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Abstract We address shape uncertainty quantification for the two-dimensional
Helmholtz transmission problem, where the shape of the scatterer is the only source
of uncertainty. In the framework of the so-called deterministic approach, we provide
a high-dimensional parametrization for the interface. Each domain configuration is
mapped to a nominal configuration, obtaining a problem on a fixed domain with
stochastic coefficients. To compute surrogate models and statistics of quantities of
interest, we apply an adaptive, anisotropic Smolyak algorithm, which allows to attain
high convergence rates that are independent of the number of dimensions activated
in the parameter space. We also develop a regularity theory with respect to the spatial
variable, with norm bounds that are independent of the parametric dimension. The
techniques and theory presented in this paper can be easily generalized to any elliptic
problem on a stochastic domain.
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1 Introduction

In nano-optics applications, imperfections in the manufacturing process may lead
to a considerable uncertainty in the shape of nano-devices. The aim of the present
work is to quantify how such shape variations affect the optical response of a nano-
sized scatterer to some electromagnetic excitation. Our focus is on the estimation of
surrogate models (interpolation) and statistics (quadrature) of quantities of interest
(Q.o.I.s).

Since the shape fluctuations cannot be considered to be small compared to the scat-
terer size, a perturbative approach [17, 27, 29] is not suitable for our framework. On
the other hand, the slow convergence rate of Monte Carlo sampling renders it compu-
tationally inefficient for such kind of applications, since each sample would require
the numerical solution of a full electromagnetic field problem. The multilevel version
of the Monte Carlo algorithm (MLMC) would still require a massive computational
effort in order to reach a certain accuracy. Furthermore, Monte Carlo methods, while
being very simple as quadrature rules, are not well suited for interpolation.

Instead, in the present work we model the uncertain shape through a high-
dimensional parametrization approach, and then apply an algorithm for interpolation
and quadrature that, exploting some regularity properties of the Q.o.I., allows to
achieve convergence rates which are much higher than the ones attainable with Monte
Carlo algorithms and do not suffer from the so-called ‘curse of dimensionality’.

Fig. 1 Particle in free space
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We illustrate the method on a two-dimensional Helmholtz transmission problem
with an incoming plane wave, where the material parameters are assumed to be
known exactly; the shape of the scatterer is thus the only source of uncertainty. We
focus on the case of a particle in free space, whose geometry is depicted in Fig. 1.

1.1 Model problem

Let (�,A,P) be a probability space, withA a σ -algebra on the set � andP a probabil-
ity measure on (�,A). For every ω∈�, we formally define �(ω) to be the boundary of
the scatterer, D1(ω) the exterior unbounded domain, and D2(ω) the domain occupied
by the scatterer. We assume that D1(ω) ∪ �(ω) ∪ D2(ω) = R

2 for every ω ∈ �.
The transmission problem for the Helmholtz equation can be written as

−∇ · (α(�(ω), x)∇u) − κ2(�(ω), x)u = 0 in R
2, (1.1a)

�u��(ω) = 0, �α(�(ω), x)∇u · n��(ω) = 0, (1.1b)

lim|x|→∞
√|x|

(
∂

∂ |x| − iκ1

)
(u(ω) − ui)(x) = 0, (1.1c)

for every ω ∈ �,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

with uniformly positive, real-valued, piecewise-constant coefficients in each subdo-
main:

α(�(ω), x) =
{

1 if x ∈ D1(ω),

α2 if x ∈ D2(ω),
κ2(�(ω), x) =

{
κ2

1 if x ∈ D1(ω),

α2 κ2
2 if x ∈ D2(ω).

(1.2)
The unknown u = u(ω, x) represents the total field, whereas κ1 and κ2 denote the
wavenumbers in free space and in the scatterer, respectively; α2 is a positive real
coefficient. In equation (1.1b), the symbol �·��(ω) denotes the jump across the ran-
dom interface �(ω). Equation (1.1c) is the so-called Sommerfeld radiation condition,
where ui(x) = eiκ1d·x is the incoming plane wave, with d a unit vector indicating
the direction of propagation. The Sommerfeld radiation condition corresponds to the
radiation condition in free space.

