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Abstract In this paper, we construct and analyze a nonconforming finite volume
method (FVM) for solving the elliptic boundary value problems on quadrilateral
meshes: the hybrid Wilson FVM. Under the mesh assumption that the underlying
mesh is an h2-parallelogram mesh, we show that the scheme possesses first order in
the mesh-dependent H 1-norm and second order in the L2-norm error estimates, the
same optimal convergence orders as those of the correspondingWilson finite element
method (FEM). Numerical results are presented to demonstrate the theoretical results
on the convergence order of the method.
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1 Introduction

The FVM has become one of the major numerical methods for solving partial dif-
ferential equations in the past several decades. Preserving certain local conservation
laws, flexible algorithm constructions, and easy implementation are the most attrac-
tive advantages of the FVM. Due to these advantages, the FVM is popular in scientific
and engineering computations (cf. [12, 19, 22, 30, 31, 34]). Many researchers have
studied this method extensively and obtained some important results. We refer to (cf.
[1, 2, 4, 9, 16, 21, 23]) for an incomplete list of references.

In comparing with its wide applications, the development of the theoretical analy-
sis of the FVMs lags far behind. Most existing works focus on the conforming FVM
schemes. The literatures [8, 14, 24, 26, 36, 40] studied the inf-sup condition or the
uniform ellipticity of the bilinear forms of the FVMs over triangular or rectangular
meshes so as to establish the H 1 error estimates. For general quadrilateral meshes,
Li and Li [25] studied a bilinear FVM and Yang [37] and Yang et al. [38] studied
biquadratic FVMs. They all got optimal H 1 error estimates for the corresponding
FVMs under the h2-parallelogram mesh assumption. Under a weaker mesh condition
that the underlying mesh is h1+r -parallelogram (r > 0), Zhang and Zou [41] gave a
unified proof for the inf-sup condition for any order (bi-k order) FVMs whose dual
partitions are based on the Gauss and Lotatto points.

The L2 error estimate of the FVMs is a challenging task since the difference
between the exact and FV solutions is not orthogonal to the trial space with respect
to the bilinear form of the corresponding FEM. For triangular meshes, the L2 error
estimate for linear FVMs is studied in [7, 13, 18]. Only very recently, Wang and
Li [35] established a unified L2 error analysis for a class of higher-order Lagrange
FVMs provided that the dual partitions satisfy orthogonal conditions. For quadrilat-
eral meshes, Zhang and Zou [40] derived optimal L2 errors for bi-k order FVMs
on rectangular meshes by assuming that the exact solution u ∈ H 1

0 ∩ Hk+2. Paper
[28] proved an optimal L2 error estimate for a bilinear FVM by assuming that
u ∈ H 1

0 ∩ H 3 and the underlying mesh is h2-parallelogram. Under the same mesh
assumption as that in [28], papers [29, 38] derived optimal L2 error estimates for
biquadratic FVMs under a strong solution assumption that u ∈ H 1

0 ∩ H 4. Recently,
Lin et al. [27] gave optimal L2 error estimates for a class of bi-k order FVMs
whose dual partitions are based on Gauss and Lotatto points under a weak regular-
ity assumption of u ∈ H 1

0 ∩ Hk+1 and f ∈ Hk and a weak mesh restriction of
h1+r -parallelogram, where f is the right-hand side function and r ≥ 1+k

2k .
The hybrid FVM was initially constructed for quadratic FVMs over two-

dimensional triangular or rectangular grids in [6] and the optimal rate of convergence
in H 1-norm was obtained there. Comparing with the Lagrange or Hermite FVMs, the
hybrid FVMs enjoy more simple dual partitions especially for higher-order schemes.
To our best knowledge, there are few works about the hybrid or the nonconforming
FVMs (cf. [3, 5, 9, 10]). Very recently, the first author of this paper and her coop-
erator in [39] established a convergence theorem applicable to the nonconforming
triangle mesh based FVMs as well as the rectangle mesh based FVMs for solving the
second order elliptic boundary problems.
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In this paper, the nonconforming hybrid Wilson FVM for solving the elliptic
boundary value problems on quadrilateral meshes is considered, whose trial space is
the well-known nonconforming Wilson FE space and test space is spanned by the
characteristic functions of the control volumes and the nonconforming functions of
the trial space. Since the mapping from a reference square to a general quadrilateral
is not an affine mapping, the techniques using in the theoretical analysis of [39] no
long work for the hybrid Wilson FVM proposed in this paper. The main purpose of
this paper is to derive the optimal mesh dependent H 1 and L2 error estimates for
the hybrid Wilson FVM under certain mesh assumptions. Lemma 3.8 is crucial to
the establishment of the uniform ellipticity of the bilinear form of the hybrid Wilson
FVM. Specifically, by Lemma 3.8, the proof of the positive definiteness of the 6× 6
element stiffness matrix with two parameters is reduced to the proof of the positive
definiteness of a simple 3× 3 matrix with just one parameter. According to this idea,
we establish the positive definiteness of the element stiff matrix when the quadri-
lateral element is a parallelogram. When the quadrilateral is an h1+r -parallelogram
(r > 0), we treat it as a perturbation of a parallelogram and establish the positive
definiteness of its element stiff matrix. The nonconforming error term is properly
estimated when r = 1. Consequently, the optimal mesh dependent H 1 error estimate
of the hybrid Wilson FVM solution can be obtained. By the space decomposition and
the Aubin-Nitsche technique, the L2 error estimate of the scheme is reduced to the
analysis of the difference of bilinear forms between the FVM and its corresponding
FEM on the conforming part of the trial space, which can be properly treated using
the techniques employed in the lower-order FVM schemes.

The rest of this paper is organized as follows. In Section 2, we present the hybrid
Wilson FVM for Poisson equations. In Section 3, we establish the mesh dependent
H 1 error estimate of our method. In Section 4, we discuss the L2 error estimate
of the method. In the last section, we present numerical examples to confirm the
convergence results.

In this paper, the notations of Sobolev spaces and associated norms are the same
as those in [11] and C or Ci will denote generic positive constants independent of
meshes and may be different at different occurrences, where i is a positive integer.

2 The hybrid wilson FVM

Let � be a polygonal domain in R
2 and f ∈ L2(�). We consider the Poisson

equation with the Dirichlet boundary condition

{ −�u = f, in �,

u = 0, on ∂�,
(2.1)

where u is the unknown to be determined.
Let T := {K} be a quadrilateral partition of �, where the intersection of any two

closed quadrilaterals is either a common side or a common vertex. Let hK be the
diameter of the element K and h := max{hK |K ∈ T }. Let ρK be the smallest length
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Fig. 1 Left: control volume in K. Right: control volume around P

of the edges and let θK be any interior angle of K . We denote by SK the measure of
K .

We shall introduce a dual partition T ∗ of T , whose elements are called control
volumes. Let Nm := {1, 2, . . . , m} for a positive integer m. We use RS to denote
the line segment between R and S and use

∣∣RS
∣∣ to denote its length. We denote

by �P1P2P3P4 a quadrilateral K with vertices Pi := (xi, yi), i ∈ N4 in counter
clockwise order (see Fig. 1 left). Let Mi, i ∈ N4 be the midpoint of the edge PiPi+1,
where P5 := P1 and Q be the intersection of M1M3 and M4M2. The control volume
in K associated with Pi, i ∈ N4 is the subregion �PiMiQMi−1, where M0 :=
M4. Then for each vertex P of a quadrilateral in T , we associate a control volume
K∗

P , which is built by the union of the above subregions sharing the vertex P (see
Fig. 1 right, the region with boundary M1Q1M2Q2M3Q3M4Q4M1). The collection
of these control volumes makes the dual partition T ∗. This dual partition is also used
for the bilinear FVMs on quadrilateral meshes (see [24, 25, 32]).

