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Abstract
We illustrate the potential applications in machine learning of the Christoffel func-
tion, or, more precisely, its empirical counterpart associated with a counting measure
uniformly supported on a finite set of points. Firstly, we provide a thresholding
scheme which allows approximating the support of a measure from a finite subset of
its moments with strong asymptotic guaranties. Secondly, we provide a consistency
result which relates the empirical Christoffel function and its population counterpart
in the limit of large samples. Finally, we illustrate the relevance of our results on
simulated and real-world datasets for several applications in statistics and machine
learning: (a) density and support estimation from finite samples, (b) outlier and
novelty detection, and (c) affine matching.

Keywords Christoffel function · Statistics · Support inference · Density estimation ·
Consistency

Mathematics Subject Classification (2010) 62-07 · 62H99 · 68T05

1 Introduction

The main claim of this paper is that the Christoffel function (a tool from Approx-
imation Theory) can prove to be very useful in machine learning applications. The
Christoffel function is associated with a finite measure and a degree parameter d.
It has an important history of research with a strong connection to orthogonal poly-
nomials [16, 40], and interpolation and approximation theory [14, 30]. Its typical
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asymptotic behavior as d increases is of particular interest because, in some specific
settings, it provides very relevant information on the support and the density of the
associated input measure. Important references include [18, 27, 28, 41] in a single
dimension, [5–7, 22, 46] for specific multivariate settings, and [21] for ratios of mutu-
ally absolutely continuous measures. The topic is still a subject of active research,
but regarding properties of the Christoffel function, a lot of information is already
available.

The present work shows how properties of the Christoffel function can be used
successfully in some machine learning applications. To the best of our knowledge, this
is the first attempt in such a context with the recent work of [23] and [25]. More pre-
cisely, we consider the empirical Christoffel function, a specific case where the input
measure is a scaled counting measure uniformly supported on a set (a cloud) of data-
points. This methodology has three distinguishing features: (i) It is extremely simple
and involves no optimization procedure; (ii) it scales linearly with the number of
observations (one pass over the data is sufficient); and (iii) it is affine invariant. These
three features prove to be especially important in all the applications that we consider.

In [23], we have exhibited a striking property of some distinguished family of
sum-of-squares (SOS) polynomials (Qd)d∈N, indexed by their degree (2d ∈ N), and
easily computed from empirical moments associated with a cloud of n points in R

p

which we call X. The associated family of sublevel sets Sα,d = {x : Qd(x) ≤ α}, for
various values of α > 0, approximates the global shape of original cloud of points
X. The degree index d can be used as a tuning parameter, trading off regularity of the
polynomial Qd with the fitness of the approximation of the shape of X (as long as
the cloud contains sufficiently many points). Remarkably, even with relatively low
degree d, the sets Sα,d capture accurately the shape of X, and so provides a compact
(algebraic) encoding of the cloud.

In fact, the reciprocal function x �→ Qd(x)−1 is precisely the Christoffel function
�μn,d associated to the empirical counting measure supported on X and the degree
index d. Some properties of the Christoffel function stemming from approximation
theory suggest that it could be exploited in a statistical learning context by consid-
ering its empirical counterpart. The purpose of this work is to push this idea further.
In particular, we investigate (a) further properties of the Christoffel function which
prove to be relevant in some machine learning applications, (b) statistical proper-
ties of the empirical Christoffel function, and (c) further applications to well-known
machine learning tasks.

Contributions

This paper significantly extends [23] in several directions. Indeed our contribution is
threefold:

I. We first provide a thresholding scheme which allows approximating the com-
pact support S of a measure with strong asymptotic guarantees. This result
rigorously establishes the property that, as d increases, the scaled Christoffel
function decreases to 0 outside S and remains positive in the interior of S.
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II. In view of potential applications in machine learning, we provide a rationale for
using the empirical Christoffel function in place of its population counterpart
in the limit of a large sample size. We consider a compactly supported popu-
lation measure μ as well as an empirical measure μn uniformly supported on
a sample of n vectors in R

p, drawn independently from μ. For each fixed d,
we show a highly desirable strong asymptotic property as n increases. Namely,
the empirical Christoffel function �μn,d(·) converges, uniformly in x ∈ R

p, to
�μ,d(·), almost surely with respect to the draw of the random sample.

III. We illustrate the benefits of the empirical Christoffel function in some impor-
tant applications, mainly in machine learning. The rationale for such benefits
builds on approximation properties of the Christoffel function combined with
our consistency result. In particular, we first show on simulated data that the
Christoffel function can be useful for density estimation and support inference.
In [23], we have described how the Christoffel function yields a simple proce-
dure for intrusion detection in networks, and here we extend these results by
performing a numerical comparison with well-established methods for novelty
detection on a real-world dataset. Finally, we show that the Christoffel function
is also very useful in performing affine matching and inverse affine shuffling
of a dataset.

Comparison with existing literature on set estimation

Support estimation, and more generally set estimation, has a long history in statistics
and we intend to give a nonexhaustive overview in this section. The main question of
interest is that of inferring a set (support, level sets of the density function. . . ) based
on independent samples from an unknown distribution. Pioneering works include [17,
34] followed by [8, 15] and resulted in the introduction and first analyses for estima-
tors based on convex hull for convex domains or union of balls for nonconvex sets.
This motivated the development of minimax statistical analysis for the set estimation
problem [19, 26, 42] and the introduction of more sophisticated optimal estimators,
such as the excess mass estimator [33]. Strong relations between set estimation and
density estimation lead to the development of the plugin approach for support and
density level set estimation [11, 29] with further generalization proposed in [12] and
a precise minimax analysis described in [35].

These works provide a rich statistical analysis of the main estimation approaches
currently available. The topic is still active with more precise questions ranging from
inference of topological properties [1], new geometric conditions [9], and adaptivity
to local properties of the underlying density [32, 39].

One of the goals of our work is the introduction of the Christoffel function as a
tool to solve similar problems. This approach has several advantages:

• The Christoffel function allows encoding the global shape of a cloud of points
in any finite dimension using a polynomial level set. This kind of encoding is
relatively simple and compact. This has clear advantages, for example, the evalu-
ation of a polynomial has a complexity which does not depend on the size of the
sample used to qualibrate its coefficients and the boundary of the corresponding
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sublevel set as a very compact representation as an algebraic set. Further-
more, it turns out that the estimation of the empirical Christoffel function has a
computational cost which is linear in the sample size. This is in contrast with
distance-based approaches for which membership evaluation requires querying
all the sample points. As pointed out in [3], the practical use of multidimensional
set estimation techniques involves formidable computational difficulties so that
simplicity arises as a major advantage in this context.

• The proposed approach is specific in the sense that it relies on tools which were
not considered before for support estimation such as orthogonal polynomials.
Topological properties of the support of the distribution or its boundary arise as
major questions beyond minimax analysis [1]. In this realm, the objects which
we manipulate have a simple algebraic description and could be coupled with
computational real algebraic geometry tools to infer topological properties such
as, for example, Betty numbers [4]. This strong algebraic structure could in prin-
ciple allow pushing further the statistical settings which could be handled, with,
for example, notions such as singular measures and intrinsic dimension.

We see these facts as potential advantages of the Christoffel function in the con-
text of support estimation and relevant motivation to further study the potential of
this procedure in modern data analysis contexts. However, we emphasize that this
work constitutes only a first step in this direction. Indeed, we are not able to pro-
vide a complete statistical efficiency analysis as precisely described in the support
and set estimation literature (e.g., [12]). This would require further studies of precise
properties of the Christoffel function itself which are not available given the state of
knowledge for this object. We aim at providing a rationale for the proposed approach
and motivation for future studies, among which a complete statistical analysis is a
longer term goal.1

Organisation of the paper

Section 2 describes the notation and definitions which will be used throughout the
paper. In Section 3, we introduce the Christoffel function, outline some of its known
properties, and describe our main theoretical results. Applications are presented in
Section 4 where we consider both simulated and real-world data as well as a compar-
ison with well-established machine learning methods. For clarity of exposition, most
proofs and technical details are postponed to the Appendix in Section 6.

