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Approximately dual Gabor frames and almost perfect
reconstruction based on a class of window functions
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Abstract It is a well-known problem in Gabor analysis how to construct explicitly
given dual frames associated with a given frame. In this paper we will consider a
class of window functions for which approximately dual windows can be calculated
explicitly. The method makes it possible to get arbitrarily close to perfect recon-
struction by allowing the modulation parameter to vary. Explicit estimates for the
deviation from perfect reconstruction are provided for some of the standard functions
in Gabor analysis, e.g., the Gaussian and the two-sided exponential function.
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1 Introduction

Gabor analysis is typically based on a choice of a window function ϕ ∈ L2(R) and
suitable parameters a, b > 0 such that the system {e2πimbxϕ(x − na)}m,n∈Z forms
a frame for L2(R). A classical problem is that most applications need information
about the dual window, which might be complicated to calculate explicitly. The pur-
pose of this paper is to obtain explicit constructions of approximately dual windows
for a class of windows V ⊂ L2(R) that cover most of the classical choices in Gabor
analysis. In contrast to the standard Gabor theory, we will allow the modulation
parameter b to change: indeed, we will prove that we can get arbitrarily close to per-
fect reconstruction for any ϕ ∈ V using a sufficiently small modulation parameter
and the constructed approximately dual windows. Explicit estimates for the devia-
tion from perfect reconstruction are provided for some of the standard functions in
Gabor analysis, e.g., the Gaussian and the two-sided exponential function. Note that,
in contrast to the approach in [3], the translation parameter will be kept fixed.

In the rest of this section we will set the stage by introducing the relevant class of
window functions and collecting the necessary background information about frames
and Gabor systems. In particular, a crucial ingredient in our method is to provide
estimates for certain Bessel bounds; this is the topic of Section 2. We will indeed
provide two estimates of the Bessel bounds: one that is valid for all functions ϕ ∈
V,and a sharper estimate for convex functions. The construction of approximately
dual windows for g ∈ V is given in Section 3.

A sequence {fk}k∈I in a separable Hilbert space H is called a frame if there exist
constants A, B > 0 such that

A ||f ||2 ≤
∑

k∈I

|〈f, fk〉|2 ≤ B ||f ||2, ∀f ∈ H. (1.1)

A sequence {fk}k∈I satisfying at least the upper condition in (1.1) is called a Bessel
sequence with Bessel bound B. It is well-known (see, e.g., [2]) that {fk}k∈I is a Bessel
sequence with bound B if and only if

||
∑

ckfk||2 ≤ B
∑

|ck|2

for all finite scalar sequences {ck}.
Frames lead to unconditionally convergent series expansions of the elements in

the underlying Hilbert space. Indeed, if {fk}k∈I is a frame for H,then there exists a
frame {gk}k∈I such that

f =
∑

k∈I

〈f, gk〉fk =
∑

k∈I

〈f, fk〉gk, ∀f ∈ H. (1.2)
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A frame {gk}k∈I that satisfies (1.2) is called a dual frame of {fk}k∈I ; and (1.2) is
expressed by saying that the frames {fk}k∈I and {gk}k∈I lead to perfect reconstruc-
tion.

Aweaker concept was introduced in [4]. We say that two Bessel sequences {fk}k∈I

and {gk}k∈I form approximately dual frames if there exists a constant μ < 1 such
that

‖f −
∑

k∈I

〈f, fk〉gk‖ ≤ μ||f ||, ∀f ∈ H. (1.3)

The rationale behind approximately dual frames is that all kinds of implementations
involve certain imprecisions; thus, as long as we can control the deviation from per-
fect reconstruction measured by the parameter μ in (1.3), approximately dual frames
can in practice be as good as exact dual frames. We refer to the papers [1, 5–7] for
explicit constructions and applications of this concept. We will use the following
elementary result from [3] to measure the deviation from perfect reconstruction.

Lemma 1 Let {fk}k∈I be a frame with bounds A, B and let {gk}k∈I be a dual frame
of {fk}k∈I with upper frame bound Bg . If {f̃k}k∈I is a sequence inH and

∥∥∥∥∥
∑

k∈I

ck(fk − f̃k)

∥∥∥∥∥ ≤ μ

(
∑

k∈I

|ck|2
)1/2

(1.4)

for some μ ≥ 0 and all finite sequences {ck}k∈I , then

‖f −
∑

k∈I

〈f, f̃k〉gk‖ ≤ μ
√

Bg||f ||, ∀f ∈ H. (1.5)

In particular {gk}k∈I and {f̃k}k∈I are approximately dual frames if μ
√

Bg < 1.

For any parameters a, b ∈ R,define the translation operator Ta and modulation
operators Eb acting on L2(R) by

Taf (x) = f (x − a), Ebf (x) = e2πibxf (x), x ∈ R.

