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Nonlocal operators with local boundary conditions
in higher dimensions

Burak Aksoylu1,2 ·Fatih Celiker2 ·
Orsan Kilicer3,4

Abstract We present novel nonlocal governing operators in 2D/3D for wave propa-
gation and diffusion. The operators are inspired by peridynamics. They agree with the
original peridynamics operator in the bulk of the domain and simultaneously enforce
local boundary conditions (BC). The main ingredients are periodic, antiperiodic, and
mixed extensions of separable kernel functions together with even and odd parts of
bivariate functions on rectangular/box domains. The operators are bounded and self-
adjoint. We present all possible 36 different types of BC in 2D which include pure
and mixed combinations of Neumann, Dirichlet, periodic, and antiperiodic BC. Our
construction is systematic and easy to follow. We provide numerical experiments that
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verify our theoretical findings. We also compare the solutions of the classical wave
and heat equations to their nonlocal counterparts.

Keywords Nonlocal wave propagation · Nonlocal diffusion · Nonlocal operator ·
Local boundary condition

Mathematics Subject Classification (2010) 35L05 · 65R99

1 Introduction

We extend our work in 1D [4] to higher dimensions. We construct novel governing
operators for nonlocal wave propagation and nonlocal diffusion in 2D/3D. The opera-
tors are inspired by the theory of peridynamics, a nonlocal formulation of continuum
mechanics developed by Silling [26]. By suppressing the time variable t , we define
the operator

Lu(x, y) := cu(x, y) −
∫∫

Ω

Ĉ(x′ − x, y′−y)u(x′, y′)dx′dy′, (x, y) ∈ Ω, (1.1)

where the 2D domain is Ω := (−1, 1) × (−1, 1) and c := ∫∫
Ω

C(x′, y′)dx′dy′ with

C := Ĉ|Ω . The operator used for nonlocal diffusion [11, 17] is

Lorigu(x, y) : =
∫∫

Ω

Ĉ(x′ − x, y′−y)u(x, y)dx ′dy′

−
∫∫

Ω

Ĉ(x′ − x, y′−y)u(x′, y′)dx′dy′. (1.2)

As the main contribution, we will prove that the two operators agree in the bulk
of Ω , and that L enforces local pure and mixed Neumann, Dirichlet, periodic, and
antiperiodic boundary conditions (BC).

Our approach to nonlocal problems is fundamentally different because we exclu-
sively want to use local BC. In [12], one of our major results was the finding that
the governing operator of peridynamics equation [26] in R and nonlocal diffusion in
R

d are functions of the Laplace operator. This result opened the path to the intro-
duction of local BC into nonlocal problems. Since Lorig is a nonlocal operator, one
might expect only the appearance of nonlocal BC while employing it as the govern-
ing operator [17]. We establish that local BC are compatible with nonlocal operators.
Our operators present an alternative to nonlocal BC and we hope that the ability to
enforce local BC will provide a remedy for surface effects seen in peridynamics; see
[21, 22].

We studied various aspects of local BC in nonlocal problems [1–5, 12]. Building
on [12], we generalized the results in R to bounded domains [1, 2], a critical fea-
ture for all practical applications. In [2], we laid the theoretical foundations and in
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[1], we applied the foundations to prominent BC such as Dirichlet and Neumann,
and presented numerical implementation of the corresponding wave propagation. In
[5], we present how to apply functional calculus to general nonlocal problems in a
methodical way.

In [4], we constructed the first 1D operators that agree with the original bond-
based peridynamics operator in the bulk of the domain and simultaneously enforce
local Neumann and Dirichlet BC which we denote by MN and MD, respectively. We
carried out numerical experiments by utilizing MN and MD as governing operators
in [1]. Similar classes of operators are used in various applications such as nonlo-
cal diffusion [11, 17], image processing [18], population models, particle systems,
phase transition, and coagulation, to name a few. See the studies dedicated to other
related governing operators [3], conditioning analysis, domain decomposition and
variational theory [8–10], and discretization [10, 27]. In this paper, we generalize the
operators in 1D [4] to higher dimensions with separable kernel functions which lend
themselves to a tensor product structure. However, the generalization of the 1D ideas
and techniques to higher dimensions is nontrivial. More precisely, new multivariate
projection operators have to be defined, their commutativity properties need to be
discovered and exploited, new BC combinations arise in higher dimensions, which
in turn require us to define new extensions of the kernel function.

Fractional diffusion and fractional PDEs also fall into the class of nonlocal prob-
lems [11, 15, 16, 24]. There is a fundamental difference between these operators
and ours: Our governing operators are bounded. See [12, Lemma 5 and Thm. 6]
and [2, Cor. 2 and Thm. 4]. Since our ultimate goal is to capture discontinuities or
cracks, we are mainly interested in bounded governing operators. Fractional opera-
tors become unbounded for such discontinuities, and hence, we exclude them from
our discussion.

The rest of the paper is structured as follows. In Section 2, first we prove that
the operators Lorig and L agree in the bulk in 2D. We define the novel operators
using orthogonal projections on bivariate functions for which we utilize the periodic,
antiperiodic, and mixed extensions of the kernel function C(x). We give the main
theorem in 2D. In Section 3, first we prove that the novel operators are self-adjoint.
We quote the earlier results from [4] and construct additional operators. In Section 4,
we exploit the properties of the operators in 1D to construct the novel operators in
2D. We transfer the agreement in the bulk property established for univariate func-
tions to bivariate ones and eventually prove that the novel operators agree with Lorig
in the bulk in 2D. In Section 5, we make use of the Leibniz Rule, the Fubini, and
the Lebesgue Dominated Convergence Theorems to prove that the novel operators
enforce the local BC stated in the main theorem. In Section 6, we present all possi-
ble 36 types of BC in 2D. We provide the recipe for each possible BC in the form
of a table. In Section 7, we present the operators in 3D which can be easily extended
to arbitrary dimension. In Section 8, we report the numerical experiments in which
we demonstrate that the prescribed BC are indeed satisfied. We also carry out a com-
parison of the solutions to the classical wave and heat equations to those of nonlocal
ones. We conclude in Section 9.
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2 The novel operators in 2D

For (x, y), (x′, y′) ∈ Ω , it follows that (x′ − x, y′−y) ∈ (−2, 2) × (−2, 2). Hence,
in (1.2), the kernel function C(x, y) needs to be extended from Ω1 to the domain of
Ĉ(x′ − x, y′ −y), which is Ω̂ := (−2, 2) × (−2, 2) (the domain of computation).
Throughout the paper, we denote the restriction of a function Ẑ : Ω̂ → R to Ω

as Z, i.e., Z := Ẑ|Ω . Furthermore, the kernel function C(x, y) is assumed to be
nonnegative and even. Namely,

C(−x, −y) = C(x, y).

The important choice of C(x, y) is the canonical kernel function χδ(x, y) whose
only role is the representation of the nonlocal neighborhood, called the horizon, by a
characteristic function. More precisely, for (x, y) ∈ Ω ,

χδ(x, y) :=
{

1, (x, y) ∈ (−δ, δ) × (−δ, δ)

0, otherwise.
(2.1)

The size of nonlocality is determined by δ and we assume δ < 1. Since the horizon
is constructed by χδ(x, y), a kernel function used in practice is in the form

C(x, y) = χδ(x, y)μ(x, y),

where μ(x, y) ∈ L2(Ω) is even.
Throughout the paper, we assume that

u(x, y) ∈ L2(Ω). (2.2)

Inspired by the projections that give the even and odd parts of a univariate function,
we define the following operators that act on a bivariate function.

Pe,x′, Po,x′ , Pe,y′, Po,y′ : L2(Ω) → L2(Ω),

whose definitions are

Pe,x′u(x′, y′) := u(x′, y′)+u(−x′, y′)
2

, Po,x′u(x′, y′) := u(x′, y′)−u(−x′, y′)
2

,(2.3)

Pe,y′u(x′, y′) := u(x′, y′)+u(x′, −y′)
2

, Po,y′u(x′, y′) := u(x′, y′)−u(x′, −y′)
2

. (2.4)

Each operator is an orthogonal projection and possesses the following decomposition
property

Pe,x′ + Po,x′ = Ix′ , Pe,y′ + Po,y′ = Iy′ . (2.5)

1We do not explicitly denote the dimension of the domain Ω . The dimension is implied by the number
of iterated integrals present in the operator. The domain Ω is equal to (−1, 1), (−1, 1) × (−1, 1), and
(−1, 1) × (−1, 1) × (−1, 1) in 1D, 2D, and 3D, respectively.
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One can easily check that all four orthogonal projections in (2.3) and (2.4) commute
with each other. We define the following new operators obtained from the products
of these projections.

Pe,x′Pe,y′u(x′, y′) := 1

4

{[u(x′, y′) + u(x′, −y′)] + [u(−x′, y′) + u(−x′, −y′)]},
Pe,x′Po,y′u(x′, y′) := 1

4

{[u(x′, y′) − u(x′, −y′)] + [u(−x′, y′) − u(−x′, −y′)]},
Po,x′Po,y′u(x′, y′) := 1

4

{[u(x′, y′) − u(x′, −y′)] − [u(−x′, y′) − u(−x′, −y′)]},
Po,x′Pe,y′u(x′, y′) := 1

4

{[u(x′, y′) + u(x′, −y′)] − [u(−x′, y′) + u(−x′, −y′)]}.
Due to the aforementioned commutativity property, these are also orthogonal projec-
tions and satisfy the following decomposition property

Pe,x′Pe,y′ + Pe,x′Po,y′ + Po,x′Pe,y′ + Po,x′Po,y′ = Ix′,y′ . (2.6)

These will be used in the definition of the novel operators in 2D.
Reflecting on the square support of the kernel function χδ(x, y) in (2.1), we define

the bulk of the domain as follows.

bulk = {(x, y) ∈ Ω : (x, y) ∈ (−1 + δ, 1 − δ) × (−1 + δ, 1 − δ)}.
We first prove that the operators L and Lorig agree in the bulk.

