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Abstract
In this contribution, we are concerned with tight a posteriori error estimation for
projection-based model order reduction of inf-sup stable parameterized variational
problems. In particular, we consider the Reduced Basis Method in a Petrov-Galerkin
framework, where the reduced approximation spaces are constructed by the (weak)
greedy algorithm. We propose and analyze a hierarchical a posteriori error estimator
which evaluates the difference of two reduced approximations of different accuracy.
Based on the a priori error analysis of the (weak) greedy algorithm, it is expected that
the hierarchical error estimator is sharp with efficiency index close to one, if the Kol-
mogorov N-with decays fast for the underlying problem and if a suitable saturation
assumption for the reduced approximation is satisfied. We investigate the tightness of
the hierarchical a posteriori estimator both from a theoretical and numerical perspec-
tive. For the respective approximation with higher accuracy, we study and compare
basis enrichment of Lagrange- and Taylor-type reduced bases. Numerical experi-
ments indicate the efficiency for both, the construction of a reduced basis using the
hierarchical error estimator in a greedy algorithm, and for tight online certification
of reduced approximations. This is particularly relevant in cases where the inf-sup
constant may become small depending on the parameter. In such cases, a standard
residual-based error estimator—complemented by the successive constrained method
to compute a lower bound of the parameter dependent inf-sup constant—may become
infeasible.
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1 Introduction

Model order reduction has become a field of great significance, both with respect
to solving real-world problems and with respect to mathematical research. In this
article, we consider the Reduced Basis Method (RBM), which is a well-known
projection- based model order reduction technique for Parameterized Partial Differ-
ential Equations (PPDEs), for instance in multi-query and/or real-time contexts [22,
24, 35]. The key idea for the RBM is to construct a problem-specific reduced order
model, e.g., in a computationally expensive offline phase, and then use this reduced
model to construct an approximation in an online phase extremely fast by solving
very low-dimensional Petrov-Galerkin problems.

A posteriori error estimates play an important role within the RBM, at least for
the following reasons: (1) The error estimator is used in a greedy algorithm to con-
struct the reduced model. This is, e.g., done by maximizing the error estimator over
a discrete number of reduced solutions with respect to a finite training set of param-
eters (“sampling”) and to enrich the preliminary reduced basis by the truth solution
(“snapshots”) that corresponds to the worst approximated reduced solution. (2) After
the online computation of a reduced approximation as a linear combination of the
snapshots, an error estimator yields an upper bound for the error and thus certifies
the reduced numerical approximation.

This shows that such error estimators need to satisfy a number of conditions: (i)
The computation of the error estimator for some given parameter has to be very fast,
i.e., with a complexity that only depends on the degrees of freedom of the reduced
approximation space (for the basis generation, this allows a large and representative
training set; in the online phase, the certification has to be at least as efficient as the
computation of the reduced approximation itself); (ii) The error estimator has to be
tight in order to yield an efficient and reliable estimate of the true error.

So far, the most common approach for constructing such a posteriori RB error
estimators is residual-based. This usually involves an efficient computation of
(an approximation of) the residual and the inverse of the inf-sup constant. As for
many problems, the inf-sup constant cannot be computed or estimated in an effi-
cient way, the Successive Constraint Method (SCM) [10, 11, 27] is used for the
calculation of a lower bound. This involves at least two drawbacks, namely the com-
putational complexity of the SCM, in particular if a very good approximation is
needed and—related—the lower bound maybe very small (and thus almost useless
for the residual-based error estimator) if the inf-sup constant is small. Moreover, we
have observed numerically that the SCM may not always converge (see Section 4).
We also mention the ROMES method [16] using an offline learning approach
involving any kind of error indicator, hence, in principle also the hierarchical error
estimate.

Hierarchical error estimators use the difference of two approximations of different
orders to bound the unknown error. This approach is well-known, e.g., for ordinary
differential equations [34] and adaptive finite elements [3, 12, 15, 26, 42, 43], just to
mention a few. Within the RBM, such an approach has been used to measure the error
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of the empirical interpolation method (EIM) [4, 9, 17]. However, to the very best of
our knowledge, we are not aware of an article investigating its use for a posteriori
error estimation for RB approximations.

We investigate two situations: (a) A family of reduced spaces (XN)N=1,...,Nmax is
given. Then, we choose N < M and use the difference ‖uN − uM‖X of two RB
approximations as error estimator in the online phase. We study the performance in
particular in those cases, where the inf-sup constant is small or hard to access numer-
ically. This is, e.g., the case for the Helmholtz problem, where the inf-sup constant
behaves like μ−7/2, the wave number μ ∈ R

+ being the parameter (see [19]). Other
examples (that will not be treated here) include transport and wave propagation prob-
lems, where one can may construct an optimal reduced space in a possibly costly
offline stage but cannot use the residual online, since it cannot be computed effi-
ciently [6, 21]. (b) A residual-based error estimator cannot be used at all. In this case,
one would like to construct the reduced basis with the aid of the hierarchical error
estimator. This, however, is not completely straightforward, since XM needs to be
constructed for given XN . It turns out that a standard greedy procedure may not work
in this case. This is the reason why we suggest to use a Taylor-type RB approach for
constructing the reduced space of higher accuracy. Numerical experiments are given
to demonstrate the efficiency of the resulting approach.

In both cases, (a) and (b), we investigate the effectivity of the hierarchical error
estimator, both theoretically and numerically. For the latter purpose, we suggest an
offline procedure to determine sharp estimates for the effectivity that can also be used
in the online stage.

The remainder of this paper is organized as follows: In Section 2, we collect
some preliminaries on PPDEs and RBMs. Section 3 is devoted to the introduction
of the hierarchical error estimator including the analysis and realization. We report
on several numerical experiments in Section 4 for the standard thermal block prob-
lem and the Helmholtz problem in a high-frequency regime, i.e., with quite small
inf-sup constants. We mention that (based upon the preprint version of this paper)
our RB hierarchical error estimate has recently been used in the scope of other
problems [6, 20, 21].

2 Preliminaries

In this section, we collect the main facts and background material that is used in the
sequel.