Given a function ϕ ∈ L2(R) and parameters a, b > 0, the associated Gabor system
is the collection of functions {EmbTnaϕ}m,n∈Z. The function ϕ is called the window
function.

Throughout this paper we will consider the following class of windows, which
contains most of the standard choices in Gabor analysis.

Definition 1 Let V ⊂ L2(R) denote the set consisting of the real-valued continuous
functions ϕ ∈ L2(R) for which

(i) ϕ is even and positive on R;
(ii) ϕ is decreasing on [0, ∞);
(iii) |ϕ(x)| ≤ C

1+|x|1+σ for some C > 0 and σ > 0.

For a fixed function ϕ ∈ V and any N > 0,define the function ϕN ∈ Cc(R) by

ϕN(x) := (ϕ(x) − ϕ(N)) χ[−N,N ](x). (1.6)
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The function ϕN in (1.6) can be considered to be a truncated version of ϕ,and will
play a central role throughout this paper. Note that N can be an arbitrary positive
number in Definition 1; in Section 3 we will consider a sequence of approximately
dual windows indexed by N,so in that case we only consider positive integer-values
of N.

In the analysis of a given function ϕ ∈ V and its truncations ϕN, we will need the
functions QN : (0, ∞) → R defined by

QN(x) := (�2xN + 1)ϕ(N) + 2
∞∑

k=0

ϕ

(
N + k

x

)
. (1.7)

2 Frame properties of functions ϕ ∈ V and ϕN

In this section we will discuss the relationship between the frame properties of func-
tions ϕ ∈ V and the associated truncations ϕN in (1.6). The results will be based on
Proposition 2, where we estimate the Bessel bound for the functions ϕ −ϕN . We will
need the following estimate of the function QN defined in (1.7).

Lemma 2 Let N > 0 be fixed. For ϕ ∈ V and C, σ > 0 as in Definition 1, we have

QN(x) ≤ C

N1+σ

(
�2xN + 1 + 2

(
1 + xN

σ

))
. (2.1)

Proof The decay condition (iii) in Definition 1 implies that

∞∑

k=0

ϕ(N + k

x
) ≤

∞∑

k=0

C
(
N + k

x

)1+σ

≤ C

N1+σ
+

∫ ∞

0

C
(
N + t

x

)1+σ
dt = C

N1+σ

(
1 + xN

σ

)
.

Thus

QN(x) ≤ (�2xN + 1)
C

N1+σ
+ 2C

N1+σ

(
1 + xN

σ

)

= C

N1+σ

(
�2xN + 1 + 2

(
1 + xN

σ

))
.

Using Lemma 2 we can now provide a Bessel bound for the functions

ϕ(x) − ϕN(x) = min{ϕ(N), ϕ(x)} = ϕ(x)χ[−N,N ]c (x) + ϕ(N)χ[−N,N ](x), x ∈ R,

whenever ϕ ∈ V. We will use the fact that for any g ∈ L2(R),if

B(g, a, b) := 1

b
sup

x∈[0,a]

∑

k∈Z

∣∣∣∣
∑

n∈Z
g(x − na)g(x − na − k/b)

∣∣∣∣ < ∞,
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then {EmbTnag}m,n∈Z is a Bessel sequence with Bessel bound B(g, a, b); see, e.g.,
[2], Theorem 11.4.2.

Proposition 2 Let ϕ ∈ V,and let a, b > 0 be given. Given N > 0,define the function
QN by (1.7). Then the following hold:

(i) The Bessel bound B(ϕ − ϕN, a, b) can be estimated by

B(ϕ − ϕN, a, b) ≤ 1

b
QN(b)QN(

1

a
). (2.2)

(ii) If b ≤ 1
2N ,then

B(ϕ − ϕN, a, b) ≤ 1

b
QN(b)QN(

1

a
) ≤ C2

bN1+2σ

(
4 + 1

σ

)(
2

a

(
1 + 1

σ

)
+ 3

N

)
.

Proof For notational convenience, let qN(x) := ϕ(x) − ϕN(x). We note that

B(qN, a, b) ≤ 1

b

(
sup

x∈[0,a],n∈Z

∑

k∈Z

∣∣∣∣qN(x − na − k/b)

∣∣∣∣

)(
sup

x∈[0,a]

∑

n∈Z

∣∣∣∣qN(x − na)

∣∣∣∣

)

(2.3)
and

qN(x) =
{

ϕ(N), x ∈ [−N, N];
ϕ(x), x ∈ [−N, N]c. (2.4)

Estimate of
∑

k∈Z
∣
∣
∣
∣qN(x −na−k/b)