Lemma 2.1 Suppose that u satisfies (2.2). Then,

Lu(x, y) = Lorigu(x, y), (x, y) ∈ bulk.

Proof For (x, y) ∈ bulk, we have

(x − δ, x + δ) × (y − δ, y + δ) ∩ Ω = (x − δ, x + δ) × (y − δ, y + δ).

Hence,

∫∫

Ω

Ĉ(x′−x, y′−y)dx′dy′ =
∫∫

Ω

χ̂δ(x
′−x, y′−y)μ̂(x′−x, y′−y)dx′dy′

=
x+δ∫

x−δ

y+δ∫

y−δ

μ̂(x′−x, y′−y)dx′dy′ =
δ∫

−δ

δ∫

−δ

μ(x′, y′)dx′dy′

=
∫∫

Ω

χδ(x
′, y′)μ(x′, y′)dx′dy′ =

∫∫

Ω

C(x′, y′)dx′dy′.

The result follows.

In the construction of the novel operators, a crucial ingredient is first restricting Ĉ

to Ω and then suitably extending it back to Ω̂ . To this end, we define the periodic,
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antiperiodic, and mixed extensions of C(x) from (−1, 1) to (−2, 2), respectively, as
follows:

Ĉp(x) :=
⎧⎨
⎩

C(x + 2), x ∈ (−2, −1),

C(x), x ∈ (−1, 1),

C(x − 2), x ∈ (1, 2),

Ĉa(x) :=

⎧⎪⎨
⎪⎩

−C(x + 2), x ∈ (−2, −1),

C(x), x ∈ (−1, 1),

−C(x − 2), x ∈ (1, 2).

We also utilize the following mixed extensions of C(x).

Ĉpa(x) :=
⎧⎨
⎩

C(x + 2), x ∈ (−2, −1),

C(x), x ∈ (−1, 1),

−C(x − 2), x ∈ (1, 2),

Ĉap(x) :=
⎧⎨
⎩

−C(x + 2), x ∈ (−2, −1),

C(x), x ∈ (−1, 1),

C(x − 2), x ∈ (1, 2).

There is a slight abuse in the definition of the domain of the extensions. In fact,
they are defined only on (−2, 2) \ {−1, 1}. However, these extensions enter into the
formulation only as kernel functions of integral operators which allow their domains
to differ by a set of measure zero.

Building on our 1D construction in [4], in higher dimensions, we discovered the
operators that enforce local pure and mixed Neumann and Dirichlet BC. We can
construct all possible 36 different types of BC and they are given in Section 6; see
Tables 1, 2, 3 and 4. We present the main theorem in 2D with the following 4 types
of BC.

Theorem 2.2 (Main Theorem in 2D) Let Ω := (−1, 1) × (−1, 1) and the kernel
function be separable in the form

C(x, y) = X(x)Y (y), (2.7)

where X and Y are even functions. Then, the operators MN, MD, MN,DN, and
MND,ND defined by

(
MN − c

)
u(x, y) := −

∫∫

Ω

[
X̂p(x′−x)Pe,x′ + X̂a(x′−x)Po,x′

]

[
Ŷp(y′−y)Pe,y′ + Ŷa(y′−y)Po,y′

]
u(x′, y′)dx′ dy′,

(
MD − c

)
u(x, y) := −

∫∫

Ω

[
X̂a(x′−x)Pe,x′ + X̂p(x′−x)Po,x′

]

[
Ŷa(y′−y)Pe,y′ + Ŷp(y′−y)Po,y′

]
u(x′, y′)dx′ dy′,

(
MN,DN − c

)
u(x, y) := −

∫∫

Ω

[
X̂p(x′−x)Pe,x′ + X̂a(x′−x)Po,x′

]

[
Ŷpa(y′−y)Pe,y′ + Ŷap(y′−y)Po,y′

]
u(x′, y′)dx′ dy′,

(
MND,ND − c

)
u(x, y) := −

∫∫

Ω

[
X̂ap(x′−x)Pe,x′ + X̂pa(x′−x)Po,x′

]

[
Ŷap(y′−y)Pe,y′ + Ŷpa(y′−y)Po,y′

]
u(x′, y′)dx′ dy′
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agree with Lu(x, y) in the bulk, i.e., for (x, y) ∈ (−1 + δ, 1 − δ) × (−1 + δ, 1 − δ). Furthermore,
the operatorsMN andMD enforce pure Neumann and Dirichlet BC, respectively:

∂

∂n

[(
MN − c

)
u
]
(x, ±1) = ∂

∂n

[(
MN − c

)
u
]
(±1, y) = 0,

(
MD − c

)
u(x, ±1) = (MD − c

)
u(±1, y) = 0.

The operators MN,DN and MND,ND enforce mixed Neumann and Dirichlet BC,
respectively, in the following way:

∂

∂n

[(
MN,DN − c

)
u
]
(±1, y) = ∂

∂n

[(
MN,DN − c

)
u
]
(x, +1) = 0,

(
MN,DN − c

)
u(x, −1) = 0,

and

∂

∂n

[(
MND,ND − c

)
u
]
(−1, y) = ∂

∂n

[(
MND,ND − c

)
u
]
(x, −1) = 0,

(
MND,ND − c

)
u(+1, y) = (MND,ND − c

)
u(x, +1) = 0.

Proof The proofs of agreement in the bulk and the verification of BC are given in
Sections 4 and 5, respectively. For the BC configurations, see Section 6.

Remark 2.3 Although we assume a separable kernel function as in (2.7), note that
we do not impose a separability assumption on the solution u(x, y).

Remark 2.4 Although removing the assumption of separability does not seem to
be possible at the analytic level, our ultimate goal is numerical approximation of
problems involving our novel operators. That is why, in practice, discretized forms
of the operators are more relevant to our purposes. Accommodating the separabil-
ity assumption at the discrete level is the subject of ongoing work. To elaborate, let
Ch(x, y) denote the discretized form of a general kernel function C(x, y). It is pos-
sible to find functions Xh

i (x) and Yh
i (y) such that Ch(x, y) ≈ ∑

i Xh
i (x)Y h

i (y) in
some sense. This approximation is in the spirit of degenerate (a sum of separable) ker-
nels in integral equations [20, 23]. One may then proceed with the kernel functions
Xh

i (x)Y h
i (y) which satisfy the separability assumption.

Remark 2.5 The hallmark feature of a nonlocal solution is dispersion. With separable
kernel functions, our solutions indeed exhibit dispersive behavior. See Fig. 10.

3 Operators in 1D

The operators MN and MD enforcing the pure Neumann and pure Dirichlet BC,
respectively, have been reported in [4]. Here, we construct two additional operators
MND and MDN in 1D. We will extend all of these operators to higher dimensions in
Sections 4 and 7. Thus, we find it instructive to provide the construction in 1D in full
detail here.
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Fig. 1 The kernel function C(x) = χδ(x)μ(x) with δ = 0.4 and μ(x) = 0.25 − x2. The periodic,
antiperiodic, and mixed extensions of C(x) are denoted by Ĉp(x), Ĉa(x), Ĉpa, and Ĉap, respectively.

Following the construction in [1], we assume that u, C ∈ L2(Ω) and define

Cpu(x) :=
∫

Ω

Ĉp(x
′−x)u(x′)dx′, Cau(x) :=

∫
Ω

Ĉa(x
′−x)u(x′)dx′, (3.1)

Cpau(x) :=
∫

Ω

Ĉpa(x
′−x)u(x′)dx′, Capu(x) :=

∫
Ω

Ĉap(x
′−x)u(x′)dx′.(3.2)

The only difference in the operators Cp, Ca, Cpa, and Cap is the extension type utilized
for the kernel functions. We prove that the operators agree in the bulk by investigating
how the corresponding kernel functions behave in the bulk. Also, see Figs. 1 and 2.

Lemma 3.1 Let the kernel function C(x) be in the form

C(x) = χδ(x)μ(x),

where μ(x) ∈ L2(Ω) is even. Let Ĉp(x), Ĉa(x), Ĉpa(x), and Ĉap(x) denote the
periodic, antiperiodic, and mixed extensions of C(x) to Ω̂ := (−2, 2), respectively.
Then,

Ĉp(x) = Ĉa(x) = Ĉpa(x) = Ĉap(x), x ∈ (−2 + δ, 2 − δ).

Furthermore, we have the following agreement in the bulk. Namely, for x ∈ (−1 +
δ, 1 − δ),

Ĉp(x
′−x) = Ĉa(x

′−x) = Ĉpa(x
′−x) = Ĉap(x

′−x), x′ ∈ (−1, 1). (3.3)
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Fig. 2 For the same kernel function C(x) in Fig. 1, we employ bivariate versions of Ĉp(x′−x), Ĉa(x′−x),
Ĉpa(x′−x), and Ĉap(x′−x) with the definition ĈBC(x, x′) := ĈBC(x′−x).