For a quadrilateral K as in Fig. 1, we introduce some notations. Let

�a := (a1, a2), �b := (b1, b2), �m := (m1, m2), (2.2)

where

a1 := (x2+x3)−(x1+x4)
2 , b1 := (x3+x4)−(x1+x2)

2 , m1 := (x1+x3)−(x2+x4)
2 ,

a2 := (y2+y3)−(y1+y4)
2 , b2 := (y3+y4)−(y1+y2)

2 , m2 := (y1+y3)−(y2+y4)
2 .

Let O1 and O2 denote the midpoint of P1P3 and P2P4 respectively (see Fig. 2). Note
that �a = −−−→

M4M2, �b = −−−→
M1M3 and �m = −−−→

O2O1. We choose the square K̂ with vertices
P̂1 := (−1, −1), P̂2 := (1, −1), P̂3 := (1, 1) and P̂4 := (−1, 1) on (ξ, η) plane as a
reference element. There exists a mapping FK : K̂ → K with FK(P̂i) = Pi, i ∈ N4
such that (see Fig. 2) {

x = x0 + a1
2 ξ + b1

2 η + m1
2 ξη,

y = y0 + a2
2 ξ + b2

2 η + m2
2 ξη,

(2.3)
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Fig. 2 The mapping FK : K̂ → K

where x0 := x1+x2+x3+x4
4 , y0 := y1+y2+y3+y4

4 is the coordinate of the point Q in K .
Note that FK is nonlinear and �m measures its the nonlinearity. For parallelograms
(including rectangles), O1 and O2 overlaps such that �m = 0. Then the mapping FK

becomes an affine mapping.
We describe the trial and test spaces on the reference element K̂ for the hybrid

Wilson FVM. The trial space U
K̂
on K̂ is a space of polynomials of degree less than

or equal to 2. The set of degrees of freedom 	̂ := {f̂i : i ∈ N6}, where
f̂i (w) = w(P̂i), i ∈ N4 and f̂4+j (w) =

∫
K̂

∂jjw, j ∈ N2. (2.4)

There is a basis 
̂ := {φ̂i : i ∈ N6} for UK̂
such that

f̂i (φ̂j ) = δi,j :=
{
1, i = j,

0, i �= j,
i, j ∈ N6. (2.5)

By simple calculation, we get that

φ̂1 := (1/4)(1 − ξ)(1 − η), φ̂2 := (1/4)(1 + ξ)(1 − η), φ̂3 := (1/4)(1 + ξ)(1 + η),

φ̂4 := (1/4)(1 − ξ)(1 + η), φ̂5 := (1/8)(ξ2 − 1), φ̂6 := (1/8)(η2 − 1).
(2.6)

Let U
c,K̂

:= span{φ̂i , i ∈ N4} and Ud,K̂
:= span{φ̂4+i , i ∈ N2}. Then

U
K̂

= U
c,K̂

+ U
d,K̂

.

Let M̂1 := (0, −1), M̂2 := (1, 0), M̂3 := (0, 1), M̂4 := (−1, 0) and Q̂ := (0, 0).
The dual partition is defined as T̂ ∗ := {K̂∗

i : i ∈ N4}, where K̂∗
i , i ∈ N4 is the

rectangle �P̂iM̂iQ̂M̂i−1 with M̂0 := M̂4. We use χE to denote the characteristic
function of E ⊂ R

2. The test space on K̂ is chosen as VT̂ ∗ := span �T̂ ∗ , where its
basis �T̂ ∗ consists of

ψ̂i := χ
K̂∗

i
, i ∈ N4 and ψ̂4+i := φ̂4+i , i ∈ N2. (2.7)

Let V
c,T̂ ∗ := span{ψ̂i , i ∈ N4}. Then

VT̂ ∗ = V
c,T̂ ∗ + U

d,K̂
.

The overall trial space UT and test space VT ∗ on � are defined as below

UT := Uc,T + Ud,T and VT ∗ := Vc,T ∗ + Ud,T , (2.8)
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where

Uc,T := {u ∈ H 1
0 (�) : u|K = û ◦ F−1

K , û ∈ U
c,K̂

, K ∈ T },
Ud,T := {u ∈ L2(�) : u|K = û ◦ F−1

K , û ∈ U
d,K̂

, K ∈ T , u|∂� = 0},
Vc,T ∗ := span{χK∗ : K∗ ∈ T ∗ and K∗ ∩ ∂� = ∅}.

We remark that a function w in Uc,T is uniquely determined by the values of w at
the vertices of all K ∈ T , so that it is a continuous function on �̄. Thus, Uc,T is the
conforming part of the trial space UT . A function w in Ud,T depends merely on the
mean values of the second derivatives on each K ∈ T so that it is discontinuous at
the inter-element boundaries and thus nonconforming.

In order to establish the FVM scheme, we shall introduce a discrete bilinear form.
Associated with T and T ∗, for a positive integer k, we define respectively the space

H
k
T (�) := {v : v ∈ L2(�), v|K ∈ Hk(K), for all K ∈ T }

and the space

H
1
T ∗(�) := {v : v ∈ L2(�), v|K∗ ∈ H 1(K∗), for all K∗ ∈ T ∗, and v|∂� = 0}.

We introduce the discrete bilinear form for w ∈ H
2
T (�) and v ∈ H

1
T ∗(�) by setting

aT (w, v) :=
∑
K∈T

aK (w, v) (2.9)

where

aK (w, v) :=
∑

K∗∈T ∗

{∫
K∗∩K

∇w · ∇v −
∫

∂K∗∩intK
v∇w · n

}

with n being the outward unit normal vector on ∂K∗ and intK being the interior
of K . Employing the Green formula on the dual elements, we can show for w ∈
H 1

0 (�) ∩ H 2(�) and v ∈ H
1
T ∗(�) that

aT (w, v) =
∫

�

(−�w)v.

The variational form for (2.1) is written as finding u ∈ H 1
0 (�) ∩ H

2
T (�) such that

aT (u, v) = (f, v), for all v ∈ H
1
T ∗(�). (2.10)

The hybrid Wilson FVM for solving (2.1) is a finite-dimensional approximation
scheme which finds uT ∈ UT such that

aT (uT , v) = (f, v) , for all v ∈ VT ∗ . (2.11)

From (2.8), we know that Ud,T ⊂ VT ∗ and Vc,T ∗ ⊂ VT ∗ . When we choose v ∈
Ud,T in (2.11), we get that

∑
K∈T

∫
K

∇uT · ∇v =
∫

�

f v.

This equation is similar to that of the Wilson FEM ([33]). However, the function
v ∈ Vc,T ∗ may have jump between the adjoining control volumes in T ∗, the inte-
gral along the boundary of K∗ ∈ T ∗ can not be ignored in the discrete bilinear form
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aT (uT , v). This is one of the major differences between FVMs and the correspond-
ing FEMs. Specifically, when we choose v := χK∗ , K∗ ∈ T ∗ in (2.11), we get
that

−
∑
K∈T

∫
∂K∗∩intK

∇uT · n =
∫

K∗
f.

where n is the outward unit normal vector on ∂K∗.
We introduce an interpolation operator �T ∗ : UT → VT ∗ . For each K ∈ T , let

φi,K := φ̂i ◦ F−1
K and ψi,K := ψ̂i ◦ F−1

K .