∣
∣
∣
∣ Fix x ∈ [0, a] and n ∈ Z; then x −na−k/b

hits [−N, N] for at most �2bN+ 1 values of k, and thus yields a maximal contribu-
tion (�2bN + 1)ϕ(N) to the infinite sum by (2.4). By (2.4) again, the contribution
to the infinite sum from x − na − k/b hitting the interval [N, ∞) is at most

∞∑

k=0

∣∣∣∣qN

(
N + k

b

)∣∣∣∣ =
∞∑

k=0

ϕ

(
N + k

b

)
,

which converges by (iii) in Definition 1. Including also the contribution from
(−∞, −N ] leads to

∑

k∈Z

∣∣∣∣qN(x −na −k/b)

∣∣∣∣ ≤ (�2bN+1)ϕ(N)+2
∞∑

k=0

ϕ

(
N + k

b

)
= QN(b). (2.5)

Estimate of
∑

n∈Z
∣
∣
∣
∣qN(x−na)

∣
∣
∣
∣ Applying the above result with b = 1/a yields that

∑

n∈Z

∣∣∣∣qN(x − na)

∣∣∣∣ ≤ QN

(
1

a

)
=

(⌊
2N

a

⌋
+ 1

)
ϕ(N) + 2

∞∑

k=0

ϕ (N + ak) . (2.6)

Hence (2.3) together with (2.5) and (2.6) implies that the Bessel bound of
{EmbTnaqN }m,n∈Z can be estimated as stated in (2.2).
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For the proof of (ii), applying (2.1) with b ≤ 1
2N yields that

QN(b) ≤ C

N1+σ

(
�2bN + 1 + 2

(
1 + bN

σ

))

≤ C

N1+σ

(
2 + 2

(
1 + 1

2σ

))
= C

N1+σ

(
4 + 1

σ

)
.

Also,

QN

(
1

a

)
≤ C

N1+σ

(⌊
2N

a

⌋
+ 1 + 2

(
1 + N

aσ

))

≤ C

N1+σ

(
2N

a
+ 1 + 2

(
1 + N

aσ

))
= C

Nσ

(
2

a

(
1 + 1

σ

)
+ 3

N

)
.

The result in (i) now immediately leads to (ii).

Proposition 2 implies that if {EmbTnaϕ}m,n∈Z is a frame and ϕ ∈ V,then also the
truncated function ϕN in (1.6) generates a frame whenever N > 0 is sufficiently
large. This generalizes a result from [3], dealing with the Gaussian.

Corollary 3 Let a, b > 0 and ϕ ∈ V be given, and assume that {EmbTnaϕ}m,n∈Z
is a frame for L2(R). Then for N > 0 sufficiently large the Gabor system
{EmbTnaϕN }m,n∈Z is a frame for L2(R).

Proof Fixing ϕ ∈ V and a, b > 0,Proposition 2 combined with Lemma 2 shows that
the Bessel bound B(ϕ − ϕN, a, b) tends to zero as N → ∞. Thus, denoting a lower
frame bound for {EmbTnaϕ}m,n∈Z by A,we have

B(ϕ − ϕN, a, b) < A (2.7)

for N sufficiently large. The result now follows from standard results in frame
perturbation theory (see Corollary 22.1.5 in [2]).

It is well-known that a continuous function with compact support cannot generate
a Gabor Riesz basis (see, e.g., Proposition 13.2.4 in [2]). Since the perturbation con-
dition used in the proof of Corollary 3 preserves the Riesz basis property, the result
implies that no function ϕ ∈ V can generate a Riesz basis.

Note that the proof of Corollary 3 shows how large N should be chosen in order to
guarantee that {EmbTnaϕN }m,n∈Z is a frame; we just need to choose N such that (2.7)
holds. In order to apply this result it is crucial to have good estimates for the Bessel
bound B(ϕ − ϕN, a, b). In the following concrete example we will see that based on
the estimates in Proposition 2, the frame property of {EmbTnaϕN }m,n∈Z is guaranteed
for N = 3/4,but not for N = 1/

√
2. This motivates the subsequent Proposition 5

where we obtain a sharper estimate for the Bessel bound B(ϕ − ϕN, a, b) under the
aditional condition that the function ϕ is convex. Then, in Example 6 we return to
the same concrete example and show that {EmbTnaϕN }m,n∈Z actually is a frame for
N = 1/

√
2.
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Example 4 We consider

ϕ(x) = 21/4e−πx2 , x ∈ R,

and a = b = 1/
√
2. According to (6.7-8) in [8], the optimal frame bounds of

{EmbTnaϕ}m,n∈Z are given by

A = 2
∑

k,�∈Z
(−1)k+�e−π(k2+�2) = 2

( ∞∑

k=−∞
(−1)ke−πk2

)2

and

B = 2
∑

k,�∈Z
e−π(k2+�2) = 2

( ∞∑

k=−∞
e−πk2

)2

,

respectively. By a numerical computation, A = 1.669253683, B = 2.360681198.
Furthermore, using (2.2) and (1.7),

B

(
ϕ − ϕN,

1√
2
,

1√
2

)
≤ √

2QN

(
1√
2

)
QN(

√
2)

≤ 2

(
(�N√

2 + 1)e−πN2 + 2
∞∑

k=0

e−π(N+k
√
2)2

)

×
(

(�2N√
2 + 1)e−πN2 + 2

∞∑

k=0

e−π(N+ k
√
2

2 )2

)
.