Proof See [4].

Using (3.3), we immediately obtain the following equivalence of operators in the
bulk.

Cpu(x) = Cau(x) = Cpau(x) = Capu(x), x ∈ (−1 + δ, 1 − δ). (3.4)

Even and odd parts of a univariate function u(x) are used in the governing operators
MN, MD, MND, and MDN. We define the orthogonal projections that give the even
and odd parts, respectively, of a univariate function by Pe, Po : L2(Ω) → L2(Ω),

whose definitions are

Peu(x) := u(x) + u(−x)

2
, Pou(x) := u(x) − u(−x)

2
.
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We present a commutativity property that allows us to identify the kernel functions
associated to the operators MN and MD.

Lemma 3.2

CpPe = PeCp, CpPo = PoCp, CaPe = PeCa, CaPo = PoCa. (3.5)

Proof We present the proof for CpPe = PeCp. The other results easily follow. We
recall the definition of Cpu(x) in (3.1). We explicitly write PeCpu(x) and the result
follows by utilizing the evenness of Ĉp and a change of variable.

PeCpu(x) = 1

2

(∫
Ω

Ĉp(x
′−x)u(x′)dx′ +

∫
Ω

Ĉp(x
′+x)u(x′)dx′

)

= 1

2

(∫
Ω

Ĉp(x
′−x)u(x′)dx′ +

∫
Ω

Ĉp(x
′−x)u(−x′)dx′

)

=
∫

Ω

Ĉp(x
′−x)Peu(x′)dx′

= CpPeu(x).

Remark 3.3 The commutativity property helps in identifying the associated kernel
functions; see (3.7) and (3.8). Note that the above commutativity property does not
hold for the operators Cpa and Cap. Identification of the associated kernel functions
can be done by direct manipulation.

Theorem 3.4 (Main Theorem in 1D) Let c = ∫
Ω

C(x′)dx′. The following operators
MN,MD,MND, andMDN defined by

(
MN − c

)
u(x) := −

∫
Ω

[
Ĉp(x

′−x)Peu(x′) + Ĉa(x
′−x)Pou(x′)

]
dx′,

(
MD − c

)
u(x) := −

∫
Ω

[
Ĉa(x

′−x)Peu(x′) + Ĉp(x
′−x)Pou(x′)

]
dx′,

(
MND − c

)
u(x) := −

∫
Ω

[
Ĉap(x

′−x)Peu(x′) + Ĉpa(x
′−x)Pou(x′)

]
dx′,

(
MDN − c

)
u(x) := −

∫
Ω

[
Ĉpa(x

′−x)Peu(x′) + Ĉap(x
′−x)Pou(x′)

]
dx′

agree with Lu(x) in the bulk, i.e., for x ∈ (−1+δ, 1−δ). Furthermore, the operators
MN and MD enforce pure Neumann and Dirichlet BC, respectively:

d

dx

[(
MN − c

)
u
]
(±1) = 0,

(
MD − c

)
u(±1) = 0.
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The operator MND and MDN enforce mixed Neumann and Dirichlet BC,
respectively:

(
MND − c

)
u(+1) = d

dx

[(
MND − c

)
u
]
(−1) = 0,

(
MDN − c

)
u(−1) = d

dx

[(
MDN − c

)
u
]
(+1) = 0.

We define the operators MN, MD, MND, and MDN as densely defined, lin-
ear, bounded, and self-adjoint operators. More precisely, MD,MN,MND,MDN ∈
L
(
L2(Ω), L2(Ω)

)
. Imposing Neumann (also periodic and antiperiodic) BC requires

differentiation. For technical details regarding differentiation under the integral sign,
see the discussion on the Leibniz Rule in [4] whose proof relies on the Lebesgue
Dominated Convergence Theorem. In addition, the limit in the definition of the
Dirichlet BC can be interchanged with the integral sign, again by the Lebesgue
Dominated Convergence Theorem.

Remark 3.5 When we assume homogeneous Neumann and Dirichlet BC on u,
then the operators MN and MD enforce homogeneous Neumann and Dirichlet
BC, respectively. More precisely, for u′(±1) = 0 and u(±1) = 0, we obtain
d

dx
MNu(±1) = 0 and MDu(±1) = 0, respectively. The same line of argument

applies to the operators MND and MDN.

Using the operators Cp, Ca, Cpa, and Cap given in (3.1) and (3.2), we can express
the operators MN, MD, MND, and MDN in the following way.

MN − c = −(CpPe + CaPo

)
, MD − c = −(CaPe + CpPo

)
,

MND − c = −(CapPe + CpaPo

)
, MDN − c = −(CpaPe + CapPo

)
.

Using the commutativity property (3.5), we arrive at the following representation.

MN − c = −(PeCp + PoCa
)
, MD − c = −(PeCa + PoCp

)
.

Now, we can identify the kernel functions associated to operators MN and MD.

(
MN − c

)
u(x) = −

∫
Ω

KN(x, x′)u(x′)dx′,

(
MD − c

)
u(x) = −

∫
Ω

KD(x, x′)u(x′)dx′, (3.6)

where

KN(x, x′) := 1

2

{[
Ĉp(x

′−x) + Ĉp(x
′+x)

]+ [Ĉa(x
′−x) − Ĉa(x

′+x)
]}

, (3.7)

KD(x, x′) := 1

2

{[
Ĉa(x

′−x) + Ĉa(x
′+x)

]+ [Ĉp(x
′−x) − Ĉp(x

′+x)
]}

. (3.8)
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We also want to identify the integrands associated to the operators MND and MDN.
We proceed by direct manipulation. By writing Pe and Po explicitly and utilizing a
simple change of variable, we arrive at the following expressions.

(
MND − c

)
u(x) = −

∫
Ω

KND(x, x′)u(x′)dx′,

(
MDN − c

)
u(x) = −

∫
Ω

KDN(x, x′)u(x′)dx′,

where

KND(x, x′) := 1

2

{[
Ĉpa(x

′−x) + Ĉpa(x
′+x)

]+ [Ĉap(x
′−x) − Ĉap(x

′+x)
]}

,

KDN(x, x′) := 1

2

{[
Ĉap(x

′−x) + Ĉap(x
′+x)

]+ [Ĉpa(x
′−x) − Ĉpa(x

′+x)
]}

.

In order to align with the construction given in [1], we assume that C(x) ∈ L2(Ω),
and hence,

Ĉa(x), Ĉp(x), Ĉpa(x), andĈap(x) ∈ L2(Ω̂). (3.9)

Remark 3.6 The boundedness of MN, MD, MND, and MDN follow from the choices
of (2.2) and (3.9). In addition, all of them fall into the class of integral operators;
hence, their self-adjointness follows from the fact that the corresponding kernels
are symmetric (due to evenness of C), i.e., KBC(x, x′) = KBC(x

′, x) and BC ∈
{N,D,ND,DN}. The cases of BC ∈ {ND,DN} are more involved than the rest. One
useful identity is Ĉap(x

′−x) = Ĉpa(−x′+x).

3.1 Operator-theoretic treatment of the governing equation

In this subsection, we present the operator theoretic treatment of the following gov-
erning equation. For the sake of clarity, we restrict the discussion to the case of
Dirichlet BC:

MDu(x) = b(x), x ∈ Ω, (3.10a)

u(±1) = 0. (3.10b)

Here, b(x) is a forcing function that satisfies the compatibility condition [4, Sec. 5]

lim
x→±1

b(x) = c lim
x→±1

u(x).

Since (3.10) is a boundary value problem, it naturally assumes the existence of
limx→±1 u(x). Although MD acts on u ∈ L2(Ω), which ignores the values of u on
the boundary of Ω , it is designed in a way that the solution of (3.10a) respects the
BC (3.10b). We explain this in the remainder of this subsection.

The governing operator MD is linear and self-adjoint. In addition, it possesses two
more properties relevant to satisfying the BC: it is densely defined and bounded. A
densely defined operator exploits density of spaces and the dense space should take
the BC into account. It is well-known that Cm(Ω) is dense in L2(Ω) for any m ∈ N.
For the case of Dirichlet BC, the appropriate choice turns out to be m = 2.
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Let us briefly explain how we employ the operator theory to treat a densely defined
and bounded operator for the boundary value problem (3.10). We begin with restrict-
ing the governing operator to the dense space of choice C2(Ω). We seek the solution
to (3.10) with u ∈ C2(Ω) with the restricted governing operator MD|C2(Ω) which
is essentially self-adjoint, i.e., its closure is self-adjoint. The operator MD|C2(Ω) is

bounded and C2(Ω) is dense in L2(Ω). Hence, the operator MD|C2(Ω) has a unique

bounded extension to L2(Ω). This explains how the operator is extended from C2(Ω)

to L2(Ω) using the density argument.
Finally, to make sure that the limits of the left hand side of (3.10a) exist, we write

it as
lim

x→±1
(MD − c)u(x) + c lim

x→±1
u(x) = lim

x→±1
b(x).