2 Notation, definitions, and preliminary results

We fix the ambient dimension to be p throughout the text. For example, we will
manipulate vectors in R

p as well as p-variate polynomials with real coefficients.

1In particular, qualibration of the underlying polynomial degree as a function of the sample size is out of
the scope of this paper and left for future research.
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We denote by X a set of p variables X1, . . . , Xp which we will use in mathemat-
ical expressions defining polynomials. We identify monomials from the canonical
basis of p-variate polynomials with their exponents in N

p: we associate to α =
(αi)i=1...p ∈ N

p the monomial Xα := X
α1
1 X

α2
2 . . . X

αp
p which degree is deg(α) :=

∑p

i=1 αi = |α|. We use the expressions <gl and ≤gl to denote the graded lexico-
graphic order, a well ordering over p-variate monomials. This amounts to, first, use
the canonical order on the degree and, second, break ties in monomials with the same
degree using the lexicographic order with X1 = a,X2 = b . . . For example, the
monomials in two variables X1, X2, of degree less or equal to 3 listed in this order
are given by 1, X1, X2, X2

1, X1X2, X2
2, X3

1, X2
1X2, X1X

2
2, X3

2.
We denote by N

p
d , the set {α ∈ N

p; deg(α) ≤ d} ordered by ≤gl . R[X] denotes
the set of p-variate polynomials: linear combinations of monomials with real coef-
ficients. The degree of a polynomial is the highest of the degrees of its monomials
with nonzero coefficients.2 We use the same notation, deg(·), to denote the degree of
a polynomial or of an element of Np. For d ∈ N, R[X]d denotes the set of p-variate
polynomials of degree at most d. We set s(d) = (

p+d
d

)
, the number of monomials of

degree less or equal to d.
We will denote by vd(X) the vector of monomials of degree less or equal to d

sorted by ≤gl , i.e., vd(X) := (Xα)α∈Np
d

∈ R[X]s(d)
d . With this notation, we can write

a polynomial P ∈ R[X]d as P(X) = 〈p, vd(X)〉 for some real vector of coefficients
p = (pα)α∈Np

d
∈ R

s(d) ordered using ≤gl . Given x = (xi)i=1...p ∈ R
p, P(x) denotes

the evaluation of P with the assignments X1 = x1, X2 = x2, . . . Xp = xp. Given
a Borel probability measure μ and α ∈ N

p, yα(μ) denotes the moment α of μ, i.e.,
yα(μ) = ∫

Rp xαdμ(x). Finally, for δ > 0 and every x ∈ R
p, let Bδ(x) := {x : ‖x‖ ≤

δ} be the closed Euclidean ball of radius δ and centered at x. We use the shorthand
notation B to denote the closed Euclidean unit ball. For a given subset of Euclidean
space, A, ∂A denotes the topological boundary of A. Recall that its Lebesgue volume
vol(Bδ(x)) satisfies:

vol(Bδ(x)) = π
p
2

�
(p

2 + 1
)δp, ∀x ∈ R

p.

Furthermore, let ωp := 2π
p+1

2

�
(

p+1
2

) denote the surface of the p dimensional unit

sphere in R
p+1. Throughout the paper, we will only consider measures of which all

moments are finite.

Moment matrix

For a finite Borel measure μ on R
p denote by supp(μ) its support, i.e., the smallest

closed set 	 ⊂ R
p such that μ(Rp \ 	) = 0. The moment matrix of μ, Md(μ), is

a matrix indexed by monomials of degree at most d ordered by ≤gl . For α, β ∈ N
p
d ,

2For the null polynomial, we use the convention that its degree is 0 and it is ≤gl smaller than all other
monomials.
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the corresponding entry in Md(μ) is defined by Md(μ)α,β := yα+β(μ), the moment∫
xα+βdμ of μ. When p = 2 and d = 2, letting yα = yα(μ) for α ∈ N

2
4, we have:

M2(μ) :

1 X1 X2 X2
1 X1X2 X2

2

1 1 y10 y01 y20 y11 y02
X1 y10 y20 y11 y30 y21 y12
X2 y01 y11 y02 y21 y12 y03

X2
1 y20 y30 y21 y40 y31 y22

X1X2 y11 y21 y12 y31 y22 y13

X2
2 y02 y12 y03 y22 y13 y04

.

The matrix Md(μ) is positive semidefinite for all d ∈ N. Indeed, for any p ∈ R
s(d),

let P ∈ R[X]d be the polynomial with vector of coefficients p, then pT Md(μ)p =∫
Rp P (x)2dμ(x) ≥ 0. We also have the identity Md(μ) = ∫

Rp vd(x)vd(x)T dμ(x)
where the integral is understood elementwise.

Sum of squares (SOS)

We denote by �[X] ⊂ R[X] (resp. �[X]d ⊂ R[X]d ), the set of polynomials (resp.
polynomials of degree at most d) which can be written as a sum of squares of poly-
nomials. Let P ∈ R[X]2m for some m ∈ N, then P belongs to �[X]2m if there
exists a finite J ⊂ N and a family of polynomials Pj ∈ R[X]m, j ∈ J , such that
P = ∑

j∈J P 2
j . It is obvious that in sum of squares polynomials are always nonnega-

tive. A further interesting property is that this class of polynomials is connected with
positive semidefiniteness. Indeed, P belongs to �[X]2m if and only if:

∃ Q ∈ R
s(m)×s(m), Q = QT , Q 
 0, P (x) = vm(x)T Qvm(x), ∀x ∈ R

p. (2.1)

As a consequence, every real symmetric positive semidefinite matrix Q ∈ R
s(m)×s(m)

defines a polynomial in �[X]2m by using the representation (2.1).

Orthonormal polynomials

We define a classical [16, 40] family of orthonormal polynomials, {Pα}α∈Np
d

ordered

according to ≤gl , which satisfies for all α ∈ N
p
d :

〈Pα, Pβ〉μ = δα=β, 〈Pα, Xβ〉μ = 0, if β <gl α, 〈Pα, Xα〉μ > 0. (2.2)

Existence and uniqueness of such a family are guaranteed by the Gram-Schmidt
orthonormalization process following the ≤gl ordering on monomials and by the
positivity of the moment matrix (see for instance [16] Theorem 3.1.11).

Let Dd(μ) be the lower triangular matrix of which rows are the coefficients of
the polynomials Pα defined in (2.2) ordered by ≤gl . It can be shown that Dd(μ) =
Ld(μ)−T , where Ld(μ) is the Cholesky factorization of Md(μ). Furthermore, there
is a direct relation with the inverse moment matrix as Md(μ)−1 = Dd(μ)T Dd(μ)

([20] Proof of Theorem 3.1).
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3 The Christoffel function and its empirical counterpart

3.1 The Christoffel function

Let μ be a finite Borel measure on R
p with all moments finite and such that its

moment matrix Md(μ) is positive definite for every d = 0, 1, . . .. For every d , define
the function κμ,d : Rp × R

p → R by:

(x, y) �→ κμ,d(x, y) :=
∑

α∈Np
d

Pα(x) Pα(y) = vd(x)T Md(μ)−1vd(y), (3.1)

where the family of polynomials {Pα}α∈Np
d

is defined in (2.2) and the last equality fol-
lows from properties of this family (see also [23]). The kernel (x, y) �→ K(x, y) :=∑

α∈Np Pα(x) Pα(y) is a reproducing kernel on L2(μ) because:

Pα(X) =
∫

K(X, y) Pα(y) dμ(y), ∀α ∈ N
p,

that is, the (Pα) are eigenvectors of the associated operator on L2(μ), and so:

p(X) =
∫

K(X, y) p(y) dμ(y), ∀p ∈ R[X].

The function x �→ �μ,d(x) := κμ,d(x, x)−1 is called the Christoffel function associ-
ated with μ and d ∈ N. The following result states a fundamental extremal property
of the Christoffel function.