A numerical inspection shows that for N = 3/4 this estimate of

B
(
ϕ − ϕN, 1√

2
, 1√

2

)
is indeed smaller than the lower frame bound A of

{EmbTnaϕ}m,n∈Z; thus {EmbTnaϕN }m,n∈Z is a frame for N = 3/4. However, for

N = 1/
√
2 the estimate of B

(
ϕ − ϕN, 1√

2
, 1√

2

)
exceeds the lower frame bound

A of {EmbTnaϕ}m,n∈Z; thus, the proof of Corollary 3 does not guarantee that
{EmbTnaϕN }m,n∈Z is a frame for N = 1/

√
2.

For windows ϕ ∈ V that are convex on [N, ∞) we will now derive the following
improvement of Proposition 2.

Proposition 5 Assume that ϕ ∈ V is convex on [N, ∞) for some N > 0. Then

B(qN, a, b) ≤ 1

b

( ∞∑

k=−∞
qN

(
N − k

b

)) ( ∞∑

n=−∞
qN (N − na)

)
.

Proof By (2.3) and non-negativity of the function qN(x) = min{ϕ(x), ϕ(N)}, we
have that

B(qN, a, b) ≤ 1

b
sup

x∈[0,1/b]

( ∞∑

k=−∞

∣∣∣∣qN(x − k/b)

∣∣∣∣

)
sup

x∈[0,a]

( ∞∑

n=∞

∣∣∣∣qN(x − na)

∣∣∣∣

)
.
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We will first show that, under the assumption that ϕ is convex on [N, ∞),

sup
x∈[0,a]

(
∑

n∈Z
qN(x − na)

)
=

∞∑

n=−∞
qN(N − na)

=
(⌊

2N

a

⌋
+ 1

)
ϕ(N) +

∞∑

n=1

ϕ(N + na) +
∞∑

n=1

ϕ

(⌊
2N

a

⌋
a − N + na

)
. (2.8)

To show this, let x ∈]N − a,N ]; furthermore, let n(x) be the largest integer n such
that x − na ≥ −N , i.e., n(x) = �(N + x)/a. We distinguish between the cases that
n(x) = �2N/a and n(x) = �2N/a − 1.

First assume that n(x) = �2N/a. Then

N − a ≤
⌊
2N

a

⌋
a − N ≤ x ≤ N, (2.9)

and

∞∑

n=−∞
qN(x − na) =

−1∑

n=−∞
ϕ(x − na) +

n(x)∑

n=0

ϕ(N) +
∞∑

n=n(x)+1

ϕ(x − na)

=
(⌊

2N

a

⌋
+ 1

)
ϕ(N) +

∞∑

n=1

ϕ(x + na) +
∞∑

n=1

ϕ

(
x −

⌊
2N

a

⌋
a − na

)

=
(⌊

2N

a

⌋
+ 1

)
ϕ(N) +

∞∑

n=1

[
ϕ(x + na) + ϕ

(⌊
2N

a

⌋
a − x + na

)]
, (2.10)

where it has been used that ϕ is even. In particular this proves the second equality
sign in (2.8) in the considered case; so we only need to prove that the supremum is
attained for x = N. If 2N

a
is integer we have that � 2N

a
 = 2N

a
,in which case (2.9)

shows that the only x-value that can be considered under the given conditions is
x = N. We will therefore now focus on the case where 2N

a
is not an integer. In this

case 2N − � 2N
a

a > 0. Now let n = 1, 2, · · · . We have

⌊
2N

a

⌋
a − N + na ≤ x + na ≤ N + na,

and
⌊
2N

a

⌋
a − N + na ≤

⌊
2N

a

⌋
a − x + na ≤ N + na.

