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Abstract
Non-Gaussian Lévy noises are present in many models for understanding under-
lining principles of physics, finance, biology, and more. In this work, we consider
the Fokker-Planck equation (FPE) due to one-dimensional asymmetric Lévy motion,
which is a non-local partial differential equation. We present an accurate numerical
quadrature for the singular integrals in the non-local FPE and develop a fast summa-
tion method to reduce the order of the complexity from O(J 2) to O(J log J ) in one
time step, where J is the number of unknowns. We also provide conditions under
which the numerical schemes satisfy maximum principle. Our numerical method is
validated by comparing with exact solutions for special cases. We also discuss the
properties of the probability density functions and the effects of various factors on
the solutions, including the stability index, the skewness parameter, the drift term,
the Gaussian and non-Gaussian noises, and the domain size.

Keywords Fokker-Planck equations · Non-Gaussian noises · Asymmetric α-stable
Lévy motion · Non-local partial differential equation · Fast algorithm
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1 Introduction

The Fokker-Planck equation (FPE) was first used to describe the Brownian motion
of particles, which gives the time evolution of the probability density function for the
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systems [13, 27]. For stochastic differential equations (SDEs) driven by Brownian
motion, the corresponding FPE is a second-order parabolic partial differential equa-
tion. For some special cases, the analytic solutions can be founded but, in general,
people seek numerical solutions with well-developed numerical methods for such dif-
ferential equations. However, noisy fluctuations are usually non-Gaussian in nature,
and the investigation of the FPE induced by non-Gaussian noises is still in its infancy.
Non-Gaussian noises are widely found to describe the phenomenon in physics, biol-
ogy, and economics among other fields[5, 20, 40]. In this work, we consider FPEs
derived from stable Lévy motion because of its properties of “heavy tail” and central
limit theorem.

A Lévy motion is a stochastic process which has independent and stationary incre-
ments, stochastically continuous sample paths. It is completely determined by the
Lévy-Khintchine formula; i.e., a Lévy motion is characterized by the generating
triplet (b, A, ν), b is a drift vector, A is a diffusion matrix, and ν is a Lévy measure
satisfying

∫
Rn\{0}(|y|2 ∧ 1)ν(dy) < ∞.

In this paper, we mainly consider FPEs corresponding to scalar SDEs with stable
Lévy motion whose distribution Sα(τ, β, μ) is determined by four parameters: the
index of stability α (0 < α ≤ 2), the scaling parameter τ (τ ≥ 0), the skewness
parameter (−1 ≤ β ≤ 1), and the shift parameter μ. The Lévy-Khintchine formula
for the stable Lévy motion is [17, 30]

E(eiλLt ) =
{
exp

{−τα|λ|αt
(
1 − iβsgnλ tan πα

2

) + iμλt
}
, for α �= 1,

exp
{
−τ |λ|t

(
1 + iβ 2

π
sgnλ log |λ|

)
+ iμλt

}
, for α = 1.

(1.1)

The α-stable random variable is strictly stable for μ = 0 and α �= 1, but when
α = 1, it is strictly stable if and only if the process is symmetric (β = 0). Without
loss of generality, we take the scaling factor τ = 1 and the shift parameter μ = 0 for
consideration.

Recently, numerous research focus on the symmetric stable Lévy motion, cor-
responding to β = 0 in (1.1), partially because the infinitesimal generator of the
process is related to the fractional Laplacian operator. The operator has many equiv-
alent definitions including singular integrals, the Riesz potential operator, Bochner’s
subordination, and so on [22]. Schertzer et al. [31] derived a fractional FPE of non-
linear stochastic differential equations driven by non-Gaussian Lévy stable noises
and discussed the existence and uniqueness of the solution. A number of refer-
ences [36, 39] showed the existence and uniqueness of weak solution for non-local
Fokker-Planck equations. Huang et al. [18] investigated weak and strong maximum
principles for a class of general Lévy-type Markov generators (non-local Waldenfels
operators). The regularity results for the solutions are given in [8, 15, 28].

The numerical methods developed recently for the case include finite differences
with quadrature method, spectral method, and Galerkin finite element method. Using
the different definitions of fractional derivatives, Liu et al. [23] transformed the space
fractional Fokker-Planck equation into ordinary differential equations and solved it
by a method of lines. Huang et al. [19], Gao et al. [12], andWang et al. [37] presented
finite difference methods with different quadrature rules in one and two dimensions.
Du et al. [10, 35] considered the discontinuous and continuous Galerkin methods
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for certain non-local diffusion problems. D’Elia et al. [9] used the non-local vector
calculus to show that the solutions of these non-local problems converge to the solu-
tions of fractional Laplacian problems as the domain of the non-local interactions
becomes infinite. Mao et al. [24, 25] developed efficient spectral-Galerkin algorithms
for fractional partial differential equations. Recently, Acosta et al. [2] dealt with
the integral version of the Dirichlet homogeneous fractional Laplace equation and
gave a finite element analysis. They also presented high-order numerical methods for
one-dimensional fractional-Laplacian boundary value problems [3].

Asymmetric α-stable Lévy motion is widely applied in physical sciences and
economy [16, 21, 34]. Chen et al. [6, 7] constructed and proved the existence and the
uniqueness of the fundamental solution (heat kernel) of non-symmetric Lévy-type
operator and established its sharp two-sided estimates. Riabiz et al. [26] gives the
modified Poisson series representation of linear stochastic processes driven by asym-
metric stable Lévy process. As the lack of the closed-form density expressions limits
its application, we will provide the numerical approximation for the probability den-
sity as solution to the Fokker-Planck equation. However, to our knowledge, there
are few work in developing the numerical methods for the asymmetric case. Zeng
et al. [41] presented the numerical solution of the space-fractional FPE and studied
properties of parameter-induced aperiodic stochastic resonance in the presence of
asymmetric Lévy noise.

