calculated with n ≥ 0, we then
update (φn+1, ψn+1, Un+1) as follows,

ψn+1 − ψn

δt
+ βψn+1 = M�μn+1, (3.7a)

μn+1 = H(φn)Un+1 + (1 + �)2φn+1, (3.7b)

ψn+1 = φn+1 − φn

δt
, (3.7c)

Un+1 − Un = 1

2
H(φn)(φn+1 − φn), (3.7d)

where

H(φn) = f (φn)√
F(φn) + B

. (3.8)

Since the nonlinear coefficient H(φ) of the new variable U is treated explicitly,
we can rewrite the equations (3.7c) and (3.7d) as follows:⎧⎪⎨

⎪⎩
Un+1 = 1

2
H(φn)φn+1 + gn

1 , (3.9)

ψn+1 = 1

δt
φn+1 + gn

2 , (3.10)

where gn
1 = Un − 1

2H(φn)φn, gn
2 = −φn

δt
. Thus (3.7a) and (3.7b) can be rewritten

as the following linear system:

α∗φn+1 = M�μn+1 + gn
3 , (3.11)

μn+1 = P1(φ
n+1) + gn

4 , (3.12)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α∗ =
(
1

δt
+ β

)
1

δt
,

P1(φ
n+1) = 1

2
H(φn)H(φn)φn+1 + (1 + �)2φn+1,

gn
3 = α∗φn + 1

δt
ψn,

gn
4 = H(φn)gn

1 .

(3.13)

Therefore, we can solve φn+1 and μn+1 directly from (3.11) and (3.12). Once we
obtain φn+1, Un+1 and ψn+1 are automatically given in (3.9)–(3.10). Furthermore,
we notice

(
P1(φ), ψ

) = 1

2

(
H(φn)φ, H(φn)ψ

) + (
(1 + �)φ, (1 + �)ψ

)
, (3.14)

if ψ enjoys the same boundary condition as φ. Therefore, the linear operator P1(·) is
symmetric (self-adjoint). Moreover, for any φ with

∫
�

φ dx = 0, we have

(
P1(φ), φ

) = 1

2
‖H(φn)φ‖2 + ‖(1 + �)φ‖2 ≥ 0, (3.15)

where “= ” is valid if and only if φ ≡ 0.



1558 Q. Li et al.

We first show the well-posedness of the linear system (3.7) (or (3.11)–(3.12)) as
follows.

Theorem 1 The linear system (3.11)–(3.12) is uniquely solvable, and the linear
operator is symmetric positive definite.

Proof From (3.7a), by taking the L2 inner product with 1 and notice
∫
�

ψ0 dx = 0,
we derive (

1

δt
+ β

)∫
�

ψn+1 dx = 1

δt

∫
�

ψn dx = 0. (3.16)

From (3.7c), we have∫
�

φn+1 dx =
∫

�

φn dx = · · · =
∫

�

φ0 dx. (3.17)

Let Vφ = 1
|�|

∫
�

φ0 dx, and we define

φ̂n+1 = φn+1 − Vφ . (3.18)

Thus, from (3.11)–(3.12), (φ̂n+1, μn+1) are the solutions for the following equations
with unknowns (φ, w),

α∗φ = M�w + f n, (3.19)

w = P1(φ) + gn, (3.20)

where f n = gn
3 − α∗Vφ,

∫
�

f n dx = 0, gn = gn
4 ,

∫
�

φ dx = 0. Applying −�−1 to
(3.19) and using (3.20), we obtain

− α∗�−1φ + MP1(φ) = −Mgn − �−1f n. (3.21)

Let us express the above linear system (3.21) as Aφ = b.

i. For any φ1 and φ2 in H 2(�) with the periodic boundary condition and∫
�

φ1 dx = ∫
�

φ2 dx = 0, using integration by parts, we derive
(
A(φ1), φ2

) = − α∗(�−1φ1, φ2) + M(P1(φ1), φ2)

≤C1

(
‖∇�−1φ1‖‖∇�−1φ2‖ + ‖�φ1‖‖�φ2‖

+‖∇φ1‖‖∇φ2‖ + ‖φ1‖‖φ2‖
)

≤C2‖φ1‖2‖φ2‖2.

(3.22)

Therefore, the bilinear form
(
A(·), ·) is bounded.

ii. For any φ in H 2(�), it is easy to derive that,

(
A(φ), φ

) = α∗‖φ‖2−1 + M

2
‖H(φn)φ‖2 + M‖(1+ �)φ‖2 ≥ C3‖φ‖22, (3.23)

for
∫
�

φ dx = 0 from Poincaré’s inequality. Thus, the bilinear form
(
A(·), ·) is

coercive. Here, C1 > 0, C2 > 0, and C3 > 0 are constants.
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Then, the well-posedness of the linear system Aφ = b in the weak sense comes
from the Lax–Milgram theorem, i.e., the linear system (3.21) admits a unique weak
solution in H 2(�).

For any φ1 and φ2 with
∫
�

φ1 dx = 0 and
∫
�

φ2 dx = 0, we can easily derive
(
A(φ1), φ2

) = (
φ1,A(φ2)

)
. (3.24)

Thus, A is self-adjoint. Meanwhile, the positive definiteness of A follows from
coercivity in (3.23). Therefore, the operator A is symmetric positive definite.