Theorem 3.1 (see e.g. [16, 30]) Let ξ ∈ R
p be fixed, arbitrary. Then,

�μ,d(ξ) = min
P∈R[X]d

{∫

Rp

P (x)2 dμ(x) : P(ξ) = 1

}

. (3.2)

The Christoffel function plays an important role in orthogonal polynomials and the
theory of interpolation and approximation (see e.g. [16, 40]). One is particularly inter-
ested in the asymptotics of the normalized Christoffel function x �→ s(d)�μ,d(x) as
d → ∞. The subject has a very long history in the univariate case (see [30] for a
detailed historical account prior to the 1980s). The first quantitative asymptotic result
was given in [27] and was latter improved by [28] and [41]. In the multivariate set-
ting, precise results are known in some particular cases such as balls, spheres, and
simplices [6, 7, 22, 45, 46] but much remains to be done for the general multivariate
case. A typical example of asymptotic result is given under quite general (and tech-
nical) conditions in [21, 22]. This work shows that, as d → ∞, the limit of the ratio,
�ν,d

�μ,d
, of two Christoffel functions associated to two mutually absolutely continuous

measures μ and ν, converges to the density dν
dμ

(x) on the interior of their common
support.

Remark 3.2 Notice that Theorem 3.1 also provides a method to compute the numer-
ical value �μ,d(x) for x ∈ R

n, fixed, arbitrary. Then, indeed, (3.2) is a convex
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quadratic programming problem which can be solved efficiently, even in high dimen-
sion using first-order methods such as projected gradient descent and its stochastic
variants. This is particularly interesting when the nonsingular moment matrix Md(μ)

is large.

We next provide additional insights on Theorem 3.1 and solutions of (3.2).

Theorem 3.3 For any ξ ∈ R
p, the optimization problem in (3.2) is convex with a

unique optimal solution P ∗
d ∈ R[X]d defined by:

P ∗
d (X) = κμ,d(X, ξ)

κμ,d(ξ, ξ)
= �μ,d(ξ) κμ,d(X, ξ). (3.3)

In addition,

�μ,d(ξ) =
∫

P ∗
d (x)2 dμ(x) =

∫

P ∗
d (x) dμ(x) (3.4)

�μ,d(ξ)ξα =
∫

xα P ∗
d (x) dμ(x) α ∈ N

p
d . (3.5)

The proof is postponed to Section 6. Interestingly, each of the orthonormal poly-
nomials (Pα)α∈Np also satisfies an important and well-known extremality property.

Theorem 3.4 (see, e.g., [16]) Let α ∈ N
p be fixed, arbitrary and let d = |α|. Then

up to a multiplicative positive constant, Pα is the unique optimal solution of:

min
P∈R[x]d

⎧
⎨

⎩

∫

P 2(x) dμ(x) : P(x) = xα +
∑

β<gl α

θβ xβ for some {θβ}β<glα

⎫
⎬

⎭
.

(3.6)

Finally, we highlight the following important property which will be useful in the
sequel.

Theorem 3.5 (See, e.g., [23]) �μ,d is invariant by change of polynomial basis vd ,
change of the origin of Rp, or change of basis in R

p.

Remark 3.6 All these statements can be deduced from identity (3.1). Indeed, we
have, for any x, y ∈ R

p:

vd(x)T Md(μ)−1vd(y) = (Avd(x))T
(
AMd(μ)AT

)−1
(Avd(y))

= (Avd(x))T
(∫

Rp

(Avd(z))(Avd(z))T dμ(z)
)−1

(Avd(y))

for any invertible matrix A of suitable size. All the proposed transformations induce
a change of basis of polynomials up to degree d which can be represented by such
an A.
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3.2 Whenμ is the Lebesguemeasure

In this section, we consider the important case of the Lebesgue measure on a compact
set S ⊂ R

p such that cl(int(S)) = S. It is known that in this case the Christoffel func-
tion encodes information on the set S (see for example the discussion in Section 3.1).
In particular, the scaled Christoffel function remains positive on the interior of S.
We push this idea further and present a new result asserting that it is possible to
recover the set S with strong asymptotic guaranties by carefully thresholding the
corresponding scaled Christoffel function.

For any measurable set A, denote by μA the uniform probability measure on A,
that is μA = λA/λ(A) where λ is the Lebesgue measure and λA the measure consist-
ing of the restriction of Lebesgue measure to A which is defined by λA(A′) = λA∩A′
for any measurable set A′.

Threshold and asymptotics

The main idea is to use quantitative lower bounds on the scaled Christoffel function,
s(d)�μS,d , on the interior of S (Lemma 6.2) and upper bounds outside S (Lemma
6.6). Recall that μS denotes the uniform measure on S. In combining these bounds,
one proves the existence of a sequence of thresholds of the scaled Christoffel function
which estimates S in a strongly consistent manner. Let us introduce the following
notation and assumption.

Assumption 3.7 (a) S ⊂ R
p is a compact set such that cl(int(S)) = S.

(b) The sequence (δk)k∈N is a decreasing sequence of positive numbers converging
to 0. For every k ∈ N, let dk be the smallest integer such that:

2
3− δkdk

δk+diam(S) d
p
k

(
e

p

)p

exp

(
p2

dk

)

≤ αk (3.7)

where diam(S) denotes the diameter of the set S, and:

αk := δ
p
k ωp

λ(S)

(dk + 1)(dk + 2)(dk + 3)

(dk + p + 1)(dk + p + 2)(2dk + p + 6)

Remark 3.8 (On Assumption 3.7)

• dk is well defined. Indeed, since δk is positive, the left-hand side of (3.7) goes to
0 as k → ∞ while the right-hand side remains bounded for increasing values of
dk .

• From the definition of dk and the fact that δk is decreasing, the sequence {dk}k∈N
is nondecreasing. Indeed, in (3.7), the right-hand side is an increasing function
of δk while the left-hand side is decreasing so that if (3.7) is satisfied for a certain
value of dk and δk , it is also satisfied with the same dk and any value of δ ≥ δk .

• Given {δk}k∈N, computing dk can be done recursively and only requires the
knowledge of diam(S) and λ(S).
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• A similar condition can be enforced if only upper bounds on diam(S) and on
λ(S) are available. In this case, replace these quantities by their upper bounds in
(3.7) to obtain a similar result.

We are now ready to state the first main result of this section whose proof is
postponed to Section 6 for the sake of clarity of exposition. Recall the definition of
the Hausdorff distance dH (X, Y ) between two subsets X, Y of Rp:

dH (X, Y ) = max

{

sup
x∈X

inf
y∈Y

dist(x, y), sup
y∈Y

inf
x∈X

dist(x, y)

}

.

Theorem 3.9 Let S ⊂ R
p, {δk}k∈N, {αk}k∈N and {dk}k∈N satisfy Assumption 3.7. For

every k ∈ N, let Sk ⊂ R
p be the set defined by:

Sk := {
x ∈ R

p : s(dk)�μS,dk
(x) ≥ αk

}
.

Then, as k → ∞:

dH (Sk, S) → 0

dH (∂Sk, ∂S) → 0.

Remark 3.10 The relevance of Hausdorff distance and the notion of distance between
topological boundaries are discussed in [12] and [39].

3.3 Extension tomore general probability measures

Theorem 3.9 can easily be extended to probability measures that are more gen-
eral than uniform distributions, in which case we consider the following alternative
assumption.

Assumption 3.11 (a) S ⊂ R
p is a compact set such that cl(int(S)) = S.

(b) The function w : int(S) → [w−, +∞) is integrable on int(S) with w− > 0.
The measure μ is such that for any measurable set A, μ(A) = ∫

A∩S
w(x)dx

and μ(S) = 1. {δk}k∈N is a decreasing sequence of positive numbers which
converges to 0. For every k ∈ N, let dk be the smallest integer such that:

2
3− δkdk

δk+diam(S) d
p
k

(
e

p

)p

exp

(
p2

dk

)

≤ αk (3.8)

where:

αk := w−δ
p
k ωp

(dk + 1)(dk + 2)(dk + 3)

(dk + p + 1)(dk + p + 2)(2dk + p + 6)
.