2.1 Parameterized Partial Differential Equations

Let P ⊂ R
P , P ∈ N, be a compact parameter space. For suitable Hilbert (function)

spaces X and Y consider the parameterized variational problem (e.g., a PDE):

For μ ∈ P find u(μ) ∈ X : a(u(μ), v; μ) = f (v; μ) ∀v ∈ Y, (2.1)
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where a : X × Y × P → K ∈ {R,C} is a continuous sesquilinear form and
f : Y × P → K is a given continuous linear form. For ensuring the uniform
well-posedness of (2.1) for any μ ∈ P , we assume (as usually done) that

∀μ ∈ P : sup
u∈X

sup
v∈Y

|a(u, v; μ)|
‖u‖X‖v‖Y

≤ γ (μ) ≤ γUB < ∞, (continuity)

∀μ ∈ P : inf
u∈X

sup
v∈Y

|a(u, v; μ)|
‖u‖X‖v‖Y

≥ β(μ) ≥ βLB > 0, (inf − sup condition)

∀μ ∈ P : inf
v∈Y

sup
u∈X

|a(u, v; μ)|
‖u‖X‖v‖Y

> 0, (surjectivity).

Even though these assumptions yield a uniform well-posedness (w.r.t. the parameter),
we note that particularly βLB may be fairly small, which will be crucial below.

2.2 The “Truth”

Next, we require the availability of a detailed or fine discretization in terms of suitable
conforming trial and test spaces XN ⊂ X and YN ⊂ Y , where (just for simplicity)
dim(XN ) = dim(YN )=N < ∞. The discretized parameterized problem then reads
for any μ ∈ P:

Find uN (μ) ∈ XN : aN (uN (μ), vN ; μ) = fN (vN ; μ) ∀vN ∈ YN , (2.2)

where aN : XN × YN × P → K and fN : YN × P → K are appropriate
discrete sesquilinear and linear forms. The discrete sesquilinear and linear forms are
continuous with the same constants. To ensure the uniform well-posedness of (2.2)
for every μ ∈ P , we require (as usual)

∀μ ∈ P: sup
uN ∈XN

sup
vN ∈YN

|aN (uN , vN ; μ)|
‖uN ‖XN ‖vN ‖YN

= γN (μ) ≤ γN
UB < ∞,

∀μ ∈ P: inf
uN ∈XN

sup
vN ∈YN

|aN (uN , vN ; μ)|
‖uN ‖XN ‖vN ‖YN

= βN (μ) ≥ β̄N
LB > 0. (2.3)

Note, that the discrete surjectivity condition is ensured by (2.3) since the spaces XN

and YN are finite dimensional. Here, ‖ · ‖XN and ‖ · ‖YN may be numerical approx-
imations to ·‖X and ‖ · ‖Y , respectively, but may also be discrete norms (such as for
discontinuous Galerkin (dG) methods). Such a detailed discretization can, e.g., arise
from finite element, finite volume, dG or spectral element discretizations.

It is a standard assumption that this detailed discretization is sufficiently fine so
that the error ‖u(μ)−uN (μ)‖X is negligible, which is the reason why uN (μ) is often
called the “truth.” In particular, we assume here that XN and YN are the same for all
parameters, but mention that adaptive discretizations may also be used (cf. [1, 23]).

2.3 The Reduced Basis Method

We briefly recall the main ingredients of the Reduced Basis Method (RBM) which
we need here and refer, e.g., to [22, 24, 35] for more details. The aim of the RBM is
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to determine a highly reduced model of size N 
 N in terms of reduced trial and
test spaces XN ⊂ XN , YN ⊂ YN . Such a reduced model is typically determined in
an offline phase, which might be computationally costly. This is done by selecting
certain parameters SN := {μ1, . . . , μN }, computing the corresponding (truth) snap-
shots ξi := uN (μi), i = 1, . . . , N , and setting XN := span{ξ1, . . . , ξN }, N 
 N .
The basis may be orthonormalized for stability reasons.

The choice of the snapshot parameter set SN is usually based upon an efficiently
computable a posteriori error estimator �N(μ) which is then maximized in a greedy
manner over a finite training set Ptrain ⊂ P . This approach is called here weak
greedy.1 Sometimes, the error is used instead of an error estimator, which is then
termed as strong greedy. Other approaches such as nonlinear optimization of an error
estimator have also been investigated (e.g., [38]).

In order to ensure well-posedness of the reduced problem, namely:

Forμ ∈ P find uN(μ) ∈ XN: aN (uN(μ), vN ; μ) = fN (vN ; μ) ∀vN ∈ YN,

(2.4)
the spaces XN and YN have to be chosen such that there exists an 0 < βN

LB ≤ β̄N
LB

inf
wN∈XN

sup
vN∈YN

|aN (wN, vN ; μ)|
‖wN‖XN ‖vN‖YN

=: βN
N (μ) ≥ βN

LB > 0, μ ∈ P . (2.5)

Let uN(μ) = ∑N
i=1 ui,N (μ)ξi be the desired expansion of the RB approxima-

tion. It is easily seen that the unknown coefficient vector uN(μ) = (ui,N (μ))Ni=1
arises from solving a linear system of equations AN(μ)uN(μ) = FN(μ),
where (AN(μ))i,j := aN (ξi, ψj ; μ), (FN(μ))j := fN (ψj ; μ), and YN :=
span{ψ1, . . . , ψN } is a stabilized reduced test space (see, e.g., [35]). Typically,
AN(μ) is a dense matrix so that the reduced approximation can be computed with
O(N3) operations. This complexity is independent of the truth dimension N , which
is the reason to call it online efficient. In order to setup the linear system in an
online efficient manner, we assume (as usual) that sesquilinear and linear forms are
separable w.r.t. the parameter, i.e.,

aN (w, v; μ) =
Qa
∑

q=1

ϑa
q (μ)aNq (w, v), μ ∈ P, w ∈ XN , v ∈ YN , (2.6)

fN (v; μ) =
Qf
∑

q=1

ϑ
f
q (μ)fN

q (v), μ ∈ P, v ∈ YN . (2.7)

Sometimes (2.6) is also called affine decomposition. If (2.6) is not satisfied, the
empirical interpolation method can be used to construct an affine approximation (see,
e.g., [4]). Using (2.6), one can precompute parameter-independent quantities in the
offline stage allowing for an online efficient setup of the linear system. In fact, the

1Note, that this terminology differs from the rigorous error analysis in [5], where weak greedy algorithms
use error estimators which can be proven to be equivalent to the true error with precise constants. We call
an algorithm “weak” greedy if an error estimator is used for the basis construction in a greedy manner.
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parameter-independent matrices (A
q
N)j,i := aNq (ξi, ψj ), i, j = 1, . . . , N, q =

1, . . . , Qa and vectors (F
q
N)j := fN

q (ψj ), j = 1, . . . , N, q = 1, . . . ,Qf can be
computed offline and stored once. Then, for a given new parameter μ ∈ P

AN(μ) =
Qa
∑

q=1

ϑa
q (μ)A

q
N , FN(μ) =

Qf
∑

q=1

ϑ
f
q (μ)F

q
N ,

which is of complexity O(QaN2) and O(Qf N), respectively. As the complexity
does not depend on N , it is online efficient.