One crucial question remains: Why do the limits

lim
x→±1

(MD − c)u(x) (3.11)

exist? The answer is due to a subtle point in our construction. The bounded operator
MD after subtracting c, i.e., MD − c, possesses the Hilbert-Schmidt property. As a
result, given u ∈ L2(Ω), the function (MD − c)u has an extension to a continuous
function on Ω . Consequently, the limits in (3.11) exist and in fact are equal to 0. To
see the latter, we expand u in the Hilbert basis as u(x) = ∑∞

k=1〈eDk |u〉eDk (x). By the
spectral theorem for bounded operators, we have

lim
x→±1

(
MD − c

)
u(x) = lim

x→±1

∞∑
k=1

(
λk(MD) − c

)〈eDk |u〉eDk (x)

=
∞∑

k=1

(
λk(MD) − c

)〈eDk |u〉 lim
x→±1

eDk (x)

︸ ︷︷ ︸
=0

= 0

The interchange of limx→±1 with
∑∞

k=1 is justified by the uniform convergence due
to the Hilbert-Schmidt property. For details, see [2, 6, 7].

3.2 Proof of Theorem 3.4

In the upcoming proofs, we want to report a minor caveat. We use Ĉa(x
′ + 1) =

−Ĉa(x
′ − 1) which holds for x′ 
= 0. For x′ = 0, i.e., Ĉa(x

′ + 1) = C(1) 
=
−C(−1) = −Ĉa(x

′ − 1). Since x′ = 0 is only a point, it does not change the value
of the integration. We choose not to point it out each time we run into this case.

Proof The key observation that leads to the agreement of the operators MN, MD,
MND, and MDN with the operator L is the agreement of kernel functions in (3.3).
To account for the convolution present in the the governing operators, we define a
generic operator

Cu(x) :=
∫

Ω

Ĉ(x′ − x)u(x′)dx′.
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The property (3.3) leads to the equivalence (3.4). Hence, the other operators agree in
the bulk. For x ∈ (−1 + δ, 1 − δ), we have

L − c = − C
= −C(Pe + Po) since I = Pe + Po

= −(CPe + CPo

)
= −(CpPe + CaPo

) =: MN − c by (3.4) (3.12)

= −(CaPe + CpPo

) =: MD − c (3.13)

= −(CapPe + CpaPo

) =: MND − c (3.14)

= −(CpaPe + CapPo

) =: MDN − c. (3.15)

Here, the first three identities hold regardless of the extension type, that is why the
subscript is suppressed.

First, we prove that the operators MN and MD enforce pure Neumann and Dirich-
let BC, respectively. Next, we will prove that the operators MND and MDN enforce
mixed Neumann and Dirichlet BC, respectively.

• The operator MN First we remove the points at which the derivative of
KN(x, x′) does not exist from the set of integration. Note that such points form
a set of measure zero, and hence, does not affect the value of the integral. We
differentiate both sides of (3.6). In [4], we had proved that the differentiation
in the definition of the Neumann BC can interchange with the integral. We can
differentiate the integrand KN(x, x′) piecewise and obtain

d

dx

[(
MN − c

)
u
]
(x) = −

∫
Ω

∂KN

∂x
(x, x′)u(x′)dx′, (3.16)

where
∂KN

∂x
(x, x′) = 1

2

{[− Ĉ′
p(x

′−x) + Ĉ′
p(x

′+x)
]+ [− Ĉ′

a(x
′−x) − Ĉ′

a(x
′+x)

]}
.

We check the boundary values by plugging x = ±1 in (3.16).

d

dx

[(
MN − c

)
u
]
(±1) = −

∫
Ω

∂KN

∂x
(±1, x′)u(x′)dx′. (3.17)

The functions Ĉ′
p and Ĉ′

a are 2-periodic and 2-antiperiodic because they are the
derivatives of 2-periodic and 2-antiperiodic functions, respectively. Hence,

Ĉ′
p(x

′ ∓ 1) = Ĉ′
p(x

′ ± 1) and Ĉ′
a(x

′ ∓ 1) = −Ĉ′
a(x

′ ± 1).

Hence, the integrand in (3.17) vanishes, i.e.,

∂KN

∂x
(±1, x′) = 0.

Therefore, we arrive at

d

dx
MNu(±1) = cu′(±1).

When we assume that u satisfies homogeneous Neumann BC, i.e., u′(±1) = 0,
we conclude that the operator MN enforces homogeneous Neumann BC as well.
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• The operatorMD By the Lebesgue Dominated Convergence Theorem, the limit
in the definition of the Dirichlet BC can be interchanged with the integral. Now,
we check the boundary values by plugging x = ±1 in (3.8).

(
MD − c

)
u(±1) = −

∫
Ω

KD(±1, x′)u(x′)dx′. (3.18)

Since Ĉp and Ĉa are 2-periodic and 2-antiperiodic, respectively, we have

Ĉp(x
′ ∓ 1) = Ĉp(x

′ ± 1) and Ĉa(x
′ ∓ 1) = −Ĉa(x

′ ± 1).

Hence, the integrand in (3.18) vanishes, i.e., KD(±1, x′) = 0. Therefore, we
arrive at

MDu(±1) = cu(±1).

When we assume that u satisfies homogeneous Dirichlet BC, i.e., u(±1) = 0,
we conclude that the operator MD enforces homogeneous Dirichlet BC as well.

• The operator MND First we prove that CapPeu(+1) = 0. We use a change of
variable in the second piece.

CapPeu(+1) = 1

2

(∫
Ω

Ĉap(x
′−1)Peu(x′)dx′+

∫
Ω

Ĉap(−x′−1)Peu(x′)dx′
)

.

Then, we split the integrals into two parts as follows.

CapPeu(+1) = 1

2

∫ 0

−1

[
Ĉap(x

′ − 1) + Ĉap(−x′ − 1)
]
Peu(x′)dx′

+1

2

∫ 1

0

[
Ĉap(x

′−1) +Ĉap(−x′−1)
]
Peu(x′)dx′.(3.19)

For x′ ∈ (−1, 0), we have x′ − 1 ∈ (−2, −1). By using the definition of Ĉap

and the evenness of C, we obtain

Ĉap(x
′ −1) = −Ĉap(x

′ +1) = −C(x′ +1) = −C(−x′ −1) = −Ĉap(−x′ −1).

(3.20)
For x′ ∈ (0, 1), we have x′ − 1 ∈ (−1, 0). By using the definition of Ĉap and
the evenness of C, we obtain

Ĉap(x
′ − 1) = C(x′ − 1) = C(−x′ + 1) = −Ĉap(−x′ − 1). (3.21)

Combining (3.20) and (3.21) with (3.19), we conclude that CapPeu(+1) = 0.
Similarly, we can conclude that CpaPou(+1) = 0. Consequently, we arrive at

CNDu(+1) = 0.

We prove that
d

dx
CpaPou(−1) = 0. We use a change of variable in the second

piece.

d

dx
CpaPou(−1) = −1

2

(∫
Ω

Ĉ′
pa(x

′ + 1)Pou(x′)dx′ −
∫

Ω

Ĉ′
pa(−x′ + 1)Pou(x′)dx′

)
.
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Then, we split the integrals into two parts as follows.

d

dx
CpaPou(−1) = −1

2

∫ 0

−1

[
Ĉ′
pa(x

′ + 1) − Ĉ′
pa(−x′ + 1)

]
Pou(x′)dx′

− 1

2

∫ 1

0

[
Ĉ′
pa(x

′ + 1) − Ĉ′
pa(−x′ + 1)

]
Pou(x′)dx′.

(3.22)
For x′ ∈ (−1, 0), we have x′ + 1 ∈ (0, 1). By using the definition of Ĉpa and
the oddness of C′, we obtain

Ĉ′
pa(x

′ +1) = C′(x′ +1) = −C′(−x′ −1) = −Ĉ′
pa(−x′ −1) = Ĉ′

pa(−x′ +1).

(3.23)
For x′ ∈ [0, 1], we have x ′ + 1 ∈ (1, 2). By using the definition of Ĉpa and the
oddness of C′, we obtain

Ĉ′
pa(x

′ + 1) = −Ĉ′
pa(x

′ − 1) = −C′(x′ − 1) = C′(−x′ + 1) = Ĉ′
pa(−x′ + 1).

(3.24)
Combining (3.23) and (3.24) with (3.22), we conclude that d

dx
CpaPou(−1) = 0.

Similarly, we can conclude that d
dx
CapPeu(−1) = 0. Consequently, we arrive at

d

dx
CNDu(−1) = 0.

• The operatorMDN: The proof is similar to the case of MND.

Remark 3.7 As we prepare to construct the operators in 2D, it is useful to explicitly
denote the variable x′ on which Pe and Po act in the following way.

CNu(x) := (
CpPe,x′ + CaPo,x′

)
u(x)

CDu(x) := (
CaPe,x′ + CpPo,x′

)
u(x)

CNDu(x) := (
CapPe,x′ + CpaPo,x′

)
u(x)

CDNu(x) := (
CpaPe,x′ + CapPo,x′

)
u(x).

Consequently, checking if the operators enforce the BC reduces to obtaining

d

dx
CNu(±1) = 0, CDu(±1) = 0

d

dx
CNDu(−1) = 0, CNDu(+1) = 0

d

dx
CDNu(+1) = 0, CDNu(−1) = 0.