In our work, we mainly consider the FPE driven by asymmetric Lévy motion,
develop a fast numerical scheme, and discuss the properties of the probability den-
sity functions. This paper is structured as follows. In Section 2, we present the
Fokker-Planck equation for an SDE driven by asymmetric α-stable Lévy motion. In
Section 3, we show the symmetry of solutions and present the numerical scheme. We
show that our numerical scheme satisfies a discrete maximum principle in Section 4.
The numerical solutions are presented in Section 5. Finally, we summarize the results
in Section 6.

2 Fokker-Planck equation driven by stable Lévymotion

Consider the following SDE

dXt = f (Xt )dt + σdBt + dLt , X0 = x, (2.1)

where f is a drift term, σ is a non-negative diffusion constant, Lt is a Lévy motion
with the generating triplet (εKα,β, 0, ενα,β), Kα,β is a drift constant defined in (2.9),
and να,β is a Lévy jumpmeasure defined in (2.6). We choose the Lévy motionLt such
that L1 is the random variable whose probability density function (PDF) corresponds
to the stable distribution Sα(1, β, 0). Here, α (0 < α ≤ 2) is the index of stability
and ε is the intensity of Lévy noise.

For every ϕ ∈ H 2
0 (R), the generator for the solution of SDE (2.1) is

A ϕ = (
f (x) + εKα,β

)
ϕx + σ 2

2
ϕxx + εLα,βϕ, (2.2)
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where

Lα,βϕ =
∫

R\{0}
[
ϕ(x + y) − ϕ(x) − 1{|y|<1}yϕ′(x)

]
να,β(dy). (2.3)

The Fokker-Planck equation for the PDF p(x, t) of the process Xt associated with
SDE (2.1) is

pt = A ∗p, p(x, 0) = p0(x), (2.4)

where A ∗ is the adjoint operator of A in Hilbert space [11], given by

A ∗ϕ = − ((
f + εKα,β

)
ϕ
)
x

+ σ 2

2
ϕxx − ε

∫

R\{0}
[ϕ(x) − ϕ(x − y)

− 1{|y|<1}yϕ′(x)
]
να,β(dy). (2.5)

2.1 Asymmetric α-stable Lévy motion

In the following, we focus on the FPE driven by asymmetric α-stable Lévy motion.
The Lévy measure να,β is given by [38]

να,β(dy) = Cp1{0<y<∞}(y) + Cn1{−∞<y<0}(y)

|y|1+α
dy, (2.6)

with

Cp = Cα

1 + β

2
, Cn = Cα

1 − β

2
, −1 ≤ β ≤ 1, (2.7)

and

Cα =
{

α(1−α)
�(2−α) cos ( πα

2 )
, α �= 1;

2
π
, α = 1.

(2.8)

The constant Kα,β in (2.2) is given by

Kα,β =
{ Cp−Cn

1−α
= βCα

1−α
, α �= 1;(∫ ∞

1
sin(x)

x2
dx + ∫ 1

0
sin(x)−x

x2
dx

)
(Cn − Cp), α = 1.

(2.9)

Here notice that Cp(−β) = Cn(β) and Kα,−β = −Kα,β .
We can rewrite the adjoint operator of Lα,β

−L ∗
α,βϕ(x) =

∫

R\{0}
[
ϕ(x) − ϕ(x − y) − 1{|y|<1}yϕ′(x)

]
να,β(dy)

as

− L ∗
α,βϕ(x) = −

∫

R\{0}
[
ϕ(x + y) − ϕ(x) − 1{|y|<1}yϕ′(x)

]
να,−β(dy) (2.10)

by making the change of integration variable y → −y.
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Finally, the adjoint operator of the non-local term in Eq. (2.5) is

L ∗
α,βϕ(x) =

∫

R\{0}
[
ϕ(x + y) − ϕ(x) − 1{|y|<1}yϕ′(x)

]
να,−β(dy). (2.11)

For numerical computations, we change 1{|y|<1} to 1{|y|<b} in (2.11). Then, the
Fokker-Planck equation driven by the asymmetric Lévy motion becomes

pt = − (c(x)p)x + σ 2

2
pxx

+ ε

∫

R\{0}
[
p(x + y, t) − p(x, t) − 1{|y|<b}ypx

]
να,−β(dy), (2.12)

where

c(x) =
{

f (x) + εKα,β + ε(Cp − Cn)
b1−α−1
1−α

, α �= 1;
f (x) + εKα,β + ε(Cp − Cn) ln b, α = 1

(2.13)

with the constants Cp and Cn defined by (2.7).

Remark 1 If β = 0, the process Lt becomes symmetric Lévy motion, then c(x) =
f (x), να,−β(dy) = |y|−1−αdy and Lα,β is self-adjoint.

2.2 Auxiliary conditions

For the solution of Eq. (2.12), we specify auxiliary conditions. There are several var-
ious boundary conditions for Brownian motion, such as reflecting barrier, absorbing
barrier, and periodic boundary condition [13]. We consider two cases of processes
governed by the SDE (2.1). One is that the process Xt disappears or is killed when
Xt is outside a bounded domain D = (−b, b). In this case, we have the absorb-
ing condition; i.e., the probability p(x, t) of being outside of the bounded domain
D = (−b, b) is 0:

p(x, t) = 0, x /∈ (−b, b). (2.14)

We can also extend the domain to general unsymmetric domains.
The other case is that the process Xt can go anywhere on the entire real-line R. In

this case, we call it the natural condition. The probability density satisfies
∫ ∞

−∞
p(x, t)dx = 1, ∀t ≥ 0.