We work in the large wavelength regime, which excludes the presence of resonant
geometric structures. Thus, the results of this paper are not restricted to the Helmholtz
equation, but hold for any elliptic equation.

The two-dimensional Helmholtz equation describes the scattering of an electro-
magnetic wave from a cylinder of infinite length, and the unknown u corresponds to
the out-of-plane component of the electric field (TE mode) or of the magnetic field
(TM mode), depending on the meaning conferred to the coefficients in the equation
(see e.g. [41]). The same results and methodology presented in this paper, however,
still hold for the three-dimensional Helmholtz equation, when the Fourier harmon-
ics used to model the shape variations (see Section 2) are replaced by spherical
harmonics.
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1.2 Outline and related work

The parametric approach to represent the uncertainty was developed by Ghanem
and Spanos (e.g. [24]) from the pioneering ideas of Wiener [47]. In this frame-
work, in Section 2 we give a probabilistic description of the interface � = �(ω),
so that it will then depend on ω ∈ � indirectly through a deterministic, high-
dimensional parameter representing the stochasticity. In particular, we express the
variations of the scatterer boundary through an affine combination of a finite number
of independent, uniformly distributed random variables, as it is commonly done to
model the stochastic diffusion coefficient in the scalar diffusion model (see [12, 13,
45], just to mention some). Such an expansion can be regarded as an approximation
to the exact probability distribution of the interface [49].

In Section 3, we use the domain mapping approach introduced by Xiu and Tar-
takovsky in [46, 49] to map each domain realization to a nominal configuration,
fixed for all realizations, using a parameter-dependent map. A similar technique has
been adopted in [8] and [28] too. In the latter articles, the authors model the shape
uncertainty through a Karhunen-Loève expansion of the map from a reference con-
figuration to the physical, in contrast to our work which separates the stochastic
description of the interface, provided in Section 2, from the mapping itself. We let
randomness enter through the interface model and then it propagates to the map.
Alternative methods to the domain mapping are the fictitious domain approach intro-
duced by Canuto and Kozubek in [7] and the level set methods developed by Nouy
et al. in [39]. For two reasons we prefer the mapping approach. First, this approach
facilitates the theoretical analysis of the regularity of the solution (with respect to
both the high-dimensional parameter and the spatial coordinate). Second, when using
the fictitious domain approach or the level set method, the solution is not smooth
with respect of the high-dimensional parameter at the domain boundary. Conversely,
the domain mapping allows us, in Section 4, to write a variational formulation for
(1.1) on the nominal configuration with parameter-dependent coefficients, bringing
the problem to a framework for which theory and discretization algorithms are well
established and can be applied without modifications.

In Section 5, we address the discretization of the latter variational formulation
with respect to the parameter representing the stochasticity. Two main methods can
be used: the stochastic Galerkin and the stochastic collocation methods.

The stochastic Galerkin approach (see [45] for a comprehensive review), due to its
intrusive nature (at least in its original version), is not well suited for our application,
where the coefficients of the PDE (partial differential equation) depend nonlinearly
on the high-dimensional parameter. We use instead sparse collocation, introduced
independently by Babuška, Nobile and Tempone in [2] and by Xiu and Hesthaven in
[48]. To overcome the so-called curse of dimensionality due to the high dimension
of the parameter space, we use the sparse adaptive Smolyak algorithm for stochastic
quadrature and interpolation described in [43], and pioneered in the earlier work [23]
of Gerstner and Griebel. This is shown to achieve convergence rates independent of
the number of dimensions considered.

