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Abstract Let H be a closed subgroup of a connected finite-dimensional Lie group
G, where the canonical projection π : G → G/H is a Riemannian submer-
sion with respect to a bi-invariant Riemannian metric on G. Given a C∞ curve
x : [a, b] → G/H , let x̃ : [a, b] → G be the horizontal lifting of x with x̃(a) = e,
where e denotes the identity of G. When (G, H) is a Riemannian symmetric pair, we
prove that the left Lie reduction V (t) := x̃(t)−1 ˙̃x(t) of ˙̃x(t) for t ∈ [a, b] can be iden-
tified with the parallel pullback P(t) of the velocity vector ẋ(t) from x(t) to x(a)

along x. Then left Lie reductions are used to investigate Riemannian cubics, Rieman-
nian cubics in tension and elastica in homogeneous spaces G/H . Simplifications of
reduced equations are found when (G, H) is a Riemannian symmetric pair. These
equations are compared with equations known for curves in Lie groups, focusing on
the special case of Riemannian cubics in the 3-dimensional unit sphere S3.
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1 Introduction

Variational curves in Riemannian manifoldsM , including Riemannian cubics [2, 11],
Riemannian cubics in tension [21], and elastica [28],1 have applications in engineer-
ing, computer graphics, and quantum computing. Riemannian cubics in SO(3) are
used in trajectory planning for rigid body motion [1–3]; Riemannian cubics in ten-
sion are applied for interpolating figures [4, 6]; elastic curves serve as interpolating
curves in computer vision [7]; subRiemannian geodesics and subRiemannian cubics
are used to assist in the design of quantum circuits [8]. Most research on such curves
has been carried out for the special case where M is a Lie group G, using the notion
of Lie reduction for curves in groups. The present paper extends Lie reduction to the
case where M is a Riemannian homogeneous space, with special attention to when
M is also a symmetric space.

Riemannian cubics in symmetric spaces are already studied in [3] using the
so-called parallel pullback. From a computational point of view there are some
advantages in using left Lie reduction. The two approaches are compared, and related
by Theorem 1.2 below.

LetM be a finite-dimensional connected Riemannian manifold with a Riemannian
metric 〈·, ·〉. The associated Levi-Civita connection is denoted by ∇, and its curvature
tensor field R is defined according to the convention

R(X, Y )Z = (∇X∇Y − ∇Y ∇X − ∇[X,Y ]
)
Z

where X, Y,Z are vector fields on M , [·, ·] is the Lie bracket of vector fields.

1.1 Riemannian homogeneous spaces

Let g denote the Lie algebra of a connected finite-dimensional Lie group G. Given a
bi-invariant Riemannian metric 〈·, ·〉 on G, let H be a closed Lie subgroup with Lie
algebra h, and let m be the orthogonal complement of h in g. For g ∈ G the vertical
subspace of T Gg is the kernel of dπg : T Gg → T Mπ(g). The horizontal subspace
of T Gg is the orthogonal complement of the vertical subspace with respect to the
Riemannian metric on G. Orthogonal projections of tangent spaces of G to their
horizontal and vertical subspaces are denoted by H and V . Using left-invariance of
〈·, ·〉, a Riemannian metric on M is defined by requiring dπg to be a linear isometry
from the horizontal subspace of T Gg onto T Mπ(g). In particular dπe restricts to a
linear isometry from m onto the tangent space T Mπ(e), and G acts by isometries on
the left of G/H = M . Then π : G → M := G/H is a Riemannian submersion in
the sense of [16, 17], and M is called a Riemannian homogeneous space.

1A variational curve is the curve governed by a variational principle. For instance, Riemannian cubics are
critical points of the functional of total squared norm of the angular acceleration, which have prescribed
initial and final positions and velocities. In addition, if the functional is added by proportional total energy,
such critical points are called Riemannian cubics in tension. Elastica are solutions of the problem: find a
unit-speed curve with fixed length interpolating two prescribed points and velocities, which minimises the
total squared geodesic curvature. Specific definitions and equations for these variational curves are given
at the beginning of Section 2,3,4, respectively.
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Left Lie reduction for curves in homogeneous spaces

The vector space of smooth vector fields on manifold N is denoted by X (N). Let
X̃, Ỹ ∈ X (G) be the horizontal liftings of X, Y ∈ X (M), ˜∇XY is the horizontal
lifting of ∇XY . The relationship between the Levi-Civita covariant derivative ∇̃ on
G and its counterpart ∇ on M is given by the following lemma (Page 186 in [10] or
Theorem 1 in [17]).