Hence, letting

λ := N + na − (x + na)

N + na −
(⌊

2N
a

⌋
a − N + na

) = N − x

2N −
⌊
2N
a

⌋
a

∈ [0, 1],
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the convexity of ϕ implies that

ϕ(x + na) = ϕ

(
λ

(⌊
2N

a

⌋
a − N + na

)
+ (1 − λ)(N + na)

)

≤ λϕ

(⌊
2N

a

⌋
a − N + na

)
+ (1 − λ)ϕ(N + na). (2.11)

Similarly, letting

μ :=
N + na −

(⌊
2N
a

⌋
a − x + na

)

N + na −
(⌊

2N
a

⌋
a − N + na

) =
N −

⌊
2N
a

⌋
a + x

2N −
⌊
2N
a

⌋
a

∈ [0, 1],

we see that

ϕ(

⌊
2N

a

⌋
a − x + na) = ϕ(μ

(⌊
2N

a

⌋
a − N + na) + (1 − μ)(N + na)

)

≤ μϕ

(⌊
2N

a

⌋
a − N + na

)
+ (1 − μ)ϕ(N + na). (2.12)

Observe that λ + μ = 1. Thus we get from (2.11) and (2.12) that

ϕ(x + na) + ϕ

(⌊
2N

a

⌋
a − x + na

)

≤ λϕ

(⌊
2N

a

⌋
a − N + na

)
+ (1 − λ)ϕ(N + na)

+(1 − λ)ϕ

(⌊
2N

a

⌋
a − N + na

)
+ λϕ(N + na)

= ϕ

(⌊
2N

a

⌋
a − N + na

)
+ ϕ(N + na).

Therefore, from (2.10),

∞∑

n=−∞
qN(x − na) ≤

(⌊
2N

a

⌋
+ 1

)
ϕ(N)

+
∞∑

n=1

(
ϕ(N + na) + ϕ

(⌊
2N

a

⌋
a − N + na

))

=
∞∑

n=−∞
qN(N − na).

This proves (2.8) in the case n(x) = �2N/a, as desired. We now consider the case
n(x) = �2N/a − 1. Then

N − a < x ≤
⌊
2N

a

⌋
a − N ≤ N,
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and, in particular, � 2N
a

a−2N +a > 0. With the interpretation that
∑n(x)

n=0 ϕ(N) = 0
if n(x) = −1, we now have that

∞∑

n=−∞
qN(x − na) =

−1∑

n=−∞
ϕ(x − na) +

n(x)∑

n=0

ϕ(N) +
∞∑

n=n(x)+1

ϕ(x − na)

=
⌊
2N

a

⌋
ϕ(N) +

∞∑

n=1

ϕ(x + na) +
∞∑

n=0

ϕ

(
x −

⌊
2N

a

⌋
a − na

)

=
⌊
2N

a

⌋
ϕ(N) +

∞∑

n=0

[
ϕ(x + (n + 1)a) + ϕ

(⌊
2N

a

⌋
a − x + na

)]
.

We compare this to the right-hand side of (2.8), which we write as
⌊
2N

a

⌋
ϕ(N) +

∞∑

n=0

[
ϕ(N + na) + ϕ

(⌊
2N

a

⌋
a − N + (n + 1)a

)]
.

Now for n = 0, 1, . . . ,

N + na < x + (n + 1)a ≤
⌊
2N

a

⌋
a − N + (n + 1)a,

and

N + na ≤
⌊
2N

a

⌋
a − x + na <

⌊
2N

a

⌋
a − N + (n + 1)a.

Now, let

λ :=
⌊
2N
a

⌋
a − N − x

⌊
2N
a

⌋
a − 2N + a

, μ := x − N + a⌊
2N
a

⌋
a − 2N + a

;

then 0 ≤ λ,μ ≤ 1 and λ + μ = 1. Hence, writing

x + (n + 1)a = λ(N + na) + (1 − λ)

(⌊
2N

a

⌋
a − N + (n + 1)a

)
,

and
⌊
2N

a

⌋
a − x + na = μ(N + na) + (1 − μ)

(⌊
2N

a

⌋
a − N + (n + 1)a

)
,

the convexity of ϕ implies that

ϕ(x + (n + 1)a) + ϕ

(⌊
2N

a

⌋
a − x + na

)

≤ ϕ(N + na) + ϕ

(⌊
2N

a

⌋
a − N + (n + 1)a

)
.

Hence ∞∑

n=−∞
qN(x − na) ≤

∞∑

n=−∞
qN(N − na),

and the proof of (2.8) is complete.
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Now, to finalize the proof we observe that the convexity condition on ϕ ensur-
ing the validity of (2.8) does not involve a. Hence, using (2.8) once more with 1/b
replacing a, we get

B(qN, a, b) ≤ 1

b

( ∞∑

k=−∞
qN

(
N − k

b

)) ( ∞∑

n=−∞
qN (N − na)

)
, (2.13)

as claimed.

We will now return to the function in Example 4 and show that the sharper
estimates in Proposition 5 indeed improves the result.

Example 6 We consider again the function ϕ in Example 4 and a = b = √
2/2. We

have that ϕ′′(x) ≥ 0 ⇔ |x| ≥ 1/
√
2π = 0.398942280. We take N = 1/

√
2π , so that

⌊
2N

a

⌋
=

⌊
2√
π

⌋
= 1, �2Nb =

⌊
1√
π

⌋
= 0.