(3.25)
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4 The construction of 2D operators

We begin with defining the following auxiliary operators that act on a bivariate
function

XEu(x, y) =
∫

Ω

X̂E(x
′−x)u(x′, y)dx′, YEu(x, y) =

∫
Ω

ŶE(y
′−y)u(x, y′)dy′,

where the extension type E ∈ {p,a,pa,ap}. When a particular identity holds inde-
pendently of the extension type, the subscript is suppressed. Using the separability
assumption (2.7) on the kernel function, we have

Ĉ(x, y) = X̂(x)Ŷ (y). (4.1)

To account for the convolution present in the the governing operators, we define a
generic operator

Cu(x, y) =
∫∫

Ω

Ĉ(x′−x, y′−y)u(x′, y′)dx′dy′. (4.2)

The separability of the kernel function (4.1) and the Fubini Theorem lead to an
important commutativity property:

Cu(x, y) =
∫∫

Ω

X̂(x′−x)Ŷ (y′−y)u(x′, y′)dx′dy′

=
∫

Ω

X̂(x′−x)
( ∫

Ω

Ŷ (y′−y)u(x′, y′)dy′)dx′

=
∫

Ω

X̂(x′−x)
(
Yu(x′, y)

)
dx′

= X
(
Yu
)
(x, y). (4.3)

On the other hand, a change in the order of integration leads to

Cu(x, y) = Y
(
Xu
)
(x, y). (4.4)

As a by-product, we also see that C can be decomposed into a product of two 1D
operators where the action of X and Y are on the variables x and y, respectively.
These two properties are instrumental in satisfying the BC as will be detailed in
Section 5.

Similar to (3.4), we also obtain the following equivalence of operators in the bulk.
For fixed y0 and x ∈ (−1 + δ, 1 − δ), we have

Xpu(x, y0) = Xau(x, y0) = Xpau(x, y0) = Xapu(x, y0).

Also, for fixed x0 and y ∈ (−1 + δ, 1 − δ), we have

Ypu(x0, y) = Yau(x0, y) = Ypau(x0, y) = Yapu(x0, y).
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The choice made in (3.12) leads to the construction of the operator that enforces pure
Neumann BC in the x- and y-variable as follows.

XN := XpPe,x′ + XaPo,x′ (in the x-variable) (4.5)

YN := YpPe,y′ + YaPo,y′ (in the y-variable). (4.6)

Similarly, the choice made in (3.13) leads to the construction of the operator that
enforces pure Dirichlet BC in the x- and y-variable as follows.

XD := XaPe,x′ + XpPo,x′ (in the x-variable) (4.7)

YD := YaPe,y′ + YpPo,y′ (in the y-variable). (4.8)

Similarly, the choices made in (3.14) and (3.15) lead to the construction of the opera-
tors that enforce mixed Neumann-Dirichlet and Dirichlet-Neumann BC in the x- and
y-variable as follows.

XND := XapPe,x′ + XpaPo,x′ (in the x-variable) (4.9)

YND := YapPe,y′ + YpaPo,y′ (in the y-variable) (4.10)

XDN := XpaPe,x′ + XapPo,x′ (in the x-variable) (4.11)

YDN := YpaPe,y′ + YapPo,y′ (in the y-variable). (4.12)

We want to construct an operator that enforces pure Neumann BC on the square.
We make the choice that gives the 1D Neumann operator both in x- and y-variables.
Hence, combining (4.5) and (4.6), we define the 2D pure Neumann operator as

MN − c := −XNYN = −(XpPe,x′ + XaPo,x′
)(
YpPe,y′ + YaPo,y′

)
. (4.13)

Similarly, combining (4.7) and (4.8), we define the 2D pure Dirichlet operator as

MD − c := −XDYD = −(XaPe,x′ + XpPo,x′
)(
YaPe,y′ + YpPo,y′

)
. (4.14)

Similarly, combining (4.9), (4.10), (4.11), and (4.12), we define the 2D mixed
operators as follows.

MN,DN − c := −XNYDN = −(XpPe,x′ + XaPo,x′
)(
YpaPe,y′ + YapPo,y′

)
(4.15)

MND,ND−c := −XNDYND=−(XapPe,x′ +XpaPo,x′
)(
YapPe,y′ +YpaPo,y′

)
.(4.16)

All possible 36 types of BC are given in Section 6.
Recalling (1.1), we immediately see that the operator L agrees in the bulk with the

operators given above. Namely,

L − c = − C = MN − c = MD − c = MN,DN − c = MND,ND − c.

Remark 4.1 The operator C in (1.1) utilizes a 2D computational domain which is
indicated by the integration variable dx′dy′ = d(x′, y′). We can show the con-
struction of each operator by paying attention to the computational domain of each
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operator and rearranging (4.3) using the agreement of operators in the bulk in the
following way.

C = CIx′,y′

= X Ix′ YIy′

= X (Pe,x′ + Po,x′) Y(Pe,y′ + Po,y′)

= (
XPe,x′ + XPo,x′

) (
YPe,y′ + YPo,y′

)
= (

XpPe,x′ + XaPo,x′
) (

YpPe,y′ + YaPo,y′
) =: −(MN − c

)
= (

XaPe,x′ + XpPo,x′
) (

YaPe,y′ + YpPo,y′
) =: −(MD − c

)
= (

XpPe,x′ + XaPo,x′
) (

YapPe,y′ + YpaPo,y′
) =: −(MN,ND − c

)
(4.17)

= (
XapPe,x′ +XapPo,x′

)(
YapPe,y′ +YapPo,y′

) =:−(MND,ND−c
)
. (4.18)

We construct the operators in higher dimensions by using the corresponding rear-
rangement; see Section 7 for the 3D construction. In addition, the 2D decomposition
operator Ix′,y′ given in (2.6) is indeed the product of the 1D decomposition operators
Ix′ and Iy′ given in (2.5). More precisely,

Ix′,y′ = Ix′ Iy′

= (
Pe,x′ + Po,x′

)(
Pe,y′ + Po,y′

)
= Pe,x′Pe,y′ + Pe,x′Po,y′ + Po,x′Pe,y′ + Po,x′Po,y′ .

5 Verifying the boundary conditions

We prove that the operators MN, MD, MND,ND, and MN,ND enforce pure Neumann,
pure Dirichlet, mixed Neumann-Dirichlet (2+2), and mixed Neumann-Dirichlet
(3+1) BC in 2D, respectively. Note that the operators

(
MN − c

)
,
(
MD − c

)
,(

MN,DN − c
)
, and

(
MND,ND − c

)
given in (4.13), (4.14), (4.15), and (4.16), respec-

tively, are the product of two 1D operators. As we mentioned, the limit in the
definition of the BC can be interchanged with the integral sign due to the Lebesgue
Dominated Convergence Theorem and the Leibniz Rule. Then, using the change in
the order of integration as in (4.4), we prove that the pure Neumann and pure Dirichlet
BC are enforced.

∂

∂n

[(
MN − c

)
u
]
(x, +1)=−

(
∂

∂y
XNYN

)
u(x, +1)=−XN

(
d

dy
YN

)
u(x, +1)= 0

∂

∂n

[(
MN − c

)
u
]
(x, −1) =

(
∂

∂y
XNYN

)
u(x, −1) = XN

(
d

dy
YN

)
u(x, −1) = 0

∂

∂n

[(
MN − c

)
u
]
(+1, y) = −

(
∂

∂x
YNXN

)
u(+1, y)=−YN

(
d

dx
XN

)
u(+1, y)=0

∂

∂n

[(
MN − c

)
u
]
(−1, y) =

(
∂

∂x
YNXN

)
u(−1, y) = YN

(
d

dx
XN

)
u(−1, y) = 0.

(
MD − c

)
u(x, ±1) = −XDYDu(x, ±1) = 0(

MD − c
)
u(±1, y) = −YDXDu(±1, y) = 0.
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In addition, we prove that the operator MN,DN enforces mixed Neumann-Dirichlet
(3+1), i.e., the East, West, and North edges have Neumann and the South edge have
Dirichlet BC.

∂

∂n

[(
MN,DN − c

)
u
]
(+1, y) = −

(
∂

∂x
YDNXN

)
u(+1, y) = YDN

(
d

dx
XN

)
u(+1, y) = 0

∂

∂n

[(
MN,DN − c

)
u
]
(−1, y) =

(
∂

∂x
YDNXN

)
u(−1, y) = YDN

(
d

dx
XN

)
u(−1, y) = 0

∂

∂n

[(
MN,DN − c

)
u
]
(x, +1) = −

(
∂

∂y
XNYDN

)
u(x, +1) = −XN

(
d

dy
YDN

)
u(x, +1) = 0.

(
MN,DN − c

)
u(x, −1) = −XNYDNu(x, −1) = 0.

Finally, using (3.25), we prove that the operator MND,ND enforces mixed (2+2)
Neumann-Dirichlet, i.e., the West and South edges have Neumann and the East and
North edges have Dirichlet BC.

∂

∂n

[(
MND,ND − c

)
u
]
(−1, y) =

(
∂

∂x
YNDXND

)
u(−1, y) = YND

(
d

dx
XND

)
u(−1, y) = 0

∂

∂n

[(
MND,ND − c

)
u
]
(x, −1) =

(
∂

∂y
XNDYND

)
u(x, −1) = XND

(
d

dy
YND

)
u(x, −1) = 0.

(
MND,ND − c

)
u(+1, y) = −XNDYNDu(+1, y) = 0(

MND,ND − c
)
u(x, +1) = −XNDYNDu(x, +1) = 0.

6 Other possible boundary conditions

We have 6 different types of BC, i.e., BC ∈ {N,D,p,a,ND,DN}. We construct the
types of BC in 2D by taking the product of the BC prescribed for the x-edges with
y-edges. Hence, we have 36 types of BC in 2D. We show the BC enforced on each
edge using the notation

[
N D
]×
[
N
D

]
,

which indicates the following BC configuration and corresponds to configuration
number 34.