Lemma 1.1 ∇̃
X̃
Ỹ = ˜∇XY + 1

2V ([X̃, Ỹ ]).

Proof Let Ṽ ∈ X (M) be a vertical field and Z ∈ X (G/H) a horizontal field, by
observing,

〈X̃, Ṽ 〉=〈Ỹ , Ṽ 〉=0, dπ([X̃, Ṽ ])=[dπ(Ỹ ), dπ(Ṽ )])=0, Ṽ 〈X̃, Ỹ 〉=0,

X̃〈Ỹ , Z̃〉=X〈Y, Z〉 ◦ π, dπ([X̃, Ỹ ])=[X, Y ] ◦ π, 〈[X̃, Ỹ ], Z̃〉=〈[X, Y ], Z〉 ◦ π,

and using the formula for the Riemannian connection as a function of the Riemannian
metric, we conclude that

2〈∇̃
X̃
Ỹ , Ṽ 〉 = X̃〈Ỹ , Ṽ 〉 + Ỹ 〈Ṽ , X̃〉 − Ṽ 〈X̃, Ỹ 〉 + 〈[X̃, Ỹ ], Ṽ 〉 + 〈[Ṽ , X̃], Ỹ 〉 − 〈[Ỹ , Ṽ ], X̃〉

= 〈[X̃, Ỹ ], Ṽ 〉,
2〈∇̃

X̃
Ỹ , Z̃〉 = (X〈Y,Z〉 + Y 〈Z,X〉 − Z〈X, Y 〉 + 〈[X, Y ], Z〉 + 〈[Z,X], Y 〉 − 〈[Y,Z], X〉) ◦ π

= 〈∇XY, Z〉 ◦ π,

which proves the lemma.

1.2 Riemannian symmetric spaces

The pair (G, H) is called symmetric if there exists an involutive analytic automor-
phism σ of G such that (Hσ )0 ⊆ H ⊆ Hσ , where Hσ is the set of fixed points
of σ and (Hσ )0 is the identity component of Hσ . In addition, (G, H) is said to be
a Riemannian symmetric pair if AdG(H) is compact. Then M := G/H is called a
Riemannian symmetric space and we have

[h, h] ⊆ h, [h,m] ⊆ m, [m,m] ⊆ h. (1.1)

In [3], Crouch and Silva Leite use parallel translation to study Riemannian cubics
when M is a Riemannian symmetric space. A Riemannian cubic x : [a, b] → M

starting at x0 := π(e)may be characterised by a parallel pullback P = Pẋ : [a, b] →
T Mx0 of ẋ. In general, the parallel pullback of any vector fieldX along x is defined to
be the the curve PX : [a, b] → T Mx0 whose value at t ∈ [a, b] is the parallel trans-
lation PX(t) of X(t) along x from x(t) to x0. Evidently P∇3

t ẋ = ...
P , and combining

with Theorem 10.3 in [9], the Euler-Lagrange equation for Riemannian cubics

∇3
d/dt ẋ(t) + R(∇d/dt ẋ(t), ẋ(t))ẋ(t) = 0 (1.2)

is equivalent to equation (46) in [3]:
...
P(t) + [P(t), [Ṗ (t), P (t)]] = 0. (1.3)
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In practise it can be extremely difficult to use this equation to construct x from P .
This is because ẋ(t) and P(t) are related by parallel translation. The operation of par-
allel translation is almost always complicated, and dependent on the underlying curve
x for which we are trying to solve. Usually parallel translation is defined by means of
a linear differential equation with variable coefficients that are dependent on x[5]. A
separate solution is required to compute P(t) for each value of t , making determina-
tion of ẋ(t) for every t extremely time-consuming. An alternative characterisation of
x is by what we call a left Lie reduction V , generalising the previously studied notion
of left Lie reduction for curves in Lie groups. The horizontal lifting x̃ : [a, b] → G

of x to G is defined to be the unique C∞ curve satisfying π ◦ x̃ = x and x̃(a) = e,
with ˙̃x(t) everywhere horizontal on G. Then V : [a, b] → m is defined by

V (t) := dL(x̃(t))−1
e

˙̃x(t), (1.4)

where L(g) : G → G denotes left multiplication by g ∈ G. Note that x is readily
recoverable from V , as π ◦ x̃, where x̃ is the solution of the linear ODE

˙̃x(t) = dL(x̃(t))eV (t).