Theorem 2 The scheme (3.7) (or (3.11)–(3.12)) is unconditionally energy stable,
that is, it satisfies the following discrete energy dissipation law

En+1
1st − En

1st

δt
≤ − β

M

∥∥∥∇pn+1
∥∥∥2 ≤ 0, (3.25)

where

E1st = ‖U‖2 + 1

2
‖(1 + �)φ‖2 + 1

2M
‖∇p‖2 − B|�|. (3.26)

Proof Firstly, we combine (3.7a) and (3.7b) together and apply the �−1 to obtain

1

δtM
�−1

(
ψn+1 − ψn

)
+ β

M
�−1ψn+1 = H(φn)Un+1 + (1 + �)2φn+1. (3.27)

Secondly, by taking the L2 inner product of (3.27) with φn+1 − φn, and applying
the following identities

2(a − b, a) = a2 − b2 + (a − b)2, 2(a − b, b) = a2 − b2 − (a − b)2, (3.28)

we obtain

1

δtM

(
�−1

(
ψn+1 − ψn

)
, φn+1 − φn

)
+ β

M

(
�−1ψn+1, φn+1 − φn

)

=
(
H(φn)Un+1, φn+1 − φn

)
+ 1

2

(
‖(1 + �)φn+1‖2

−‖(1 + �)φn‖2 + ‖(1 + �)(φn+1 − φn)‖2
)
.

(3.29)

Thirdly, by taking the L2 inner product of (3.7d) with 2Un+1, we obtain

‖Un+1‖2 − ‖Un‖2 + ‖Un+1 − Un‖2 =
(
H(φn)

(
φn+1 − φn

)
, Un+1

)
. (3.30)

Fourthly, define pn+1 = �−1ψn+1. By subtracting with the nth step, we obtain

�(pn+1 − pn) = ψn+1 − ψn. (3.31)
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From (3.7c) and (3.31), we derive

1

δtM

(
�−1

(
ψn+1 − ψn

)
, φn+1 − φn

)
= 1

M

(
pn+1 − pn, ψn+1

)

= 1

M

(
pn+1 − pn, �pn+1)

)

= − 1

2M

(
‖∇pn+1‖2 − ‖∇pn‖2 + ‖∇(pn+1 − pn)‖2

)
,

(3.32)

and

β

M

(
�−1ψn+1, φn+1 − φn

)
= δtβ

M
(pn+1, ψn+1) = δtβ

M
(pn+1, �pn+1))

= −δtβ

M
‖∇pn+1‖2. (3.33)

Finally, by combining (3.29), (3.30), (3.32), and (3.33), we obtain

‖Un+1‖2 − ‖Un‖2 + 1

2

(
‖(1 + �)φn+1‖2 − ‖(1 + �)φn‖2

)

+ 1

2M

(
‖∇pn+1‖2 − ‖∇pn‖2

)

+ ‖Un+1 − Un‖2 + 1

2
‖(1 + �)(φn+1 − φn)‖2

+ 1

2M
‖∇(pn+1 − pn)‖2 = −δtβ

M
‖∇pn+1‖2, (3.34)

that concludes the result (3.25) after dropping some positive terms.

3.2 The Crank–Nicolson scheme

A second-order scheme, based on the Crank–Nicolson method, reads as follows.

Scheme 2 Assuming that (φn−1, ψn−1, Un−1) and (φn, ψn, Un) are already
calculated with n ≥ 1, we then update (φn+1, ψn+1, Un+1) as follows,

ψn+1 − ψn

δt
+ β

ψn+1 + ψn

2
= M�μn+ 1

2 , (3.35a)

μn+ 1
2 = H †,n+1Un+1 + Un

2
+ (1 + �)2

φn+1 + φn

2
, (3.35b)

ψn+1 + ψn

2
= φn+1 − φn

δt
, (3.35c)

Un+1 − Un = 1

2
H †,n+1(φn+1 − φn), (3.35d)

where

H †,n+1 = f (φ†,n+1)√
F(φ†,n+1) + B

, φ†,n+1 = 3

2
φn − 1

2
φn−1. (3.36)
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We can rewrite the equations (3.35c) and (3.35d) as follows,

⎧⎪⎨
⎪⎩

Un+1 = 1

2
H †,n+1φn+1 + hn

1, (3.37)

ψn+1 = 2

δt
φn+1 + hn

2, (3.38)

where hn
1 = (Un − 1

2H
†,n+1φn), hn

2 = − 2
δt

φn − ψn. Thus, (3.35a) and (3.35b) can
be rewritten as the following linear system

α†φn+1 = M�μn+1 + hn
3, (3.39)

μn+ 1
2 = P2(φ

n+1) + hn
4, (3.40)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α† =
(
1

δt
+ β

2

)
2

δt
,

P2(φ
n+1) = 1

4
H †,n+1H †,n+1φn+1 + 1

2
(1 + �)2φn+1,

hn
3 = −

(
1

δt
+ β

2

)
hn
2 +

(
1

δt
− β

2

)
ψn,

hn
4 = 1

2
H †,n+1hn

1 + 1

2
H †Un + 1

2
(1 + �)2φn+1.

(3.41)

Actually, we can solve φn+1 and μn+1 directly from (3.39) and (3.40). Once we
obtain φn+1, Un+1 and ψn+1 are automatically given in (3.37)–(3.38). Furthermore,
we notice

(
P2(φ), ψ

) = 1

4

(
H †,n+1φ,H †,n+1ψ

) + 1

2

(
(1 + �)φ, (1 + �)ψ

)
, (3.42)

if ψ enjoys the same boundary condition as φ. Therefore, the linear operator P2(·) is
symmetric (self-adjoint). Moreover, for any φ with

∫
�

φ dx = 0, we have

(
P2(φ), φ

) = 1

4
‖H †,n+1φ‖2 + 1

2
‖(1 + �)φ‖2 ≥ 0, (3.43)

where “= ” is valid if and only if φ ≡ 0.