3 Numerical schemes

The well-posedness of the non-local Fokker-Planck equation driven by arbitrary drift
f and Lévy motions is an active research topic. In this work, we assume that the solu-
tion to (2.4) exists and is unique. The well-posedness of weak solution for symmetric
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Lévy motions is considered in [36, 39]. The well-posedness results of the martin-
gale problem for general stable-like operator are different for 1 < α < 2 [1] and
0 < α ≤ 1 [33].

3.1 Simplification

First, we show the following symmetry for the solution of FPE (2.12).

Proposition 1 (Symmetry of Solutions) If f (x) is an odd function and the domain
D is symmetric (D = (−b, b)), then the solution p(x, t) of the Fokker-Planck equa-
tion (2.12) is symmetric about the origin for any given time t if β changes the sign,
i.e., p(−x, t; −β) = p(x, t; β) for all x ∈ (−b, b) where p(x, t; β) and p(x, t; −β)

denote the solutions corresponding to β and −β respectively.

Proof From the Eq. (2.12), p(−x, t; −β) satisfies

pt (−x, t; −β) = − (cp)x(−x, t; −β) + σ 2

2
pxx(−x, t; −β)

+ ε

∫

R\{0}
[p(−x + y, t; −β) − p(−x, t; −β)

− 1{|y|<b}ypx(−x, t; −β)]να,β(dy). (3.1)

By the definition of c(x) in (2.12), we have c(−x; −β) = −c(x; β) if f (x) is an odd
function.
Denote p̃(x, t) = p(−x, t; −β), then

p̃x(x, t) = −px(−x, t; −β), p̃xx(x, t) = pxx(−x, t; −β). (3.2)

Taking y ′ = −y, we have
∫

R\{0}
[
p(−x + y, t; −β)−p(−x, t; −β)−I{|y|<b}(y) ypx(−x, t; −β)

]
να,β(dy)

=
∫

R\{0}
[
p̃(x − y, t) − p̃(x, t) + I{|y|<b}(y) yp̃x(x, t)

]

×
[
Cp1{0<y<∞} + Cn1{−∞<y<0}

|y|1+α

]

dy

=
∫

R\{0}
[
p̃(x + y′, t) − p̃(x, t) − I{|y′|<b}(y′) y′p̃x(x, t)

]
να,−β(dy′). (3.3)

From the property of c(x), Eqs. (3.1) and (3.3), we finally have

p̃t (x, t) = −(c(x; β)p̃(x, t))x + σ 2

2
p̃xx(x, t) (3.4)

+ε

∫

R\{0}
[p̃(x + y, t) − p̃(x, t) − 1{|y|<b}yp̃x(x, t)]να,−β(dy).

Then, we get the conclusion by the uniqueness of the solution to (2.12).
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For convenience, we convert the domain D = (−b, b) to the standard domain
(−1, 1) by the variable transformation

s = x/b, and v(s, t) := p(bs, t). (3.5)

Then, Eq. (2.12) changes to

vt = −1

b
(c(bs)v)s + σ 2

2b2
vss

+ εb−α

∫

R\{0}
[v(s + r, t) − v(s, t)

− I{|r|<1}(r) rvs(s, t)]
[

Cn1{0<r<∞} + Cp1{−∞<r<0}
|r|1+α

]

dr . (3.6)

Next, we present the numerical schemes for the absorbing boundary condition.
By using the absorbing boundary condition, the probability density v(s, t) vanishes
outside of the standard domain D = (−1, 1). The above equation (3.6) containing
the singular integral is simplified to the following equations[38].

For s < 0,

vt = σ 2

2b2
vss − 1

b
(c(bs)v)s + εb−αCpg(s)vs − εb−α v

α

[
Cn

(1 − s)α
+ Cp

(1 + s)α

]

+ εb−αCn

∫ 1

0

v(s + y, t) − v(s, t) − yvs(s, t)

y1+α
dy

+ εb−αCn

∫ 1−s

1

v(s + y, t) − v(s, t)

y1+α
dy

+ εb−αCp

∫ 1+s

0

v(s − y, t) − v(s, t) + yvs(s, t)

y1+α
dy; (3.7)

for s ≥ 0,

vt = σ 2

2b2
vss − 1

b
(c(bs)v)s − εb−αCng(s)vs − εb−α v

α

[
Cn

(1 − s)α
+ Cp

(1 + s)α

]

+ εb−αCn

∫ 1−s

0

v(s + y, t) − v(s, t) − yvs(s, t)

y1+α
dy

+ εb−αCp

∫ 1+s

1

v(s − y, t) − v(s, t)

y1+α
dy

+ εb−αCp

∫ 1

0

v(s − y, t) − v(s, t) + yvs(s, t)

y1+α
dy. (3.8)

Here,

g(s) =
{

1−(1−|s|)1−α

1−α
, α �= 1;

− ln(1 − |s|), α = 1.
(3.9)

Assuming the drift term f is differentiable, we change Eqs. (3.7) and (3.8) to the
following.
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For s < 0,

vt = σ 2

2b2
vss(s, t) − m1(s)vs(s, t) − m2(s)v(s, t)

+ εb−αCn

∫ 1

0

v(s + y, t) − v(s, t) − yvs(s, t)

y1+α
dy

+ εb−αCn

∫ 1−s

1

v(s + y, t) − v(s, t)

y1+α
dy

+ εb−αCp

∫ 1+s

0

v(s − y, t) − v(s, t) + yvs(s, t)

y1+α
dy; (3.10)

for s ≥ 0,

vt = σ 2

2b2
vss(s, t) − m1(s)vs(s, t) − m2(s)v(s, t)