In the same section we also discuss the fulfillment, in our framework, of the
key assumption of all convergence theorems, that is the holomorphy of the Q.o.I.
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(e.g. the solution to (1.1) or linear functionals of it) with respect to an extension
of the high-dimensional parameter to the complex plane. Due to the domain trans-
formation introduced in Section 4, we need a stronger regularity constraint for the
scatterer boundary than the one that is usually needed for the diffusion coefficient
in elliptic problems on deterministic domains. Similar regularity results are shown
in [28] and [8]. However, [28] addresses the smoothness of the Q.o.I. with respect
to the real-valued parameter, whose analysis is different than when the parameter is
complex-valued. In [8], the smoothness results refer to the holomorphic extension of
the Q.o.I. to complex polyellipses, in view of the application of an isotropic sparse
grid algorithm. Nevertheless, we believe that our regularity analysis is still of interest
for two reasons. First, differently from [8] and [28], we emphasize the anisotropy of
the region of holomorphy with respect to the dimension, because this is the key prop-
erty that determines the convergence rate of our anisotropic, dimension-robust sparse
grid algorithm. Second, in our case the regularity of the solution is obtained not from
specific direct calculations depending on the variational formulation, as it is the case
in [8] and [28], but from a more general result from [10] based on implicit differentia-
tion, so that our approach is more easily generalizable to a wide class of PDEs. Our
results on the holomorphy of the solution rely on a specific parametrization of the
scatterer boundary, but it has been recently shown in [14], in the framework of sta-
tionary Navier-Stokes equations and in [32] for Maxwell’s equations, that this is
a particular case of shape holomorphy, which holds for a wider class of domain
transformations.

Section 6 is, in our opinion, one of the major contributions of this paper. There,
we address the space discretization on the nominal configuration and couple it to
the results of the previous section. For the spatial problem, we use a finite ele-
ment discretization. We point out that a boundary element formulation (as used,
for example, in [29]) is not applicable in the context of the mapping approach,
due to variable coefficients in the resulting variational formulation. Of course, the
boundary element method can be used on the mapped domain, but a straightforward
implementation would require reassembly of the system matrix for every realiza-
tion, leading to high computational costs. Thus, in Section 6, after discussing space
regularity results for the solution at each collocation point, we couple finite ele-
ment convergence estimates to convergence estimates for sparse interpolation and
quadrature, obtaining convergence results for the solution to the fully discretized
problem and linear output functionals. We first consider the simpler case of uni-
form finite element discretization for all the parameter realizations, and then the
case when different space discretizations are used for different collocation points.
For the former approach, the procedure that we present is quite similar to the one
presented in [8]. There, however, the convergence rates presented for the sparse
grid error are not independent of the number of dimensions involved, and the effect
of the amplitude of the stochastic perturbations on the smoothness of the solu-
tion and thus on the convergence rate of the finite element discretization is not
taken into account. The results that we obtain for the case that the space discretiza-
tion is different for each collocation point can be thought as a starting point for
a parameter-adaptive space discretization to reduce the global computational effort
[4, 19].
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In Section 7, we show that in numerical experiments we achieve, and even surpass,
the predicted theoretical convergence rates for both sparse interpolation and sparse
quadrature on the nominal configuration.

2 Parametrization of the interface

In the first subsection, we give a probabilistic model for the interface �. Using such
probabilistic characterization, in the second subsection we convert the stochastic
problem to a deterministic problem on a high-dimensional parameter domain. This
approach is particularly relevant in the perspective of a discretization, since we will
see that, differently from the probability space �, the space where the deterministic
parameter lives is suitable for discretization.

2.1 Probabilistic modeling of the interface

In order to have a simple representation of the interface, we require:

Assumption 2.1 For every ω ∈ �, the domain D2(ω) is star-shaped with respect to
the origin and the interface �(ω) is of class C1.

In this way, D2(ω) can be fully described by a stochastic, angle-dependent radius
r = r(ω, ϕ) ∈ Ck

per([0, 2π)) for every ω ∈ � and some k ≥ 1, representing the
interface � = �(ω). The techniques we are going to present can be extended to
the case of an interface that is only piecewise of class Ck (k ≥ 1), but for ease of
treatment we do not consider this case.

As it is commonly done in the framework of partial differential equations with sto-
chastic diffusion coefficient (see e.g. [12, 13, 45]), we expand the uncertain radius as:

r(ω, ϕ) = r0(ϕ) +
J∑

j=1

cjY2j−1(ω) cos(jϕ)

+sjY2j (ω) sin(jϕ), ϕ ∈ [0, 2π), J ∈ N, ω ∈ �. (2.1)

In this formal expression, r0 = r0(ϕ) ∈ Ck
per([0, 2π)), k ≥ 1, is referred to as the

nominal shape, and it can be considered as an approximate parametrization of the
mean shape. The truncation of the expansion in (2.1), commonly referred to in the
literature [2] as finite noise assumption, reflects the fact that, when reconstructing the
expansion (2.1) from measurements, only a finite number of Fourier coefficients can
be estimated. In the following, in particular in Section 6, we will ensure that all the
estimates we will obtain hold uniformly in the truncation parameter J ∈ N.