Using (2.8), the right-hand side of (2.13) can be written as

2

(
2e−πN2 +

∞∑

n=1

e
−π

(
N+ 1

2n
√
2
)2

+
∞∑

n=1

e
−π

(
−N+ 1

2 (n+1)
√
2
)2)

×
(

e−πN2 +
∞∑

k=1

e
−π

(
N+k

√
2
)2

+
∞∑

k=1

e
−π

(
−N+k

√
2
)2)

= 1.645277057,

and this is just less than the lower frame bound A, which we found in Example 4.
Thus {EmbTnaϕN }m,n∈Z is indeed a frame for N = 1/

√
2,a conclusion that we could

not reach based on Proposition 2.
Plots of the functions ϕ(x), ϕ3/4(x) and ϕ1/

√
2π (x) are shown in Fig. 1. Note

that the length of the support of the function ϕ1/
√
2π is 2/

√
2π , which just

exceeds a = √
2/2. Thus Proposition 5 gives a sharp result for this case; indeed,

{EmbTnaϕN }m,n∈Z ceases to be a Gabor frame when 2N ≤ a.

We will now show that with particular knowledge of certain relations between the
parameters a, b > 0 andN > 0 we can be more specific about the frame properties of
the functions ϕN for ϕ ∈ V,even without assuming that {EmbTnaϕ}m,n∈Z is a frame.

Proposition 7 Let ϕ ∈ V. For N > 0,consider the function ϕN in (1.6) and let
a ∈ (0, 2N), b ∈ (0, 1

2N ]. Then {EmbTnaϕN }m,n∈N is a frame for L2(R) with lower

frame bound A(ϕN) = 1
b

∣∣ϕN

(
a
2

)∣∣2 ,and the canonical dual window is given by

ϕ̃N (x) = bϕN(x)∑
n∈Z |ϕN(x − na)|2 , x ∈ R. (2.14)

1529 



O. Christensen et al.

Fig. 1 The function ϕ(x) = 21/4e−πx2 (solid) and the function ϕN for N = 3/4 (dotted; see Proposition
2) and for N = 1/

√
2π (dashed; see Proposition 5)

Proof We first show that

bA(ϕN) ≤
∑

n∈Z
|ϕN(x − na)|2 ≤ bB(ϕN), x ∈ R, (2.15)

for some A(ϕN), B(ϕN) > 0. Since ϕN is bounded and compactly supported, the
upper bound is clear. Now, since the function

∑
n∈Z |ϕN(x − na)|2 is a-periodic, we

have

inf
x∈R

∑

n∈Z
|ϕN(x − na)|2 = inf

x∈[− a
2 , a

2

]
∑

n∈Z
|ϕN(x − na)|2 ≥ inf

x∈[− a
2 , a

2

] |ϕN (x)|2 .

Since ϕ ∈ V is even, it follows that

inf
x∈R

∑

n∈Z
|ϕN(x − na)|2 ≥

∣∣∣ϕN

(a

2

)∣∣∣
2 = b

(
1

b

∣∣∣ϕN

(a

2

)∣∣∣
2
)

=: bA(ϕN) > 0.

Hence ϕN satisfies (2.15). The result now follows by [2, Corollary 11.4.5].

Using Proposition 7 we can now show that for a fixed a > 0,any function ϕ ∈ V
generates a Gabor frame for sufficiently small modulation parameters.

Corollary 8 Let ϕ ∈ V and a > 0. Then {EmbTnaϕ}m,n∈Z is a frame for L2(R)

whenever b > 0 is sufficiently small.

Proof Proposition 2 (ii) shows that the Bessel bound B(ϕ − ϕN, a, b) tends to zero
as N → ∞. On the other hand, by Proposition 7 the function ϕN generates a
Gabor frame {EmbTnaϕN }m,n∈Z for N > a/2,with lower frame bound A(ϕN) =
1
b

∣∣ϕN

(
a
2

)∣∣2. Since ϕN

(
a
2

) → g
(

a
2

)
> 0,as N → ∞,the result now follows from

standard results in frame perturbation theory (see Corollary 22.1.5 in [2]).

1530 



Approximately dual Gabor frames and almost perfect...

3 Approximately dual frames for ϕ ∈ V

Even when a function ϕ ∈ V generates a frame {EmbTnaϕ}m,n∈Z, information about
its dual frames might not be easily available. Thus, we do not have immediate access
to apply the perfect reconstruction formula associated with a pair of dual frames. The
purpose of this section is to provide a method for obtaining almost perfect reconstruc-
tion by using the fact that explicit dual frames associated to the truncated windows
ϕN in (1.6) can be calculated for certain parameter values a, b > 0,see Proposition 7.
Note that Theorem 9 below is formulated via a frame condition on the truncated func-
tion ϕN,not on the function ϕ ∈ V. This formulation matches the actual application
to various concrete functions that will be given in Corollary 11.