Under Assumption 3.11, we obtain the following analogue of Theorem 3.9.

Theorem 3.12 Let S ⊂ R
p, w : S → [w−, +∞), {δk}k∈N, {αk}k∈N and {dk}k∈N

satisfy Assumption 3.11. For every k ∈ N, let:

Sk := {
x ∈ R

p : s(dk)�μS,dk
(x) ≥ αk

}
.
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Then, as k → ∞:

dH (Sk, S) → 0

dH (∂Sk, ∂S) → 0.

The proof is postponed to Section 6.

3.4 Discrete approximation via the empirical Christoffel function

In this section, μ is a probability measure on R
p with compact support S. We focus

on the statistical setting where information on μ is available only through a sample
of points drawn independently from the given distribution μ. In this setting, for every
n ∈ N, let μn denote the empirical measure uniformly supported on an independent
sample of n points distributed according to μ. It is worth emphasizing that in principle
�μn,d is easy to compute and requires the inversion of a square matrix of size s(d)

(see (3.1)). Note that the definition in (3.1) can only be used if the empirical moment
matrix Md(μn) is invertible which is the case almost surely if Md(μ) is invertible
and n is large enough. Alternatively, the numerical evaluation of �μn,d(x) at x ∈ R

n,
fixed arbitrary, reduces to solving the convex quadratic programming problem (3.2),
which can in principle be done efficiently even in high dimension (see Remark 3.2).

Our second main result is for fixed d ∈ N and relates the population Christoffel
function �μ,d and its empirical version �μn,d , as n increases. We proceed by distin-
guishing what happens far from S and close to S. First, Lemma 6.8 ensures that both
Christoffel functions associated with μ and μn vanish far from S so that the influence
of this region can be neglected. Second, when closer to S, one remains in a compact
set and the strong law of large numbers applies.

Theorem 3.13 Let μ be a probability measure on R
p with compact support. Let

{Xi}i∈N be a sequence of i.i.d. Rp-valued random variables with common distri-
bution μ. For n = 1, 2, . . ., define the (random) empirical probability measure
μn = 1

n

∑n
i=1δXi

. Then, for every d ∈ N, d > 0, such that the moment matrixMd(μ)

is invertible, it holds that:

sup
x∈Rp

{|�μn,d(x) − �μ,d(x)|} a.s.−→
n→∞ 0. (3.9)

Equivalently:

‖�μn,d − �μ,d‖∞
a.s.−→

n→∞ 0. (3.10)

where ‖ · ‖∞ denotes the usual “sup-norm.”

A detailed proof can be found in Section 6. Theorem 3.13 is a strong result which
states a highly desirable property, namely that almost surely with respect to the
random draw of the sample, the (random) function �μn,d(·) converges to �μ,d(·) uni-
formly in x ∈ R

p as n increases. Since we manipulate polynomials, it can be checked
that [12, Theorem 1] for general level sets can be applied in the setting of Christoffel
level set estimation. We get the following consequence in terms of consistency of the
boundary of plugin estimates for Christoffel level sets.
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Theorem 3.14 Let μ be a probability measure on R
p with compact support. Let

{Xi}i∈N be a sequence of i.i.d. Rp-valued random variables with common distri-
bution μ. For n = 1, 2, . . ., define the (random) empirical probability measure
μn = 1

n

∑n
i=1 δXi

. Then, for every d ∈ N, d > 0, such that the moment matrix
Md(μ) is invertible and any c ∈ (0, supx∈Rp {�μ,d(x)}), as n increases, it holds that:

dH (∂Ln, ∂L)
a.s.−→ 0, (3.11)

where L = {
x ∈ R

p, �μ,d(x) ≥ c
}
and Ln = {

x ∈ R
p, �μn,d(x) ≥ c

}
.

4 Applications

4.1 Rationale

In this section, we describe some applications for which properties of the Christoffel
function prove to be very useful in a statistical context. We only consider the case
of bounded support. A relevant property of the scaled Christoffel function is that it
encodes information on the support and the density of a population measure μ:

• [28, 41] and [21] provide asymptotic results involving the density of the input
measure.

• Theorem 3.9 provides asymptotic results related to the support of the input
measure.

The support and density of a measure are of interest in many statistical applica-
tions. However, the aforementioned results are limited to population measures which
are not accessible in a statistical setting. In the context of empirical Christoffel func-
tions, Theorem 3.13 suggests that these properties still hold (at least in the limit
of large number of samples) when one uses the empirical measure μn in place of
the population measure μ. Combining these ideas suggests the use of the empirical
Chritoffel function in statistical applications such as (a) density estimation, (b) sup-
port inference, or (c) outlier detection. This is illustrated on simulated and real-world
data and we compare the performance with well-established methods for the same
purpose. Finally, we also describe another application, namely inversion of affine
shuffling, whose links with statistics are less clear.

All results presented in this section are mainly for illustrative purposes. In particu-
lar, the choice of the degree d as a function of the sample size n was done empirically
and a precise quantitative analysis is a topic of future research beyond the scope of
the present paper.

4.2 Density estimation

Most asymptotic results regarding the scaled Christoffel function suggest that the
limiting behavior involves the product of a boundary effect term and a density term.
Hence, if one knows both the Christoffel function and the boundary effect term, one
has access to the density term. Unfortunately, this boundary term is only known in
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specific situations, the most typical example being the Euclidean ball. Hence, in the
present state of knowledge, one of the following is assumed to hold true.

• The support of the population measure μ is S and limd→∞ s(d)�λS,d exists
(possibly unknown).

• The support is unknown but contains a set S with the same property as above.
In this case, we consider the restriction of the population measure μ to S. Note
that a sample from the restriction is easily obtained from a sample from μ by
rejection.

In both cases, assuming that μ has a density h on S, it is expected that the ratio
�μ,d

�λS ,d
or s(d)�μ,d

limd→∞ s(d)�λS ,d
converges to h. An example of such a result in the univariate

setting is the following.

Theorem 4.1 (Theorem 5 [28]) Suppose that μ is supported on [−1, 1] with density
h ≥ a > 0. Then, for almost every x ∈ [−1, 1]:

lim
d→∞ d�μ,d(x) → πh(x)

√
1 − x2.

Extensions include [41] for general support and [21] for the multivariate setting.
Combining Theorems 4.1 and 3.13 suggests that the empirical Christoffel function
can be used for density estimation. For illustration purposes, we set μ to be the
restriction of a Gaussian to [−1, 1]. We perform the following experiment for given
n, d ∈ N.

• Generate x1, . . . , xn ∈ [−1, 1] sampled independently from μ.
• Compute and plot x → �μn,d (x)

�λS ,d (x)
. Note that �λS,d is easily derived from the

moments of the uniform distribution on [−1, 1].
The result is presented in Fig. 1 and a comparison is given with a classical

technique, kernel density estimation [31, 37] with the Gaussian kernel. The result
suggests that empirical Christoffel-based density estimation is competitive with ker-
nel density estimation in this setting. It is worth noticing how simple the methodology
is with a single parameter to tune.

4.3 Support inference

Combining Theorems 3.9 and 3.13 suggests that one may recover the unknown sup-
port of a population measure μ from n independent samples by thresholding the
scaled empirical Christoffel function. In this section, we set μ to be the uniform prob-
ability measure over a star-shaped domain in R

2 (see Fig. 2). For different values of
the degree d and sample size n, we plot in Fig. 2 the corresponding sample and the
associated level set

{
x ∈ R

2 : s(d)�μn,d(x) = α(δ)
}
, where δ = 0.5 and α is given

in Assumption 3.7.
The results displayed in Fig. 2 show that for well-chosen values of d and with α as

in Assumption 3.7, the support of the population measure is rather well approximated
from a finite independent sample. The results even suggest that a careful tuning of the
degree d and the threshold level set α allows approximating the support extremely
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Fig. 1 Comparison of Christoffel and kernel density estimation with Gaussian kernel. The same samples
are used in both cases. We vary the sample size n, the degree d for the Christoffel function, and the scale
parameter σ for the Gaussian kernel. The black curve shows the population density

well for larger sample sizes. Of course, the degree d should be chosen to avoid a form
of overfitting as the results suggest for small sample sizes and large values of d. A
precise analysis of this phenomenon is a topic of future research.