+ εb−αCn

∫ 1−s

0

v(s + y, t) − v(s, t) − yvs(s, t)

y1+α
dy

+ εb−αCp

∫ 1+s

1

v(s − y, t) − v(s, t)

y1+α
dy

+ εb−αCp

∫ 1

0

v(s − y, t) − v(s, t) + yvs(s, t)

y1+α
dy, (3.11)

where

m1(s) =
{

c(bs)
b

− εb−αCpg(s), s < 0;
c(bs)

b
+ εb−αCng(s), s ≥ 0,

(3.12)

and

m2(s) = c′(bs) + εb−α

α

[
Cn

(1 − s)α
+ Cp

(1 + s)α

]

. (3.13)

3.2 Discretization

We aim to solve the FPE (3.10) and (3.11) numerically. First, we denote Vj as the
numerical solution of v at (sj , t), where sj = jh for j ∈ Z and h = 1

J
. Due

to the absorbing condition, Vj = 0 for |j | ≥ J and we denote the unknowns Vj

for −J < j < J by the vector V := (V−J+1, V−J+2, · · · , VJ−1)
T . Second, we

approximate the diffusion term by the second-order central differencing and the first-
order derivatives by the first-order upwind scheme. Denoting

δuVj =
{

Vj −Vj−1
h

, if m1(sj ) > 0;
Vj+1−Vj

h
, if m1(sj ) < 0,

(3.14)

we discretize the non-integral terms in the RHS of Eqs. (3.10) and (3.11) as

(BV)j := Ch

Vj+1 − 2Vj + Vj−1

h2
− m1(sj )δuVj − m2(sj )Vj , (3.15)
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where

Ch = σ 2

2b2
− εb−α

2
Cαζ(α − 1)h2−α . (3.16)

The second term in Ch includes the leading-order correction term for the trapezoidal
rules of the singular integrals in Eqs. (3.10) and (3.11) given below, and ζ is the
Riemann zeta function. Eq. (3.15) defines a linear operator or a (2J −1)-by-(2J −1)
matrix B.

Third, the integrals in Eqs. (3.10) and (3.11) are approximated by the trapezoidal
rule

(SV)j :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εb−αCnh
J+j∑

k=j+1
′Vk−Vj −(sk−sj )

Vj −Vj−1
h

(sk−sj )α+1 + εb−αCnh
J∑

k=J+j

Vk−Vj

(sk−sj )1+α

+εb−αCph
j−1∑

k=−J

′′Vk−Vj −(sk−sj )
Vj+1−Vj

h

(sj −sk)
α+1 , for −J + 1 ≤ j ≤ −1,

εb−αCnh
J∑

k=j+1
′Vk−Vj −(sk−sj )

Vj −Vj−1
h

(sk−sj )α+1 + εb−αCph
−J+j∑

k=−J

Vk−Vj

(sj −sk)
1+α

+εb−αCph
j−1∑

k=−J+j

′′Vk−Vj −(sk−sj )
Vj+1−Vj

h

(sj −sk)
α+1 , for 0 ≤ j ≤ J − 1 .

(3.17)

The summation symbol
∑

means the terms of both end indices are multiplied by
1
2 ;

∑′ (∑′′) means that only the term of the top (bottom) index is multiplied by 1
2 .

Eq. (3.17) defines another linear operator or (2J −1)-by-(2J −1) matrix S. Note the
trapezoidal rule in (3.17) would induce significant error due to the singular nature of
the integrals and the dominant error is eliminated by the second term in (3.16) [32,
38].

Now, we present our semi-discrete scheme for solving the FPE (3.10) and (3.11)

dVj

dt
= (AV)j , where A := B + S, (3.18)

for −J + 1 ≤ j ≤ J − 1.

Remark 2 We point out that our semi-discrete scheme for the natural condition will
be the same as (3.18) except m2(s) simplifies to c′(bs).

3.3 Fast algorithm

The summation terms in the discretized scheme (3.18) can be written in matrix-
vector multiplication form SV as given by (3.17). We decompose the matrix S as the
summation of a Toeplitz matrix TS and a tridiagonal matrix DS

S = TS + DS, (3.19)
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where

TS =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 C̃n

h1+α
C̃n

(2h)1+α · · · C̃n

[(2J−2)h]1+α

C̃p

h1+α 0 C̃n

h1+α · · · C̃n

[(2J−3)h]1+α

C̃p

(2h)1+α

C̃p

h1+α 0
. . . C̃n

[(2J−4)h]1+α

...
...

. . .
. . .

...
C̃p

[(2J−2)h]1+α

C̃p

[(2J−3)h]1+α

C̃p

[(2J−4)h]1+α · · · 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (3.20)

DS =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a1 p1
b2 a2 p2

. . .
. . .

. . .
b2J−2 a2J−2 p2J−2

b2J−1 a2J−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
. (3.21)

Here

C̃p = εb−αCph, C̃n = εb−αCnh, (3.22)

and

aJ+j = −C̃n

[ J∑

k=j+1

′ 1

(sk − sj )α+1

]
− C̃p

[ j−1∑

k=−J

′′ 1

(sj − sk)α+1

]

−

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C̃n

h

J+j∑

k=j+1
′ 1
(sk−sj )α

+ C̃p

h

j−1∑

k=−J

′′ 1
(sj −sk)

α , for j = 1 − J, 2 − J, · · · , 0,

C̃n

h

J∑

k=j+1
′ 1
(sk−sj )α

+ C̃p

h

j−1∑

k=−J+j

′′ 1
(sj −sk)

α , for j = 1, J + 2, · · · , J − 1,

pJ+j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C̃p

h

j−1∑

k=−J

′′ 1
(sj −sk)

α , for j = 1 − J, 2 − J, · · · , 0,

C̃p

h

j−1∑

k=−J+j

′′ 1
(sj −sk)

α , for j = 1, 2, · · · , J − 1,

bJ+j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C̃n

h

J+j∑

k=j+1
′ 1
(sk−sj )α

, for j = 1 − J, 2 − J, · · · , 0,

C̃n

h

J∑

k=j+1
′ 1
(sk−sj )α

, for j = 1, 2, · · · , J − 1.