The random variables
{
Yj

}2J

j≥1 are assumed to satisfy:

Assumption 2.2
{
Yj

}2J

j≥1 are i.i.d. with Yj ∼ U([−1, 1]) for every 1 ≤ j ≤ 2J and
every J ∈ N.
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In particular
{
Yj

}2J

j≥1 have compact image, namely
∣∣Yj

∣∣ ≤ 1 for every j . Thus, the
only way to have a J -independent bound on the radius expansion (2.1) and a decay of
its Fourier coefficients is to impose some constraints on the real coefficient sequences.

To ensure boundedness and positivity of the stochastic radius r at each angle
ϕ and for every ω ∈ �, we require that r = r(ω, ϕ) varies inside the range
[ r0(ϕ)

2 ,
3r0(ϕ)

2 ]:

Assumption 2.3 The coefficient sequences C := (cj )j≥1 and S := (sj )j≥1 satisfy

∑

j≥1

(|cj | + |sj |) ≤ r−
0

2
,

with r−
0 = infϕ∈[0,2π)r0(ϕ) > 0.

For the Fourier coefficients, we require them to have a ‘sufficiently fast’ polyno-
mial decay:

Assumption 2.4 The sequences C and S have a monotonically decreasing majo-
rant which belongs to �p(N) with 0 < p < 1

2 , and the sequences (j |cj |p)j≥1 and
(j |sj |p)j≥1 have a monotonically decreasing majorant.

As it may be expected from harmonic analysis results, the decay of the coefficient
sequences determines the regularity of the radius:

Lemma 2.5 If the coefficient sequences C, S satisfy Assumption 2.4, then the radius
r = r(ω, ϕ) given by (2.1) satisfies

‖r(ω)‖Ck
per ([0,2π)) ≤ C(C,S), for every ω ∈ �, (2.2)

under the assumption that also the nominal radius r0 belongs to Ck
per ([0, 2π)). The

constant C depends on the regularity parameter k and on the sequences C = (cj )j≥1
and S = (sj )j≥1, but not on the truncation dimension J ∈ N and on ω ∈ �. The
regularity parameter k is given by:

k =
{ ⌊

1
p

− 1
⌋

if 1
p

− 1 is not an integer,
1
p

− 2 otherwise.
(2.3)

Proof The proof consists of elementary computations and we refer to [42, Lemma
C.0.5] for it.

Remark 2.6 Equation (2.1) can be rewritten as

r(ω, ϕ) = r0(ϕ) +
L∑

l=1

βlYl(ω)ψl(ϕ), ϕ ∈ [0, 2π), L ∈ N, (2.4)

with ψl = cos( l+1
2 ϕ) and βl = c l+1

2
if l is odd, ψl = sin( l

2ϕ) and βl = s l
2

if l is

even. The truncation L is given by L = 2J , with J as in (2.1).
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In general, any basis (ψl)l≥1 of L2
per([0, 2π)) could be considered, provided that

ψl ∈ C1
per([0, 2π)) for each l ≥ 1. Nevertheless, the choice of the Fourier basis is

particularly relevant in view of possible applications, when, for instance, r0 is a circle
and (2.4) is obtained from the Karhunen-Loève expansion of a rotationally invariant
covariance kernel.

2.2 Parametric formulation

In this subsection we recall via application to our case the standard parametrization
procedure followed in stochastic Galerkin and stochastic collocation frameworks; we
refer to [45] for an exhaustive survey of the topic.