Both parallel translation, and the derivative of left multiplication by an element of G,
are isometries. It therefore follows that ‖P(t)‖ = ‖V (t)‖ for all t ∈ [a, b].

By contrast, the Lie reduction for curves in Lie groups G is defined as follows [2,
14, 18–20, 25, 26, 29]. Let Lg : G → G be the left translation by g ∈ G. For any
C∞ curve x̃ : [a, b] → G, the Lie reduction U : [a, b] → g of the velocity vector
field ˙̃x is defined by

U(t) := (dLx̃(t)−1)x̃(t)
˙̃x(t), (1.5)

where (dLg1)g2 : Tg2G → Tg1g2G is the derivative of Lg1 at g2 ∈ G.
So our left Lie reduction V for curves x in G/H is actually the standard left Lie

reduction U of the horizontal lift x̃, where now U is considered as a curve in m. If H

is taken to be trivial, then G/H = G, π is the identity map, and V = U .

Theorem 1.2 Let G/H be a Riemannian symmetric space. Then dπe ◦ V = P .

Proof Let s �→ Yt (s) be a parallel vector field along the curve x in M , that is

∇sYt (s) = 0

satisfying Yt (t) = ẋ(t) and Yt (a) = P(t). Then the curvature formula gives

0 = ∇s∇t Yt (s) = ∇t∇sYt (s) + ∇[∂s,∂t]Yt (s) + R(∂s, ∂t)Yt (s).

By Lemma 1.1, the horizontal lifting of ∇t Yt (s) is H ∇̃t Ỹt (s), then

dπ(∇̃s(H ∇̃t Ỹt (s))) = dπ(∇̃s
˜∇t Yt (s)) = ∇s∇t Yt (s) = 0.

This means

dL(x̃(s))eH

(
∂W(s, t)

∂s
+ 1

2
[V (s), W(s, t)]

)
= x̃(s)

∂W(s, t)

∂s
= 0,
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where W(s, t) = dL(x̃(s))−1
e H (∇̃t Ỹt (s)), and (1.1) is used to show that the Lie

bracket is vertical. Thus,

W(s, t) = W(a, t) = W(t, t).

So

Ṗ (t) = ∇t Yt (a) = dπe(∇̃t Ỹt (a)) = dπe(dL(x̃(t))−1
e ∇̃t Ỹt (t)) = dπe(V̇ (t)).

Combining with P(a) = ẋ(a) = dπe( ˙̃x(a)) = dπe(V (a)), the proof is completed
by uniqueness of solutions of smooth ODEs.

Next we discuss some variational curves in Riemannian homogeneous spaces
G/H , with special attention to symmetric spaces. This is organised as follows. In
Section 2, we consider Riemannian cubics in the space G/H . Following the discus-
sion in Section 2, we study Riemannian cubics in tension in Section 3, and elastic
curves in Section 4. Finally, we comment on the differences between equations for
such curves in the Lie group G and in the symmetric space G/H .

2 Riemannian cubics in homogeneous spaces

For fixed ya, yb ∈ M , va ∈ TyaM and vb ∈ Tyb
M , let Cva,vb

ya,yb
be the space of all

curves y : [a, b] → M satisfying y(a) = ya , y(b) = yb, ẏ(a) = va and ẏ(b) = vb.
Define a functional �1 on Cva,vb

ya,yb
by

�1(y) :=
∫ b

a

‖∇d/dt ẏ(t)‖2dt, (2.6)

where ‖ · ‖ is the norm induced from the metric 〈·, ·〉.
The critical points of the functional (2.6), namely Riemannian cubics, are widely

studied [2, 11–15] and references therein. Initially, the Euler-Lagrange equations for
cubics on Riemannian manifolds were established by Gabriel and Kajiya [11] and
Noakes et al. [2] in the following theorem.

Theorem 2.1 y ∈ Cva,vb
ya,yb

is a critical point of �1 if and only if y satisfies the Euler-
Lagrange equation

∇3
d/dt ẏ(t) + R(∇d/dt ẏ(t), ẏ(t))ẏ(t) = 0 (2.7)

for all t ∈ [a, b].