For each w ∈ UT such that w|K := ∑
i∈N6

wi,Kφi,K , we define

�T ∗w|K :=
∑
i∈N6

wi,Kψi,K.

Then the hybrid Wilson FVM can be rewritten as finding uT ∈ UT such that

aT (uT , �T ∗w) = (f,�T ∗w) , for all w ∈ UT .

3 Mesh dependent H 1 error estimate

In this section, we shall establish the uniform boundedness and ellipticity of the dis-
crete bilinear forms so as to derive the optimal mesh dependent H 1 error estimate for
the hybrid Wilson FVM.

For a K ∈ T , let ∇FK denote the Jacobin matrix of the mapping (2.3) and ∇F−1
K

denote its inverse matrix. From (2.3), we get that

∇FK =
[

a1
2 + m1

2 η b1
2 + m1

2 ξ
a2
2 + m2

2 η b2
2 + m2

2 ξ

]
and ∇F−1

K = 1

JK

[
b2
2 + m2

2 ξ − b1
2 − m1

2 ξ

− a2
2 − m2

2 η a1
2 + m1

2 η

]
. (3.1)

Let JK(ξ, η) be the determinant of ∇FK . In the following, we often write JK instead
of JK(ξ, η) for simplicity. We assume that the partition T is regular, that is, there
exist positive constants σ and γ such that for all K ∈ T

hK/ρK ≤ σ, |cos θK | ≤ γ < 1. (3.2)

It is known from [33] that under the regularity condition (3.2), the mapping FK is
invertible and there holds

C1h
2
K ≤ JK ≤ C2h

2
K (3.3)

Let MK := JK∇F−1
K ∇F−T

K . From (3.1), we get that

MK = 1

4JK

[
m11(ξ) m12(ξ, η)

m21(ξ, η) m22(η)

]
,

where
m11(ξ) := |�b + �mξ |2, m12(ξ, η) = m21(ξ, η) := −(�a + �mη) · (�b + �mξ), m22(η) := |�a + �mη|2.

The next lemma describes the property of the eigenvalues of the matrix MK .
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Lemma 3.1 If the regularity condition (3.2) holds, then there exist positive constants
λ1 and λ2 such that for all K ∈ T , the eigenvalues of MK satisfy

λ1 ≤ λ(MK) ≤ λ2. (3.4)

Proof Let λmax(A) and λmin(A) denote respect the maximum and minimum eigen-
values of the matrix A. Note the fact that for a matrix A, λmax(AAT ) ≤ ‖A‖2F , where‖A‖F is the Frobenius norm of A. Using this fact and (3.1), we get that

λmax(∇F−1
K ∇F−T

K ) ≤ 1

4J 2
K

(|�a + �mη|2 + |�b + �mξ |2) ≤ Ch2K

J 2
K

(3.5)

and

λmax(∇FT
K∇FK) ≤ 1

4
(|�a + �mη|2 + |�b + �mξ |2) ≤ Ch2K. (3.6)

Since (3.2) holds, by (3.3) and (3.5), we get that there exists a positive constant λ2
such that

λmax(MK) = JKλmax(∇F−1
K ∇F−T

K ) ≤ λ2. (3.7)

By (3.3) and (3.6), there exists a positive constant λ1 such that

λmin(MK) = 1

λmax(M
−1
K )

= JK

λmax(∇FT
K∇FK)

≥ λ1 (3.8)

The desired result of this lemma is derived immediately from (3.7) and (3.8).

To each function w defined on K , we associate a function ŵ on K̂ by

ŵ := w ◦ FK. (3.9)

An application of (3.3) immediately gives that there exist positive constants C1 and
C2 such that for all K ∈ T , all w ∈ L2(K) and its associated ŵ ∈ L2(K̂)

C1hK‖ŵ‖0,K̂ ≤ ‖w‖0,K ≤ C2hK‖ŵ‖0,K̂ . (3.10)

The next lemma proves the equivalence of |w|1,K and |ŵ|1,K̂ .

Lemma 3.2 If the regularity condition (3.2) holds, then there exist positive constants
C1 and C2 such that for all K ∈ T , all w ∈ H 1(K) and its associated ŵ ∈ H 1(K̂)

C1|ŵ|1,K̂ ≤ |w|1,K ≤ C2|ŵ|1,K̂ . (3.11)

Proof By changing variables, we get that

|w|21,K =
∫

K̂

(∇ŵ)T MK∇ŵdξdη.

This combined with Lemma 3.1 yields the desired result of this lemma.

For a quadrilateral K ∈ T with notations as in Fig. 1, we define the dual grid lines
as follows

L∗
K := {QMi : i ∈ N4}.
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Lemma 3.3 If the regularity condition (3.2) holds, then for any quadrilateral K ∈ T
with notations as in Fig. 1 and for all w ∈ H 2(K)∫

QMi

|∇w|2ds ≤ Ch−1
K (|w|21,K + h2K |w|22,K).

Proof Let ϕ1 := ∂w
∂x

, ϕ2 := ∂w
∂y

. Then∫
QMi

|∇w|2ds =
∫

QMi

(
|ϕ1|2 + |ϕ2|2

)
ds. (3.12)

By the trace theorem, we get that∫
QMi

|ϕ1|2ds =
∣∣QMi

∣∣∣∣∣Q̂M̂i

∣∣∣
∫

Q̂M̂i

|ϕ̂1|2dŝ ≤ hK

∫
Q̂M̂i

|ϕ̂1|2dŝ ≤ ChK‖ϕ̂1‖21,K̂ .

(3.13)
Substituting (3.10) and (3.11) into (3.13), we derive∫

QMi

|ϕ1|2ds ≤ ChK(h−2
K ‖ϕ1‖20,K + |ϕ1|21,K). (3.14)

Similarly, we can derive that∫
QMi

|ϕ2|2ds ≤ ChK(h−2
K ‖ϕ2‖20,K + |ϕ2|21,K). (3.15)

Combining (3.12) with (3.14) and (3.15) yields the desired result of this lemma.

By virtue of the decomposition (2.8), each function w ∈ UT consists of two parts

w = w1 + w2, (3.16)

where w1 ∈ Uc,T and w2 ∈ Ud,T . The following lemma is derived from [33].

Lemma 3.4 If the regularity condition (3.2) holds, then there exist positive constants
C1 and C2 such that for all w ∈ UT and all K ∈ T

|w1|1,K ≤ C1|w|1,K, |w2|1,K ≤ C2|w|1,K (3.17)

where w1 and w2 are the two parts of w as defined in (3.16).

For each w ∈ H
2
T (�), we define the semi-norms

|w|i,T :=
( ∑

K∈T
|w|2i,K

)1/2

, i ∈ N2.

To introduce a discrete norm on the test space, we define the jump of v ∈ VT ∗ from
a control volume to its neighboring control volume. Let �∗ be an interior edge shared
by the control volumes K∗

1 and K∗
2 . We assign one fixed unit normal vector n on �∗

exterior to K∗
1 or K∗

2 . Then the jump of v ∈ VT ∗ on �∗ is defined by

[v](x) := lim
δ→0+ v(x − δn) − lim

δ→0+ v(x + δn), x ∈ �∗ ⊂ �. (3.18)
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For the boundary edge �∗ := ∂K∗ ∩ ∂�, let

[v](x) = 0, x ∈ �∗ ⊂ ∂�. (3.19)

For any v ∈ VT ∗ , define

|v|21,VT ∗ ,K :=
∑

K∗∈T ∗
|v|21,K∗∩K +

∑
�∗∈L∗

K

|�∗|−1
∫

�∗
[v]2, |v|1,VT ∗ :=

( ∑
K∈T

|v|21,VT ∗ ,K

)1/2

.