From Assumption 2.2, we know that for each random variable Yj : � → Pj , 1 ≤
j ≤ 2J , with Pj = [−1, 1] endowed with the Borel σ -algebra �j , the distribution

μj of Yj is the uniform distribution. Then the sequence
(
Yj

)2J

j≥1 defines a map

Y : � → PJ :=
2J⊗

j=1

Pj = [−1, 1]2J , ω �→ (
Yj (ω)

)2J

j=1 , (2.5)

measurable with respect to the product σ -algebra � := ⊗2J
j=1 �j on PJ . PJ is

commonly referred to as the parameter space.
The random variables Yj being independent, the distribution of Y is the prod-

uct probability measure μ := ⊗2J
j=1 μj . In particular, under Assumption 2.2, μ =

(
1
2

)2J

.

Now, we denote by y = (
yj

)2J

j=1 ∈ PJ one realization of the random variable Y ,
so that we can rewrite (2.1) as

r(y, ϕ) = r0(ϕ) +
J∑

j=1

cj y2j−1 cos(jϕ) + sj y2j sin(jϕ),

y = (
yj

)2J

j=1 ∈ PJ , ϕ ∈ [0, 2π). (2.6)

Remark 2.7 In Assumption 2.2, the uniform distribution hypothesis for the random
variables serves as a model and can be easily relaxed (see Section 9.1 in [42]). The
requirement that the random variables are mutually independent is instead harder to
drop. This is due to the fact that, if such condition is not fulfilled, then the joint prob-
ability distribution μ cannot be expressed as product of the univariate distributions
anymore and, as mentioned in [42, Sect. 9.1], one would need to adapt the theoretical
convergence analysis under some assumptions on μ.

3 Mapping to nominal geometry

In the first subsection we give a general description of the approach, while in the
second subsection we apply it to our specific case of a particle in free space.
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3.1 General description

To overcome the unboundedness of the domain, consider, in the domain with inter-
face �(y), a circle ∂KR of arbitrary radius R containing the scatterer D2(y) in its
interior. We choose ∂KR to be fixed for all realizations y ∈ PJ , J ∈ N, and we
denote by KR the region enclosed inside ∂KR , no matter which realization �(y) of
the interface is considered.

Following the approach introduced, for instance, in [10, 28] and [49], we con-
sider a nominal configuration of the domain KR , where the interface �̂ is fixed, i.e.
independent of the realization y, and a bijective parameter-dependent mapping

�(y) : KR −→ KR

(x̂1, x̂2) �→ (x1, x2) (3.1)

from the nominal configuration to the domain KR with interface �(y).
A possible choice for �̂ is the interface associated with the nominal radius r0, or, in

other words, to the case when y = 0. We denote by D̂2 the scatterer region when the
interface is �̂, and D̂1 := R

2\D̂2. In order to preserve the well-posedness of the prob-
lem as it will be discussed in Section 4, we formulate the following assumptions on �:

Assumption 3.1 For every J ∈ N, every y ∈ PJ and an integer k ≥ 1, the mapping
�(y) : KR → KR fulfills the following properties:

(i) �(y) is a Ck-orientation preserving diffeomorphism in each of the two
subdomains D̂1 ∩ KR and D̂2, with uniformly bounded norms, i.e.:
‖�(y)‖Ck

p̂w(KR) ≤C1, ‖�−1(y)‖Ck
pwy

(KR) ≤C2, for all J ∈N and all y ∈PJ ,

where C1 and C2 are independent of the truncation dimension J ∈ N and of
y ∈ PJ , and ‖·‖Ck

p̂w(KR) := ‖·‖
Ck(D̂1∩KR)∪Ck(D̂2)

= ‖·‖
Ck(D̂1∩KR)

+ ‖·‖
Ck(D̂2)

(similarly in ‖·‖Ck
pwy

(KR) the discontinuities are allowed across �(y)).

(ii) �(y) is the identity on ∂KR:

�(y, x̂) = x̂ for all x̂ ∈ ∂KR and all J ∈ N, y ∈ PJ .

From Assumption 3.1 (i), using the Courant-Fischer theorem for singular values
[31, Thm. 3.1.2] we deduce immediately the following lemma.