N (Neumann) on the West edge, x = −1,
D (Dirichlet) on the East edge, x = +1,
D (Dirichlet) on the South edge, y = −1,
N (Neumann) on the North edge, y = +1.

With pure BC both on the x- and y-edges we have 16 combinations; see Table 1.
With pure BC on the x-edges and mixed on the y-edges, we have 8 combinations;
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Table 1 The operators that enforce pure boundary conditions on each edge

No BC Operator

1.
[
N N
]×
[
N

N

]
MN − c = −(XpPe,x′ + XaPo,x′

) (
YpPe,y′ + YaPo,y′

)

2.
[
N N
]×
[
D

D

]
MN,D − c = −(XpPe,x′ + XaPo,x′

) (
YaPe,y′ + YpPo,y′

)

3.
[
N N
]×
[
p

p

]
MN,p − c = −(XpPe,x′ + XaPo,x′

) (
YpPe,y′ + YpPo,y′

)

4.
[
N N
]×
[
a

a

]
MN,a − c = −(XpPe,x′ + XaPo,x′

) (
YaPe,y′ + YaPo,y′

)

5.
[
D D
]×
[
N

N

]
MD,N − c = −(XaPe,x′ + XpPo,x′

) (
YpPe,y′ + YaPo,y′

)

6.
[
D D
]×
[
D

D

]
MD − c = −(XaPe,x′ + XpPo,x′

) (
YaPe,y′ + YpPo,y′

)

7.
[
D D
]×
[
p

p

]
MD,p − c = −(XaPe,x′ + XpPo,x′

) (
YpPe,y′ + YpPo,y′

)

8.
[
D D
]×
[
a

a

]
MD,a − c = −(XaPe,x′ + XpPo,x′

) (
YaPe,y′ + YaPo,y′

)

9.
[
p p
]×
[
N

N

]
Mp,N − c = −(XpPe,x′ + XpPo,x′

) (
YpPe,y′ + YaPo,y′

)

10.
[
p p
]×
[
D

D

]
Mp,D − c = −(XpPe,x′ + XpPo,x′

) (
YaPe,y′ + YpPo,y′

)

11.
[
p p
]×
[
p

p

]
Mp − c = −(XpPe,x′ + XpPo,x′

) (
YpPe,y′ + YpPo,y′

)

12.
[
p p
]×
[
a

a

]
Mp,a − c = −(XpPe,x′ + XpPo,x′

) (
YaPe,y′ + YaPo,y′

)

13.
[
a a
]×
[
N

N

]
Ma,N − c = −(XaPe,x′ + XaPo,x′

) (
YpPe,y′ + YaPo,y′

)

14.
[
a a
]×
[
D

D

]
Ma,D − c = −(XaPe,x′ + XaPo,x′

) (
YaPe,y′ + YpPo,y′

)

15.
[
a a
]×
[
p

p

]
Ma,p − c = −(XaPe,x′ + XaPo,x′

) (
YpPe,y′ + YpPo,y′

)

16.
[
a a
]×
[
a

a

]
Ma − c = −(XaPe,x′ + XaPo,x′

) (
YaPe,y′ + YaPo,y′

)

see Table 2. With mixed BC on the x-edges and pure on the y-edges, we have 8
combinations; see Table 3. With mixed BC both on the x- and on the y-edges, we
have 4 combinations; see Table 4.
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Table 2 The operators that enforce pure boundary conditions on the x-edges and mixed boundary
conditions on the y-edges

No BC Operator

17.
[
N N
]×
[
D

N

]
MN,ND − c = −(XpPe,x′ + XaPo,x′

) (
YapPe,y′ + YpaPo,y′

)

18.
[
N N
]×
[
N

D

]
MN,DN − c = −(XpPe,x′ + XaPo,x′

) (
YpaPe,y′ + YapPo,y′

)

19.
[
D D
]×
[
D

N

]
MD,ND − c = −(XaPe,x′ + XpPo,x′

) (
YapPe,y′ + YpaPo,y′

)

20.
[
D D
]×
[
N

D

]
MD,DN − c = −(XaPe,x′ + XpPo,x′

) (
YpaPe,y′ + YapPo,y′

)

21.
[
p p
]×
[
D

N

]
Mp,ND − c = −(XpPe,x′ + XpPo,x′

) (
YapPe,y′ + YpaPo,y′

)

22.
[
p p
]×
[
N

D

]
Mp,DN − c = −(XpPe,x′ + XpPo,x′

) (
YpaPe,y′ + YapPo,y′

)

23.
[
a a
]×
[
D

N

]
Ma,ND − c = −(XaPe,x′ + XaPo,x′

) (
YapPe,y′ + YpaPo,y′

)

24.
[
a a
]×
[
N

D

]
Ma,DN − c = −(XaPe,x′ + XaPo,x′

) (
YpaPe,y′ + YapPo,y′

)

Table 3 The operators that enforce mixed boundary conditions on the x-edges and pure boundary
conditions on the y-edges

No BC Operator

25.
[
N D
]×
[
N

N

]
MND,N − c = −(XapPe,x′ + XpaPo,x′

) (
YpPe,y′ + YaPo,y′

)

26.
[
D N
]×
[
N

N

]
MDN,N − c = −(XpaPe,x′ + XapPo,x′

) (
YpPe,y′ + YaPo,y′

)

27.
[
N D
]×
[
D

D

]
MND,D − c = −(XapPe,x′ + XpaPo,x′

) (
YaPe,y′ + YpPo,y′

)

28.
[
D N
]×
[
D

D

]
MDN,D − c = −(XpaPe,x′ + XapPo,x′

) (
YaPe,y′ + YpPo,y′

)

29.
[
N D
]×
[
p

p

]
MND,p − c = −(XapPe,x′ + XpaPo,x′

) (
YpPe,y′ + YpPo,y′

)

30.
[
D N
]×
[
p

p

]
MDN,p − c = −(XpaPe,x′ + XapPo,x′

) (
YpPe,y′ + YpPo,y′

)

31.
[
N D
]×
[
a

a

]
MND,a − c = −(XapPe,x′ + XpaPo,x′

) (
YaPe,y′ + YaPo,y′

)

32.
[
D N
]×
[
a

a

]
MDN,a − c = −(XpaPe,x′ + XapPo,x′

) (
YaPe,y′ + YaPo,y′

)
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Table 4 The operators that enforce mixed boundary conditions on the x-edges and mixed boundary
conditions on the y-edges

No BC Operator

33.
[
N D
]×
[
D

N

]
MND,ND − c = −(XapPe,x′ + XpaPo,x′

) (
YapPe,y′ + YpaPo,y′

)

34.
[
N D
]×
[
N

D

]
MND,DN − c = −(XapPe,x′ + XpaPo,x′

) (
YpaPe,y′ + YapPo,y′

)

35.
[
D N
]×
[
D

N

]
MDN,ND − c = −(XpaPe,x′ + XapPo,x′

) (
YapPe,y′ + YpaPo,y′

)

36.
[
D N
]×
[
N

D

]
MDN,DN − c = −(XpaPe,x′ + XapPo,x′

) (
YpaPe,y′ + YapPo,y′

)

7 Operators in higher dimensions

Let us consider the convolution in 3D and the domain be Ω := (−1, 1) × (−1, 1) ×
(−1, 1). We define the convolution in 3D similarly using notation in (4.2).

Cu(x, y) =
∫∫∫

Ω

Ĉ(x′−x, y′−y, z′ − z)u(x′, y′, z′)dx′dy′dz′.

Note that C = −(L − c
)
. Hence we concentrate on finding suitable operators that

agree with C in the bulk. Assuming a separable kernel function similar to (2.7),

C(x, y, z) = X(x)Y (y)Z(z),

the operators MN and MD in 3D defined below enforce pure Neumann and Dirich-
let BC and simultaneously agree with the operator L in the bulk. The construction
process is an extension of the 2D case.

C = CIx′,y′,z′

= X Ix′ YIy′ ZIz′

= X (Pe,x′ + Po,x′) Y(Pe,y′ + Po,y′) Z(Pe,z′ + Po,z′)

= (
XPe,x′ + XPo,x′

) (
YPe,y′ + YPo,y′

) (
ZPe,z′ + ZPo,z′

)
= (

XpPe,x′ + XaPo,x′
)(
YpPe,y′ + YaPo,y′

) (
ZpPe,z′ + ZaPo,z′

)=: −(MN−c
)

= (
XaPe,x′ + XpPo,x′

) (
YaPe,y′ +YpPo,y′

)(
ZaPe,y′ + ZpPo,z′

) =: −(MD−c
)
.

The operators that enforce mixed Neumann and Dirichlet BC can be constructed in a
similar fashion to the operators given in (4.18) and (4.17). The extension to arbitrary
dimension can be performed by the same line of argument.
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8 Numerical experiments

8.1 Nonlocal wave equation

We numerically solve the following nonlocal wave equation

utt (x, y, t) + MBCu(x, y, t) = b(x, y, t), (x, y, t) ∈ Ω × J, (8.1a)

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, (8.1b)

ut (x, y, 0) = v0(x, y), (x, y) ∈ Ω, (8.1c)

where J = (0, T ) is some finite time interval, Ω = (−1, 1) × (−1, 1), b is a given
source term, and u0 and v0 are given initial displacement and velocity of the wave
equation, respectively. The choice of the subscript BC is determined by the BC that
are to be satisfied at the boundary of the physical domain Ω . Approximate solutions
of the nonlocal wave equation (8.1) were obtained by the numerical scheme which is
described below.