(3.20)

Lemma 3.5 If the regularity condition (3.2) holds, then for all w ∈ UT there holds

|�T ∗w|1,VT ∗ ≤ C|w|1,T .

Proof Let w∗ := �T ∗w. By (3.16) and the definition of �T ∗ , we have that w =
w1 + w2 and w∗ = w∗

1 + w2, where w∗
1 := �T ∗w1 ∈ Vc,T ∗ . To derive the desired

inequality of this lemma, it suffices to prove that

|w∗
1 |21,VT ∗ ,K ≤ C|w|21,K, |w2|21,VT ∗ ,K ≤ C|w|21,K . (3.21)

For each K with the notations as in Fig. 1, we begin to prove the first inequality
of (3.21). Note that

|w∗
1 |21,VT ∗ ,K =

∑
�∗∈L∗

K

|�∗|−1
∫

�∗
[w∗

1]2 =
∑
i∈N4

(w1(Pi) − w1(Pi+1))
2 ,

where P5 := P1. Since
∑

i∈N4
(w1(Pi) − w1(Pi+1))

2 and |ŵ1|21,K̂ are nonnegative

quadratic forms of w1(Pi), i ∈ N4 and they have the same null space, it follows from
[17] that they are equivalent, that is

C1|ŵ1|21,K̂ ≤ |w∗
1 |21,VT ∗ ,K ≤ C2|ŵ1|21,K̂ . (3.22)

Combining (3.22) and Lemma 3.2 gives that

|w∗
1 |21,VT ∗ ,K ≤ C|w1|21,K . (3.23)

Then, the first inequality of (3.21) is derived from (3.23) and (3.17).
Since w2 is continuous on each K ∈ T , we observe that

|w2|21,VT ∗ ,K =
∑

K∗∈T ∗
|w2|21,K∗∩K = |w2|21,K . (3.24)

The second inequality of (3.21) is derived from (3.24) and (3.17).

Based on the above preparations, we are now ready to establish the uniform
boundedness of the discrete bilinear forms.

Proposition 3.6 If the condition (3.2) holds, then there exists a positive constant C

such that for all w ∈ H
2
T (�) and all v ∈ UT

|aT (w, �T ∗v)| ≤ C(|w|1,T + h|w|2,T )|v|1,T . (3.25)
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Proof Let v∗ := �T ∗v. We note that

aT
(
w, v∗) = ac,T

(
w, v∗) + ad,T

(
w, v∗) . (3.26)

where

ac,T
(
w, v∗) :=

∑
K∈T

∑
K∗∈T ∗

∫
K∗∩K

∇wT ∇v∗, ad,T
(
w, v∗) := −

∑
K∈T

∑
�∗∈L∗

K

∫
�∗

[v∗]∇w · n,

with n being a fixed unit normal vector on �∗ and [v∗] being defined as in (3.18) and
(3.19). We first estimate ac,T (w, v∗). By virtue of the Cauchy-Schwartz inequality,
there holds

|ac,T
(
w, v∗) | ≤ |w|1,T |v∗|1,VT ∗ . (3.27)

Combining (3.27) with Lemma 3.5 yields

|ac,T
(
w, v∗) | ≤ C|w|1,T |v|1,T . (3.28)

We next estimate ad,T (w, v∗). An application of the Cauchy-Schwartz inequality
gives that

|ad,T
(
w, v∗) | ≤ |v∗|1,VT ∗ ·

⎛
⎝ ∑

K∈T

∑
�∗∈L∗

K

|�∗|
∫

�∗

(∇w · n)2
ds

⎞
⎠

1/2

. (3.29)

It follows from Lemma 3.3 that

|�∗|
∫

�∗

(∇w · n)2
ds ≤ hK

∫
�∗

|∇w|2ds ≤ C(|w|21,K + h2K |w|22,K). (3.30)

Substituting (3.30) into (3.29) and using Lemma 3.5, we obtain

|ad,T
(
w, v∗) | ≤ C

(|w|1,T + h|w|2,T
) |v|1,T . (3.31)

Combining (3.26) with (3.28) and (3.31) yields the desired result of this proposition.

To prove the uniform ellipticity of the discrete bilinear forms of the hybrid Wilson
FVM, we first present two useful lemmas. For a w ∈ UT and a K ∈ T (see Fig. 1),
let

wi,K := fi,K(w), i ∈ N6, (3.32)

where fi,K := f̂i ◦F−1
K with f̂i as defined in (2.4). Note that for a K ∈ T , a w ∈ UT

and its associated ŵ ∈ U
K̂

f̂i (ŵ) = fi,K(w) = wi,K. (3.33)

Set

z1 := w2,K − w1,K, z2 := w3,K − w4,K, z3 := w4,K − w1,K,

z4 := w3,K − w2,K, zi := wi,K, i = 5, 6.
(3.34)

We define a discrete H 1 semi-norm on UT

|w|21,UT ,K :=
6∑

i=1

z2i , |w|1,UT :=
( ∑

K∈T
|w|21,UT ,K

)1/2

.
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The next lemma provides the equivalence of the semi-norms | · |1,T and | · |1,UT

Lemma 3.7 If the condition (3.2) holds, then there exist positive constants C1 and
C2 such that for each K ∈ T and each w ∈ UT

C1|w|1,UT ,K ≤ |w|1,K ≤ C2|w|1,UT ,K

Proof From Lemma 3.2, it is suffices to prove that there exist positive constants c1
and c2 such that for each K ∈ T , each w ∈ UT and its associated ŵ ∈ U

K̂

c1|w|21,UT ,K ≤ |ŵ|2
1,K̂

≤ c2|w|21,UT ,K . (3.35)

From (3.33) and (2.5), we know that

ŵ =
∑
i∈N6

wi,Kφ̂i .

Thus, |ŵ|2
1,K̂

is a nonnegative quadratic form of wi,K, i ∈ N6 whose null space is the

same with that of |w|21,UT ,K . Therefore, from [17], we get that |w|21,UT ,K and |ŵ|2
1,K̂

are equivalent, that is, (3.35) holds.

The following lemma is derived from Lemma 3.7 of [37].

Lemma 3.8 Assume thatA and B are two n×n symmetric matrices and the constant

κ �= 0. Then the matrix

[
A κB
κB κ2A

]
is positive definite if and only if the matrices

A ± B are all positive definite.

We assume that each quadrilateral K ∈ T is an h1+r -parallelogram (r > 0),
which means that (see Fig. 2)

| �m| = |−−−→
O2O1| ≤ Ch1+r . (3.36)

In the next proposition, we establish the uniform ellipticity of the discrete bilinear
forms of the hybrid Wilson FVM.

Proposition 3.9 Suppose that the condition (3.2) holds with γ < 2
√
6

5 and the
condition (3.36) holds. Then there exits a positive constant C such that for all
w ∈ UT

aT (w, �T ∗w) ≥ C|w|21,T .