The best possible rate of convergence for the error is given by the decay of the
Kolmogorov N-width

dN(P) := inf
dim(XN )=N,XN⊂X

sup
μ∈P

inf
vN∈XN

‖u(μ) − vN‖X. (2.8)

It is known that dN(P) decays fast (even exponentially) for elliptic PPDEs as N →
∞ with smooth dependence of the solution on the parameter (see e.g. [5, 13, 30]).

2.4 The residual-based a posteriori error estimator

As already mentioned above, an online efficient error estimator �N(μ) is often used
within a weak greedy procedure to determine the snapshot index set SN . Moreover,
such a �N(μ) is used for online certification by computing an upper bound for the
error induced by the RB approximation uN(μ). In this paper, we will consider two
examples for such a �N(μ). For the subsequent analysis, we will consider

eN(μ) := ‖u(μ) − uN(μ)‖X, eNN (μ) := ‖uN (μ) − uN(μ)‖XN

which will be termed exact error and truth error, respectively. Also other error quan-
tities or functions of the error can be considered using adjoint methods. It is fairly
standard to use the (truth) residual RN

N (·; μ) ∈ (YN )′ defined as

RN
N (w; μ) := fN (w; μ) − aN (uN(μ), w; μ) = aN (eNN (μ), w; μ), w ∈ YN ,

to define the residual based a posteriori RB error estimator as follows

�Std
N (μ) := ‖RN

N (·; μ)‖(YN )′

βN (μ)
,

which we will call standard RB error estimator in the sequel. It should be noted
that the (truth) residual also admits an affine decomposition and can thus in fact
be computed online efficient. The involved (truth) inf-sup constant βN (μ) can only
be determined exactly in very specific cases. Usually, a lower bound βN

LB(μ) is
computed for example by the Successive Constraint Method (SCM), [11, 25, 27].
However, even though the SCM is online efficient, the quantitative performance may
be a severe problem in real-time applications, in particular if a good approximation
of βN (μ) is required (which is the case, e.g., if βN (μ) is small).

The relation of the truth error and the residual is well-known and easily seen

1

γN (μ)
‖RN

N (·; μ)‖(YN )′ ≤ ‖eNN (μ)‖XN ≤ 1

βN (μ)
‖RN

N (·; μ)‖(YN )′ . (2.9)
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Note, that this relation is w.r.t. the truth error, not w.r.t. the exact error [1, 31, 32,
40, 41]. Of course, one can replace βN (μ) and γN (μ) in (2.9) by lower and upper
bounds βLB > 0, γUB < ∞, respectively, even though these bounds may be numer-
ically infeasible. Under the assumptions of the previous sections, it has been proven
that weak greedy algorithms exhibit the same rate of convergence as dN(P) if there
exists rigorous lower and upper bounds for the error, like (2.9) (see [5, 7]). Roughly
speaking, the RBM works well for a PPDE if dN(P) decays sufficiently fast as N

grows.

3 A hierarchical error estimator

In this section, we introduce the hierarchical error estimator. To this end, let XN �

XM ⊂ XN , where dim(XM) = M > N = dim(XN), and uN(μ) ∈ XN , uM(μ) ∈
XM , respectively. Then, we define the hierarchical error estimator by

�N,M(μ) := ‖uM(μ) − uN(μ)‖XN , (3.1)

3.1 Error analysis

The analysis of hierarchical error estimators is pretty standard in various applications
for ODEs or PDEs. Due to the specific framework of parameter-dependent problems,
we detail it here. We indicate two approaches.

3.1.1 Asymptotic analysis

Using triangle inequality, we get by (2.9) and (2.5)

‖uN (μ) − uN(μ)‖XN ≤ ‖uN (μ) − uM(μ)‖XN + ‖uM(μ) − uN(μ)‖XN

= ‖uN (μ) − uM(μ)‖XN + �N,M(μ)

≤ 1

βN (μ)
‖RN

M (·; μ)‖(YN )′ + �N,M(μ)

= �Std
M (μ) + �N,M(μ).

Now, we recall from [5] that one can construct XM in such a way that �Std
M (μ) → 0

as M → ∞ for every μ ∈ P provided that the Kolmogorov M-width decays, i.e.,
this is a term of higher order. This means that for any N and ε > 0, we can choose
an M = M(ε) > N such that

‖uN (μ) − uN(μ)‖XN ≤ ε + �N,M(μ).

Alternatively, we can choose M such that �Std
M (μ) ≤ ε�N,M(μ) yielding that

‖uN (μ) − uN(μ)‖XN ≤ (1 + ε) · �N,M(μ).

If, however, the assumption �Std
M (μ) ≤ ε�N,M(μ) is only satisfied on a training set

Ptrain ⊂ P , there might exist parameters μ ∈ P \Ptrain with �N,M(μ) = 0 for all M ,
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but ‖uN (μ) − uN(μ)‖XN �= 0. This may happen if XM does not converge to XN ,
which motivates a further assumption.

3.1.2 Saturation assumption

A way to analyze hierarchical error estimates is by showing or assuming a guaran-
teed error decay, typically called saturation property (see, e.g., [3, 26, 39]). In order
to formulate it, we recall that the reduced spaces XN := span{ξ1, . . . , ξN }, N 
 N
are formed by snapshots ξi := uN (μi), i = 1, . . . , N . Consider now a second
reduced basis space XM with dim(XM) =: M > N := dim(XN). Then, we say
that XN and XM satisfy the saturation property, if there exists a constant 	N

N,M ∈
(0, 1), s.t.

‖uN (μ) − uM(μ)‖XN ≤ 	N
N,M · ‖uN (μ) − uN(μ)‖XN (3.2)

holds for all μ ∈ P . We will show a numerical procedure to validate this assump-
tion below. At this point, we do not specify the particular construction of XM (see
Section 3.4 below). Then, following standard lines (see, e.g., [3, 26, 39]), we can
easily prove the following estimates.