4.4 Outlier detection

In [23], we suggested that the empirical Christoffel function could be used for
the purpose of detecting outliers and the claim was supported by some numerical
experiments. The rationale for this is that the empirical Christoffel function encodes
information about the population density and outliers can be seen as samples from
low-density areas. We follow the same line and consider the network intrusion detec-
tion task described in [43] based on the KDD cup 99 dataset [24]. Following the
pre-processing described in [23, 43], we build up five datasets consisting of network
connections represented by labeled vectors in R

3 where each label indicates whether
the connection was an attack or not.

Dataset http smtp ftp-data ftp Other

Number of examples 567498 95156 30464 4091 5858
Proportions of attacks 0.004 0.0003 0.023 0.077 0.016
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Fig. 2 Finite sample from the uniform measure over a star-shaped domain in R
2. For each value of n and

d, the red line represents the sublevel set
{
x ∈ R

2, s(d)�μn,d (x) = α(δ)
}
, where δ = 0.5 and α is given

in Assumption 3.7

All the experiments described in this section are performed on the “Other” dataset
which is the most heterogeneous. The main task is to recover attacks from the col-
lection of points in R

3, ignoring the labels, and then compare the predictions with
the ground truth (given by the labels). We compare different methods, each of them
assigning a score to an individual: the higher the score, the more likely the individual
is to be an outlier, or an attack. The metric that we use to compare different methods
is the area under the Precision Recall curve (AUPR) (see for example [13]). We com-
pare three different methods, each of them producing a score reflecting some degree
of outlyingness.

• Empirical Christoffel function.
• Kernel density estimation [31, 37] with Gaussian kernel. The value of the density

estimated at each datapoint is used as an outlyingness score.
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• One-class SVM [38] with Gaussian kernel. The value of the estimated deci-
sion function at each datapoint is used as an outlyingness score. We used the
implementation provided in the kernlab package [47].

The first two methods involve only a single parameter while the last method
requires two parameters to be tuned. The results are given in Table 1 and the corre-
sponding curves can be found in Section I. Table 1 suggests that one-class SVM and
the empirical Christoffel perform similarly and clearly outperform the kernel den-
sity estimation approach. It is worth noticing here that the one-class SVM provides
slightly better performances but requires a precise tuning of the second parameter.

4.5 Inversion of affine shuffling

This last application has fewer connections with statistics. Suppose that we are given
two matrices X ∈ R

p×n and X′ ∈ R
p×n. Furthermore, we know that there exists

an invertible affine mapping A : Rp → R
p such that after a potential permutation

of the columns, A defines a bijection between the columns of X′ and those of X.
The problem is to recover the correspondence between the columns of X and the
columns of X′, hence the name “affine shuffling inversion.” Note that the columns
may be shuffled in an arbitrary way and therefore the matching problem is not trivial.
In this setting, we can use the affine invariance property of the Christoffel function
described in Theorem 3.5. This is based on the two following observations.

• The Christoffel function only depends on the empirical moments and hence is
not sensitive to reshuffling of the columns.

Table 1 AUPR scores (×100) for the network intrusion detection task for the three different methods
considered in this paper

1SVM Christoffel KDE

�
�σ

ν
0.005 0.01 0.02 0.05 0.1 0.2 d AUPR σ AUPR

0.01 10 17 17 17 15 11 1 8 0.01 8

0.02 2 17 18 17 15 12 2 18 0.02 1

0.05 8 1 14 18 15 11 3 18 0.05 13

0.1 9 8 12 17 14 11 4 16 0.1 13

0.2 7 9 8 17 14 13 5 15 0.2 12

0.5 3 5 9 15 17 16 6 13 0.5 5

1 3 6 9 14 19 18 1 4

2 4 4 5 1 18 18

5 4 3 4 9 12 16

10 5 4 4 7 10 15

1SVM corresponds to one-class SVM with Gaussian kernel and varying kernel scale parameter σ and
SVM parameter ν. Christoffel corresponds to the empirical Christoffel function with varying degree d.
KDE corresponds to kernel density estimation with Gaussian kernel and varying scale parameter σ . The
best scores are higlighted in boldface font
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Fig. 3 The affine matching procedure based on the empircal Christoffel function. On the left, two datasets
of points in R

2: the second one is the image of the first one by an affine transformation. The colors
indicate the correspondence between the two clouds of points which have been recovered by matching
the corresponding empirical Christoffel functions. The matching of these values is illustrated on the left
with a quantile–quantile plot of the empirical Chritoffel function values for each dataset. We applied a log
transformation for readability and the first diagonal is represented

• Working with the affine image amounts to performing a change of basis and a
change of origin. By Theorem 3.5, the evaluation of the Christoffel function does
not change.

This suggests the following procedure.

• Compute �X,d and �X′,d the Christoffel functions associated to the columns of
X and the columns of X′ respectively.

• Set A ∈ R
n to be the vector with �X,d (Xi ) as the ith entry where Xi is the ith

column of X. Set A′ similarly.
• Match the values in A to the values in A′ according to their rank.

The proposed procedure defines a unique permutation between columns of X and
columns of X′ when there are no ties in the vectors A and A′. In this case, Theorem
3.5 ensures that we have found the correct correspondence. In case of ties, the proce-
dure does not allow eliciting completely the correspondence matching. Overall, the
method is not guaranteed to work but allows treating simple cases easily. Investigat-
ing the robustness of this procedure to noise or to matching mispecification is the
subject of future research.

An illustration is given in Fig. 3 where a moon-shaped cloud of points in R
2 is

deformed by an affine transformation and the matching between the points between
the two clouds is recovered by matching the corresponding Christoffel function
values. The correspondence between Christoffel function values is illustrated on a
quantile–quantile plot.

5 Conclusion

In this paper, we have investigated the potential of the empirical Christoffel func-
tion for some applications in statistics and machine learning. This question led us to
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investigate its theoretical properties as well as potential paths toward applications,
mostly in a statistical framework.

On the theoretical side, we proposed two main contributions. The first one pro-
vides an explicit thresholding scheme which allows the use of the Christoffel function
to recover the support of a measure with strong asymptotic guarantees. Although this
property finds its root in the long history of results regarding asymptotic properties
of the Christoffel function, we have provided a systematic way to tune the threshold
and the degree to ensure strong convergence guarantees. The second main contri-
bution relates the empirical Christoffel function to its population counterpart in the
limit of large samples. This type of results is new and paves the way toward a much
more precise understanding of relations between these two objects in a small sample
setting.

On the practical side, we have illustrated the relevance of the Christoffel func-
tion as a practical tool in a machine learning context. In particular, simulations and
experiments on real-world data support our claim that the empirical Christoffel func-
tion is potentially useful for density estimation and support inference and outlier
detection. Finally, in another application outside the statistical framework (detec-
tion of affine matching between two clouds of points), we have again illustrated
the potential of the Christoffel function as a tool in shape recognition and shape
comparison.

Both theory and applications suggest a broad research program. As already men-
tioned, an important issue is to quantify the deviation of the empirical Christofel
function from its population counterpart in a finite sample setting. Results in this
direction could have both theoretical and practical impacts and would compare more
accurately the performance of Christoffel-based approaches with state-of-the art
methods. Furthermore, the use of the Christoffel function in a statistical framework
raises questions specific to each application considered in this paper and will be the
subject of future investigations. Finally, there are still important open questions on the
Christoffel function itself and works in the line of [5] are of great interest to address
applications in statistics.

Acknowledgements The research of the first author was funded by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement
666981 TAMING).