Theorem 3 The scheme (3.35a)–(3.35d) (or (3.39)–(3.40)) is unconditionally energy
stable satisfying the following discrete energy dissipation law

En+1
cn2 − En

cn2 = −δtβ

M

∥∥∥∇(pn+1 + pn)

2

∥∥∥2 ≤ 0, (3.44)

where

Ecn2 = ‖U‖2 + 1

2
‖(1 + �)φ‖2 + 1

2M
‖∇p‖2 − B|�|. (3.45)
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Proof Firstly, we combine (3.35a) and (3.35b) together and apply the �−1 to obtain

1

δtM
�−1

(
ψn+1 − ψn

)
+ β

2M
�−1

(
ψn+1 + ψn

)
= H †,n+1Un+1 + Un

2

+ (1 + �)2
φn+1 + φn

2
. (3.46)

Secondly, by taking the L2 inner product of (3.46) with φn+1 − φn, we obtain

1

δtM

(
�−1

(
ψn+1 − ψn

)
, φn+1 − φn

)
+ β

2M

(
�−1

(
ψn+1 + ψn

)
, φn+1 − φn

)

=
(

H†
Un+1 + Un

2
, φn+1 − φn

)
+ 1

2

(
‖(1 + �)φn+1‖2 − ‖(1 + �)φn‖2

)
.

(3.47)
Thirdly, by taking the L2 inner product of (3.35d) with Un+1 + Un, we obtain

‖Un+1‖2 − ‖Un‖2 =
(
1

2
H †,n+1

(
φn+1 − φn

)
, Un+1 + Un

)
. (3.48)

From (3.35c) and (3.31), we derive

1

δtM

(
�−1

(
ψn+1 − ψn

)
, φn+1 − φn

)
= 1

2M

(
pn+1 − pn, ψn+1 + ψn

)

= 1

2M

(
pn+1 − pn, �(pn+1 + pn)

)
= − 1

2M

(
‖∇pn+1‖2 − ‖∇pn‖2

)
,

(3.49)
and

β

2M

(
�−1

(
ψn+1 + ψn

)
, φn+1 − φn

)
= δtβ

4M

(
pn+1 + pn, ψn+1 + ψn

)

= δtβ

4M

(
pn+1 + pn, �(pn+1 + pn)

)
= −δtβ

M

∥∥∥∇(pn+1 + pn)

2

∥∥∥2.
(3.50)

Finally, by combining (3.47), (3.48), (3.49), and (3.50), we obtain

‖Un+1‖2 − ‖Un‖2 + 1

2

(
‖(1 + �)φn+1‖2 − ‖(1 + �)φn‖2

)

+ 1

2M

(
‖∇pn+1‖2 − ‖∇pn‖2

)
= −δtβ

M

∥∥∥∇(pn+1 + pn)

2

∥∥∥2,
(3.51)

that implies the desired result (3.44).

3.3 The BDF2 scheme

We also can easily develop an alternative version of second-order scheme based on
the Adams–Bashforth backward differentiation formulas (BDF2).
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Scheme 3 Assuming that (φn−1, ψn−1, Un−1) and (φn, ψn, Un) are already
calculated with n ≥ 1, we then update (φn+1, ψn+1, Un+1) as follows:

3ψn+1 − 4ψn + ψn−1

2δt
+ βψn+1 = M�μn+1, (3.52a)

μn+1 = H�,n+1Un+1 + (1 + �)2φn+1, (3.52b)

ψn+1 = 3φn+1 − 4φn + φn−1

2δt
, (3.52c)

3Un+1 − 4Un + Un−1 = 1

2
H�,n+1

(
3φn+1 − 4φn + φn−1

)
, (3.52d)

where

H�,n+1 = f (φ�,n+1)√
F(φ�,n+1) + B

, φ�,n+1 = 2φn − φn−1. (3.53)

We can rewrite the equations (3.52c) and (3.52d) as follows:⎧⎪⎨
⎪⎩

Un+1 = 1

2
H�,n+1φn+1 + qn

1 , (3.54)

ψn+1 = 3

2δt
φn+1 + qn

2 , (3.55)

where qn
1 = U± − 1

2H
�,n+1φ±, qn

2 = − 3
2δt φ

± with S± = 4Sn−Sn−1

3 for any variable
S. Thus, (3.52a) and (3.54)–(3.55) can be rewritten as the following linear system

α�φn+1 = M�μn+1 + qn
3 , (3.56)

μn+1 = P3(φ
n+1) + qn

4 , (3.57)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α� =
(

3

2δt
+ β

)
3

2δt
,

P3(φ
n+1) = 1

2
H�,n+1H�,n+1φn+1 + (1 + �)2φn+1,

qn
3 = −

(
3

2δt
+ β

)
qn
2 + 3

2δt
ψ±,

qn
4 = H�,n+1qn

1 .