Theorem 9 Let a, b be given such that ab ∈ (0, 1). Given a function ϕ ∈ V and N ∈
N, assume that {EmbTnaϕN }m,n∈Z is a frame for L2(R) and let {EmbTnaϕ

�
N }m,n∈Z

denote a dual frame with upper bound B(ϕ
�
N). Then

∥∥∥∥∥∥
f −

∑

m,n∈Z
〈f,EmbTnaϕ〉EmbTnaϕ

�
N

∥∥∥∥∥∥
≤

√
1

b
QN(b)QN

(
1

a

)
B(ϕ

�
N ) ‖f ‖ , ∀f ∈ L2(R).

Proof We apply Lemma 1 to the dual frames

{fk}k∈I := {EmbTna ϕN }m,n∈Z, {gk}k∈I := {EmbTna ϕ
�
N }m,n∈Z.

Letting {f̃k}k∈I := {EmbTna ϕ}m,n∈Z,the condition (1.4) is satisfied with μ2 =
B(ϕ − ϕN, a, b). Thus, the factor μ

√
Bg in (1.5) corresponds precisely to

(
B(ϕ − ϕN, a, b)B(ϕ

�
N)

)1/2
. The result now follows by Lemma 1 and Proposition 2.

Remark 10 Note that if ϕ ∈ V generates a Gabor frame {EmbTna ϕ}m,n∈Z,then
Corollary 3 shows that {EmbTnaϕN }m,n∈Z is a frame for N ∈ N sufficiently large;
thus the condition in Theorem 9 is satisfied. In our applications of Theorem 9 we will
take ϕ

�
N to be the canonical dual window associated with the window ϕN. In this case

{EmbTnaϕ
�
N }m,n∈Z has the upper bound B(ϕ

�
N) = A(ϕN)−1,where A(ϕN) denotes a

lower frame bound for the frame {EmbTnaϕN }m,n∈Z.

For a fixed function ϕ ∈ V and fixed parameters a, b > 0 and N ∈ N,Theorem
9 yields an explicit estimate of the deviation from perfect reconstruction that is
obtained by doing analysis with the Gabor system {EmbTna ϕ}m,n∈Z and synthesis
using a dual frame {EmbTna ϕ

�
N }m,n∈Z. We will now consider the particular case

where the synthesis is done using the canonical dual frame {EmbTna ϕ̃N }m,n∈Z and
show that by allowing the modulation parameter b to vary we can get as close to
perfect reconstruction as desired.

Corollary 11 Let a ∈ (0, ∞) and let {b(N)}∞N=1 ⊂ R be a sequence such that
0 < b(N) ≤ 1

2N . Given a function ϕ ∈ V,consider the functions ϕN in (1.6) and
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ϕ̃N in (2.14) for any integer N > a/2 and with b = b(N). Then, with the constants
C, σ > 0 chosen as in Definition 1,

∥∥∥∥∥∥
f −

∑

m,n∈Z
〈f,Emb(N)Tnaϕ〉Emb(N)Tnaϕ̃N

∥∥∥∥∥∥
≤ C1(N)

N
1
2+σ

‖f ‖ , ∀f ∈ L2(R), (3.1)

where

C1(N) := 2C

ϕN

(
a
2

)

√(
4 + 1

σ

) (
2

a

(
1 + 1

σ

)
+ 3

N

)
. (3.2)

Proof Proposition 2 (ii) implies that

1

b(N)
QN(b(N))QN(

1

a
) ≤ C2

b(N)N1+2σ

(
4 + 1

σ

)(
2

a

(
1 + 1

σ

)
+ 3

N

)
. (3.3)

Considering now N ∈ N such that N > a/2 and using that 0 < b(N) ≤ 1
2N ,

Proposition 7 shows that {Emb(N)TnaϕN }m,n∈Z is a Gabor frame with the canonical
dual frame {Emb(N)Tnaϕ̃N }m,n∈Z. Furthermore, a lower frame bound is A(ϕN) =
|ϕN( a

2 )|2
b(N)

. This together with (3.3) implies that

√
1

b(N)
Q(b(N))Q

(
1

a

)
1

A(ϕN)
≤ C1(N)

N
1
2+σ

,

where C1(N) is defined by (3.2). Now (3.1) is a consequence of Theorem 9 and
Remark 10.

Note that Corollary 11 immediately applies to the “canonical functions” in V,i.e.,

ϕ(x) = 1

1 + |x|1+σ
,

for σ > 0. In the case σ = 1 this function corresponds (up to a scalar multiple of
the variable) to the Fourier transform of the two-sided exponential function g(x) =
e−|x|,which is known to generate a Gabor frame for all parameter values a, b > 0
with ab < 1,see [9]. It follows that also the function ϕ(x) = (1 + x2)−1 generates a
Gabor frame for all ab < 1.