Proof Let w∗ := �T ∗w. By (3.16) and the definition of �T ∗ , we have that w =
w1 + w2 and w∗ = w∗

1 + w2, where w∗
1 := �T ∗w1 ∈ Vc,T ∗ . It suffices to prove that

for each K ∈ T with notations as in Fig. 1

aK(w, w∗) = aK(w, w∗
1) + aK(w, w2) ≥ C|w|21,K (3.37)

Note that
aK(w, w∗

1) = − ∑
K∗∈T ∗

∫
∂K∗∩intK w∗

1∇w · n
= z1

∫
M1Q

∇w · n1 + z2
∫
QM3

∇w · n2 − z3
∫
M4Q

∇w · n3 − z4
∫
QM2

∇w · n4
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where zi, i ∈ N6 are as defined in (3.34) and n1 is the unit normal vector on M1Q

pointing right, n2 is the unit normal vector on QM3 pointing right, n3 is the unit
normal vector on M4Q pointing down and n4 is the unit normal vector on QM2
pointing down. By changing variables, we get that

aK(w, w∗
1) = aK,η(w, w∗

1) + aK,ξ (w, w∗
1) (3.38)

where

aK,η(w, w∗
1) := z1

∫
M̂1Q̂

(∇ŵ)T MK n̂1 + z2
∫
Q̂M̂3

(∇ŵ)T MK n̂2
aK,ξ (w, w∗

1) := −z3
∫
M̂4Q̂

(∇ŵ)T MK n̂3 − z4
∫
Q̂M̂2

(∇ŵ)T MK n̂4.

Let I1 := [−1, 0], I2 := [0, 1], ϕ1(t) := 1− t and ϕ2(t) := 1+ t . It is easy to see that

∇ŵ = 1

4
(ϕ1(η)z1 + ϕ2(η)z2 + ξz5, ϕ1(ξ)z3 + ϕ2(ξ)z4 + ηz6)

T . (3.39)

It is obvious that on M̂1Q̂M̂3, ξ = 0 and n̂1 = n̂2 = (1, 0)T , and on M̂4Q̂M̂2, η = 0
and n̂3 = n̂4 = (0, −1)T . Thus

aK,η(w, w∗
1) = z1

{∫
I1

(
m11(0)
16J (0,η)

(ϕ1(η)z1 + ϕ2(η)z2) + m21(0,η)
16J (0,η)

(z3 + z4 + z6η)
)

dη
}

+z2

{∫
I2

(
m11(0)
16J (0,η)

(ϕ1(η)z1 + ϕ2(η)z2) + m21(0,η)
16J (0,η)

(z3 + z4 + z6η)
)

dη
} (3.40)

and

aK,ξ (w, w∗
1) = z3

{∫
I1

(
m12(ξ,0)
16J (ξ,0) (z1 + z2 + z5ξ) + m22(0)

16J (ξ,0) (ϕ1(ξ)z3 + ϕ2(ξ)z4)
)

dξ
}

+z4

{∫
I2

(
m12(ξ,0)
16J (ξ,0) (z1 + z2 + z5ξ) + m22(0)

16J (ξ,0) (ϕ1(ξ)z3 + ϕ2(ξ)z4)
)

dξ
}

.
(3.41)

Note that

aK(w, w2) =
∫

K

∇w · ∇w2.

By changing variables, we get that

aK(w, w2) =
∫

K̂

(∇ŵ)T MK∇ŵ2dξdη. (3.42)

It is easy to see that

∇ŵ2 = 1

4
(ξz5, ηz6)

T . (3.43)

Substituting (3.39) and (3.50) into (3.49) yields that

aK(w, w2) = z5

{ ∫
K̂

(
m11(ξ)ξ
64J (ξ,η)

(ϕ1(η)z1 + ϕ2(η)z2 + ξz5)

+m21(ξ,η)ξ
64J (ξ,η)

(ϕ1(ξ)z3 + ϕ2(ξ)z4 + ηz6)
)
dξdη

}
+ z6

{ ∫
K̂

(
m12(ξ,η)η
64J (ξ,η)

(ϕ1(η)z1 + ϕ2(η)z2 + ξz5)

+ m22(η)η
64J (ξ,η)

(ϕ1(ξ)z3 + ϕ2(ξ)z4 + ηz6)
)
dξdη

}
.

(3.44)

Since the grids considered here are almost parallelograms, we first assume that

K is a parallelogram. For a matrix M, we use M̃ := M+MT

2 to denote its associated
symmetric matrix. LetB be the element stiffness matrix whenK is parallelogram. Let
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θ := ∠P4P1P2, κ := |−−→
P1P4|
|−−→
P1P2|

and z := [z1, z2, z5, z3, z4, z6]T . From (3.38), (3.40),

(3.41) and (3.44), we get that

aK(w, w∗) = zT B̃z = |−−→
P1P4|2
8SK

zT

[
B1 κB2

κB2 κ2B1

]
z (3.45)

where

B1 :=
⎡
⎣ 3 1 0
1 3 0
0 0 2/3

⎤
⎦ and B2 := cos θ

⎡
⎣ −2 −2 5/6

−2 −2 −5/6
5/6 −5/6 0

⎤
⎦

The order principal minor determinants of the matrices B1 ± B2 are

3 ∓ 2 cos θ > 0, 8(1 ∓ cos θ), 8(1 ∓ cos θ)(
2

3
− (

5

6
)2 cos2 θ)

When we choose the constant γ in (3.2) such that γ < 2
√
6

5 (≈ 0.9798), we derive that
the above order principal minor determinants are all positive. Thus, the matrices B1±
B2 are all positive definite. By Lemma 3.8, we know that the matrix

[
B1 κB2

κB2 κ2B1

]
is

positive definite with minimum eigenvalue λmin(κ, cos θ) > 0. Since λmin(κ, cos θ)

is a continuous function of κ and cos θ and (3.2) holds, we conclude that there is a
positive constant λγ independent of κ and cos θ such that

λmin(κ, cos θ) ≥ λγ . (3.46)

From (3.2), we derive that
Ch2K ≤ SK ≤ h2K. (3.47)

Substituting (3.46) and (3.47) into (3.45), we get

zT B̃z ≥ C1zT z. (3.48)

We next turn to the case that K is an h1+r -parallelogram (r > 0). Let A be the
element stiffness matrix on K and set D = B − A. From (3.40), (3.41), and (3.44),
we can immediately get the elements of D. For a K ∈ T with notations as in Fig. 1,
we denote S∗

K := |−−→
P1P4 × −−→

P1P2|, m∗
11 := |−−→

P1P4|2, m∗
12 := −−−→

P1P4 · −−→
P1P2, m∗

21 :=
−−−→

P1P4 · −−→
P1P2 and m∗

22 := |−−→
P1P2|2. If K is a parallelogram, then

4JK(ξ, η) = S∗
K, m11(ξ) = m∗

11, m12(ξ, η) = m∗
12, m21(ξ, η) = m∗

21, m22(η) = m∗
22.