Proposition 3.1 If (3.2) holds, then

�N,M(μ)

1 + 	N
N,M

≤ ‖uN (μ) − uN(μ)‖XN ≤ �N,M(μ)

1 − 	N
N,M

=: �Hier
N,M(μ). (3.3)

Proof For μ ∈ P with ‖uN (μ) − uN(μ)‖XN = 0, (3.2) yields �Hier
N,M = 0, so that

the inequalities are obviously fulfilled. If ‖uN (μ) − uN(μ)‖XN �= 0, we use the
reverse triangle inequality and the saturation property to obtain

‖uM(μ) − uN(μ)‖XN

‖uN (μ) − uN(μ)‖XN
≥ ‖uN (μ) − uN(μ)‖XN − ‖uN (μ) − uM(μ)‖XN

‖uN (μ) − uN(μ)‖XN

= 1 − ‖uN (μ) − uM(μ)‖XN

‖uN (μ) − uN(μ)‖XN

≥ 1 − sup
μ∈P

‖uN (μ) − uM(μ)‖XN

‖uN (μ) − uN(μ)‖XN

≥ 1 − 	N
N,M,

which proves the upper bound. The lower bound is proven by triangle inequality and
saturation property.

Remark 3.2 With a slight abuse of terminology, we sometimes call both �N,M and
�Hier

N,M “hierarchical error estimator.” Strictly speaking, only �Hier
N,M is an upper bound

for the error, whereas �N,M requires the multiplicative constant (1 − 	N
N,M)−1 in

order to be an upper bound.
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For the effectivity factor

ηNN,M(μ) := �Hier
N,M(μ)

‖uN (μ) − uN(μ)‖XN
(3.4)

we get that by using the estimate (3.3)

1 ≤ ηNN,M(μ) ≤ 1 + 	N
N,M

1 − 	N
N,M

. (3.5)

The closer 	N
N,M is to zero, the better is the effectivity.

Remark 3.3 Using the same arguments as in the proof of Proposition 3.1, one can
obtain the estimate

‖uN (μ) − uM(μ)‖XN ≤ 	N
N,M

1 − 	N
N,M

· �N,M(μ), (3.6)

provided that (3.2) holds. However, the above proof does not yield a lower bound for
‖uN (μ)−uM(μ)‖XN implying that the effectivity factor cannot be bounded and the
upper bound (3.6) is in general not sharp. Note that this of course heavily depends on
the particular choice of XM .

3.2 Realization

The hierarchical error estimator can be computed online efficient as we are going to
show now. In fact, let

uN(μ) =
N∑

i=1

αN
i (μ) ξi, uM(μ) =

M∑

i=1

αM
i (μ) ξi,

be the expansions of the reduced basis approximations (in general αN
i (μ) �= αM

i (μ)

even for 1 ≤ i ≤ N). Then, setting αN
i (μ) := 0 for i = N + 1, . . . , M , we get

�N,M(μ)2 =
∥
∥
∥
∥
∥

M∑

i=1

(αN
i (μ) − αM

i (μ)) ξi

∥
∥
∥
∥
∥

2

XN

=
M∑

i,j=1

(αN
i (μ) − αM

i (μ))(αN
j (μ) − αM

j (μ)) (ξi, ξj )XN .

Since the values (ξi, ξj )XN (the entries of the Gramian matrix) can be precomputed
and stored in the offline stage, the computation of �N,M(μ) requires in general
O(M2) operations independent of N , i.e., online efficient. If all ξi are orthonor-
malized, the computational complexity reduces to O(M). Of course, we face the
well-known square root effect, since the above reasoning yields �N,M(μ)2 so that
we loose half of the accuracy by taking the square root. This, however, is exactly the
same for the standard estimator and there are suggestions how to deal with it (see,
e.g., [8]).
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3.3 Offline approximation of�N
N,M

The main challenges for using the hierarchical error estimator are (i) the choice of
an appropriate XM and (ii) the determination of the multiplicative constant ρ with
eNN (μ) ≤ ρ�N,M(μ) for all μ ∈ P . Obviously, both issues are linked. In the case
using the saturation assumption, we have that ρ = (1 − 	N

N,M)−1, so that we start
describing an offline procedure to approximate the saturation constant.

To this end, we use a result on nonlinear parametrized programming problems.

Theorem 3.4 [14] Let P ⊂ R
P be compact and connected, f, g : P → R continu-

ous such that g(μ) > 0 for all μ ∈ P . Setting F(q) := maxμ∈P {f (μ) − q · g(μ)},
q ∈ R, it holds q0 := maxμ∈P f (μ)

g(μ)
if and only if F(q0) = 0.

We apply this result for the functions f (μ) := ‖uN (μ) − uM(μ)‖XN and
g(μ) := ‖uN (μ) − uN(μ)‖XN . Due to the requirement g(μ) > 0 for all μ ∈ P ,
we decompose the parameter space P in compact subsets Pi in such a way, that on
each subset the denominator is non-vanishing. In view of (2.9), this means here that
‖RN

N (·; μ)‖(YN )′ �= 0. Then, we proceed as follows: for fixed dimension N and for
Pi , we solve the nonlinear problem

	N
N,M,i := arg min

q∈R≥0
|Fi(q)| with Fi(q) := max

μ∈Pi

{f (μ) − q · g(μ)} (3.7)

and define 	N
N,M := maxi 	N

N,M,i . For each i, we construct an iteration θ
(k)
i , k =

0, 1, 2, . . ., for which we need a good starting value θ
(0)
i . Since

βN (μ)

γN (μ)
· ‖R

N
M (·; μ)‖(YN )′

‖RN
N (·; μ)‖(YN )′

≤ ‖uN (μ) − uM(μ)‖XN

‖uN (μ) − uN(μ)‖XN
≤ γN (μ)

βN (μ)
· ‖RN

M (·; μ)‖(YN )′

‖RN
N (·; μ)‖(YN )′

,

we use the following approximation as initial guess

	N
N,M,i := max

μ∈Pi

‖uN (μ) − uM(μ)‖XN

‖uN (μ) − uN(μ)‖XN
≈ max

μ∈Pi

‖RN
M (·; μ)‖(YN )′

‖RN
N (·; μ)‖(YN )′

=: θ
(0)
i ,

which is reasonable provided that min
μ∈Pi

βN
LB(μ)

γN
UB(μ)

≈ max
μ∈Pi

γN
LB (μ)

βN
UB(μ)

. This results in the

(offline) Algorithm 1. If this algorithm terminates with some 	N
N,M < 1, the

saturation property is in fact valid.