(3.58)

Therefore, we can solve φn+1 and μn+1 directly from (3.56) and (3.57). Once we
obtain φn+1, Un+1 and ψn+1 are automatically given in (3.58). Furthermore, we
notice

(
P3(φ), ψ

) = 1

2

(
H�,n+1φ,H�,n+1ψ

) + (
(1 + �)φ, (1 + �)ψ

)
, (3.59)

if ψ enjoys the same boundary condition as φ. Therefore, the linear operator P3(·) is
symmetric (self-adjoint). Moreover, for any φ with

∫
�

φ dx = 0, we have

(
P3(φ), φ

) = 1

2
‖H�,n+1φ‖2 + ‖(1 + �)φ‖2 ≥ 0, (3.60)

where “= ” is valid if and only if φ ≡ 0.
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Theorem 4 The scheme (3.52a)–(3.52d) (or (3.56)–(3.57)) is unconditionally energy
stable satisfying the following discrete energy dissipation law

E
n+1,n
bdf 2 − E

n,n−1
bdf 2 ≤ −δtβ

M
‖∇pn+1‖2 ≤ 0, (3.61)

where

E
n+1,n
bdf 2 =‖Un+1‖2 + ‖2Un+1 − Un‖2

2

+ 1

2

(‖(1 + �)φn+1‖2 + ‖(1 + �)(2φn+1 − φn)‖2
2

)

+ 1

2M

(‖∇pn+1‖2 + ‖2∇pn+1 − ∇pn‖2
2

)
− B|�|.

(3.62)

Proof Firstly, we combine (3.52a) and (3.52b) together and apply the �−1 to obtain

1

2δtM
�−1

(
3ψn+1 − 4ψn + ψn−1

)
+ β

M
�−1ψn+1 = H�,n+1Un+1+(1+�)2φn+1.

(3.63)
Secondly, by taking the L2 inner product of (3.63) with 3φn+1 − 4φn +φn−1, and

applying the following identity

(3a − 4b + c, 2a) = a2 − b2 + (2a − b)2 − (2b − c)2 + (a − 2b + c)2, (3.64)

we obtain

1

2δtM

(
�−1

(
3ψn+1 − 4ψn + ψn−1

)
, 3φn+1 − 4φn + φn−1

)

+ β

M

(
�−1ψn+1, 3φn+1 − 4φn + φn−1

)

=
(
H�,n+1Un+1, 3φn+1 − 4φn + φn−1

)

+ 1

2

(
‖(1 + �)φn+1‖2 − ‖(1 + �)φn‖2 + ‖(1 + �)(2φn+1 − φn)‖2

− ‖(1 + �)(2φn − φn−1)‖2 + ‖(1 + �)(φn+1 − 2φn + φn−1)‖2
)
.

(3.65)

Thirdly, by taking the L2 inner product of (3.52d) with 2Un+1, we obtain

‖Un+1‖2 − ‖Un‖2 + ‖2Un+1 − Un‖2 − ‖2Un − Un−1‖2
+ ‖Un+1 − 2Un + Un−1‖2

=
(
H�,n+1

(
3φn+1 − 4φn + φn−1

)
, Un+1

)
.

(3.66)

Fourthly, define pn+1 = �−1ψn+1. By subtracting with the nth and (n − 1)th
step, we obtain

�(3pn+1 − 4pn + pn−1) = 3ψn+1 − 4ψn + ψn−1. (3.67)
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From (3.52c) and (3.67), we derive

1

2δtM

(
�−1

(
3ψn+1 − 4ψn + ψn−1

)
, 3φn+1 − 4φn + ψn−1

)

= 1

M

(
3pn+1 − 4pn + pn−1, ψn+1

)
= 1

M

(
3pn+1 − 4pn + pn−1, �pn+1

)

= − 1

2M

(
‖∇pn+1‖2 − ‖∇pn‖2 + ‖2∇pn+1 − ∇pn‖2 − ‖2∇pn − ∇pn−1‖2

+ ‖∇(pn+1 − 2pn − pn−1)‖2
)
,

(3.68)
and

β

M

(
�−1ψn+1, 3φn+1 − 4φn + φn−1

)

= 2δtβ

M

(
pn+1, ψn+1

)
= 2δtβ

M

(
pn+1, �pn+1

)
= −2δtβ

M
‖∇pn+1‖2.

(3.69)

Finally, by combining (3.65), (3.66), (3.68), and (3.69), we obtain

‖Un+1‖2 − ‖Un‖2 + ‖2Un+1 − Un‖2 − ‖2Un − Un−1‖2

+ 1

2

(
‖(1 + �)φn+1‖2 − ‖(1 + �)φn‖2 + ‖(1 + �)(2φn+1 − φn)‖2

− ‖(1 + �)(2φn − φn−1)‖2
)

+ 1

2M

(
‖∇pn+1‖2 − ‖∇pn‖2 + ‖∇(2pn+1 − pn)‖2 − ‖∇(2pn − pn−1)‖2

)

+ ‖Un+1 − 2Un + Un−1‖2 + 1

2
‖(1 + �)(φn+1 − 2φn + φn−1)‖2

+ 1

2M
‖∇(pn+1 − 2pn − pn−1)‖2

= −2δtβ

M
‖∇pn+1‖2,

(3.70)
which implies the result (3.61) after dropping some positive terms.

Remark 4 Note that the energy Ecn2 in (3.45) coincides with E1st in (3.26). In addi-
tion, we emphasize the discrete energy of the Crank–Nicolson scheme strictly follows
the PDE energy law (3.6) (i.e., “=” instead of “≤”).

Remark 5 Similar to the first-order scheme (3.7) (or (3.11)–(3.12)), we can show
the linear system (3.35) (or (3.39)–(3.40)) and (3.52) (or (3.56)–(3.57)) are symmet-
ric and positive definite; thus, their well-posedness is available as well. The proof
follows in a similar manner as that of Theorem 1. We omit the details for brevity.