Under conditions (3.2) and (3.36), we derive from (19) and (25) of [32] that

|4JK(ξ, η) − S∗
K | ≤ Ch2+r , for all (ξ, η) ∈ K̂, (3.49)

Form the definition of S∗
K and (3.2), we get that

Ch2K ≤ S∗
K ≤ h2K (3.50)

We derive from (3.49), (3.50), and (3.3) that∣∣∣∣ 1

4JK(ξ, η)
− 1

S∗
K

∣∣∣∣ =
∣∣∣∣S

∗
K − 4JK(ξ, η)

4JK(ξ, η)S∗
K

∣∣∣∣ ≤ Chr−2. (3.51)
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Under condition (3.36), by simple calculation, we derive that for all (ξ, η) ∈ K̂

|m11(ξ) − m∗
11| ≤ Ch2+r , |m22(η) − m∗

22| ≤ Ch2+r ,

|m12(ξ, η) − m∗
12| = |m21(ξ, η) − m∗

21| ≤ Ch2+r .
(3.52)

By (3.51) and (3.52), we can estimate the elements of D

|Dij | ≤ Chr, 1 ≤ i, j ≤ 6.

Thus
λmax(D̃) ≤ ‖D̃‖∞ ≤ Chr . (3.53)

Therefore, from (3.48) and (3.53), we derive that

aK(w, w∗) = zT Ãz = zT B̃z − zT D̃z ≥ C1zT z − λmax(D̃)zT z ≥ CzT z,

which combined with Lemma 3.7 yields the desired inequality (3.37).

We introduce an interpolation projection operator PT to the trial space. For any
function v̂ ∈ H

2(K̂), we define the interpolation function P̂ v̂ ∈ U
K̂
as follows

f̂i (P̂ v̂) = f̂i (v̂), i ∈ N6,

where f̂i are defined as in (2.4). Then, for any function v ∈ H 2(K), the correspond-
ing function PKv is defined by

P̂Kv = P̂ v̂.

For each v ∈ H 2(�), let the interpolation function PT v ∈ UT be such that

PT v|K = PKv, for any K ∈ T . (3.54)

Following [20], we have the following interpolation error estimates.

|v − PT v|1,T ≤ Ch|v|2, ‖v − PT v‖0 ≤ Ch2|v|2, ∀v ∈ H 2(�). (3.55)

Theorem 3.10 Let u ∈ H 1
0 (�)∩H 2(�) be the solution of (2.1). If that the condition

(3.2) holds with γ < 2
√
6

5 and the condition (3.36) holds with r = 1, then the hybrid
Wilson FVM equation (2.11) has a unique solution uT ∈ UT such that

|u − uT |1,T ≤ Ch‖u‖2.
Proof By making use of Proposition 3.6 and Proposition 3.9, similar to the the proof
of Theorem 2.1 of [39], we find that (2.11) has a unique solution uT ∈ UT satisfying

|u−uT |1,T ≤ C

(
inf

w∈UT

(|u − w|1,T + h|u − w|2,T
) + sup

v∈UT

ET (u, v)

|v|1,T

)
. (3.56)

where

ET (u, v) := aT (u − uT , �T ∗v) = aT (u, �T ∗v) − (f, �T ∗v) (3.57)

is the nonconforming error term. It follows from (3.55) that

inf
w∈UT

(|u − w|1,T + h|u − w|2,T
) ≤ Ch|u|2. (3.58)

We next estimate the nonconforming error ET (u, v). For each v ∈ UT , we let
v∗ := �T ∗v. By (3.16) and the definition of �T ∗ , we have that v = v1 + v2 and
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v∗ = v∗
1 + v2, where v∗

1 := �T ∗v1 ∈ Vc,T ∗ . From (2.10), we note that aT (u, v∗
1) =

(f, v∗
1). So

ET (u, v) = aT (u, v∗) − (f, v∗) = aT (u, v2) − (f, v2). (3.59)

Since v2 ∈ UT and the condition (3.36) holds with r = 1, employing (5.15) of [33]
produces

|aT (u, v2) − (f, v2)| ≤ Ch‖u‖2|v2|1,T ,

which combining with Lemma 3.4 yields

|aT (u, v2) − (f, v2)| ≤ Ch‖u‖2|v|1,T . (3.60)

From (3.59) and (3.60), we obtain

|ET (u, v)| ≤ Ch‖u‖2|v|1,T . (3.61)

The desired result is derived from (3.56), (3.58), and (3.61).

In the Theorem 3.10, we present the mesh-dependentH 1 semi-norm error estimate
for the hybrid Wilson FVM, achieving the same optimal convergence order as that of
the Wilson FEM in [11, 20, 33]. We see that the nonconforming error term ET (u, v)

is of O(h), which hinders higher convergence order of the hybrid Wilson FVM in the
mesh dependent H 1 norm.

4 The L2 error estimate

In this section, we shall provide the L2 error analysis of the hybrid Wilson FVM. By
the space decomposition (2.8) and the Aubin-Nitsche technique, it can be reduced
to the estimation of the difference of bilinear forms between the FVM and its cor-
responding FEM on the lower-order subspace of the trial space. In all the lemmas

of this subsection, we assume that the condition (3.2) holds with γ < 2
√
6

5 and the
condition (3.36) holds with r = 1.

According to (3.16), the solution uT of the hybrid Wilson FVM can be written as
the sum

uT = uT ,c + uT ,n, (4.1)

where uT ,c ∈ Uc,T and uT ,n ∈ Ud,T . And for each v ∈ H 2(�), the interpolation
function PT v as defined in (3.54) can be written as

PT v = QT v + RT v, (4.2)

where QT v ∈ Uc,T and RT v ∈ Ud,T . Following [20], for each v ∈ H 2(�) we have
that

|v − QT v|1 ≤ Ch|v|2, ‖v − QT v‖0 ≤ Ch2|v|2. (4.3)

The next lemma describes the relationship between the nonconforming part of uT
and the exact solution u. Its proof is similar to that of Theorem 4 in [33].

Lemma 4.1 Let u ∈ H 1
0 (�) ∩ H 2(�) be the solution of (2.1). Then there holds

|uT ,n|1,T ≤ Ch‖u‖2, ‖uT ,n‖0 ≤ Ch2‖u‖2.
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Following Lemma 4.1, theL2 error estimate of the FVM solution uT and the exact
solution u has the form

‖u − uT ‖0 ≤ ‖u − uT ,c‖0 + ‖uT ,n‖0 ≤ ‖u − uT ,c‖0 + Ch2‖u‖2. (4.4)

In the following, we devote ourselves to estimating ‖u − uT ,c‖0. To this end, we
introduce an auxiliary problem: find ϕ ∈ H 2(�) such that

− �ϕ = u − uT ,c in � and ϕ = 0 on ∂�. (4.5)

It is well-known that (cf. [15])

‖ϕ‖2 ≤ C‖u − uT ,c‖0. (4.6)

For w, v ∈ H
1
T (�), we define the bilinear form

eK(w, v) :=
∫

K

∇w · ∇v and a(w, v) :=
∑
K∈T

eK(w, v).

Based on (4.5), we give the following important decomposition of the L2 error
estimate presented as a proposition.

Proposition 4.2 There holds that
‖u−uT ,c‖20 = a(u−uT ,c, ϕ−QT ϕ)+a(u−uT , QT ϕ)+a(uT ,n, QT ϕ−ϕ)+a(uT ,n, ϕ). (4.7)

Proof Applying the Green’s formula to (4.5), we get that

‖u − uT ,c‖20 = a(u − uT ,c, ϕ). (4.8)

Obviously,
a(u − uT ,c, ϕ) = a(u − uT ,c, ϕ − QT ϕ) + a(u − uT ,c, QT ϕ)

= a(u − uT ,c, ϕ − QT ϕ) + a(u − uT , QT ϕ) + a(uT ,n, QT ϕ)

= a(u − uT ,c, ϕ − QT ϕ) + a(u − uT , QT ϕ) + a(uT ,n, QT ϕ − ϕ) + a(uT ,n, ϕ).