Remark 3.5 If Algorithm 1 terminates, the output yields a rigorous error bound for
all parameters μ ∈ P . This is due to the fact that a global optimization strategy is
used (in our experiments by SQP) to solve the nonlinear optimization problems in
line 4 and 8, respectively. The price to pay is that (3.7) is an NP hard problem.

The possible decomposition of P into subsets Pi is used for stability purposes. In
Section 3.4, this decomposition is not required due to the use of an Hermite approach,
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Algorithm 1 Computing 	N
N,M .

1: Choose tol > 0, fix N ∈ N, choose L ∈ N compact subsets Pi , 1 ≤ i ≤ L

2: for i = 1 : L do
3: f (μ) := ‖uN (μ) − uM(μ)‖XN , g(μ) := ‖uN (μ) − uN(μ)‖XN

4: Fi(q) := max
μ∈Pi

{f (μ) − q · g(μ)}
5: k := 0

6: θ
(0)
i := max

μ∈Pi

‖RN
M (·;μ)‖

(YN )′
‖RN

N (·;μ)‖
(YN )′

7: while |Fi(θ
(k)
i )| ≥ tol do

8: iterate nonlinear problem Fi(q) = 0 � θ
(k+1)
i

9: k → k + 1
10: end while
11: 	N

N,M,i := θ
(k)
i

12: end for
13: return 	N

N,M := max
i=1,...,L

	N
N,M,i

which works as long as the solution depends smoothly on the parameter. In fact, let
μ∗ ∈ P be a parameter such that ‖uN (μ∗) − uN(μ∗)‖XN = 0 and �μ ∈ P . Using
a Taylor approximation yields for sufficient regularity u(μ) ∈ Cm(P; X)

‖uN (μ∗ + �μ) − uM(μ∗ + �μ)‖XN

‖uN (μ∗ + �μ) − uN(μ∗ + �μ)‖XN
= O(‖�μ‖m)

O(‖�μ‖) → 0 (‖�μ‖ → 0).

In those experiments, where we used a Lagrangian approach with M > N , we used
two approaches indicated in Fig. 1: In the left part, we define “security zones” around
snapshot parameters and use the complement in P of the union of all such security
zones as the single parameter set P1. This choice is motivated by the fact that Mat-
lab’s global optimization routine is able to handle such sets. The right part of Fig. 1
shows the subdivision of P along the coordinate axes given by the previously selected
snapshot parameters. In both cases, we assume that P has tensor product structure.
Of course, other subdivision strategies are possible.

Fig. 1 Possible choices of subsets Pi : Left: single P1 is the complement in P of the union of security
zones (dark gray) around snapshot parameters (the light gray area); Right: grid parallel to the coordinate
axes given by the previously selected snapshot parameters
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3.4 Reduced basis generation

So far, we assumed that XN and XM are given, e.g., by a strong greedy method in an
offline phase without using the hierarchical error estimator. One could also think of
using the hierarchical part �N,M(μ) for this purpose. This, however, is at least not
straightforward since one needs both N and M for the error estimator, where M has
to be sufficiently large from the beginning. It would be a straightforward approach to
start with N = 1, M = 2 for some parameters μ1 �= μ2. Maximizing �1,2(μ) over
a training set would yield μ3 and we would set N = 2, M = 3, S3 = {μ1, μ2, μ3},
etc. However, it can relatively easy be seen that this approach does not necessarily
converge as snapshots may be selected repeatedly. Hence, we suggest a different
approach.

Starting with XN , the saturation property (3.2) is always valid as long as the
Kolmogorov N-width decays and the reduced basis has been constructed with a
weak greedy algorithm. However, this only means that for each RB space XN , there
exists an appropriate RB space XM , s.t. (3.2) is satisfied—one is left with the ques-
tion how to construct such a space XM . We suggest to use the Taylor-RB method.
If the solution u(μ) depends smoothly on the parameter μ, we can add deriva-
tives of the snapshots w.r.t. the respective parameter to the basis, i.e., for XN =
span{u(μ1), . . . , u(μN)} we set

XM := span

{

u(μn),
∂k

∂μk
i

u(μn) : k = 1, . . . , Kn, i = 1, . . . , P , n = 1, . . . , N

}

for appropriately chosen Kn ∈ N0. This means that M = ∑N
n=1(1 + Kn · P). It is

well-known that these Taylor snapshots u
(k)
i (μ) := ∂k

∂μk
i

u(μ) can easily be computed

recursively by solving the following linear variational problem (see, e.g., [35])

a(u
(k)
i (μ), v; μ) = ∂k

∂μk
i

f (v; μ) −
k∑

m=1

(
k

m

)
∂m

∂μm
i

a(u
(k−m)
i (μ), v; μ). (3.8)

In general, the partial derivatives appearing in (3.8) are Gâteaux derivatives. How-
ever, if the affine decomposition (2.6) holds, one just needs the derivatives of the
involved functions θa

q , θ
f

q ′ : P → R in the classical sense. In this case, one can
ensure by standard arguments that for each N there exists some M > N , s.t. the
results of Section 3.1 hold, provided that the solution is real-analytic with respect to
μ. Finally, for stability reasons, we orthonormalize the Taylor snapshots by a Gram-
Schmidt procedure possibly neglecting (numerical almost) linear dependencies. The
corresponding method is summarized in Algorithm 2.

Remark 3.6 It can be expected (and we have indeed confirmed this by several numer-
ical experiments) that the saturation property (3.2) can be realized by decomposing
the parameter space similar to [18] (there called “hp-RBM”). In addition to Algo-
rithm 2, we have realized such an hp-RBM approach by modifying lines 5 to 10. We
observed fast convergence.
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Algorithm 2 (Weak) Greedy with hierarchical error estimator.