In the next result we improve the estimate in Corollary 11 for two standard func-
tions, namely, the Gaussian and the two-sided exponential function. In order to get
as close as desired to perfect reconstruction, the parameter N has to be chosen
sufficiently large; the result shows how N depends on the chosen function ϕ ∈ V .

Corollary 12 Let a ∈ (0, ∞) and let {b(N)}∞N=1 ⊂ R be a sequence such that
0 < b(N) ≤ 1

2N . Given a function ϕ ∈ V,consider again the functions ϕN in (1.6)
and ϕ̃N in (2.14). for any integer N > a/2 and with b = b(N).
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(1) Consider ϕ(x) = e−|x|, x ∈ R. Then
∥∥∥∥∥∥
f −

∑

m,n∈Z
〈f, Emb(N)Tnaϕ〉Emb(N)Tnaϕ̃N

∥∥∥∥∥∥
≤ C2(N)

√
Ne−N ‖f ‖ , ∀f ∈ L2(R),

where

C2(N) := e
a
2

(
1 − e−N+ a

2

)

√(
2 + 2

1 − e−2N

)(
2

a
+ 1

N

(
3 − e−a

1 − e−a

))
;

(2) Consider ϕ(x) = e−x2 , x ∈ R. Then
∥∥∥∥∥∥
f −

∑

m,n∈Z
〈f, Emb(N)Tnaϕ〉Emb(N)Tnaϕ̃N

∥∥∥∥∥∥
≤ C3(N)

√
Ne−N2 ‖f ‖ , ∀f ∈ L2(R),

where

C3(N) := e
a2
4

(
1 − e−N2+ a2

4

)

√(
2 + 2

1 − e−4N2

) (
2

a
+ 1

N

(
3 − e−2Na

1 − e−2Na

))
.

Proof For (1), applying (1.7) and b(N) ≤ 1
2N yields that

QN(b(N)) = (�2b(N)N + 1)ϕ(N) + 2
∞∑

k=0

ϕ

(
N + k

b(N)

)

≤ 2ϕ(N) + 2
∞∑

k=0

ϕ (N + 2Nk) = e−N

(
2 + 2

1 − e−2N

)
.

Similarly,

QN(
1

a
) =

(⌊
2N

a

⌋
+ 1

)
ϕ(N) + 2

∞∑

k=0

ϕ (N + ak)

≤
(
2N

a
+ 1

)
e−N + 2e−N

1 − e−a
= Ne−N

(
2

a
+ 1

N

(
3 − e−a

1 − e−a

))
.

Proposition 7 shows that {Emb(N)TnaϕN }m,n∈Z is a frame with canonical dual frame
{Emb(N)Tnaϕ̃N }m,n∈Z and lower frame bound

A(ϕN) =
∣∣ϕN

(
a
2

)∣∣2

b(N)
=

(
g

(
a
2

) − g(N)
)2

b(N)
=

e−a
(
1 − e−N+ a

2

)2

b(N)
;

as in Corollary 11 the result now follows from Theorem 9 and Remark 10.
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For (2), we use the estimates

QN(b(N)) = (�2b(N)N + 1)ϕ(N) + 2
∞∑

k=0

ϕ

(
N + k

b(N)

)

≤ 2ϕ(N) + 2
∞∑

k=0

ϕ (N + 2Nk)

≤ 2e−N2 + 2
∞∑

k=0

e−N2−4N2k = e−N2
(
2 + 2

1 − e−4N2

)
,

and

QN(
1

a
) =

(⌊
2N

a

⌋
+ 1

)
ϕ(N) + 2

∞∑

k=0

ϕ (N + ak)

≤
(
2N

a
+ 1

)
e−N2 + 2

∞∑

k=0

e−N2−2aNk = Ne−N2

(
2

a
+ 1

N

(
3 − e−2Na

1 − e−2Na

))
.

Again {Emb(N)TnaϕN }m,n∈Z is a frame with canonical dual frame
{Emb(N)Tnaϕ̃N }m,n∈Z and lower frame bound

A(ϕN) =
∣∣ϕN

(
a
2

)∣∣2

b(N)
=

(
g

(
a
2

) − g(N)
)2

b(N)
=

e− a2
2

(
1 − e−N2+ a2

4

)2

b(N)
,

and the conclusion follows as before.

Remark 13 The 2 standard functions in Corollary 12 are both convex on [N, ∞)

when N ≥ 1, and so the bound 1
b
QN(b)QN( 1

a
) for B(qN, a, b) that is used in the

proof of Theorem 9 can be replaced by a sharper bound according to Proposition 5.
This yields sharper bounds in Corollary 12 (1) and (2).
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