Remark 6 The linear systems (3.7), (3.35), and (3.52) are symmetric and positive def-
inite; thus, a fast solver such as the preconditioned conjugate gradient (PCG) method
can be used to solve the systems.
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Remark 7 Both of the second-order schemes (3.35) and (3.52) couple three time
levels and (φn+1, ψn+1, Un+1) can be updated repeatedly by the recurrence relation
once the initial values (φ0, ψ0, U0) and (φ1, ψ1, U1) have been computed. Here,
(φ0, ψ0, U0) is determined by the initial conditions. In order to obtain the second-
order time accuracy of the main scheme, we first compute (φ̃1, ψ̃1, Ũ1) by the first-
order scheme (3.7), then use the following corrector scheme to obtain (φ1, ψ1, U1),

ψ1 − ψ0

δt
+ β

ψ1 + ψ0

2
= M�μ

1
2 , (3.71a)

μ
1
2 = H ‡,1U1 + U0

2
+ (1 + �)2

φ1 + φ0

2
, (3.71b)

ψ1 + ψ0

2
= φ1 − φ0

δt
, (3.71c)

U1 − U0 = 1

2
H ‡,1(φ1 − φ0), (3.71d)

where

H ‡,1 = f (φ‡,1)√
F(φ‡,1) + B

, φ‡,1 = φ̃1. (3.72)

4 Fourier spectral fully discrete scheme and implementation

Generally, our time-marching schemes can carry over to any spatial discretization
(e.g., finite difference [1, 25], finite element [11, 15], radial basis function [7] meth-
ods) as long as the spatial discretization provides the desired tolerance. In this paper,
we assume the periodic boundary condition and focus on time discretization. There-
fore, we use the Fourier spectral method for the spatial discretization and the fast
Fourier transform (FFT) is applied for all numerical simulations to solve the MPFC
equation with the periodic boundary condition.

For brevity, we only consider the two-dimensional fully discrete Crank–Nicolson
schemes in this section. Other fully discrete schemes in one-dimensional or three-
dimensional cases are constructed analogously. Let Nx and Ny be two positive even
integers. The spatial domain � = [a1, b1] × [a2, b2] is uniformly partitioned with
mesh size hx = (b1 − a1)/Nx, hy = (b2 − a2)/Ny and

�h ={
(xi, yj )

∣∣xi = a1 + ihx, yj = a2 + jhy, 0 ≤ i ≤ Nx − 1, 0 ≤ j ≤Ny − 1
}
.

(4.1)
Let Vh = {

u
∣∣u = {uij |(xi, yj ) ∈ �h}

}
be the space of grid functions on �h. The

time semi-discrete solution un(x, y) can be approximated by

un(x, y) ≈ un
N(x, y) :=

Nx/2−1∑
k=−Nx/2

Ny/2−1∑
l=−Ny/2

ûn
kle

iξkx+iηly, (4.2)

where i = √−1, ûn
kl are the Fourier coefficient of un, ξk = 2πk/(b1 − a1),

ηl = 2πl/(b2 − a2), k = −Nx/2, . . . , Nx/2 − 1, and l = −Ny/2, . . . , Ny/2 − 1.
Then, based on the scheme (3.35), the fully discrete Crank–Nicolson scheme reads:
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Assuming that (φn−1
N , ψn−1

N , Un−1
N ) and (φn

N, ψn
N, Un

N) are already calculated with
n ≥ 1, we then update (φn+1

N , ψn+1
N , Un+1

N ) as follows:

ψn+1
N − ψn

N

δt
+ β

ψn+1
N + ψn

N

2
= M�Nμ

n+ 1
2

N , (4.3a)

μ
n+ 1

2
N = H

†,n+1
N

Un+1
N + Un

N

2
+ (1 + �N)2

φn+1
N + φn

N

2
, (4.3b)

ψn+1
N + ψn

N

2
= φn+1

N − φn
N

δt
, (4.3c)

Un+1
N − Un

N = 1

2
H

†,n+1
N (φn+1

N − φn
N), (4.3d)

where

H
†,n+1
N = f (φ

†,n+1
N )√

F(φ
†,n+1
N ) + B

, φ
†,n+1
N = 3

2
φn

N − 1

2
φn−1

N . (4.4)

Here, the discrete Laplace operator �N is defined as

�N := F−1
N (−�)FN, (4.5)

where (�)k,l = ξ2k + η2l , (k = −Nx/2, . . . , Nx/2 − 1, l = −Ny/2, . . . , Ny/2 −
1), FN is the discrete Fourier transform, and F−1

N is the discrete inverse Fourier
transform.

Using (3.37)–(3.41), we obtain

α†φn+1
N − M�N

(
P2(φ

n+1
N )

)
= RHS, (4.6)

where RHS is approximation of M�hn
4 + hn

3.
In this paper, the preconditioned conjugate gradient (PCG) method is used to

solve the system (4.6) and we use the following preconditioner P † to accelerate the
convergence speed of the PCG algorithm,

P † = α†I − M�N

(
1

4
H †,n+1H †,n+1 + 1

2
(1 + �N)2

)
, (4.7)

where I is the identity matrix, and (·) is the average value of (·).