1: Choose tol > 0, Nmax, Ptrain ⊂ P , μ1 ∈ P
2: S1 := {μ1}, �

(0)
1 := {ξ1 := uN (μ1)}

3: for N = 1, . . . , Nmax do
4: k = 1
5: repeat
6: �̌

(k)
N := {u(k)

i (μN) : i = 1, . . . , P } computed by (3.8)

7: �
(k)
N := ORTHONORMALIZE(�

(k−1)
N , �̌

(k)
N )

8: Set XN := span(SN), XM := span(�
(k)
N ) compute 	N

N,M by Algorithm 1
9: k ← k + 1

10: until 	N
N,M < 1

11: KN := k

12: if maxμ∈Ptrain �N,M(μ) < tol then
13: STOP
14: else
15: μN+1 := arg max

μ∈Ptrain

�N,M(μ)

16: SN+1 := SN ∪ {μN+1}, �
(0)
N+1 := �

(0)
N ∪ {ξN+1 := uN (μN+1)}

17: end if
18: end for
19: return SN , XN := span(SN) and XM := span(�

(K)
N ), 	N

N,M

4 Numerical results

We investigate the quantitative performance of the RB hierarchical error estimator
and focus on the sharpness and asymptotic correctness of (3.1). In particular, we want
to investigate

1. How is the performance of �Hier
N,M as compared to �Std

N ?
2. How does this comparison depend on the availability of a sharp lower inf-sup

bound?
3. Since �N,M is an upper bound for the error up to some multiplicative constant

depending on M , what is a reasonable choice for that constant?
4. What is a good choice for XM?

For that purpose, we report on experiments for two test problems. All experiments
have been performed on iMac 2009 equipped with an Intel Core 2 Duo 3.06 GHz
processor and 8 GB 1067 MHz DDR3 RAM.

The first example, the so-called thermal block from [33], is a well-known bench-
mark problem for the RBM. In this case, the behavior of the inf-sup/coercivity
constant is known and the performance of the SCM is very good such that �Std

N is
expected to yield good results. We expect that �Hier

N,M should be less sharp for gen-
eral XM and we are particularly interested in a quantitative comparison. The second
example is the Helmholtz problem which has also been investigated in the RB con-
text in [22]. In this case, it is known that the inf-sup constant has a poor behavior for
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large parameters [19] and—moreover—the computation of a decent approximation
using the SCM is quite costly. Hence, this should be a good benchmark test for the
hierarchical error estimator.

For the basis generation, we use both the strong and the weak greedy algorithms
based upon �N,M and �Std

N w.r.t. the same training set Ptrain. For �Hier
N,M , we compare

constructions of XM using a Taylor and a Lagrange basis.

Remark 4.1 1. For simplicity, we compute 	M,N over a training set, i.e.,

	
N ,train
N,M := max

μ∈Ptrain

‖uN (μ) − uM(μ)‖XN

‖uN (μ) − uN(μ)‖XN
,

instead of solving the nonlinear problem (3.7).
2. Although all problems considered here are stationary, the hierarchical error esti-

mator can also be applied to instationary problems e.g. by using a space-time
formulation, [36, 37].

4.1 Thermal-block (see [33])

Let � := (0, 1)2, divided into B1 × B2 rectangular subblocks �i ⊂ �, s.t. � =
⋃B1B2

i=1 �i . Let μ ∈ P ⊂ R
2 and α(x; μ) := μj χ�i

(x) for j ∈ {1, 2}, 1 ≤ i ≤
B1 · B2, μ = (μ1, μ2) ∈ P , where j = 1 if and only if i is odd. We consider
stationary heat conduction

−∇ · (α(x; μ) ∇u(x; μ)) = 0, x ∈ �,

u(x; μ) = 0, x ∈ �D := {(x, 1)T ∈ R
2 : 0 ≤ x ≤ 1},

α(x; μ)
∂u

∂n
(x) = gN(x; μ), x ∈ �N := ∂�\�D .

Here, we choose B1 = B2 = 3 (see figure below) and set

gN(x; μ) :=
{

1, on {(x, 0)T ∈ R
2 : 0 ≤ x ≤ 1},

0, on {(0, y)T ∈ R
2 : 0 ≤ y ≤ 1} ∪ {(1, y)T ∈ R

2 : 0 ≤ y ≤ 1}.

This problem is coercive with X = Y := H 1
D(�) := {v ∈ H 1(�) : v|�D

= 0} and
bilinear and linear forms defined as

a(u, v; μ) =
�B1B2�/2∑

i=1

μ1

∫

�2i−1

∇u · ∇v dx

+
�B1B2�/2−1∑

i=1

μ2

∫

�2i

∇u · ∇v dx,

f (v; μ) =
∫

�N

v dx. �1

�2

�3

�4

�5

�6

�7

�8

�9

�N �N

�N

�D

2204



A hierarchical a posteriori error estimator for the Reduced Basis Method

For the truth discretization, we used piecewise linear finite elements with a total
number of 11.881 degrees of freedom. Further, we choose two different parameter
spaces, namely

P(1) = [0.5, 1]2, P(2) = [0.02, 1]2, |P(1)
train| = |P(2)

train| = 10201 ≈ 105.

For the error plots, the discrete coercivity constant (replacing the inf-sup constant)
was determined as the smallest eigenvalue of a generalized eigenvalue problem. For
the online CPU time for computing �Std

N , we used the SCM.
For the thermal block problem, the solution depends only mildly on the parameter

since it is parametrically coercive. Hence, the SCM converges after only 3 steps to
numerical precision, even on the larger parameter space P(2). Therefore, we expect
that �Std

N is quite sharp, which is confirmed by our experiments. Starting with the
smaller parameter set P(1), we also found �Hier

N,M to be quite sharp even for M =
N + 1. We omit the corresponding figures since �Std

N and �Hier
N,N+1 turned out to be

almost indistinguishable. Hence, we consider the larger parameter set P(2) ⊃ P(1).
The results are displayed in Fig. 2 using the strong greedy and in Fig. 3 for the weak
greedy with �Std

N for the sampling. We do not see a significant difference between
the different sampling methods to create the reduced basis spaces. In addition, we
also did the parameter sampling by the hierarchical error estimator. We omit the
corresponding figures since the results are quite similar to Figs. 2 and 3.

In both figures, we use 100 test parameters and plot the true (average) error in
red solid lines. The dashed blue lines correspond to the average value of �Std

N (μ)

for these 100 test parameters. Finally, the dotted black lines indicate the average
values of �Hier

N,M for M ∈ {N + 1, N + 2} using a Taylor-based construction with
Kn = 1 and Kn = 2, respectively. We see a significant improvement for M = N + 2
and almost no difference to �Std

N . We comment on the max-error sequence instead
of the average error in Fig. 10 below. In the tables next to the figures, we monitor
the constants 	N,M for both choices. As expected, the value 	N,M significantly
improves for M = N + 2. However, in all cases, the constant is below 1 and we can
easily deduce online heuristics.