Thus, the desired result is proved.

The first, third, and last terms on the right-hand side of (4.7) are relatively easy to
analyze, the estimations of which are given in the following three lemmas.

Lemma 4.3 There holds

|a(u − uT ,c, ϕ − QT ϕ)| ≤ Ch2‖u‖2‖u − uT ,c‖0.

Proof From (4.3) and (4.6), we obtain that

|a(u−uT ,c, ϕ −QT ϕ)| ≤ |u−uT ,c|1 · |ϕ −QT ϕ|1 ≤ Ch|u−uT ,c|1 · ‖u−uT ,c‖0.
(4.9)

It follows from Theorem 3.10 and Lemma 4.1 that

|u − uT ,c|1 ≤ |u − uT |1,T + |uT ,n|1,T ≤ Ch‖u‖2. (4.10)

Substituting (4.10) into (4.9) completes the proof of this lemma.
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Lemma 4.4 There holds∣∣a(uT ,n, QT ϕ − ϕ)
∣∣ ≤ Ch2|u|2‖u − uT ,c‖0.

Proof Using Lemma 4.1 and (4.3), we have that∣∣a(uT ,n, QT ϕ − ϕ)
∣∣ ≤ |uT ,n|1,T |QT ϕ − ϕ|1 ≤ Ch2‖u‖2|ϕ|2.

This combined with (4.6) yields the desired result of this lemma.

Lemma 4.5 There holds∣∣a(uT ,n, ϕ)
∣∣ ≤ Ch2‖u‖2‖u − uT ,c‖0.

Proof By the Green’s formula, we get that

a(uT ,n, ϕ) =
∑
K∈T

∫
∂K

uT ,n∇ϕ · n −
∑
K∈T

∫
K

uT ,n�ϕ (4.11)

Since the condition (3.36) holds with r = 1 and uT ,n ∈ UT , similar to the proof of
(5.15) in [33], we derive that∣∣∣∣∣

∑
K∈T

∫
∂K

uT ,n∇ϕ · n
∣∣∣∣∣ ≤ Ch‖ϕ‖2|uT ,n|1,T . (4.12)

An application of the Cauchy-Schwartz inequality gives that∣∣∣∣∣
∑
K∈T

∫
K

uT ,n�ϕ

∣∣∣∣∣ ≤ |ϕ|2‖uT ,n‖0. (4.13)

Then, from (4.11)–(4.13), we have that∣∣a(uT ,n, ϕ)
∣∣ ≤ C‖ϕ‖2

(
h|uT ,n|1,T + ‖uT ,n‖0

)
.

Thus, by (4.6) and Lemma 4.1, we get the desired result of this lemma.

Now, we focus on analyzing the second term on the right-hand side of (4.7), which
is the major difficulty for the L2 error estimate of the hybrid Wilson FVM. For a
g ∈ C2([a, b]), we introduce the following integral formula∫ b

a

g(x)dx = (b − a)g(
a + b

2
) + R(g), (4.14)

where R(g) is given by (cf. [28])

R(g) =
∫ b

a

K(t)g′′(t)dt,

with the kernel function

K(t) :=
{ 1

2 (t − a)2, t < a+b
2 ,

1
2 (t − b)2, t ≥ a+b

2 .
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When the condition (3.36) holds with r = 1, following [28], for all w ∈ H 3(K) and
its associated ŵ ∈ H 3(K̂) we have that

|ŵ|2,K̂ ≤ Ch(|w|1,K + |w|2,K) and |ŵ|3,K̂ ≤ Ch2‖w‖3,K . (4.15)

We introduce some notations. For each K ∈ T , set

ϕij = (QT ϕ)i,K − (QT ϕ)j,K, i, j ∈ N4,

and
ϕ1234 = (QT ϕ)1,K − (QT ϕ)2,K + (QT ϕ)3,K − (QT ϕ)4,K .

where (QT ϕ)i,K, i ∈ N4 are defined as in (3.32).
We are ready to estimate the second term on the right-hand side of (4.7) in the next

lemma.

Lemma 4.6 Then there holds

|a(u − uT , QT ϕ)| ≤ Ch2‖u‖3‖u − uT ,c‖0.

Proof Let Q∗
T ϕ := �T ∗(QT ϕ). Note that aT (u − uT , Q∗

T ϕ) = 0. So, we get that

a(u − uT , QT ϕ) = a(u − uT , QT ϕ) − aT (u − uT , Q∗
T ϕ) =

∑
K∈T

IK, (4.16)

where
IK := eK(u − uT , QT ϕ) − aK(u − uT , Q∗

T ϕ). (4.17)

For a K ∈ T with notations as in Fig. 1, we begin to analyze IK . By changing
variables, we have that

eK(u − uT , QT ϕ) =
∫

K̂

∇(Q̂T ϕ)T MK∇(û − ûT ).

Noticing that

∇(Q̂T ϕ) = 1

4
((ϕ21 + ϕ34) + ϕ1234η, (ϕ41 + ϕ32) + ϕ1234ξ)T ,

and letting
F1(ξ, η) := (1, 0)MK∇(û−ûT ), F2(ξ, η) := (0, 1)MK∇(û−ûT ), F3(ξ, η) := (ξ, η)MK∇(û−ûT ),

we derive that

eK(u − uT , QT ϕ) = 1
4

(
(ϕ21 + ϕ34)

∫
K̂

F1(ξ, η)+
(ϕ41 + ϕ32)

∫
K̂

F2(ξ, η) + ϕ1234
∫
K̂

F3(ξ, η)
)
,

(4.18)

By virtue of formula (4.14) with t = ξ , we obtain that∫
K̂

F1(ξ, η)dξdη = 2
∫ 1

−1
F1(0, η)dη +

∫ 1

−1
R1(η)dη, (4.19)

where

R1(η) := 1

2

(∫ 0

−1
(ξ + 1)2

∂2F1(ξ, η)

∂ξ2
dξ +

∫ 1

0
(ξ − 1)2

∂2F1(ξ, η)

∂ξ2
dξ

)
.
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By virtue of formula (4.14) with t = η, we obtain that∫
K̂

F2(ξ, η)dξdη = 2
∫ 1

−1
F2(ξ, 0)dξ +

∫ 1

−1
R2(ξ)dξ, (4.20)

where

R2(ξ) := 1

2

(∫ 0

−1
(η + 1)2

∂2F2(ξ, η)

∂η2
dη +

∫ 1

0
(η − 1)2

∂2F2(ξ, η)

∂η2
dη

)
.

Substituting (4.19) and (4.20) into (4.18) produces that

eK(u − uT , QT ϕ) = 1
2 (ϕ21 + ϕ34)

∫ 1
−1 F1(0, η)dη + 1

2 (ϕ41 + ϕ32)
∫ 1
−1 F2(ξ, 0)dξ

+ 1
4 (ϕ21 + ϕ34)

∫ 1
−1 R1(η)dη + 1

4 (ϕ41 + ϕ32)
∫ 1
−1 R2(ξ)dξ

+ 1
4ϕ1234

∫
K̂

F3(ξ, η)dξdη.