Remark 8 For the first-order scheme and the BDF2 scheme, we use the following
preconditioners P ∗ and P �, respectively,

P ∗ = α∗I − M�N

(
1

2
H(φn

N)H(φn
N) + (1 + �N)2

)
,

P � = α�I − M�N

(
1

2
H�,n+1H�,n+1 + (1 + �N)2

)
. (4.8)
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5 Numerical experiments

We now present various 2D and 3D numerical simulations for the MPFC equation
to demonstrate the accuracy, stability, and efficiency of the proposed schemes. The
stopping criterion for the PCG iteration is that a relative residual is less than a tol =
10−12 unless mentioned otherwise.

5.1 Temporal accuracy test

We test the convergence rates of the three proposed schemes, the first-order scheme
(3.7) (denoted by LS1), the second-order Crank–Nicolson scheme (3.35) (denoted
by CN2), and the second-order BDF2 scheme (3.52) (denoted by BDF2). The
parameters are ε = 0.025, β = 0.9, M = 1.

We perform two numerical simulations to test the accuracy. In the first example,
we choose the suitable forcing term such that the exact solution is given by

φ(x, y, t) = sin(
2π

64
x) cos(

2π

64
x) cos(t). (5.1)

The computational domain is set to be � = [0, 128]2. We use 2562 Fourier modes so
that the errors from the spatial discretization are negligible compared with the time
discretization errors. In Table 1, we list the L2 errors of the phase variable between
the numerical solution and the exact solution at T = 20 with different time step sizes.

In the second example, we perform the mesh refinement test of the time step size
with the following initial condition

φ0(x, y) = 0.07 − 0.02 cos

(
2π(x − 12)

32

)
sin

(
2π(y − 1)

32

)

+ 0.02 cos2
(

π(x + 10)

32

)
cos2

(
π(y + 3)

32

)

− 0.01 sin2
(
4πx

32

)
sin2

(
4π(y − 6)

32

)
. (5.2)

Table 1 The L2 errors at T = 20 for the phase variable φ that are computed by LS1, CN2, and BDF2
schemes using different temporal resolutions

δt LS1 Order CN2 Order BDF2 Order

0.2000 2.5442e−01 – 3.9077e−03 – 4.8011e−03 –

0.1000 1.4257e−01 0.84 9.3243e−04 2.07 2.3359e−03 1.04

0.0500 7.5271e−02 0.92 2.3055e−04 2.02 7.4908e−04 1.64

0.0200 3.1074e−02 0.97 3.6812e−05 2.00 1.3622e−04 1.86

0.0100 1.5698e−02 0.99 9.2042e−06 2.00 3.5430e−05 1.94

0.0050 7.8896e−03 0.99 2.3019e−06 2.00 9.0297e−06 1.97

The exact solution is given in (5.1) with parameters ε = 0.025, β = 0.9, and M = 1 and 2562 Fourier
modes for space
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The computational domain is set to be � = [0, 32]2. We use 1282 Fourier modes
and choose the approximate solution obtained by using CN2 with a small time step
size δt = 0.001 as the benchmark solution (approximately the exact solution) for
computing errors. In Table 2, we list the L2 errors of the phase variable between the
numerical solution and the benchmark solution at T = 20 with different time step
sizes.

From Tables 1 and 2, we can observe that all schemes give desired orders of
accuracy in time. LS1 is first-order accurate in time, while CN2 and BDF2 are
second-order accurate in time. CN2 and BDF2 give much better accuracy than LS1.
CN2 performs slightly better than BDF2 when using the same time step.

5.2 Comparison with convex splitting schemes

Below, we make a comparison between our schemes proposed in this paper with
two kinds of convex splitting schemes proposed in [1] and [17]. The first- and
second-order convex splitting schemes in [1] are denoted by CSDF 1 and CSDF 2,
respectively. And the new first- and second-order convex splitting schemes in [17] are
denoted by CSBF 1 and CSBF 2, respectively. Both kinds of convex splitting schemes
are nonlinear, and need to be solved by Newton’s iteration at each time step. Here,
the biconjugate gradients (BICG) method is used to solve linear systems due to
the absence of symmetric positive definite properties. The stopping criterion for the
BICG iteration is that the relative residual norm is less than tol = 10−8δt . Readers
can refer to [1] and [17] for more details on the implementation of these schemes.

Firstly, we choose the initial data (5.2) to compare the accuracy of the numerical
schemes. Figure 1 shows the L2 errors using the mesh refinement at T = 20 and
T = 50 with different time step sizes. It is observed that all schemes of CSDF 1,
CSDF 2, CSBF 1, CSBF 2, LS1, CN2, and BDF2 give the desired order of accuracy in
time. It is noteworthy that the error curves of CSBF 1 and LS1, and CSBF 2 and CN2
almost overlap, and the accuracy of CSBF and our schemes are better than that of
CSDF when using the same time step.

Table 2 The L2 errors at T = 20 for the phase variable φ that are computed by LS1, CN2, and BDF2
schemes using different temporal resolutions

δt LS1 Order CN2 Order BDF2 Order

4.0000 3.6931e−03 – 2.5094e−04 – 9.0028e−04 –

2.0000 1.9249e−03 0.94 6.3159e−05 1.99 2.2297e−04 2.01

1.0000 9.8280e−04 0.97 1.5181e−05 2.06 5.4456e−05 2.03

0.5000 4.9660e−04 0.98 3.6378e−06 2.06 1.3341e−05 2.03

0.2500 2.4961e−04 0.99 8.7965e−07 2.05 3.2867e−06 2.02

0.1250 1.2514e−04 1.00 2.1579e−07 2.03 8.1372e−07 2.01

Using the approximate solution obtained by the scheme CN2 with a small time step size δt = 0.001 as the
benchmark solution to calculate the L2 errors with parameters ε = 0.025, β = 0.9, and M = 1 and 1282