Fig. 2 Thermal-Block, P(2) = [0.02, 1]2, strong greedy sampling. Average error over test set of parame-
ters. Red, solid: true error; blue, dashed: residual error estimator; black, dotted: hierarchical error estimator,
M ∈ {N + 1, N + 2}. a Strong greedy M = N + 1. b Strong greedy M = N + 2
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Fig. 3 Thermal-Block, P(2) = [0.02, 1]2, weak greedy with standard error estimator. Average error over
test set of parameters. Red, solid: true error; blue, dashed: residual error estimator; black, dotted: hierar-
chical error estimator, M ∈ {N + 1, N + 2}. a Weak greedy by �Std

N (μ), M = N + 1. b Weak greedy by
�Std

N (μ) M = N + 2

Online effectivity As we have seen that both �Std
N and �Hier

N,M (for appropriate val-
ues of M) are sharp, we investigate the online CPU time required to compute these
error estimators. In order to do so, we consider the obtained effectivity η, i.e., the
ratio of error estimator and true error for 100 test parameters. The results are shown
in Fig. 4, where the values of η are plotted over the required online time. The cir-
cles correspond to �Hier

N,M for different values of M . The few circles with η > 5
correspond to quite small values of M and large parameter sets. All remaining val-
ues cluster for effectivities below 2 and online CPU times of less than 0.1 ms. As
we can also see, the online CPU time is more or less independent of the choice of
M . This is compared to �Std

N . The online timings include also the SCM in this case.
The crosses in Fig. 4 confirm the sharpness of the standard error estimator, but at
the expense of CPU times which are about 15 times larger than for the hierarchical
case.

Fig. 4 Online effectivity index η over online CPU time for thermal block on P(2), strong greedy. Circles:
hierarchical error estimator for M = N +1, M = N +2 and M = N +3; crosses: standard error estimator
(semilog scale)
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4.2 Helmholtz problem

The Helmholtz equation arises from the time-dependent wave equation in the time-
harmonic case (see [2, 19, 28, 29]) and references therein. Let � ⊂ R

n, n ∈ {1, 2, 3},
be a bounded Lipschitz domain with boundary � := ∂�. For the parameter μ ∈
P := [μmin, μmax] ⊂ R with 1 ≤ μmin < μmax < ∞, the Helmholtz problem reads

(4.1)

where �D ∪ �R = �. The parameter μ ∈ P denotes the wavenumber, defined
by μ := ω

c
(SI unit: m−1), where ω ∈ R denotes the frequency and c ∈ R the

wave propagation speed, . In high-frequency problems, the wavenumber
is quite large resulting in oscillations (see [19]0. We use μmax = 100 here, since
this suffices to show the desired effects. Test and trial spaces are again identical,
X = Y := H 1

D(�;C) := {v ∈ H 1(�;C) : v|�D
= 0}, but the sesquilinear form is

no longer Hermitian, i.e.,

The affine decomposition in the form (2.6) is clear. Such problems are usually
analyzed using the parameter-dependent norm given by

‖v‖2
1,μ := μ2‖v‖2

0 + |v|21, v ∈ H 1(�;C),

which is equivalent to ‖ · ‖1, i.e., min{1, μmin}‖v‖1 ≤ ‖v‖1,μ ≤ max{1, μmax}‖v‖1,
v ∈ H 1(�;C), with coefficients, which depend on the parameter range, however.

Fig. 5 SCM-convergence Helmholtz equation on P(2)
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Fig. 6 Helmholtz equation, P(1) = [1, 5], strong greedy. Average error over test set. Red, solid: true error;
blue, dashed: residual error estimator; black, dotted: hierarchical error estimator for M ∈ {N + 1,M =
N + 2}. a Strong greedy M = N + 1. b Strong greedy M = N + 2

The well-posedness is proven, e.g., in [19] by the Fredholm alternative. Moreover,
there exists a constant Cinf-sup > 0 such that

inf
w∈X

sup
v∈Y

|a(w, v; μ)|
‖w‖1,μ‖v‖1,μ

≥ inf
w∈X

sup
v∈Y

Re{a(w, v; μ)}
‖w‖1,μ‖v‖1,μ

≥ Cinf-sup μ− 7
2 . (4.2)

For our numerical experiments, we consider three cases of parameter spaces, i.e.,

P(1) = [1, 5], P(2) = [95, 100], P(3) = [90, 100], |P(i)
train| = 104+1, i = 1, 2, 3.

Thus, P(1) is in the low-frequency domain so that the inf-sup constant is expected
to be moderate, whereas P(2), P(3) will lead to oscillatory, high-frequency solutions.
The latter choices allow to investigate the dependency on the size of the parameter
set within the high-frequency regime. Our truth discretization is formed by spectral
elements of degree 6 with 600 degrees of freedom for P(1) (which turned out to be
sufficient) and spectral elements of degree 16 with 16,000 degrees of freedom for
P(2) and P(3).

In order to compare the results concerning the hierarchical estimator with the best
possible standard one, we determined the involved discrete inf-sup constant βN (μ)

by computing the smallest eigenvalue of a generalized eigenvalue problem. As this
is not online efficient, we used the SCM for the online comparisons in terms of

Fig. 7 Helmholtz equation, P(2) = [95, 100], strong greedy. Average error over test set of parameters.
Red, solid: true error; blue, dashed: residual error estimator; black, dotted: hierarchical error estimator
with M ∈ {N + 1, N + 2}. a Strong greedy M = N + 1. b Strong greedy M = N + 2
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Fig. 8 Helmholtz equation, P(3) = [90, 100], strong greedy. Average error over test set of parameters.
Red, solid: true error; blue, dashed: residual error estimator; black, dotted: hierarchical error estimator,
M ∈ {N + 2, N + 3}. a Strong greedy M = N + 2. b Strong greedy M = N + 3

CPU time. By (4.2), we expect fairly small inf-sup constants for large wavenumbers,
which is expected to cause problems in �Std

N . This fact is also mirrored by the poor
convergence of the SCM shown in Fig. 5. For a good performance of �Std

N in terms
of sharpness, one needs a good online approximation of βN (μ) resulting in many
SCM iterations and large CPU times.

We start by describing the result for the low-frequency parameter set P(1) and
reduce ourselves to the strong greedy sampling since the results for the weak greedy
with various error estimators turned out to be pretty much the same. As we can see
in Fig. 6, both standard and hierarchical error estimators are quite sharp and the
constants 	N,M are small—overall a similar behavior as for the thermal block.