The direct summation of SV causes the computational complexity of the scheme
(3.18) to be O(J 2). Realizing that the dominant computational cost comes from
Toeplitz matrix-vector multiplications, we develop our fast algorithm based on the
well-known algorithm of O(J log J ) for multiplying a vector by a Toeplitz matrix
[14].
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Next, we compare the CPU times using fast algorithm with those using direct
summation in Table 1 for the case of α = 0.5, β = 0.5, f ≡ 0, d = 0, and
ε = 1 with 
t = 1/1600 and different resolutions J from time 0 to tF = 1. The

initial condition is a Gaussian density function p(x, 0) =
√

40
π

e−40x2 . The numerical
schemes, implemented in MATLAB, were executed on a desktop PC with 3.6 GHz
Intel Core i7-4790 processor and 8-GB RAM.

From the results in Table 1, the CPU time for the scheme with the fast algorithm
increases as O(J log J ) while the scheme with the direct summation grows quadrati-
cally in J . This behavior agrees with the theoretical analysis of the complexity of the
algorithms.

4 Maximum principle

In this section, we will show that the semi-discrete scheme (3.18) satisfies the dis-
crete maximum principle under the condition the function m2(s) defined in (3.13) is
non-negative for |s| < 1: the solution to (3.18) reaches its maximum and minimum
outside the solution domain, i.e., in ∂Ih,tF defined by

Ih = {j ∈ Z : |jh| < 1}, Ih,tF = Ih × (0, tF ], ∂Ih,tF = Z × [0, tF ] \ Ih,tF , (4.1)

where tF > 0 is any fixed final time. We point out the unusual definition of the
“boundary” of the solution domain due to the non-local exterior absorbing condition
(2.14). For weak and strong maximum principles for the original Eq. 2.4 or non-local
Waldenfels operator, we refer to the work [18].

Proposition 2 (Maximum principle for the absorbing condition) Assume m2(s) ≥ 0
for s ∈ (−1, 1).

(i) If

dVj

dt
− (AV)j ≤ 0 for (j, t) ∈ Ih,tF and Vj = 0 for |j | ≥ J, (4.2)

then
max

(j,t)∈Z×[0,tF ]
Vj (t) = max

(j,t)∈∂Ih,tF

Vj (t). (4.3)

(ii) If

dVj

dt
− (AV)j ≥ 0 for (j, t) ∈ Ih,tF and Vj = 0 for |j | ≥ J, (4.4)

Table 1 Comparison of the CPU times of computing the solution of the FPE with and without the fast
algorithm for the case α = 0.5, β = 0.5, f ≡ 0, d = 0, and ε = 1 and different J s

J 100 200 400 800

CPU times (sec) with direct summation 15.85 50.99 179.25 671.47

CPU times (sec) using the fast algorithm 0.13 0.16 0.34 0.79
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then

min
(j,t)∈Z×[0,tF ] Vj (t) = min

(j,t)∈∂Ih,tF

Vj (t). (4.5)

Proof 1. Let us suppose

dVj

dt
− (AV)j < 0 for (j, t) ∈ Ih,tF and Vj = 0 for |j | ≥ J, (4.6)

but there exists a point (j∗, t∗) ∈ Ih,tF such that Vj∗(t∗) = max
Z×[0,tF ]

Vj .

2. If 0 < t∗ < tF , then

dVj∗

dt
= 0 at t = t∗. (4.7)

On the other hand, we have, at t = t∗, (sk − sj∗)
Vj∗ − Vj∗−1

h
≥ 0 for j∗ + 1 ≤

k ≤ J and (sk − sj∗)
Vj∗+1 − Vj∗

h
≥ 0 for −J ≤ k ≤ j∗ − 1 because Vj∗(t∗)

is the maximum. Consequently, each summation term in (3.17) is non-positive,
resulting (SV)j∗ ≤ 0 at t = t∗. Due to the fact that Vj∗(t∗) is the maximum,
Vj∗+1 − 2Vj∗ + Vj∗−1 ≤ 0, m1(sj∗)δuVj∗ ≥ 0 from the upwind scheme (3.14),
m2(sj∗)Vj∗ ≥ 0 from the assumption m2(s) ≥ 0 and Vj∗ ≥ 0 = Vk for k ≥
J , resulting (BV)j∗ ≤ 0 at t = t∗. Therefore, together with (4.7), we have
dVj∗

dt
− (AV)j∗ ≥ 0 at t = t∗, which is a contradiction to (4.6).

3. If t∗ = tF , then
dVj∗

dt
≥ 0 at t = t∗ because Vj reaches its maximum at (j∗, t∗)

for all (j, t) ∈ Z × [0, tF ]. The argument in the previous point 2 still holds
(AV)j∗ ≤ 0 at t = t∗. Thus, it is a contradiction to (4.6).

4. In the general case of (4.2), we define Vδ := V − δt where δ is a posi-

tive parameter. Then, we have AVδ = AV, and
dV δ

j

dt
− (AVδ)j = dVj

dt
− δ−

(AV)j − m2(sj )δt < 0 for (j, t) ∈ Ih,tF . Thus, we have max(j,t)∈Z×[0,tF ]
V δ

j (t) = max(j,t)∈∂Ih,tF
V δ

j (t). We obtain (4.3) by letting δ → 0. This concludes
the proof of the assertion (i).