Lemma 3.2 Let σ1 = σ1(y, x), σ2 = σ2(y, x) be the singular values of D�−1(y)

(the Jacobian matrix of �−1). Under Assumption 3.1 (i), there exist constants σmin,
σmax > 0, independent of the truncation dimension J ∈ N and of y ∈ PJ , such that

σmin ≤ ‖σ1(y, ·)‖C0
pwy

(KR), ‖σ2(y, ·)‖C0
pwy

(KR) ≤ σmax for all J ∈ N, y ∈ PJ

(or, equivalently, analogous bounds hold for the singular values of D�(y), the
Jacobian matrix of �).
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3.2 The domain mapping for a particle in free space

In this case, we choose r0(ϕ) as the boundary of the scatterer in the nominal con-
figuration, and map it to the boundary of the actual scatterer. The movement of the
interface is propagated in the regions inside and outside the scatterer using a mollifier.
In formulae, we have:

x(y) = �(y, x̂) = x̂ + χ
(
x̂
) (

r(y, ϕ̂x̂) − r0(ϕ̂x̂)
) x̂

‖x̂‖ , (3.2)

with ϕ̂x̂ := arg(x̂) = arg(x) = ϕ. The mollifier χ : KR → R0,+ := R+ ∪ {0}
satisfies the following conditions:

• χ(x̂) = χ(‖x̂‖, r0), that is, χ acts on the radial component of x̂ ∈ KR , and its
dependence on the angle ϕ̂ is only due to the fact that it depends on r0 = r0(ϕ),
ϕ ∈ [0, 2π);

• 0 ≤ χ(x̂) ≤ 1, x̂ ∈ KR , with χ(x̂) = 0 for ‖x̂‖ ≤ r−
0
4 (r−

0 being the quantity

defined in Assumption 2.3) and for ‖x̂‖ ≥ R̃ (R̃ ∈ R, sup[0,2π) r0(ϕ) + r−
0
2 <

R̃ ≤ R), and with χ(x̂) = 1 for ‖x̂‖ = r0;

• χ is globally continuous and is monotonically increasing for
r−
0
4 ≤ ‖x̂‖ ≤ r0(ϕ)

and monotonically decreasing for r0(ϕ) ≤ ‖x̂‖ ≤ R̃.

The map is illustrated in Fig. 2. We also require:

Assumption 3.3 The mollifier χ in (3.2) has in D̂2 and in D̂1 ∩ KR at least
the same smoothness as the nominal radius r0 has in [0, 2π). Furthermore,

max
{
‖χ‖

C1(D̂2)
, ‖χ‖

C1(D̂1∩KR)

}
≤ Cχ , where Cχ ∈ R is such that 0 < Cχ <

1
√

2

(
r
−
0
2 +cχ

) for some cχ > 0.

Fig. 2 Mapping for the case of particle in free space
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Lemma 3.4 Let Assumptions 2.3 and 2.4 be satisfied, and let the nominal radius
r0 belong to Ck

per ([0, 2π)), with k as in (2.3). If we choose χ according to
Assumption 3.3, then the mapping � given by (3.2) satisfies Assumption 3.1, with k

the smoothness parameter of the radius r .

Proof The statement is quite clear from (3.2), once one observes that �(y) consists
just of scalings by r(y) and r0 smoothed by a function χ with the same smoothness
as the nominal radius. The technical proof can be found in [42], Appendix E.

For the implementation, it is not easy to find a mollifier for the mapping (3.2) that
fulfills Assumption 3.3 and such that � and its inverse have a closed form. What one
can do instead is to relax Assumption 3.3. Namely, in (3.2) we use:

χ(x̂) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if ‖x̂‖ ≤ r−
0
4 ,

‖x̂‖− r
−
0
4

r0(ϕ̂x̂ )− r
−
0
4

if
r−
0
4 < ‖x̂‖ ≤ r0(ϕ̂x̂),

R−‖x̂‖
R−r0(ϕ̂x̂ )

if r0(ϕ̂x̂) ≤ ‖x̂‖ ≤ R.

(3.3)

It is clear that the mollifier above does not fulfill Assumption 3.3, because
the mapping � is not a Ck-diffeomorphism in D̂2. However, denoting D̂in

2 :={
x̂ ∈ D̂2 : ‖x̂‖ <

r−
0
4

}
, we have that � is a Ck-diffeomorphism piecewise, in D̂in

2

and D̂2 \ D̂in
2 . With such a property, we will see in the following sections that, using

some caution, the theory would still work (see Remark 6.8).
The multiplication by a mollifier is not the only way of propagating the movement

of the interface. Among the valid alternatives we mention the use of a harmonic
extension [35, 49] or of level set methods [1, 40].