8.1.1 Discretization in space

To approximate the solution of (8.1), we begin with discretizing the domain Ω by
introducing the grid

{(xi, yj ) : 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny}
where

−1 = x0 < x1 < · · · < xNx−1 < xNx = 1

and

−1 = y0 < y1 < · · · < yNy−1 < yNy = 1.

Although it is possible to take different values for Nx and Ny , for the sake of sim-
plicity of the presentation we take Nx = Ny = N . Furthermore, we assume that the
grid spacing in both dimensions is uniform, that is,

xi − xi−1 = yj − yj−1 =: h = 2

N
for all i = 1, . . . , N and j = 1, . . . , N.

Note, however, that it is possible to remove either of these assumptions without much
difficulty.

We would like to compute an approximation uh to the solution u of (8.1) at the
grid points {(xi, yi) : i = 1, . . . , N} by employing a collocation method which is
obtained by requiring that the equation (8.1) holds true at all grid points, i.e.,

uh
tt (xi, yi, t) + MBCu

h(xi, yi, t) = b(xi, yi, t),

uh(xi, yi, 0) = u0(xi, yi),

uh
t (xi, yi, 0) = v0(xi, yi), (8.2)

for all i = 1, . . . , N and t ∈ J . The integrals in MBC are to be approximated by
a trapezoidal rule. Our collocation method of choice is the Nyström method which
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is obtained when the nodes of the trapezoidal rule for numerical integration are also
chosen as the grid points.

8.1.2 Discretization in time

The discretization of (8.1) by the Nyström method (8.2) leads to the second-order
system of ordinary differential equations

üh(t) + Auh(t) = bh(t), t ∈ J,

uh(0) = uh
0,

u̇h(0) = vh
0 . (8.3)

Here, A denotes the stiffness matrix. To discretize (8.3) in time, we employ the New-
mark time-stepping scheme as described in [19]. Let Δt denote the time step and set
tn = n · Δt for n = 1, 2, . . .. The Newmark scheme we employ consists of finding
approximations {uh

n}n to uh(tn) such that

uh
1 = (

I − 1

2
Δt2A

)
uh

0 + Δtvh
0 + 1

2
Δt2bh

0,

uh
n+1 = (

2I − Δt2A
)
uh

n − uh
n−1 + Δt2bh

n,

for n = 1, 2, . . . , Nt − 1 where NtΔt = T , and bh
n = bh(tn). Although there is a

more general version of the Newmark time-stepping schemes, we made this particu-
lar choice due to the fact that it is explicit and second-order accurate. For a detailed
discussion, we refer to [19].

8.1.3 Approximations to explicitly known exact solutions

In order to ascertain the convergence performance of the numerical scheme described
above, we display some numerical results corresponding to explicitly known exact
solutions. We solve one example corresponding to four of the BC types described in
Tables 1, 2, 3, and 4. More explicitly, No. 1 and 6 in Table 1, No. 17 in Table 2, and
No. 33 in Table 4. We take the exact solution corresponding to each BC as given in
Table 5 and compute the corresponding right-hand side function b(x, y, t). We then
compute the approximate solution by the Nyström method as described above. For
the simplicity of being able to compute the right-hand side function b(x, y, t) for a
given exact solution u(x, y, t), we take the kernel function C to be identically equal
to 1 on Ω . However, this is by no means a requirement for actual numerical com-
putations. For implementation, we use the explicit expression of the kernel functions
associated with the operators MN, MD, MN,DN, and MND,ND given by

(
MBC − c

)
u(x, y) = − ∫∫

Ω

KBC(x, x′, y, y′)u(x′, y′)dx′dy′,
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Table 5 Known exact solutions
used in numerical experiments BC u(x, y, t)

N t2[(x + 1)2(x − 1)3(y + 1)3(y − 1)2 + 64/225]
D t2(x2 − 1)(y2 − 1)

N,DN t2(x + 1)2(x − 1)2(y + 1)(y − 1)2

ND,ND t2(x + 1)2(x − 1)(y + 1)2(y − 1)

where BC ∈ {N,D, (N, DN), (ND, ND)} and

KN(x, x′, y, y′) := 1

4

[
X̂p(x

′−x) + X̂p(x
′+x) + X̂a(x

′−x) − X̂a(x
′+x)

]
[
Ŷp(y

′−y) + Ŷp(y
′+y) + Ŷa(y

′−y) − Ŷa(y
′+y)

]
,

KD(x, x′, y, y′) := 1

4

[
X̂a(x

′−x) + X̂a(x
′+x) + X̂p(x

′−x) − X̂p(x
′+x)

]
[
Ŷa(y

′−y) + Ŷa(y
′+y) + Ŷp(y

′−y) − Ŷp(y
′+y)

]
,

KN,DN(x, x′, y, y′) := 1

4

[
X̂p(x

′−x) + X̂p(x
′+x) + X̂a(x

′−x) − X̂a(x
′+x)

]
[
Ŷap(y

′−y) + Ŷap(y
′+y) + Ŷpa(y

′−y) − Ŷpa(y
′+y)

]
,

KND,ND(x, x′, y, y′) := 1

4

[
X̂pa(x

′−x) + X̂pa(x
′+x)+X̂ap(x

′−x) − X̂ap(x
′+x)

]
[
Ŷpa(y

′−y) + Ŷpa(y
′+y) + Ŷap(y

′−y) − Ŷap(y
′+y)

]
.

For each problem, we compute the exact solution until the final time T = 10 and
compute the relative discrete L∞-error

∥∥(u − uh)(·, T )
∥∥

h,∞ / ‖u(·, T )‖h,∞ where

‖ϕ‖h,∞ := max
1≤i≤N

|ϕ(xi, yi)|.

We compute approximate solutions with uniform grids with N = 2i with i =
2, . . . , 6. In each case, as the time step of the Newmark scheme, we take Δt =
2−5/10 so that the explicit Newmark time integration scheme is stable. In all of our
examples, we found out that taking Δt so that Δt < h/10 is sufficient for stability.

Table 6 History of convergence with known exact solutions

N D N,DN ND,ND

Grid Error Rate Error Rate Error Rate Error Rate

2 2.68E-01 – 3.24E-01 – 3.55E-01 0.01 3.88E-01 –

3 9.59E-02 1.48 1.57E-01 1.05 2.15E-01 0.72 2.07E-01 0.90

4 4.83E-02 0.99 7.19E-02 1.13 1.09E-01 0.98 1.02E-01 1.03

5 2.47E-02 0.97 3.45E-02 1.06 5.39E-02 1.01 5.00E-02 1.02

6 1.26E-02 0.97 1.68E-02 1.03 2.68E-02 1.01 2.48E-02 1.01
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Note that since the Newmark scheme is second order accurate in time, and all of the
exact solutions in Table 5 is of the form u(x, y, t) = T (t)U(x, y) with T (t) = t2, a
second order polynomial, it is guaranteed that the dominant error is the spatial one.

We display our numerical results in Table 6. Therein, the column labeled “grid”
we display log2 N and the column labeled “rate” displays the relative error corre-
sponding to the approximate solution with that particular grid. In the column labeled
“rate,” we display an approximate rate of convergence as follows. If ei denotes the
relative error with the grid with N = 2i , then we display the quantity

ri+1 = − 1

log 2
log

(
ei+1

ei

)

at the row corresponding to grid= i + 1. The results displayed in Table 6 suggest an
error estimate of the form ∥∥(u − uh)(·, T )

∥∥
h,∞

‖u(·, T )‖h,∞
≤ D h.

for some constant D independent of u and h, that is, the method converges with rate
1 with respect to h.

8.1.4 Approximations to unknown solutions

Here, we display some numerical results in which we solve (8.2) with b = 0. In this
case, we do not have an explicit representation of the solution and merely rely on
numerical computing. We consider two initial displacement functions

u0,cont(x, y) = ex−3y+x2y sin(xy)(1 − x2)2(1 − y2)3,

and

u0,disc(x, y) =
{

1, (x, y) ∈ (−1/4, 1/4) × (−1/4, 1/4),

0, otherwise.

Fig. 3 Initial data to the nonlocal wave equation on a 2D domain with continuous (left) and discontinuous
(right) initial data
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These functions are displayed in Fig. 3. In all cases, the initial velocity v0(x, y) = 0
for all (x, y) ∈ Ω . The kernel function is taken to be

C(x, y) =
{

1, (x, y) ∈ (−δ, δ) × (−δ, δ),

0, otherwise.
(8.4)

Fig. 4 Solution to the nonlocal wave equation on a 2D domain with continuous initial data using the
operator MN which corresponds to the boundary condition configuration 1
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In all examples, we use a grid with N = 32 and take the horizon δ = 2−2. We display
results for the continuous initial displacement only for BC = N which is depicted in
Fig. 4. For the discontinuous initial displacement we display the approximate solution
for BC ∈ {N,D, (N,DN), (ND,ND)} in Figs. 5, 6, 7, and 8.