5. By considering −V, assertion (ii) follows immediately.

Remark 3 The condition m2 ≥ 0 for the maximum principle is equivalent to requir-
ing the drift f satisfy f ′ ≥ −mins∈(−1,1)

εb−α

α
[ Cn

(1−s)α
+ Cp

(1+s)α
]. For example, if

α = β = 0.5, ε = 1, and b = 1, the RHS of the above inequality is − 0.76;
therefore, the O-U potential f = −0.6x would satisfy the maximum principle. We
point out that any drift f with f ′ ≥ 0 satisfies the condition m2 ≥ 0.

Proposition 3 (Maximum principle for the natural condition) Assume f ′(bs) ≥ 0
for s ∈ (−1, 1).
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Fig. 1 Comparison of the numerical solutions from two different numerical schemes on satisfying max-
imum principle for the case α = 0.5, β = 0.5, f (x) = −x, σ = 0, and ε = 1 and the initial condition

p(x, 0) =
√

40
π

e−40x2 . The dash-dotted line and the solid line provide the numerical solutions using
forward Euler time integration and implicit Euler respectively

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

x

p(
x,

0.
4)

h=0.00025
h=0.000125
h=0.0000625
True Solu

Fig. 2 Comparison between the analytic solution (the solid line) and the numerical solutions at time tF =
0.4 for α = 0.5, β = 1, f ≡ 0, σ = 0, and ε = 1 and different resolutions h = 0.00025 (the dotted line),
0.000125 (the dashed line), and 0.0000625 (the dash-dotted line)



800 X. Wang et al.

(i) If

dVj

dt
− (AV)j ≤ 0 for (j, t) ∈ Ih,tF , (4.8)

then

max
(j,t)∈Z×[0,tF ]

Vj (t) = max
(j,t)∈∂Ih,tF

Vj (t). (4.9)

(ii) If

dVj

dt
− (AV)j ≥ 0 for (j, t) ∈ Ih,tF , (4.10)

then

min
(j,t)∈Z×[0,tF ] Vj (t) = min

(j,t)∈∂Ih,tF

Vj (t). (4.11)

Proof We note that the numerical scheme for the natural condition is the same as
that for the absorbing condition except the definition of m2 is simplified to c′(bs) or
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Fig. 3 The evolution of PDFs p for σ = 0, f ≡ 0, β = 0.5, and ε = 1 subject to the absorbing condition

with D = (−1, 1) and the initial condition p(x, 0) =
√

40
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e−40x2 . a α = 0.5. b α = 1.5
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f ′(bs) (see Remark 2 and Eq. (2.13)). Consequently, the proof is the same as that for
Proposition 2.

Remark 4 One can find many fully discrete schemes that satisfies maximum princi-
ple. For example, one can show that if m2(s) ≥ 0 for s ∈ (−1, 1), then the solution
to the backward Euler scheme for the time integration

V n
j − V n−1

j

�t
= (AVn)j , for − J + 1 ≤ j ≤ J − 1, n = 1, 2, · · · , (4.12)

where V n
j means the numerical solution of v at (sj , tn) with tn = n�t and Vn =

(V n
−J+1, · · · , V n

J−1)
T satisfies the maximum principle

max
(j,n)∈Ih×In

V n
j ≤ max

(j,n)∈Z×Īn\Ih×In

V n
j , min

(j,n)∈Ih×In

V n
j ≥ min

(j,n)∈Z×Īn\Ih×In

V n
j , (4.13)

where �t = tF /nF for some total number of time steps nF ∈ Z and

In = {n ∈ Z : 1 ≤ n ≤ nF }, Īn = {n ∈ Z : 0 ≤ n ≤ nF }. (4.14)
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Fig. 4 The effect of the skewness parameter β. a The PDFs at time t = 0.1 are plotted for different values
of β = 0, 0.3, 0.7, and 1 with α = 0.5, f ≡ 0, σ = 0, ε = 1, and D = (−1, 1) and the initial condition
p(x, 0) = 0.5I{|x|<1}. b The same as a except α = 1.5
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The proof will follow closely with that for Proposition 2 by realizing that if V n
j

reaches the maximum at V n∗
j∗ , then

V n∗
j∗ − V n∗−1

j∗

�t
≥ 0. (4.15)

In Fig. 1, we show the numerical results using the implicit Euler time inte-
gration with upwind finite difference scheme (4.12) (the solid line) and using the
explicit Euler scheme with central differencing (the dash-dotted line), for the case
α = 0.5, β = 0.5, f (x) = −x, σ = 0, and ε = 1 and the initial condition

p(x, 0) =
√

40
π

e−40x2 . The results clearly show that the implicit Euler solution sat-
sifies the maximum principle while the explicit Euler one does not as the probability
density is negative near the boundary.

Remark 5 The stability of the schemes based on (3.18) follows immediately from
the maximum principle we have proved in the section. It is obvious that the fully dis-
cretized schemes are consistent, where the details of the truncation error is discussed
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Fig. 5 The effect of the skewness parameter β on the PDFs at time t = 0.1 for f ≡ 0, σ = 0, ε = 1,D =
(−1, 1) and the initial condition p(x, 0) =

√
40
π
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in [38]. Since the equations (3.10) and (3.11) are linear, the schemes are convergent
due to the Lax equivalence theorem.