In this section M is first taken to be a homogeneous space G/H , specialising later
to a Riemannian symmetric space.

2.1 M is a homogeneous space

In order to write the Euler-Lagrange Eq. 2.7 for Riemannian cubics in G/H in terms
of lifted curves inG, we relate covariant derivatives of vector fields inM = G/H and
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the Riemannian curvature of M with their counterparts in G. The approach is based
on O’Neill’s work [16, 17] on Riemannian submersions.

Following Barrett O’Neill, a tensor field2 A of type (1,2) on G is defined by

A
X̃
Ỹ = H ∇̃H X̃

(V Ỹ ) + V ∇̃H X̃
(H Ỹ ), (2.8)

where X̃, Ỹ ∈ X (G). If X̃ and Ỹ are horizontal then by Lemma 1.1 or Lemma 2 in
[16]:

A
X̃
Ỹ = 1

2
V [X̃, Ỹ ]. (2.9)

When X̃ is basic, namely the horizontal lift of a vector field X on G/H , we have

H ∇̃
Ṽ
X̃ = A

X̃
Ṽ , (2.10)

for any vertical vector field Ṽ (Part of Lemma 3 in [16]).
From now on, we fix the following notations: Given a C∞ curve x : [a, b] → M ,

let x̃ : [a, b] → G be its horizontal lifting with x̃(a) = e, ∇̃t ẋ, ∇̃2
t ẋ, ∇̃3

t ẋ denote the
horizontal liftings of ∇t ẋ,∇2

t ẋ, ∇3
t ẋ, respectively. Then

Theorem 2.2 (1) H (∇̃t
˙̃x) = ∇̃t ẋ, V (∇̃t

˙̃x) = 0;
(2) H (∇̃2

t
˙̃x) = ∇̃2

t ẋ, V (∇̃2
t
˙̃x) = A ˙̃x∇̃t ẋ;

(3) H (∇̃3
t
˙̃x) = ∇̃3

t ẋ + A ˙̃xA ˙̃x∇̃t ẋ, V (∇̃3
t
˙̃x) = V ∇̃t (A ˙̃x∇̃t ẋ) + A ˙̃x∇̃2

t ẋ.

Proof The first-order covariant derivative3 (1) comes from Theorem 1 in [17]
because of the property (2.9) and T = 0 for the Riemannian submersion π . (2) and
(3) follow from the definition of the tensor A.

Now we turn to relations between the Riemannian curvature R̃ of G with R of
M . Let ˜R(X1, X2)X3 be the horizontal lift of the curvature R(X1, X2)X3, where
Xi ∈ X (M) for i = 1, 2, 3.

Theorem 2.3 If X̃1, X̃2, X̃3 are basic vector fields on G, then

H (R̃(X̃1, X̃2)X̃3) = ˜R(X1, X2)X3 + A
X̃1

A
X̃2

X̃3 − A
X̃2

A
X̃1

X̃3 − 2A
X̃3

A
X̃1

X̃2.

(2.11)

Proof By the definition of the curvature R, we compute each horizontal part of

R̃(X̃1, X̃2)X̃3 = ∇̃
X̃1

∇̃
X̃2

X̃3 − ∇̃
X̃2

∇̃
X̃1

X̃3 − ∇̃[X̃1,X̃2]X̃3.

Recall the definition of tensor A and its properties, we have

∇̃
X̃2

X̃3 = H ∇̃
X̃2

X̃3 + A
X̃2

X̃3,

2Reversing H and V in A, defines another tensor T that vanishes for our particular Riemannian
submersion π : G → M .
3We can get the conclusion from Lemma 1.1 directly.
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then

H (∇̃
X̃1

∇̃
X̃2

X̃3) = H ∇̃
X̃1

(H ∇̃
X̃2

X̃3) + A
X̃1

A
X̃2

X̃3 (2.12)

and the horizontal part of the second term in R̃ can be obtained by reversing X̃1 and
X̃2 in (2.12).

Based on the property (2.9), V [X̃1, X̃2] = 2A
X̃1

X̃2, which yields

H (∇V [X̃1,X̃2]X̃3) = H (2∇̃
A

X̃1
X̃2

X̃3) = 2A
X̃3

A
X̃1

X̃2. (2.13)

Combining equations above, we finally get the relation (2.11).