Fourier modes for space
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(a) (b)

Fig. 1 The L2 errors at T = 20 and T = 50 for the phase variable φ with different temporal resolutions.
Using the approximate solution obtained by the time step size δt = 0.001 as the benchmark solution to
calculate the L2 Fourier modes for space

Secondly, Table 3 lists the average number of iterations (N-iter) and the average
number of solving linear system (N-sol) at each time step and CPU time (in seconds)
of schemes CSDF 1, CSDF 2, CSBF 1, CSBF 2, LS1, CN2, and BDF2 with different
time step sizes. It can be observed clearly that the convex splitting schemes CSDF and
CSBF require more CPU time than linear schemes LS1, CN2, and BDF2. The reason
is that the nonlinear schemes CSDF and CSBF require Newton’s iteration method
to solve nonlinear systems at each time step. So these schemes need to solve more
linear systems and therefore require more CPU time. In addition, the linear systems
corresponding to linear schemes LS1, CN2, and BDF2 are symmetric positive defi-
nite; therefore, the PCG method is very efficient and requires less CPU time. Among
the three linear schemes, BDF2 requires the least CPU time.

5.3 Energy stability test

In this subsection, we choose the smooth initial data (5.2) to demonstrate the energy
stability of proposed schemes. The parameters are ε = 0.025, M = 1, T = 100, and
� = [0, 32]2. We use 1282 Fourier modes for spatial discretization.

In Fig. 2, we plot the evolution of energy E defined in (2.1), pseudo energy E
defined in (2.12), and modified discrete energies E1st defined in (3.26), Ecn2 defined
in (3.45), and Ebdf 2 defined in (3.62), which are calculated by LS1, CN2, and BDF2,
respectively, where β = 0.01 and δt = 0.01. The pseudo energy E and modified
discrete energies E1st , Ecn2, and Ebdf 2 are non-increasing in time, while energy E

may increase in time on some time intervals. In addition, the pseudo energy E are
nearly identical to the modified energies E1st , Ecn2, and Ebdf 2. The above numerical
results are consistent with Fig. 2 in [1] and Fig. 5 in [16].

In Fig. 3, we plot the evolution of the discrete energies E1st , Ecn2, and Ebdf 2 with
different time step sizes of δt = 0.01, 0.1, 1, 2,5, 10, 20, 25 using the schemes LS1,
CN2, and BDF2, respectively, where β = 2. We observe that all the energies decay
in time, which confirms that the proposed schemes are unconditionally energy stable,
as predicted by Theorems 2, 3, and 4. Since schemes LS1, CN2, and BDF2 provide
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(a) (b) (c)

Fig. 2 Evolution of energy E defined in (2.1), pseudo energy E defined in (2.12), and modified discrete
energies E1st defined in (3.26), Ecn2 defined in (3.45), and Ebdf 2 defined in (3.62) with parameters β =
0.01 and δt = 0.01

similar numerical results, without loss of generality, we only use scheme CN2 in the
following discussion.

Figure 4 shows the evolution of the energy E, pseudo energy E , and discrete
energy Ecn2 with β = 10, β = 1, and β = 0.05, respectively, where δt = 0.01.
When β is large (β = 10, high damping case), the MPFCmodel behaves like the PFC
model and E is nearly identical to E. On the other hand, when β is small (β = 0.05,
low damping case), E differs fromE and, in particular,E shows an oscillatory behav-
ior unlike the case with β = 10. The above numerical results are consistent with the
results in [17].

5.4 Phase transition behaviors in 2D and 3D

In this subsection, we use an alternative version of MPFC equation in the form of
(2.13). With the computational domain of [0, 32]2, and the initial data φ0 = φ̄+rand,
where rand is uniformly distributed random number between −0.01 and 0.01 at the
grid points, we use 1282 Fourier modes to discretize the 2D space. The time step is
δt = 0.005. The parameters are ε = 0.2, M = 1, β̃ = 0.1, and T = 1000. The
scheme CN2 is used to examine the evolution from a random non-equilibrium state
to a steady state.

Figure 5 presents the evolution of the phase transition behavior with φ̄ = 0.01,
φ̄ = 0.2, and φ̄ = 0.4, which verify that the proposed scheme CN2 does lead to the

(a) (b) (c)

Fig. 3 Evolution of the energy with different time step size of δt = 0.01, 0.1, 1, 2,5, 10, 20, 25 using the
schemes LS1, CN2, and BDF2, respectively, where β = 2
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(a) (b) (c)

Fig. 4 Evolution of the energy E, pseudo energy E and discrete energy Ecn2 with β = 10, 1 and 0.05
using the scheme CN2, where δt = 0.01

expected states in the phase diagram in [11]. With different values of φ̄, we obtain
different patterns, such as stripes (Fig. 5a), stripes+triangles (Fig. 5b), and triangles
(Fig. 5c). All of the numerical results are consistent with the phase diagram in [11].
In addition, Fig. 6 shows the evolution of the energy Ecn2 for phase transition with

(a)

(b)

(c)

Fig. 5 The evolution of the phase transition behavior in 2D with φ̄ = 0.01, φ̄ = 0.2 and φ̄ = 0.4.
Snapshots of the numerical approximation of the density field φ are taken at t = 10, 30, 50, 1000. The
computational domain is [0, 32]2. The parameters are ε = 0.2, M = 1, β̃ = 0.1, T = 1000. 1282 Fourier
modes are used to discretize the space. The time step is δt = 0.005
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(a) (b) (c)

Fig. 6 Evolution of the energy Ecn2 for phase transition in 2D

φ̄ = 0.01, φ̄ = 0.2, and φ̄ = 0.4. We observe that the energies decrease at all
times, which, again, provides numerical evidence for the proposed scheme being
unconditionally energy stable.