5 Numerical results

5.1 Verfication

Before discussing the evolution of the PDFs obtained from the simulations, we vali-
date our numerical methods by comparing with a known exact solution. Based on the
density function for Lévy distribution (α = 0.5, β = 1) and the scaling property of
stable random variables, we have the PDF for Lt [4, 11, 29]

p(x, t) = x− 3
2 t√
2π

e− t2
2x , for x > 0; p(x, t) = 0, for x ≤ 0. (5.1)

To compare our numerical solution with the exact solution (5.1), we start our
numerical computation from the time t = 0.2 by setting the initial condition to be
p(x, 0.2) given in (5.1). Noticing the analytic solution correspond to the natural con-
dition, we take the computational domain D = (−10, 10) and α = 0.5, β = 1, f ≡
0, σ = 0, and ε = 1. Figure 2 shows the solutions at the time tF = 0.4 with
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Fig. 6 The effect of the intensity of Gaussian noise (σ 2 = 0, 0.3, 0.7, 1) on the PDFs without drift (f ≡ 0)
at the fixed time t = 1 with β = 0.5, ε = 1, and D = (−1, 1) and the initial condition p(x, 0) =√
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π
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different spatial resolutions h = 0.00025, 0.000125, and 0.0000625 and the time step
size �t = 0.5h. The results show that the numerical solutions agree with the exact
solution well and the difference or the error decreases as we increase the resolution.

5.2 Evolution of PDFs

One of the ways to understand the behavior of a stochastic process governed by the
SDE (2.1) is through its PDF. In this work, we generalize the PDF by allowing initial
conditions other than the Dirac delta function, as it is hard to represent the delta
function numerically. First, we numerically find the PDF corresponding to Lt subject
to the absorbing condition with D = (−1, 1). Initially, the location of the process

at x has the probability p(x, 0) =
√

40
π

e−40x2 , approximating the delta function by
having a sharp peak at the origin 0. The time evolution of the probability density p

is shown in Fig. 3 for f ≡ 0, σ = 0, β = 0.5, and ε = 1 and two different values of
α = 0.5 and 1.5. For α = 0.5, the peak decays and moves to the right; for α = 1.5,
the peak decays faster but moves to the left. Because the skewness parameter β is
positive, there is larger tendency to jump to the right. The linear drift coefficient Kα,β
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Fig. 7 The effect of intensity of non-Gaussian noise (ε = 0.1, 0.3, 0.7, 1) on the PDFs without the drift
term (f ≡ 0) at time t = 1 with σ = 0, β = 0.5, and D = (−1, 1) and the initial condition p(x, 0) =√
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due to the compensation is positive when α < 1 and becomes negative when α > 1.
The jump direction and the drift work together to render the movement of the peak
in the case of α = 0.5. On the other hand, when α = 1.5, the two factors compete
and the effect of the drift dominates. Furthermore, we note that the shape of the PDF
for α = 1.5 becomes smoother and convex after t ≥ 0.3, while the PDF for α = 0.5
appears to be discontinuous at the right boundary x = 1 at large times.

Next, we investigate the effects of different parameters on the solution to the
FPE (2.4), including the skewness parameter β, the drift f , the intensities of Gaussian
noise σ and non-Gaussian noise ε, the domain size D, and the auxiliary conditions.

We consider the effect of the skewness parameter β on the PDFs with initial con-
dition of a uniform distribution p(x, 0) = 0.5I{|x|<1} in Fig. 4. The impact of β on
the PDF is different for 0 < α < 1 and 1 < α < 2. For α = 0.5 (Fig. 4a), the PDFs
have relatively flat profiles in the middle but drop to 0 sharply at the left boundary
of the domain x = −1. As β increases, the probability profile tilts toward the right,
i.e., having larger probability for positive x. We point out the interesting behavior of
the PDFs at the right boundary of the domain, where p(x, 0.1) becomes increasingly
discontinuous as β approaches 1. On the other hand, for α = 1.5 (Fig. 4b), the pro-
files of the PDFs are much smoother than those of α < 1 and the values of the PDFs
are larger near the left boundary as β increases. It is interesting to note that the PDFs
for β > 0 reach their maxima at small positive x values. Similar effects of β can be
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Fig. 8 The effect of the domain size D (D = (−1, 1), (−2, 2), (−4, 4)) for the absorbing condition with
β = 0.5, σ = 0, ε = 1, and f ≡ 0, at t = 0.2. The initial condition is the Gaussian density function

p(x, 0) =
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seen from another example shown in Fig. 5 where the initial condition is a Gaussian

distribution p(x, 0) =
√

40
π

e−40x2 . As β increases, the hump in the PDF profile shifts
to the right for α = 0.5 and to the left for α = 1.5. Notice that the maximum of the
PDF decreases slightly as β is raised from 0 in both cases.

Figure 6 shows the dependence of the probability density p at time t = 1 on the
intensity of Gaussian noise σ , where the initial profile is the Gaussian p(x, 0) =√

40
π

e−40x2 and the other parameters are fixed at f ≡ 0, β = 0.5, ε = 1 and D =
(−1, 1). Clearly, as one increases the amount of Gaussian noise σ , the process is less
likely to stay in the domain D and the values of the PDFs become smaller. Besides,
the profiles of the PDFs at t = 1 are all concave downward and are smooth at the
boundaries of the domain x = ±1 for σ > 0. The graphs of the PDFs become more
symmetric with respect to the center of the domain when there are more Gaussian
noises or σ increases.