Appendix

Precision recall curves from Section 4.4

This section displays the curves from which the AUPR scores were measured in
Section 4.4. Christoffel function and kernel density estimation are presented in Fig. 4
and the one-class SVM is presented in Fig. 5. A detailed discussion on the experiment
is given in Section 4.4.
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Fig. 4 Precision recall curves for the network intrusion detection task. Left: Christoffel function with
varying degree d. Right: kernel density estimation with Gaussian kernel and varying scale parameter σ

Proof of Theorem 3.3

Proof In the optimization problem (3.2), the objective function P �→ ∫
P 2dμ is

strongly convex in the vector of coefficients of P because:
∫

P 2 dμ = P T Md(μ) P and Md(μ) � 0,

nu =  0.05 nu =  0.1 nu =  0.2

nu =  0.005 nu =  0.01 nu =  0.02
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Fig. 5 Precision recall curves for the network intrusion detection task. The method used is the one-class
SVM with a Gaussian kernel. We vary the scale parameter σ and the SVM parameter ν. We used the SVM
solver of the package [47]
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and therefore (3.2) reads min{P T Md(μ) P : P T vd(ξ) = 1}, which is a convex
optimization problem with a strongly convex objective function. Slater’s condition
holds (only one linear equality constraint) and so the Karush-Kuhn-Tucker (KKT)
optimality conditions are both necessary and sufficient. At an optimality solution P ∗

d ,
they read:

P ∗
d (ξ) = 1; 2Md(μ) P ∗

d = θ vd(ξ),

for some scalar θ . Multiplying by (P ∗
d )T yields:

2κμ,d(ξ, ξ)−1 = 2(P ∗
d )T Md(μ)P ∗

d = θ .

Hence, necessarily:

P ∗
d (X) = vd(X)T P ∗

d = θ

2
vd(X)T Md(μ)−1 vd(ξ) = κμ,d(X, ξ)

κμ,d(ξ, ξ)
,

which is (3.3). Next, let eα ∈ R
s(d) be the vector with null coordinates except the

entry α which is 1. From the definition of the moment matrix Md(μ),

eT
αMd(μ) P ∗

d =
∫

xαP ∗(z) dμ(z) = κμ,d(ξ, ξ)−1eT
α vd(ξ) = κμ,d(ξ, ξ)−1 ξα,

which is (3.5). In particular with α := 0, we recover (3.4):
∫

P ∗
d (x) dμ(x) = κμ,d(ξ, ξ)−1 =

∫

P ∗
d (x)2 dμ(x).

Proof of Theorems 3.9 and 3.12

Lower bound on the Christoffel function inside S

We will heavily rely on results from [6] (note that similar results could be obtained
on the box, see for example [44]). In particular, we have the following result.

Lemma 6.1 We have for any d ≥ 2

κλB,d (0, 0)

s(d)
≤ 1

ωp

(d + p + 1)(d + p + 2)

(d + 1)(d + 2)

(

1 + d + p + 3

d + 3

)

Proof Combining Lemma 2 in [6] and the last equation of the proof of Lemma 3 in
[6], we have:

κλB,d (0, 0) ≤ 1

ωp

((
p + d + 3

p

)

+
(

p + d + 2

p

))

.

The result follows by using the expression given for s(d) and simplifying factorial
terms.

From this result, we deduce the following bound.
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Lemma 6.2 Let δ > 0 and x ∈ S such that dist(x, ∂S) ≥ δ. Then,

s(d)�μS,d(x) ≥ δpωp

λ(S)

(d + 1)(d + 2)(d + 3)

(d + p + 1)(d + p + 2)(2d + p + 6)
.

Proof Decompose the measure μS into the sum,

μS = λ(S\Bδ(x))
λ(S)

μS\Bδ(x) + λ(Bδ(x))
λ(S)

μBδ(x).

Hence, by monotonicity of the Christoffel function with respect to addition and clo-
sure under multiplication by a positive term (this follows directly from Theorem 3.1),
we have:

�μS,d(x) ≥ λ(Bδ(x))
λ(S)

�μBδ (x),d (x). (6.1)

Next, by affine invariance of the Christoffel function (Theorem 3.5):

�μBδ (x),d (x) = �μB,d (0) = 1

λ(B)
�λB,d (0) = 1

λ(B)

1

κλB,d (0, 0)
, (6.2)

where B is the unit Euclidean ball in R
p. The result follows by combining (6.1), (6.2),

Lemma 6.1 and the fact that λ(Bδ(x))
λ(B)

= δp.

Upper bound on the Christoffel function outside S

We next exhibit an upper bound on the Christoffel function outside of S. We first
provide a useful quantitative refinement of the “Needle polynomial” introduced in
[21].

Lemma 6.3 For any d ∈ N, d > 0, and any δ ∈ (0, 1), there exists a p-variate
polynomial of degree 2d, q, such that:

q(0) = 1 ; −1 ≤ q ≤ 1, on B ; |q| ≤ 21−δd on B \ Bδ(x).

Proof Let r be the univariate polynomial of degree 2d, defined by:

r : t → Td(1 + δ2 − t2)

Td(1 + δ2)
,

where Td is the Chebyshev polynomial of the first kind. We have

r(0) = 1. (6.3)

Furthermore, for t ∈ [−1, 1], we have 0 ≤ 1+δ2 −t2 ≤ 1+δ2. Td has absolute value
less than 1 on [−1, 1] and is increasing on [1, ∞) with Td(1) = 1, so for t ∈ [−1, 1],

− 1 ≤ r(t) ≤ 1. (6.4)

For |t | ∈ [δ, 1], we have δ2 ≤ 1 + δ2 − t2 ≤ 1, so

|r(t)| ≤ 1

Td(1 + δ2)
. (6.5)
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Let us bound the last quantity. Recall that for t ≥ 1, we have the following explicit
expression:

Td(t) = 1

2

((
t +

√
t2 − 1

)d +
(
t +

√
t2 − 1

)−d
)

.

We have 1 + δ2 + √
(1 + δ2)2 − 1 ≥ 1 + √

2δ, which leads to

Td(1 + δ2) ≥ 1

2

(
1 + √

2δ
)d

= 1

2
exp

(
log

(
1 + √

2δ
)

d
)

≥ 1

2
exp

(
log(1 + √

2)δd
)

≥ 2δd−1, (6.6)

where we have used concavity of the log and the fact that 1 + √
2 ≥ 2. It follows

by combining (6.3), (6.4), (6.5), and (6.6), that q : y → r(‖y − x‖2) satisfies the
claimed properties.

We recall the following well-known bound for the factorial taken from [36].

Lemma 6.4 ([36]) For any n ∈ N, we have:

exp

(
1

12n + 1

)

≤ n!√
2πnnn exp(−n)

≤ exp

(
1

12n

)

.

We deduce the following Lemma.

Lemma 6.5 For any d ∈ N, d > 0, we have:
(

p + d

d

)

≤ dp
(

e
p

)p

exp
(

p2

d

)

Proof This follows from a direct computation using Lemma 6.4.
(

p + d

d

)

= (p + d)!
p!d!

≤
exp

(
1
24

)

√
2π

√
p + d

pd

(p + d)p+d

ppdd

≤
exp

(
1
24

)

√
2π

√
2
dp

pp

(
1 + p

d

)p+d

≤ dp

pp
exp

(
p2

d
+ p

)

which proves the result.
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Combining the last two lemmas, we get the following bound on the Christoffel
function.

Lemma 6.6 Let x �∈ S and δ be such that dist(x, S) ≥ δ. Then, for any d ∈ N, d > 0,
we have:

s(d)�μS,d(x) ≤ 23− δd
δ+diam(S) dp

(
e

p

)p

exp

(
p2

d

)

.