Set X̃1 = ∇̃t
˙̃x and X̃2 = X̃3 = ˙̃x, we have the following corollary.

Corollary 2.4 In the setting of Theorem 2.2, the relation between the curvature
R̃(∇̃t

˙̃x, ˙̃x) ˙̃x of G and the curvature R(∇t ẋ, ẋ)ẋ of M is given by

H (R̃(∇̃t
˙̃x, ˙̃x) ˙̃x) = ˜R(∇t ẋ, ẋ)ẋ + 3A ˙̃xA ˙̃x∇̃t

˙̃x. (2.14)

Then, Theorems 2.1, 2.2 and Corollary 2.4 give rise to the following theorem.

Theorem 2.5 If x is a Riemannian cubic in M , then its horizontal lifting x̃ satisfies
the following equation

H (∇̃3
t
˙̃x + R̃(∇̃t

˙̃x, ˙̃x) ˙̃x) − 4A ˙̃xA ˙̃x∇̃t
˙̃x = 0. (2.15)

2.2 (G,H) is a Riemannian symmetric pair

Theorem 2.6 In the situation of Theorem 2.5, Eq. 2.15 is equivalent to

H
(
−3∇̃3

t
˙̃x(t) + R̃(∇̃t

˙̃x(t), ˙̃x(t)) ˙̃x(t) + 4∇̃t (H ∇̃2
t
˙̃x(t))

)
= 0, (2.16)

where ∇̃ is the Levi-Civita connection and R̃ is the Riemannian curvature on G.

(1) If H is trivial, using Lie reduction (1.5), we have

...
U(t) + [

U(t), Ü (t)
] = 0. (2.17)

(2) If H is nontrivial and M is a Riemannian symmetric space, using reduction
(1.4), we obtain

...
V (t) + [

V (t),
[
V̇ (t), V (t)

]] = 0. (2.18)
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Proof Equation 2.16 comes from the definition of the tensor A directly. Since Eq.
2.17 appears in [14, 19, 20] for Riemannian cubics in Lie groups, we only have to
prove the second case. Using Lemma 4.2 in [3] or Lemma 2.1 in [18], we get

(dLx̃(t)−1)x̃(t)∇̃2
t
˙̃x(t)) = V̈ (t)+ 1

2

[
V (t), V̇ (t)

]
,

(dLx̃(t)−1)x̃(t)∇̃3
t
˙̃x(t)) = ...

V (t)+[
V (t), V̈ (t)

]+ 1

4

[
V (t),

[
V (t), V̇ (t)

]]
,

(dLx̃(t)−1)x̃(t)R̃(∇̃t
˙̃x(t), ˙̃x(t)) ˙̃x(t) = −1

4

[
V (t),

[
V (t), V̇ (t)

]]
.

Then, the condition (1.1) implies

H
(
(dLx̃(t)−1)x̃(t)∇̃2

t
˙̃x(t))

)
= V̈ (t),

H
(
(dLx̃(t)−1)x̃(t)∇̃3

t
˙̃x(t))

)
= ...

V (t) + 1

4

[
V (t),

[
V (t), V̇ (t)

]]
,

H
(
(dLx̃(t)−1)x̃(t)R̃(∇̃t

˙̃x(t), ˙̃x(t)) ˙̃x(t)
)

= −1

4

[
V (t),

[
V (t), V̇ (t)

]]
,

which results in the Eq. 2.18.

The method used in the horizontal subspace of Lie group G can be viewed as a
natural generalisation of Lie reduction for curves in the whole group G. On the other
hand, it is worth pointing out that our Eq. 2.18 is exactly the same as equation (46) in
[3] (also see Eq. 1.3 in the introduction). The former is obtained by Lie reduction in
horizontal subspace and the latter is achieved by parallel translation. As we proved
in Theorem 1.2, our Lie reduction V can be identified with the parallel pullback
defined in [3], however, our method has greater generality in the sense that G/H can
be a Riemannian homogeneous space and our definition leads easily to recovering
the Riemannian cubic x from V .