Keeping other parameters and the conditions as in Fig. 6, we examine the effect
of the magnitude of non-Gaussian noises in Fig. 7 using different values of ε =
0.1, 0.3, 0.7, and 1. The numerical results show that, for α = 0.5, the graphs of
p develop a jump at the right boundary of D and become more skew to the right
as ε is increased; for α = 1.5, the PDFs become more skew to the left when the
non-Gaussian noise level is raised.
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Fig. 9 The effect of the drift f (f (x) = 0 or −0.6x) on the PDFs at time t = 0.2 with β = 0.5, σ =
0, ε = 1, and D = (−1, 1) and the initial condition p(x, 0) =
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Figure 8 shows that the variety of the densities at time t = 0.2 for different
domains D = (−1, 1), (−2, 2), (−4, 4) and different α = 0.5, 1.5, starting with
the same Gaussian-type initial condition. The auxiliary condition is the absorbing
condition and β = 0.5, ε = 1, and σ = 0 without the drift. From Fig. 8a corre-
sponding to α = 0.5, we find that the densities for the differently sized domains are
almost identical on the interval (−1, 1). It can be explained by realizing that most of
the movement of the process governed by the SDE (2.1) consists of large jumps for
α = 0.5. For α = 1.5 as shown in Fig. 8b, the probability finding the process near
the peak (−0.4, 0) is about the same for all three sizes of the domain D but the den-
sity for the smallest domain D = (−1, 1) quickly goes to 0 at the boundary x = ±1.
It is interesting to note that the PDFs for the two larger domains D = (−2, 2) and
(−4, 4) are almost identical on the interval (−1, 1).

Further, we investigate the effect of drift f . Figure 9 shows the changes of prob-
ability densities if we add the O-U potential f (x) = −0.6x for different α = 0.5
(Fig. 9a) and α = 1.5 (Fig. 9b) with β = 0.5, σ = 0, ε = 1, and D = (−1, 1) start-

ing with the initial profile of p(x, 0) =
√

40
π

e−40x2 . It can be seen that the densities
become larger near the origin and more symmetric with respect to the center of the
domain as expected.
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Fig. 10 Comparison of the PDFs at time t = 0.2 between the natural condition and the absorbing condition
for the domains D = (−1, 1) and (−5, 5) with β = 0.5, σ = 0, ε = 1, and f ≡ 0 and the initial condition

of p(x, 0) =
√

40
π

e−40x2 . a α = 0.5. b α = 1.5
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Finally, we consider the effect of auxiliary conditions described in Section 2.2. In
Fig. 10, we plot the PDFs at the same time t = 0.2 but with three different auxiliary
conditions: the natural condition and the absorbing conditions for two domain sizes
D = (−1, 1) and (−5, 5). We keep the other parameters the same as those in Fig. 8.
For both values of α = 0.5 and 1.5, the PDF for the natural condition is slightly
larger than the ones for the absorbing condition. For α = 0.5, the PDFs for the three
different auxiliary conditions are almost identical on the interval (−1, 1) except near
the peak region. For α = 1.5, the PDF for the absorbing condition with D = (−1, 1)
drops to 0 near the boundary of its domain x = ±1 while the PDF for the absorbing
condition with D = (−5, 5) is close to that of the natural condition on the interval
(−1, 1).

5.3 Most probable phase portrait (MPPP)

From the solutions to the Fokker-Planck equation 2.4, one can find the most proba-
ble orbits of stochastic dynamical systems (2.1) driven by asymmetric Lévy motion.
MPPP, denoted by xm(t), is defined as the maximum of the PDF at time t , i.e.,
xm(t) = maxx∈R p(x, t), which gives the most probable orbit starting at x0 [11].
Figure 11 plots the MPPPs for α = 0.5, σ = 0, ε = 1, D = (−1, 1), and
f (x) = −0.6x and different values of β = −0.5, 0, 0.5. To approximate the
delta function δ(x0), we choose the initial condition of Gaussian density function

0 1 2 3 4 5 6
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−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

T

x

β=0, IC2

β=0, IC1

β=0.5, IC2

β=0.5, IC1

Fig. 11 The MPPP for different β = 0, 0.5 with the drift term f (x) = −0.6x and α = 0.5, σ = 0, ε = 1,
and D = (−1, 1). The initial conditions 1 (IC1) and 2 (IC2) correspond to the Gaussian density functions

p(x, 0) =
√

40
π

e−40(x−0.5)2 and p(x, 0) =
√

40
π

e−40(x+0.5)2 , respectively
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p(x, 0) =
√

40
π

e−40(x−x0)
2
. In absence of noises, the system has the unique globally

stable state at the origin x = 0. When we introduce the symmetric Lévy noises cor-
responding to β = 0, the process still goes to the origin independent of the initial
starting point x0. When the asymmetric Lévy noises are present (β = 0.5), the MPPP
approaches to a point different than the origin. It is interesting that MPPP converges
to the same point for a fixed value of β regardless of the initial condition.

6 Conclusion

Due to its wide range of applications of non-Gaussian Lévy noises in many disci-
plines, we study the Fokker-Planck equation with asymmetric α-stable Lévy motion,
which is a non-local (integro-differential) partial differential equation. The Fokker-
Planck equation describes the time evolution of the probability density function. In
this work, we show a symmetry property for solutions with respect to the sign of β,
enabling us only need to consider the cases with β > 0. We have developed an accu-
rate and fast numerical scheme for solving the FPEs for different auxiliary conditions
(the absorbing condition and the natural condition). The numerical method is vali-
dated by comparing the numerical solution with a special exact solution and used to
compute the solutions corresponding to different parameters in the system. We find
that the PDFs are discontinuous at the right boundary when α < 1 and β > 0 and the
discontinuity becomes more evident when β increases; the discontinuity disappears
for α > 1. We have also considered the most probable phase portrait and find that the
process approaches the same state when starting with different initial conditions.
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Brownian movement patterns of marine predators. Nature 465(7301), 1066–1069 (2010)

21. Koren, T., Chechkin, A., Klafter, J.: On the first passage time and leapover properties of Lévy
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