Proof We may translate the origin of R
p at x and scale the coordinates by δ +

diam(S), this results in x = 0 and distance from x to S is at most δ′ = δ
δ+diam(S)

≤ 1.
Furthermore, S is contained in the unit Euclidean ball B. Using invariance of the
Christoffel function with respect to change of origin and change of basis in R

p (The-
orem 3.5), this affine transformation does not change the value of the Christoffel
function. Now, the polynomial described in Lemma 6.3 provides an upper bound on
the Christoffel function. Indeed for any d ′ ∈ N, we have:

�μS,2d ′+1(0) ≤ �μS,2d ′(0) ≤ 22−2δ′d ′ ≤ 23−δ′(2d ′+1), (6.7)

where we have used δ′ ≤ 1 to obtain the last inequality. Combining Lemma 6.5 and
(6.7), we obtain for any d ′ ∈ N:

s(2d ′)�μS,2d ′(0) ≤ 23−2δ′d ′
(2d ′)p

(
e

p

)p

exp

(
p2

2d ′

)

,

s(2d ′+1)�μS,2d ′+1(0) ≤ 23−δ′(2d ′+1)(2d ′+1)p
(

e

p

)p

exp

(
p2

2d ′ + 1

)

. (6.8)

Since in (6.8) d ′ ∈ N was arbitrary, we obtain in particular:

s(d)�μS,d(0) ≤ 23−δ′ddp
(

e
p

)p

exp
(

p2

d

)
. (6.9)

The result follows from (6.9) by setting δ′ = δ
δ+diam(S)

.

Proof of Theorem 3.9

Proof Let us first prove that limk→∞ dH (S, Sk) = 0. We take care of both expres-
sions in the definition of dH separately. Fix an arbitrary k ∈ N, from Assumption 3.7
and Lemma 6.6, for any x ∈ R

p such that dist(x, S) > δk:

s(dk)�μS,dk
(x) ≤ 23− dist(x,S)dk

dist(x,S)+diam(S) d
p
k

(
e

p

)p

exp

(
p2

dk

)

< αk .

From this, we deduce that Rp \ Sk ⊇ {x ∈ R
p : dist(x, S) > δk} and thus Sk ⊆

{x ∈ R
p : dist(x, S) ≤ δk}. Since k was arbitrary, for any k ∈ N:

sup
x∈Sk

dist(x, S) ≤ δk . (6.10)
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Inequality (6.10) allows taking care of one term in the expression of dH . Let us now
consider the second term. We would like to show that:

sup
x∈S

dist(x, Sk) → 0 as k → ∞. (6.11)

Note that the supremum is attained in (6.11). We will prove this by contradiction:
for the rest of the proof, M denotes a fixed positive number whose value can change
between expressions. Suppose that (6.11) is false. This means that for each k ∈ N

(up to a subsequence), we can find xk ∈ S which satisfies:

dist(xk, Sk) ≥ M (6.12)

Since xk ∈ S and S is compact, the sequence (xk)k∈N has an accumulation point
x̄ ∈ S, i.e., (up to a subsequence) xk → x̄ as k → ∞. Since dist(·, Sk) is a Lipschitz
function, combining with (6.12), for every k ∈ N (up to a subsequence),

dist(x̄, Sk) ≥ M . (6.13)

We next show that (6.13) contradicts the assumption S = cl(int(S)). From now on,
we discard terms not in the subsequence and assume that (6.13) holds for all k ∈ N.
Combining Lemma 6.2 and Assumption 3.7, for every k ∈ N:

Sk ⊇ {x ∈ S : dist(x, ∂S) ≥ δk} . (6.14)

Since S = cl(int(S)) and x̄ ∈ S, consider a sequence {yl}l∈N ⊂ int(S) such that
yl → x̄ as l → ∞. Since yl ∈ int(S), we have dist(yl , ∂S) > 0 for all l. Up
to a rearrangement of the terms, we may assume that dist(yl , ∂S) is decreasing and
dist(y0, ∂S) ≥ δ0. For all l, denote by kl the smallest integer such that dist(yl , ∂S) ≥
δkl

. We must have kl → ∞ and we can discard terms so that kl is a valid subsequence.
We have constructed a subsequence kl such that for every l ∈ N, yl ∈ Skl

and yl → x̄.
This is in contradiction with (6.13) and hence (6.11) must be true. Combining (6.10)
and (6.11), we have that limk→∞ dH (S, Sk) = 0.

Let us now prove that limk→∞ dH (∂S, ∂Sk) = 0, we begin with the term
supx∈∂Sk

dist(x, ∂S). Fix an arbitrary k ∈ N and x̄ ∈ ∂Sk . We will distinguish the
cases x̄ ∈ S and x̄ �∈ S. Assume first that x̄ �∈ S. We deduce from (6.10), that:

dist(x̄, ∂S) = dist(x̄, S) ≤ δk . (6.15)

Assume now that x̄ ∈ S. If x̄ ∈ ∂S, we have dist(x̄, ∂S) = 0. Assume that x̄ ∈ int(S).
From (6.14), we have that S \Sk ⊆ {x ∈ S : dist(x, ∂S) < δk} and hence cl(S \Sk) ⊆
{x ∈ S : dist(x, ∂S) ≤ δk}. Since x̄ ∈ ∂Sk ∩ int(S), we have x̄ ∈ cl(S \ Sk) and hence
dist(x̄, ∂S) ≤ δk . Combining the two cases x̄ ∈ S and x̄ �∈ S, we have in any case
that dist(x̄, ∂S) ≤ δk and hence:

sup
x∈∂Sk

dist(x, ∂S) ≤ δk . (6.16)

Let us now prove that:

sup
x∈∂S

dist(x, ∂Sk) → 0 as k → ∞. (6.17)

First, since S is closed by assumption, the supremum is attained for each k ∈ N.
Assume that (6.17) does not hold, this means there exists a constant M > 0, such that
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we can find xk ∈ ∂S, k ∈ N with dist(xk, ∂Sk) ≥ M . If xk �∈ Sk infinitely often, then,
we would have up to a subsequence xk ∈ S and dist(xk, Sk) ≥ M . This is exactly
(6.12) and we already proved that it cannot hold true. Hence, xk �∈ Sk only finitely
many times and we may assume by discarding finitely many terms that xk ∈ Sk for
all k ∈ N. Let x̄ ∈ ∂S be an accumulation point of (xk)k∈N. Since x̄ ∈ ∂S, there
exists ȳ �∈ S such that 0 < dist(ȳ, S) ≤ lim infk→∞ dist(xk, ∂Sk)/2. Since xk ∈ Sk

for all k sufficiently large, we have ȳ ∈ Sk for all k sufficiently large but the fact
that 0 < dist(ȳ, S) contradicts (6.10). Hence, (6.17) must hold true and the proof is
complete.

Remark 6.7 (Refinements) The proof of Theorem 3.9 is based on the following fact:
{
x ∈ R

p : dist(x, S̄) ≥ δk

} ⊆ Sk ⊆ {
x ∈ R

p : dist(x, S) ≤ δk

}
.

Depending on the regularity of the boundary ∂S of S, it should be possible to
get sharper bounds on the distance as a function of δk . This should involve the
dependency on δ of the function:

δ → dH

({
x ∈ R

p : dist(x, S̄) ≥ δ
}
, ∂S

)
.

For example, if the boundary ∂S has bounded curvature, this function is equal to δ for
sufficiently small δ. Another example, if S ⊂ R

2 is the interior region of a nonself-
intersecting continuous polygonal loop, then the function is of the order of δ

sin
(

θ
2

) ,

where θ is the smallest angle between two consecutive segments of the loop.

Proof of Theorem 3.12

Proof Lemma 6.2 holds with μ in place of μS and w− in place of 1
λ(S)

. Indeed, we
have:

�μ,d ≥ w−λ(Bδ(x))�μBδ (x) ,

and the rest of the proof remains the same with different constants. Similarly, Lemma
6.6 holds with μ in place of μS ; indeed, the proof only uses the fact that μS is a prob-
ability measure supported on S which is also true for μ. The proof then is identical
to that of Theorem 3.9 by reflecting the corresponding change in the constants.