4 Variational formulation and well-posedness of the model problem

In the first part of this section we derive the variational formulation for the model problem
(1.1), while in the second part we address its well-posedness (in Hadamard’s sense).

4.1 Variational formulation

As in the previous section, we consider the space KR enclosed inside a circle of
radius R > 0, the latter fixed for all realizations y ∈ PJ , and containing the scatterer
in its interior (see Fig. 3). Then, using the Dirichlet-to-Neumann map (DtN , see
[38, Sect. 2.6.3]), we can state the variational formulation for (1.1) on the bounded
domain KR . Applying the parametric description of the uncertain interface developed
in Section 2, we obtain:
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Find u(y) ∈ V :
ay(u(y), v) :=

∫

KR

α(y, x)∇u(y) · ∇v − κ2(y, x) u(y) · v dx

−
∫

∂KR

DtN(u(y))v dS

=
∫

∂KR

(
−DtN(ui) + ∂ui

∂nR

)
v dS for all v ∈ V and all y ∈ PJ ,

(4.1)

where V := H 1(KR) and nR is the outer normal to KR .
Now, we use the inverse of the map �(y), y ∈ PJ , introduced in Section 3, to map

the physical configuration, with interface �(y), to the nominal configuration, with
interface �̂. Reordering the terms, we obtain the following parametric, variational
formulation on the fixed, deterministic configuration with interface �̂:

Find û(y) ∈ V̂ :
ây(û(y), v̂) =

∫

KR

α̂(y, x̂) ∇̂û(y) · ∇̂v̂ dx̂ − κ̂2(y, x̂) û(y) · v̂ dx̂

−
∫

∂KR

DtN(û(y))v̂ dS

=
∫

∂KR

(
−DtN(ui) + ∂ui

∂nR

)
v̂ dS for all v̂ ∈ V̂ and all y ∈ PJ ,

(4.2)

where V̂ = H 1(KR) = V and

α̂(y, x̂) = D�(y)−1D�(y)−� det D�(y)α(y, �−1(y)(x)),

κ̂2(y, x̂) = det D�(y)κ2(y, �−1(y)(x)), (4.3)

with D�(y) the Jacobian matrix of �(y). In (4.2), ∇̂ denotes the gradient with
respect to x̂ ∈ KR , the coordinates in the nominal configuration.

Remark 4.1 Formulae (4.3) explain why we have to require k ≥ 1 in Assumption 3.1
and p < 1

2 in Assumption 2.4 (since in general D� and its inverse will depend on
∂r

∂ϕ
).

We are now in a position to give a rigorous definition for the solution to (4.1):

Definition 4.2 The function u(y), y ∈ PJ , is a solution to (4.1) if and only if its
pullback (�∗(y)u(y))(x̂) := u(�(y, x̂)) ∈ H 1(KR) is a solution to (4.2).

4.2 Well-posedness of the model problem

Existence and uniqueness of the solution are ensured by the following theorem:
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Fig. 3 Domain considered in (4.1)

Theorem 4.3 The solution to the variational formulation (4.1) exists and is unique,
for every J ∈ N and every y ∈ PJ . Equivalently, if Assumption 3.1 is fulfilled, then
(4.2) admits a unique solution for every J ∈ N and every y ∈ PJ .

Proof The boundedness of KR allows us to apply the Fredholm Alternative [36, Thm.
2.27] to get existence of the solution to (4.2), while uniqueness is ensured by the sign
properties of the DtN map. We refer to [42, Thm. 3.2.3] for the detailed proof.

To have well-posedness of the problem, we still have to prove that the solution to (4.2)
depends continuously on the data, which in our case consist of the incoming wave ui .
Thus, we would desire to have a bound on the H 1(KR)-norm of û by some norm of
ui . This stability property will be needed later for convergence purposes (Section 5).