Next, we consider the (smaller) high-frequency parameter set P(2) and again
restrict ourselves to the strong greedy sampling (the results for different versions of
the weak are again quite similar). First, we note that the minimal choice of M = N+1
for the hierarchical error estimator is not sufficient in order to yield sharp estimates as
can be seen in the left graph in Fig. 7. We have also found that the saturation property

Fig. 9 Helmholtz equation, P(3) = [90, 100], weak greedy with parameter sampling via hierarchical error
estimator. Average error over test set of parameters. Red, solid: true error; blue, dashed: residual error
estimator; black, dotted: hierarchical error estimator, with Taylor basis, Kn ∈ {2, 3} for all n. a Weak
greedy by �Hier

N,M(μ),Kn = 2. b Weak greedy by �Hier
N,M(μ),Kn = 3
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Fig. 10 Helmholtz equation, P(3) = [90, 100], weak greedy with parameter sampling via hierarchical
error estimator. Worst-case error (max-error sequence). Red, solid: true error; black, dotted: hierarchical
error estimator, with Taylor basis, Kn ∈ {2, 3} for all n. a Weak greedy by �Hier

N,M(μ),Kn = 2. b Weak

greedy by �Hier
N,M(μ),Kn = 3

for M = N +2 cannot be guaranteed numerically in this case (see Fig. 8). In the right
graph, we thus use a Lagrange basis with M = N + 2 and obtain bounds that are
even better than for the standard estimator. Recall that the blue dashed line for �Std

N

is w.r.t. to a high-fidelity approximation for the inf-sup constant, i.e., the best possi-
ble standard residual-based error bound. Also, the values for 	N,M are quite good.
Thus, �Hier

N,N+2 is a cheap and sharp error bound even for the high-frequency case.

Finally, we consider P(3), which is a high-frequency parameter set of doubled
size as compared to P(2). The error plots for the strong greedy sampling are shown
in Fig. 8. In this case, the Lagrange-based space XM for M = N + 2 only yields
reasonable results for N ≥ 4 (for smaller values, the saturation is not guaranteed),
but then �Hier

N,N+2 outperforms �Std
N in terms of accuracy. As we can see from the

right-hand side of the figure, M = N + 3 gives quite sharp results for N ≥ 3. Again,
for smaller values of N , the saturation is not justified.

Fig. 11 Effectivity index η over online CPU time for Helmholtz problem on P(1), P(2); strong greedy
sampling. Circles: hierarchical error estimator for different M; crosses: standard error estimator (semilog
scale)
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Fig. 12 Helmholtz equation, P(3) = [90, 100]. Effectivity index η over the number K of derivatives for
the Taylor-RB basis (semilog scale)

Due to the lack of saturation for the Lagrange-type construction, we also tested
the Taylor approach. We obtained even better results for all parameter sets. For P(3),
we display the results of a weak greedy sampling in Fig. 9. Even for Kn = 2 for all
n, we got good results for N ≥ 5, as can be seen by the fact that the values of 	N,M

are close to zero. Moreover, �Hier
N,M is quite sharp. The situation even improves for

Kn = 3 in terms of sharpness for small N . For completeness, we show the max-error
sequence in Fig. 10. Note that the slope is very close to the average error, which has
been observed in all our experiments.

Online effectivity As before in Section 4.1 for the thermal block, we compare the
online efficiencies of standard and hierarchical error estimators (see Fig. 11). First,
note that we could not include values for the larger high-frequency parameter range
P(3) there, since the SCM required for �Std

N did not converge, which means that the
standard bound cannot be used in an online efficient manner.2

In Fig. 11, we show the effectivity over the online CPU time, again for �Std
N by

crosses and for �Hier
N,M (for different values of M) by circles. First, we note that the

values of M almost do not influence the CPU times, so that we can easily adjust the
accuracy, as before. Moreover, the accuracies of both bounds are quite comparable,
but the computation of �Hier

N,M is much faster.
Finally, we investigate how many derivatives are required in a Taylor-RB basis

in order to reach a desired effectivity (see Fig. 12). Referring to the notation in
Section 3.4, we choose a fixed number K ≡ Kn of additional derivatives per snap-
shot, so that the resulting dimension of XM is M = N(1 + K), recalling that here
P = 1. We plot the maximal effectivity index over 1000 randomly chosen parameters
for different N . For N = 1 and K = 5 (M = 6), we get η ≤ 5; for N = 2, K = 5
(M = 12), we obtain η < 2; and for the larger values of N , we are even close to 1.
Note, that for N = 3, K = 1, the saturation assumption is not valid. We conclude
that the Taylor-RB-basis yields quite good effectivities even for moderate values
of K .

2In addition, in our numerical experiments the SCM did not converge at all using a discontinuous Galerkin
truth discretization.
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4.3 Conclusions

Let us come back to the questions from the beginning of this section:

1. How is the performance of �Hier
N,M as compared to �Std

N ?

Even for those cases that are in favor of �Std
N (stable with precise knowledge of

the inf-sup constant), �Hier
N,M turned out to yield a sharp error bound and to be

online efficient. The potential becomes even more pronounced for problems with
bad inf-sup behavior.

2. How does this comparison depend on a sharp lower inf-sup bound?
The poorer the inf-sup estimate is, the more �Std

N is outperformed by �Hier
N,M – in

terms of sharpness and efficiency.
3. What is a reasonable choice for the constant 	N,M?

In all tested examples, we got very reasonable values for 	N,M , provided that
the saturation holds. However, even the determination via a test set requires the
computation of possibly many truth solutions, the optimization problem (3.7) for
the verification of the saturation and the computation of 	N

M,N is quite costly,
even though done offline. But our results show that it might be sufficient to do
this on a fairly small test set since we got nice results in all case.

4. What is a good choice for XM?
In all investigated cases, M could be chosen quite moderate. This is due to the
fact that our problems are of elliptic flavor even in the Helmholtz case. In [6, 20]
for problems involving transport phenomena, XM has to be chosen significantly
larger. However, we have also seen that even for problems with very small inf-
sup constant, XM can be chosen reasonably small. Moreover, the online CPU
times seem almost independent on the choice of XM and are much smaller as for
computing �Std

N using the SCM (if the SCM converges at all).
We compared also Lagrange- and Taylor-type approaches to construct XM .

Trying to use the Lagrange approach within parameter sampling using a weak
greedy approach resulted in multiple selections of snapshots and non-guaranteed
saturation. Both problems could be resolved using the Taylor approach, which,
however, requires a certain regularity of u with respect to the parameter. In this
case, for a fixed N , we are able to improve the effectivity by increasing the order
of derivatives.
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