3 Riemannian cubics in tension in G/H

Let Cva,vb
ya,yb

be the space defined at the beginning of Section 2. We define a functional
�2 over Cva,vb

ya,yb
for τ > 0 by

�2(y) :=
∫ b

a

‖∇d/dt ẏ(t)‖2 + τ‖ẏ(t)‖2dt. (3.19)

The critical points of the functional (3.19) are called Riemannian cubics in tension.
In [21], cubics in tension are called elastic curves. We won’t adopt this terminology,
in order to avoid possible confusion with elastica studied in [15, 22–24] and in the
following section. Originally, Silva Leite, Camarinha and Crouch in [21] proved the
following theorem.
Theorem 3.1 y ∈ Cva,vb

ya,yb
is a critical point of �2 if and only if

∇3
d/dt ẏ(t) + R(∇d/dt ẏ(t), ẏ(t))ẏ(t) − τ∇d/dt ẏ(t) = 0 (3.20)
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for all t ∈ [a, b].

Now we focus on Riemannian cubics in tension in the Riemannian homogeneous
space G/H . If x is a Riemannian cubic in tension, then V (∇̃t

˙̃x) = 0 by Theorem
2.2, where x̃ is the horizontal lifting of x, ∇̃ and ∇ are Levi-Civita connections on G

and G/H , respectively.
Therefore, we have

Theorem 3.2 If x is a Riemannian cubic in tension in the homogeneous space G/H ,
then its horizontal lifting x̃ satisfies

H (∇̃3
t
˙̃x + R̃(∇̃t

˙̃x, ˙̃x) ˙̃x) − 4A ˙̃xA ˙̃x∇̃t
˙̃x − τ ∇̃t

˙̃x = 0. (3.21)

(1) If H is trivial, (3.21) can be simplified as
...
U(t) + [U(t), Ü (t)] − τ U̇(t) = 0, (3.22)

where U is defined in (1.5).
(2) If H is nontrivial and M is a Riemannian symmetric space, (3.21) can be

simplified as ...
V (t) + [V (t), [V̇ (t), V (t)]] − τ V̇ (t) = 0, (3.23)

where V is defined in (1.4).

The Eq. 3.22 was discussed in [25, 26] and references therein. Further, focusing
on the Eq. 3.23, we have

Proposition 3.3 Since G is a bi-invariant Lie group, then

(1) d2

dt2
‖V (t)‖2 − 3‖V̇ (t)‖2 = τ‖V (t)‖2 + C1;

(2) ‖V̈ (t)‖2 + ‖[V (t), V̇ (t)]‖2 = τ‖V̇ (t)‖2 + C2;

(3) d2

dt2
‖V̇ (t)‖2 + 2‖[V (t), V̇ (t)]‖2 = 2τ‖V̇ (t)‖2 + 2‖V̈ (t)‖2, for some constant

C1, C2 ∈ R.

Proof The left hand side of (1) evaluates to 2〈V (t),
...
V (t)〉. Substitute for ...V (t) by Eq.

3.23 and apply the bi-invariant condition. For (2), differentiate the left side, giving

2〈V̈ (t),
...
V (t)〉 + 2〈[V (t), V̈ (t)], [V (t), V̇ (t)]〉,

which is 2τ 〈V̈ (t), V̇ (t)〉 by bi-invariance. For (3), differentiate ‖V̇ (t)‖2 twice and
use bi-invariance.

Example 3.1 Consider Riemannian cubics or Riemannian cubics in tension on the
unit 2-dimensional sphere S2 with G = SO(3) and H = SO(2). The Lie algebra
so(3) of SO(3) is Lie isomorphic to the Euclidean 3-space E3 with the Lie bracket
given by the cross product×. Then, under such isomorphism, the horizontal subspace
of so(3) is isomorphic to E2 × {0}, and
[V (t), [V̇ (t), V (t)]] = V (t)×(V̇ (t)×V (t)) = V̇ (t)〈V (t), V (t)〉−V (t)〈V̇ (t), V (t)〉.
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Fig. 1 The red curve is a cubic on S2, the blue curve is a cubic in tension with τ = 1 and the green one
is a cubic in tension with τ = 2. (Online version in colour.)

To display Riemannian cubic on S2, initial conditions rather than boundary con-
ditions are given for simplicity. Taking x(0) = (0, 0, 1), ẋ(0) = (−1, 4, 0),
ẍ(0) = (0.5, −0.3, −17),

...
x (0) = (19,−69, 5.1), then, by Theorem 2.2, we have

V (0) = ẋ(0), V̇ (0) = (0.5, −0.3, 0), V̈ (0) = (2, −1, 0). Mathematica’s NDsolve
presents the solution curve x of (2.18) or (3.23) on a 2.7GHz Intel Core i5 Mac with
8GB RAM (See Fig. 1).