For 3D simulation, we use 643 Fourier modes to discretize the 3D space. The
time step is δt = 0.02. The computational domain is [0, 50]3. The parameters are
ε = 0.56, M = 1, β̃ = 0.1, and T = 3000. Figure 7 presents the steady-state
microstructure of the phase transition behavior and Fig. 8 shows the evolution of the
energy Ecn2 with different φ̄. All of the numerical results are consistent with the
phase diagram in [3].

5.5 Crystal growth in 2D and 3D

We simulate the crystal growth in a supercooled liquid. For the 2D case, to define the
initial configuration inside the computational domain [0, 800]2, we use the following
expression to define the crystallites:

φ0(xl, yl) = φ̄ + C

(
cos(

q√
3
yl) cos(qxl) − 0.5 cos(

2q√
3
yl)

)
, l = 1, 2, 3, (5.3)

where xl and yl define a local system of cartesian coordinates that is oriented with the
crystallite lattice, and φ̄, C, and q are constant parameters. We then define the ini-
tial configuration by setting three perfect crystallites in three small square patches of
the domain. The centers of the three small square patches are located at (350, 400),
(200, 200), and (600, 300) and the length of each square is 40. The parameters take
the values φ̄ = 0.285, C = 0.446, and q = 0.66. To generate crystallites with
different orientations, we define the local coordinates (xl, yl) using an affine trans-
formation of the global coordinates (x, y), which produces a rotation given by an
angle θ . Also, θ are chosen as θ = −π

4 , 0, π
4 , respectively, to generate crystallite

lattices with different orientations.
We use 5122 Fourier modes to discretize the 2D space and use relatively small

the time step δt = 0.02 for better accuracy. The other parameters take the values
ε = 0.25, M = 1, β = 0.9, and T = 2000. Figure 9 shows snapshots of the numer-
ical solution at different times. We observe the growth of the crystalline phase and
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(a)

(b)

(c)

Fig. 7 The evolution of the phase transition behavior in 3D with different φ̄. The computational domain
is [0, 50]3. The parameters are ε = 0.56, M = 1, β̃ = 0.1, and T = 3000. 643 Fourier modes are used
to discretize the space. The time step is δt = 0.02. Left: isosurface plots of φ = 0. Right: snapshots of the
density field φ. a φ̄ = −0.20. b φ̄ = −0.35. c φ̄ = −0.43
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(a) (c)(b)

Fig. 8 Evolution of the energy Ecn2 for phase transition in 3D

the motion of well-defined crystal-liquid interfaces. The different alignment of the
crystallites causes defects and dislocations that are clearly observed in the pictures.

For the 3D case, we simulate the growth and interaction of two crystallites inside
the computational domain [0, 100]3. An initial condition is generated as follows:
φ0 = 0.285 + rand, where rand is uniformly distributed random number between
−0.01 and 0.01 at the grid points. The other parameters are ε = 0.25, M = 1,

Fig. 9 The 2D dynamical behaviors of the crystal growth in a supercooled liquid. Snapshots of the numer-
ical approximation of the density field φ are taken at t = 0, 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000, 2000. The computational domain is [0, 128]2. The parameters are ε = 0.25, M = 1, and
β = 0.9. 1282 Fourier modes are used to discretize the space. The time step is δt = 0.02
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Fig. 10 The 3D dynamical behaviors of the crystal growth in a supercooled liquid. Snapshots of the numer-
ical approximation of the density field φ are taken at t = 0, 60, 200, 350, 500, 600, 650, 1200, 2000. The
computational domain is [0, 128]3. The parameters are ε = 0.25, M = 1, and β = 0.9. 1283 Fourier
modes are used to discretize the space. The time step is δt = 0.02

β = 0.9, and T = 2000. We use 1283 Fourier modes to discretize the 3D space and
the time step δt = 0.02. In Fig. 10, we observe the growth of the crystalline phase
and the motion of crystal-liquid interfaces from the effects of different alignments of
crystallites.

Figure 11 shows the evolution of the energy Ecn2 corresponding to the solution
evolution of Fig. 9 in 2D case and Fig. 10 in 3D case, respectively. It is clearly shown
that the energy monotonically decays with respect to the time and it means that the
numerical result is energy stable.
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(a) (b)

Fig. 11 Evolution of the energy Ecn2 for crystal growth in a supercooled liquid in 2D and 3D

6 Conclusions

In this paper, we develop three efficient numerical schemes for the MPFC equa-
tion, which is a sixth-order nonlinear damped wave equation, by using the novel IEQ
approach. Compared to existing nonlinear schemes, the developed schemes can eas-
ily conquer the inconvenience from nonlinearities by linearizing the nonlinear cubic
term. We show that all the three schemes developed are unconditionally energy sta-
ble, and thus allow for large time steps. Moreover, the induced linear system at each
time step is proven to be symmetric positive definite so that one can implement the
Krylov subspace method with mass lumping as pre-conditioner to solve such sys-
tem effectively and efficiently. We verify numerically that our schemes are of first-
and second-order accuracy in time and present some 2D and 3D numerical results
for some benchmark simulations to demonstrate the efficiency and energy stability
of the schemes.
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