Fig. 5 Solution to the nonlocal wave equation on a 2D domain with discontinuous initial data using the
operator MN which corresponds to the boundary condition configuration 1
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Fig. 6 Solution to the nonlocal wave equation on a 2D domain with discontinuous initial data using the
operator MD which corresponds to the boundary condition configuration 6

In [2], for 1D problem and t ∈ R, we have proved that the solution is discontinuous
if and only if the initial data is discontinuous. Furthermore, the position of discon-
tinuity is determined by the initial data and should remain stationary. We observe
the similar behavior in 2D as well. The discontinuity located along the edges of the
square (−1/4, 1/4) × (−1/4, 1/4) remains stationary.
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Fig. 7 Solution to the nonlocal wave equation on a 2D domain with discontinuous initial data using the
operator MN,DN which corresponds to the boundary condition configuration 18

8.2 Comparison of solutions of the classical and nonlocal wave equations

We compare the solutions of the nonlocal wave equation (8.1) to that of the classical
wave equation

utt (x, y, t) − c2Δu(x, y, t) = b(x, y, t), (x, y, t) ∈ Ω × J, (8.5a)

u(±1, y, t) = u(x, ±1, t) = 0 (8.5b)
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with initial conditions (8.1b) and (8.1c). Here, c denotes the wave speed.
In 1D, for discontinuous initial data, the solution to the classical equation is

obtained by d’Alembert’s method. On the other hand, the solution to the nonlocal
equation is obtained by the procedure described in [1]. For both solutions, we choose
the initial data

u0,disc(x) =
{

1, x ∈ (−1/16, 1/16),

0, otherwise.

Fig. 8 Solution to the nonlocal wave equation on a 2D domain with discontinuous initial data using the
operator MND,ND which corresponds to the boundary condition configuration 33
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The two solutions are depicted in Fig. 9 and they clearly disagree. The disagreement
is more striking in the way the discontinuities propagate. They propagate along char-
acteristics in the classical solution, whereas in the nonlocal solution, the position of
discontinuity is determined by the initial data and remain stationary. The two solu-
tions have similar wave separation and boundary reflection behavior. Namely, the
Dirichlet BC create reflections of the opposite sign. The other striking difference is
the dispersive behavior that the nonlocal solution exhibits.

In 2D, for continuous initial data, we employ the truncated series to approximate
solutions of the classical wave equation (8.5a) given in the form

u(x, y, t) =
M∑

m=1

N∑
n=1

amn cos(π
√

m2 + n2 ct) sin
(mπ

2
(x + 1)

)
sin
(nπ

2
(y + 1)

)

(8.6)

Fig. 9 Solutions to the classical (top left) and nonlocal (top right) wave equations on a 1D domain with
identical discontinuous initial displacement. The corresponding contour plots are given in the bottom row
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Fig. 10 Solutions u(x, 0, t) to the 2D classical and nonlocal wave equations with continuous initial data.
Top: c = 0.011423 and δ = 2−3. Bottom: c = 0.02371 and δ = 2−2. Note that larger horizon leads to
more dispersion
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where

amn =
∫ 1

−1

∫ 1

−1
u0(x, y) sin

(mπ

2
(x + 1)

)
sin
(nπ

2
(y + 1)

)
dydx, (8.7)

and the initial displacement u0(x, y) is given in (8.1b) and the initial velocity v0(x, y)

in (8.1c) is chosen to be 0.
We depict the solutions of the classical and nonlocal wave equations at the cross

section y = 0 for various t . The diffusivity coefficient α is determined by requiring
that the classical and nonlocal solutions coincide at (x, y, t) = (0, 0, 1). In Fig. 10,
we choose the horizon as δ = 2−3 and δ = 2−2 in the kernel function (8.4), and set
c = 0.011423 and c = 0.02371, respectively, to obtain the corresponding classical
solutions. In both figures, u0,cont(x, y) = u0,cont(x)u0,cont(y) where

u0,cont(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x ∈ (−1, −1/4),

(1 + 4x)3(96x2 − 12x + 1), x ∈ [−1/4, 0),

(1 − 4x)3(96x2 + 12x + 1), x ∈ [0, 1/4],
0, x ∈ (1/4, 1).

(8.8)

The fact that (8.6) converges as M, N → ∞ implies that limm,n→∞ |amn| = 0. For
the initial data given in (8.8), we take M = N = 35, so that |aMN | ≤ 10−6.

The two solutions share common features such as wave separation and a simi-
lar boundary reflection behavior. However, the nonlocal solution exhibits dispersive
behavior which seems to be the major source of disagreement. That is why, when a
larger horizon, i.e., δ = 2−2, is used, the disagreement is more pronounced than the
case of δ = 2−3 due to more dispersion; cf. Fig. 10.

8.3 Nonlocal heat equation

We numerically solve the nonlocal heat equation

ut (x, y, t) + MBCu(x, y, t) = b(x, y, t), (x, y, t) ∈ Ω × J, (8.9a)

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω. (8.9b)

We choose the kernel function

C(x, y) =
⎧⎨
⎩

1

|x||y| , (x, y) ∈ (−δ, δ) × (−δ, δ),

0, otherwise,

inspired by [13, 14], also see [25]. The spatial discretization is identical to the one
given in Section 8.1.1. It leads to the first-order system of ordinary differential
equations

u̇h(t) + Auh(t) = bh(t), t ∈ J,

uh(0) = uh
0, (8.10)
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Here, A is exactly the same stiffness matrix in (8.3). To discretize (8.10) in time, we
employ the following simple forward time-stepping scheme.

uh
n+1 = (I − ΔtA

)
uh

n + Δtbh
n,

for n = 1, 2, . . . , Nt − 1 where NtΔt = T , and bh
n = bh(tn).

8.4 Comparison of solutions of the classical and nonlocal heat equations

We compare the solutions of the nonlocal heat equation (8.9) to that of the classical
heat equation

ut (x, y, t) − αΔu(x, y, t) = b(x, y, t), (x, y, t) ∈ Ω × J,

equipped with the initial condition (8.9b) and the BC (8.5b). Here, α is a positive
diffusivity parameter.

We employ the truncated series to approximate solutions of the classical heat
Eq. 8.5a given in the form

u(x, y, t) =
M∑

m=1

N∑
n=1

amn e−α π2
4 (m2+n2) t sin

(mπ

2
(x + 1)

)
sin
(nπ

2
(y + 1)

)

(8.11)
where amn is given in (8.7) and the initial temperature u0(x, y) is given in (8.9b).

We depict the solutions of the classical and nonlocal wave equations at the cross
section y = 0 for various t . The diffusivity parameter α is determined by requiring
that the classical and nonlocal solutions coincide at (x, y, t) = (0, 0, 0.01). For the
continuous initial data, in Fig. 11 and we choose the horizon as δ = 2−3 and δ = 2−2

and set α = 0.059 and α = 0.219, respectively. We take

u0,cont(x, y) = (x2 − 1)(y2 − 1). (8.12)

The coefficients in (8.11) have the largest magnitude |amn| at t = 0. For the initial

data given in (8.12), we take M = N = 11, so that |aMN |e−α π2
4 (m2+n2) t ≤ 10−6 for

all t ≥ 0.
For the discontinuous initial data, in Fig. 12 we choose the horizon as δ = 2−3

and δ = 2−2 and set α = 0.13 and α = 0.24, respectively. We take u0,disc(x, y) =
u0,disc(x)u0,disc(y) where

u0,disc(x) =
{

1, x ∈ [−1/2, 1/2],
0, otherwise,

(8.13)

For the initial data given in (8.13), we take M = N = 33, so that

|aMN |e−α π2
4 (m2+n2) t ≤ 10−6, for all t ≥ 0.01.

In Fig. 11, with continuous initial data, we observe that the classical and nonlocal
solutions are virtually identical for both values of δ. On the other hand, in Fig. 12,
with discontinuous initial data, we also observe that the two solutions qualitatively
agree for both values of δ in the sense that they both decay to the steady state solution
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Fig. 11 Solutions u(x, 0, t) to the 2D classical and nonlocal heat equations with continuous initial data.
Top: δ = 2−3 and α = 0.059. Bottom: δ = 2−2 and α = 0.219
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Fig. 12 Solutions u(x, 0, t) to the 2D classical and nonlocal heat equations with discontinuous initial
data. Top: δ = 2−3 and α = 0.13. Bottom: δ = 2−2 and α = 0.24
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of u = 0. Yet, the agreement is more pronounced for large δ. In addition, both solu-
tions follow a roughly similar profile at any given time. It is also worth noting that δ

plays the role of the diffusivity parameter α. Namely, the larger the δ, the higher is
the corresponding diffusivity.

9 Conclusion

We extended our recent work in 1D [4] to higher dimensions. We presented novel
governing operators in 2D/3D for nonlocal wave propagation and nonlocal diffusion
that enforce local BC. We presented methodically how to verify the BC by using a
change in the order of integration. We provided 36 different types of BC in 2D which
include pure and mixed combinations of Neumann, Dirichlet, periodic, and antiperi-
odic BC. We carried out numerical experiments for the nonlocal wave equation. We
verified that the novel operators enforce local BC for all time. We also observed that
the property we proved for 1D in [2], namely, discontinuities remain stationary, also
holds for 2D. We provided a comparison of the solutions to the classical wave and
heat equations to those of nonlocal ones. We found out that the classical and nonlocal
wave propagation disagree, whereas, the classical and nonlocal diffusion agree.

Our ongoing work aims to extend these operators to vector valued problems which
will help apply peridynamics to problems that require local BC. We anticipate that
our novel approach will avoid altogether the surface effects seen in peridynamics.
Our construction depends on the assumption of a rectangular/box geometry. We are
investigating the case of general geometry in higher dimensions.
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