In Fig. 1, asymptotics of Riemannian cubics and Riemannian cubics in tension on
S2 appear to be great circles. Taking cubic curve as an example, suppose V (t) =
r(t)eiθ(t). By (2) in Proposition 3.3, we know r(t)2θ̇ (t), r(t)θ̈ (t) + 2ṙ(t)θ̇ (t), r̈(t) −
r(t)θ̇ (t)2 are bounded. When r(t) → ∞,4 then θ̇ (t) → 0, r̈(t) → 0, which means
asymptotics of Riemannian cubics are great circles on the sphere.

4If we choose suitable initial conditions, it’s possible to make C1 in Proposition 3.3 non-negative, which
definitely makes r(t) approach infinity as t runs to infinity.

1682 



Left Lie reduction for curves in homogeneous spaces

4 Elastica in homogeneous space G/H

In the space Cva,vb
ya,yb

defined in previous sections, if va, vb are both unit vectors, the
minimiser of the functional (2.6) over curves y ∈ Cva,vb

ya,yb
subject to

‖ẏ(t)‖2 = 1 (4.24)

is said to be an elastica or elastic curve.

Theorem 4.1 If a C∞ curve y : [a, b] → M is an elastic curve, then

∇3
d/dt ẏ(t) + R(∇d/dt ẏ(t), ẏ(t))ẏ(t) + ∇d/dt

((
3

2
‖∇d/dt ẏ(t)‖2 + c

)
ẏ(t)

)
= 0

(4.25)
for some constant c ∈ R and all t ∈ [a, b].

Theorem 4.1 is proved in [18, 21–24]. Because of (4.24), ‖∇d/dt ẏ(t)‖ in (4.25) is
the geodesic curvature of y.

For the homogeneous space G/H , (1) in Theorem 2.2 gives

‖∇̃t
˙̃x‖ = ‖∇t ẋ‖ = ‖V̇ ‖,

where the second equality holds because the metric on G is left invariant.
Combining with results from the previous section, we have the following theorem

Theorem 4.2 If a C∞ curve x : [a, b] → G/H is an elastic curve, then its
horizontal lifting x̃ satisfies

H (∇̃3
t
˙̃x + R̃(∇̃t

˙̃x, ˙̃x) ˙̃x)−4A ˙̃xA ˙̃x∇̃t
˙̃x + d

dt

((
3

2
‖∇t ẋ(t)‖2 + c

)
∇̃t

˙̃x
)

= 0 (4.26)

for some constant c ∈ R.

(1) If H is trivial, (4.26) can be reduced to

Ü (t) + [U(t), U̇ (t)] +
(
3

2
‖U̇ (t)‖2 + c

)
U(t) = c̃, (4.27)

where c̃ ∈ g is constant.
(2) If H is nontrivial and (G, H) is a Riemannian symmetric pair, (4.26) reduces to

...
V (t) + [V (t), [V̇ (t), V (t)]] + d

dt

((
3

2
‖V̇ (t)‖2 + c

)
V (t)

)
= 0. (4.28)

Equation 4.27 for elastica in Lie groups was investigated by Popiel and Noakes
[18].

Example 4.1 In quantum computation, the control of quantum states leads to an inter-
polation problem in complex projective spaceCP n [27]. In this example, we consider
elastica in the simplest complex projective space CP 1 ∼= S2 with G = U(2) and
H = U(1) × U(1).
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Here, U(2) is connected and compact with the bi-invariant metric

〈X, Y 〉I := tr(X∗Y )

for tangent vectors X, Y on U(2) at the identity I , where X∗ is the conjugate
transpose of X. Choose a basis of the Lie algebra u(2) of U(2) as

X1 =
[
0 i
i 0

]
, X2 =

[
0 −1
1 0

]
, X3 =

[
i 0
0 i

]
,

where X1, X2 form a basis of m and X3 generates the Lie algebra of H .
Suppose x is an elastic curve inCP 1, the left Lie reduction of the horizontal lifting

x̃ of x is denoted by V . Then, under the constraint ‖V (t)‖2 = 1, a straightforward
calculation gives rise to

[V (t), [V̇ (t), V (t)]] = 2V̇ (t).