Proof of Theorem 3.13

A preliminary Lemma

Lemma 6.8 Let μ be a probability measure supported on a compact set S. Then, for
every d ∈ N, d > 0, and every x ∈ R

p:

�μ,d(x) ≤
(

diam(conv(S))

dist(x, conv(S)) + diam(conv(S))

)2

.
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Proof Set y = proj(x, conv(S)), that is ‖y − x‖ = dist(x, conv(S)) and:

y = arg minz∈conv(S){ 〈z, y − x〉}. (6.18)

Consider the affine function:

z �→ fx(z) :=
〈
x − z, x−y

‖x−y‖
〉

‖x − y‖ + diam(conv(S))
. (6.19)

For any z ∈ S, we have:

fx(z) ≤ ‖x − z‖
‖x − y‖ + diam(conv(S))

≤ ‖x − y‖ + ‖y − z‖
‖x − y‖ + diam(conv(S))

≤ 1, (6.20)

where we have used Cauchy-Schwartz and triangular inequalities. Furthermore, we
have for any z ∈ S:

fx(z) ≥ min
z∈conv(S)

fx(z) = ‖x − y‖
‖x − y‖ + diam(conv(S))

, (6.21)

where we have used equation (6.18). Consider the affine function qx : z → 1−fx(z).
We have:

qx(x) = 1 (6.22)

0 ≤ qx(z) ≤ diam(conv(S))
‖x−y‖+diam(conv(S))

, for any z ∈ S,

where the inequalities are obtained by combining (6.20) and (6.21). The result
follows from (6.18), (6.22), and Theorem 3.1.

Proof of Theorem 3.13

Proof First, let us consider measurability issues. Fix n and d such that Md(μ) is
invertible. Let X be a matrix in R

p×n, we use the shorthand notation:

�X,d (z) = min
P∈Rd [x], P (z)=1

1

n

n∑

i=1

P(Xi )
2, (6.23)

where for each i, Xi is the ith column of the matrix X. This corresponds to the
empirical Christoffel function with input data given by the columns of X. Consider
the function F : Rp×n → [0, 1] defined as follows:

F : X → sup
z∈Rp

∣
∣�μ,d(z) − �X,d (z)

∣
∣ . (6.24)

It turns out that F is a semi-algebraic function (its graph is a semi-algebraic set).
Roughly speaking, a set is semi-algebraic if it can be defined by finitely many poly-
nomial inequalities. We refer the reader to [10] for an introduction to semi-algebraic
geometry; we mostly rely on content from Chapter 2. First, the function

(X, z, P ) → 1

n

n∑

i=1

P(Xi )
2
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is semi-algebraic (by identifying the space of polynomials with the Euclidean space
of their coefficients) and the set {(P, z) : P(z) = 1} is also semi-algebraic. Con-
strained partial minimization can be expressed by a first-order formula, and, by
Tarski-Seidenberg Theorem (see, e.g., [10, Theorem 2.6]), this operation preserves
semi-algebraicity. Hence, the function (X, z) → �X,d (z) is semi-algebraic. Further-
more, Theorem 3.1 ensures that �μ,d(z) = 1/κ(z, z) for any z, where κ(z, z) is a
polynomial in z and hence z → �μ,d(z) is semi-algebraic. Finally, absolute value is
semi-algebraic and using a partial minimization argument again, we have that F is a
semi-algebraic function.

As a semi-algebraic function, F is Borel measurable. Indeed, using the good sets
principle ([2] §1.5.1, p. 35) it is sufficient to prove that for an arbitrary interval3

(a, b] ⊂ [0, 1], F−1((a, b]) ∈ B(Rp×n). Any such set is the pre-image of a semi-
algebraic set by a semi-algebraic map. As proved in [10, Corollary 2.9], any such set
must be semi-algebraic and hence measurable. Thus, with the notations of Theorem
3.13, ‖�μn,d − �μ,d‖∞ is indeed a random variable for each fixed n, d such that
Md(μ) is invertible.

We now turn to the proof of the main result of the Theorem. For simplicity, we
adopt the following notation for the rest of the proof. For any continuous function
f : Rp → R, and any subset V ⊆ R

p:

‖f ‖V := supx∈V |f (x)|, [ so that ‖f ‖Rp = ‖f ‖∞], (6.25)

which could be infinite. We prove that for any ε > 0:

P
(
lim supn

{‖�μn,d − �μ,d‖Rp ≥ ε
}) = 0, (6.26)

where the probability is taken with respect to the random choice of the sequence of
independent samples from μ and the limit supremum is the set theoretic limit of the
underlying events.

Fix ε > 0. Denote by S the compact support of μ. Note that S contains also
the support of μn with probability 1. From Lemma 6.8, we have an upper bound on
both �μn,d and �μ,d of order O

(
dist(x, conv(S))−2

)
which holds with probability

1. Hence, it is possible to find a compact set Vε containing S (with complement
V c

ε = R
n \ Vε) such that, almost surely:

max
{‖�μn,d‖V c

ε
, ‖�μ,d‖V c

ε

} ≤ ε

2
. (6.27)

Next, we have the following equivalence:

‖�μn,d − �μ,d‖Rp ≥ ε ⇔
{ ‖�μn,d − �μ,d‖Vε ≥ ε or

‖�μn,d − �μ,d‖V c
ε

≥ ε
(6.28)

On the other hand, since both functions are nonnegative, from equation (6.27), almost
surely:

‖�μn,d − �μ,d‖V c
ε

≤ max
{‖�μn,d‖V c

ε
, ‖�μ,d‖V c

ε

} ≤ ε

2
. (6.29)

3Recall that the Borel σ -field B([0, 1]) is generated by the intervals (a, b] of [0, 1] (see [2] §1.4.6, p. 27).
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Hence, the second event in the right-hand side of (6.28) occurs with probability 0. As
a consequence, except for a set of events of measure 0, we have:

‖�μn,d − �μ,d‖Rp ≥ ε ⇔ ‖�μn,d − �μ,d‖Vε ≥ ε,

which in turn implies:

P
(
lim supn

{‖�μn,d −�μ,d‖Rp

} ≥ ε
)=P

(
lim supn

{‖�μn,d −�μ,d‖Vε

} ≥ ε
)

.

(6.30)

By assumption, the moment matrix Md(μ) is invertible and by the strong law of large
numbers, almost surely, Md(μn) must be invertible for sufficiently large n. Assume
that Md(μn) is invertible, we have:

‖�μn,d −�μ,d‖Vε = sup
x∈Vε

{∣
∣
∣
∣

1

vd(x)T Md(μ)−1vd(x)
− 1

vd(x)T Md(μn)−1vd(x)

∣
∣
∣
∣

}

= sup
x∈Vε

{∣
∣
∣
∣

vd(x)T (Md(μn)
−1−Md(μ)−1)vd(x)

vd(x)T Md(μ)−1vd(x)vd(x)T Md(μn)−1vd(x)

∣
∣
∣
∣

}

. (6.31)

Using the strong law of large numbers again, continuity of eigenvalues and the fact
that for large enough n, Md(μn) is invertible with probability 1, the continuous
mapping theorem ensures that almost surely, for n sufficiently large, the smallest
eigenvalue of Md(μn)

−1 is close to that of Md(μ)−1 and hence bounded away from
0. Since the first coordinate of vd(x) is 1, the denominator in (6.31) is bounded away
from 0 almost surely for sufficiently large n. In addition, since Vε is compact, vd(x) is
bounded on Vε and there exists a constant K such that, almost surely, for sufficiently
large n:

‖�μn,d − �μ,d‖Vε ≤ K‖Md(μ)−1 − Md(μn)
−1‖, (6.32)

where the matrix norm in the right-hand side is the operator norm induced by the
Euclidean norm. Combining (6.30) and (6.32), we obtain:

P
(
lim supn

{‖�μn,d − �μ,d‖Rp

} ≥ ε
)

≤ P
(

lim supn

{
K‖Md(μ)−1 − Md(μn)

−1‖ ≥ ε
})

. (6.33)

The strong law of large numbers and the continuity of the matrix inverse Md(·)−1 at
μ ensure that the right-hand side of (6.33) is 0. This concludes the proof.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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