(4.21)
Note that
aK(u − uT , Q∗

T ϕ) = ϕ21
∫
M1Q

∇(u − uT ) · n + ϕ34
∫
QM3

∇(u − uT ) · n
−ϕ41

∫
M4Q

∇(u − uT ) · n − ϕ32
∫
QM2

∇(u − uT ) · n
= 1

2 (ϕ21 + ϕ34)
∫
M1M3

∇(u − uT ) · n − 1
2 (ϕ41 + ϕ32)

∫
M4M2

∇(u − uT ) · n
+ 1

2ϕ1234

( ∫
QM3

∇(u − uT ) · n + ∫
M4Q

∇(u − uT ) · n
− ∫

M1Q
∇(u − uT ) · n − ∫

QM2
∇(u − uT ) · n

)
,

where for a segment ST , n is the unit normal vector pointing right when we walk
from S to T . By changing variables, we get that

aK(u − uT , Q∗
T ϕ) = 1

2

(
(ϕ21 + ϕ34)

∫ 1

−1
F1(0, η)dη + (ϕ41 + ϕ32)

∫ 1

−1
F2(ξ, 0)dξ + ϕ1234TK

)
,

(4.22)

where

TK :=
∫ 1

0
F1(0, η)dη −

∫ 0

−1
F2(ξ, 0)dξ −

∫ 0

−1
F1(0, η)dη +

∫ 1

0
F2(ξ, 0)dξ.

Combining (4.17) with (4.21) and (4.22) yields that

IK = 1
4 (ϕ21 + ϕ34)

∫ 1
−1 R1(η)dη + 1

4 (ϕ41 + ϕ32)
∫ 1
−1 R2(ξ)dξ

+ 1
4ϕ1234

∫
K̂

F3(ξ, η)dξdη − 1
2ϕ1234TK,

(4.23)

We next estimate the terms on the right-hand side of (4.23). It follows from Lemma
3.7 that

|ϕij | ≤ C|QT ϕ|1,K, ij = 21, 34, 41, 32. (4.24)

By the Cauchy-Schwartz inequality, we derive that∣∣∣∣∣
∫ 1

−1
R1(η)dη

∣∣∣∣∣ ≤ C

∥∥∥∥∂2F1(ξ, η)

∂ξ2

∥∥∥∥
0,K̂

.

It follows from (3.3) and (3.36) with r = 1 that∣∣∣ ∂2F1(ξ,η)

∂ξ2

∣∣∣ ≤ C
(
h2

∣∣∣ ∂(û−ûT )
∂ξ

∣∣∣ + h

∣∣∣ ∂2(û−ûT )

∂ξ2

∣∣∣ + h

∣∣∣ ∂2(û−ûT )
∂ξ∂η

∣∣∣
+

∣∣∣ ∂3(û−ûT )

∂ξ3

∣∣∣ +
∣∣∣ ∂3(û−ûT )

∂ξ2∂η

∣∣∣ ).
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Thus ∣∣∣∣∣
∫ 1

−1
R1(η)dη

∣∣∣∣∣ ≤ C
(
h2|û − ûT |1,K̂ + h|û − ûT |2,K̂ + |û|3,K̂

)
.

This combined with (3.11) and (4.15) yields that∣∣∣∣∣
∫ 1

−1
R1(η)dη

∣∣∣∣∣ ≤ Ch2‖u‖3,K . (4.25)

Similarly, we get that ∣∣∣∣∣
∫ 1

−1
R2(η)dη

∣∣∣∣∣ ≤ Ch2‖u‖3,K . (4.26)

By direct calculation, we obtain that

|ϕ1234| = 2|Q̂T ϕ|2,K̂ .

This combined with (4.15) yields that

|ϕ1234| ≤ Ch‖QT ϕ‖2,K . (4.27)

By the Cauchy-Schwartz inequality and (3.11), we get that∣∣∣∣
∫

K̂

F3(ξ, η)dξdη

∣∣∣∣ ≤ C|û − ûT |1,K̂ ≤ C|u − uT |1,K . (4.28)

By the Trace Theorem, (3.11) and (4.15), we derive that

|TK | ≤ C
(
|û − ûT |1,K̂ + |û − ûT |2,K̂

)
≤ C

(|u − uT |1,K + h|u − uT |2,K
)
.

(4.29)
Substituting (4.24)-(4.29) into (4.23) produces that

|IK | ≤ C
(
h2‖u‖3,K + h|u − uT |1,K

)
‖QT ϕ‖2,K .

which combining with (4.16), Theorem 3.10 and (4.6) leads to the desired result.

From (4.4), Proposition 4.2 and Lemmas 4.3-4.6, we can obtain the following L2

error estimate for the hybrid Wilson FVM.

Theorem 4.7 Let u ∈ H 1
0 (�) ∩ H 3(�) be the solution of (2.1) and uT ∈ UT be

the solution of (2.11). Suppose that the condition (3.2) holds with γ < 2
√
6

5 and the

Fig. 3 Left: square, mid: quadrilateral with N = 4, right: refined quadrilateral with N = 8
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Table 1 Error estimates and convergence orders on square mesh

N |u − uT |1,T C.O. ‖u − uT ‖0 C.O.

4 3.7746e−2 4.2993e−3

8 1.8710e−2 1.0125 1.2895e−3 1.7374

16 9.3275e−3 1.0043 3.3625e−4 1.9392

32 4.6599e−3 1.0012 8.4909e−5 1.9856

64 2.3294e−3 1.0003 2.1279e−5 1.9965

128 1.1646e−3 1.0001 5.3229e−6 1.9991

condition (3.36) holds with r = 1. Then, we have the L2 error estimate for the hybrid
Wilson FVM

‖u − uT ‖0 ≤ Ch2‖u‖3.

5 Numerical examples

In this section, we present numerical results to illustrate the theoretical estimates in
the previous sections. The experiments here are performed on a personal computer
with 2.70 GHz CPU and 8 Gb RAM and Matlab 7.7 is used as the testing platform.

We consider solving Eq. 2.1 with f (x, y) := 2(x2 + y2 − x − y) and � :=
(0, 1) × (0, 1). The exact solution of the boundary value problem is given by
u(x, y) = −x(x − 1)y(y − 1), (x, y) ∈ [0, 1] × [0, 1]. In the experiment, we use
two families of meshes (see Fig. 3). We subdivide the region �̄ into N × N sub-
squares. The left one in Fig. 3 is the square mesh while the mid and right ones are the
quadrilateral meshes constructed by the mapping

x(i, j) = i

N
, y(i, j) = j

N
+ 1

10
sin(

2πi

N
) sin(

2πj

N
), 1 ≤ i, j ≤ N − 1,

with N = 4 and N = 8 respectively. It is easy to verify that the above quadrilateral
mesh satisfies the condition (3.36) with r = 1.

We report the computed |·|1,T error, ‖·‖0 error and their convergence order (C.O.)
for the cases of square mesh and quadrilateral mesh respectively in Tables 1 and 2.

Table 2 Error estimates and convergence orders on quadrilateral mesh

N |u − uT |1,T C.O. ‖u − uT ‖0 C.O.

4 4.2415e−2 9.4073e−3

8 2.1579e−2 0.9749 3.0516e−3 1.6242

16 1.0918e−2 0.9829 8.2009e−4 1.8957

32 5.5351e−3 0.9800 2.1006e−4 1.9649

64 2.7929e−3 0.9869 5.2980e−5 1.9873

128 1.4036e−3 0.9926 1.3292e−5 1.9949
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The numerical results show that the computed convergence order of | · |1,T error and
‖ · ‖0 error of the hybrid Wilson FVM oscillates around 1 and 2 respectively, which
are in agreement with the theoretical results of this paper.
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