Further, integration turns Eq. 4.28 into
{

V̈ (t) + (‖V̇ (t)‖ + 〈V (t), C̃〉)V (t) = C̃,

‖V (t)‖ = 1,
(4.29)

where C̃ ∈ m is constant. Since V is a curve on the unit circle S1, we suppose
V (t) = eiθ(t), then (4.29) turns out to be the equation for a simple pendulum

θ̈ (t) + θ0 sin(θ(t)) = 0, (4.30)

where θ0 is constant. Consequently, the elastic curve on CP 1 is given by

x(t) = π(x̃(t)) = e
∫ t
0V (s)ds ·

[
U(1) 0
0 U(1)

]
, (4.31)

where t ∈ [a, b], U(1) is the unitary group. Elastica on S2 was studied also by
Jurdjevic [28] using different methods.

5 Comparison between curves in Lie groups and Riemannian
symmetric spaces

Based on Theorems 2.6, 3.2 and 4.2, the main difference between Riemannian
cubics/cubics in tension/elastic curves in Lie groups and Riemannian symmetric
spaces is that one has the Lie bracket [U(t), Ü (t)] whilst the other has the double
Lie bracket [V (t), [V̇ (t), V (t)]]. So what happens for curves in a Riemannian man-
ifold, which is a Lie group as well as a symmetric space? Cubic curves in the unit
3-dimensional sphere S3 will be taken as an example.

It is well known that S3 is isomorphic to the group Q of all unit quaternions, and
to the special unitary group SU(2), and S3 is a Riemannian symmetric space S3 =
SO(4)/SO(3) = U(2)/U(1) as well. Even though S3 acts on itself isometrically,
it’s impossible to regard S3 as the symmetric space S3/id . This is because (G, H)

is not a symmetric pair. Thus, the reduction (1.5) and (1.4) are actually conducted in
different spaces g and m when the Riemannian symmetric space M = G/H is also a
Lie group.
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For the 3-dimensional unit sphere S3, we choose the identity connected component
SO(4) of the group of all isometries, which is double covered by SU(2) × SU(2).
The relationships between them are displayed in the following diagram,

SU(2)
−φ1 ��

� �

��

SO(3)� �

��
SU(2) × SU(2)

−φ2 ��

��

SO(4)

��
SU(2)

−φ �� S3

where φ1 : SU(2) → SO(3), φ2 : SU(2)×SU(2) → SO(4) are both double covers
(details can be found in [28]) and φ : SU(2) → S3 is given by

φ

([
z w

−w̄ z̄

])
:= z + wj, (4.1)

where z,w ∈ C, |z|2+|w|2 = 1. Thus, the Lie algebra su(2) of SU(2) is isomorphic
to the Lie algebra so(3) of SO(3) and the Lie algebra so(4) of SO(4) is isomorphic
to the Lie algebra su(2) ⊕ su(2) of SU(2) × SU(2). Since so(3) is isomorphic to
the Euclidean 3-space E3 equipped with the Lie bracket ×, so(4) and E3 ⊕ E3 are
isomorphic.

Numerical examples show that Eq. 2.17 and (2.18) give exactly the same Rieman-
nian cubic on the sphere S3 if same boundary conditions are given.

6 Conclusions

Variational curves including Riemannian cubics, Riemannian cubics in tension and
elastica are widely used in engineering and computer science. In this paper, we con-
sider these curves in Riemannian homogeneous space of type G/H , where G is a
connected finite-dimensional Lie group, H is a closed subgroup and G → G/H is
a Riemannian submersion. Instead of investigating equations for curves in G/H , we
discuss equations for their horizontal lifting curves in G. It is proved that parallel
pullback of ẋ along x is equivalent to the left Lie reduction x̃−1 ˙̃x of ˙̃x, where x̃ is
the horizontal lifting of x. Even though we obtain the same equation as Crouch et
al. in [3] for cubics in Riemannian symmetric spaces, our method is more amenable
to recovery of Riemannian cubics, and is a natural generalisation of a method that is
standard for Lie groups.

The applications are not limited to curves discussed in this manuscript, for
instance, high-order cubics [29, 30], Jupp-Kent cubics [31] can be discussed by the
method proposed in this paper. Discussions of asymptotics, Jacobi fields, and Lie
quadratics of curves in homogeneous space, are left for future work.
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