Unfortunately, a J - and y-uniform stability result cannot be achieved in general
for the Helmholtz equation. The reason being that, without any limitation on the
wavenumber, it can happen that a small wavenumber excites resonances at the bound-
ary of the scatterer, with an uncontrollable increase of the amplitude of the field u in
that region. Therefore, we assume that the wavelength is large enough compared to
the scatterer size:

Assumption 4.4 (Large wavelength assumption) The wavenumbers in (1.2) satisfy
the condition:

κ2
1 , κ2

2 ≤ τ C(R), for some 0 < τ < min {1, α2} , (4.4)
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with

C(R) = inf
w∈H 1(KR)

|w|2
H 1(KR)

+ ‖w‖2
L2(∂KR)

‖w‖2
L2(KR)

. (4.5)

This leads to the following stability result:

Lemma 4.5 Let Assumption 3.1 be satisfied. There exists a constant 0<T <1 inde-
pendent of J ∈ N and y ∈ PJ such that, if Assumption 4.4 holds with τ < T , then:

(a) the bilinear form ây(·, ·) in (4.2) is coercive, with coercivity constant indepen-
dent of J ∈ N and y ∈ PJ ;

(b) there exist positive constants B1, B2 independent of J ∈ N and of y ∈ PJ (but
which do depend on α2, σmin, σmax, κ1, κ2 and R) such that, for every J ∈ N

and every y ∈ PJ :

∥∥û(y)
∥∥

H 1(KR)
≤ B1 ‖ui‖

H
1
2 (∂KR)

+ B2

∥∥∥∥
∂ui

∂nR

∥∥∥∥
H

− 1
2 (∂KR)

, (4.6)

with
∂ui

∂nR

= d · nRκ1e
iκ1d·x .

Proof See Lemma 3.2.5 and Cor. 3.2.6 in [42].

The variational form (4.2) is now ready to be discretized. Notice that two
discretizations are needed: the discretization in the parameter space and the space dis-
cretization on the nominal configuration. The former will be considered in Section 5,
while for the latter we rely on a standard finite element discretization, of which we
will provide details in Section 6.

5 Stochastic collocation and Smolyak algorithm

In this section we address the parameter space discretization of (4.2) through
stochastic collocation. In the first subsection we recall the main features of sparse
interpolation and quadrature. In the second subsection, we describe the sparse adap-
tive Smolyak algorithm used in our numerical experiments to select the collocation
points. In the third and last subsection, we show that the hypothesis for the conver-
gence theorems for the sparse interpolation and quadrature hold for the Helmholtz
transmission problem.

In the first two subsections, we present the results in the general case that the
parameter space is P := [−1, 1]d with d large and possibly infinite (in the latter case
we write [−1, 1]∞ = ⊗∞

j=1[−1, 1] for the set of infinite sequences where every
term is in [−1, 1]). When we apply them to our model problem, we consider then
PJ = [−1, 1]2J as parameter space (i.e. d = 2J ).
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5.1 High-dimensional sparse polynomial interpolation and quadrature

We only recall the main definitions and properties used in the continuation of the
paper. For an exhaustive survey on stochastic collocation, we refer to [2] and [48].
Details on sparse polynomial interpolation and sparse quadrature can be found in [9]
and [43], respectively.

Univariate operators and tensorization Let
(
ζ k
j

)nk

j=0
be a sequence of distinct

points in Pl = [−1, 1] (for a generic l ≥ 1), associated with the weights
(
wk

j

)nk

j=0
.

The univariate polynomial interpolation operator Ik and the univariate quadrature
operator Qk associated with the points

{
ζ k

0 , . . . , ζ k
nk

}
are defined as

Ikg =
nk∑

i=0

g(ζ k
i )l

nk

i , Qkg =
nk∑

i=0

w
nk

i · g(ζ k
i ) =

∫ 1

−1
Ikg(ζ ) dζ, (5.1)

where g is a real- or complex-valued function defined on [−1, 1] and l
nk

i (y) =
∏nk

j=0
j �=i

y−ζj

ζi−ζj
is the Lagrange polynomial associated with the nodes

(
ζ k
j

)nk

j=0
.

LetI(·)be the exact integration operator, and let us denoteN0 :=N∪{0}. We require:

Assumption 5.1 For each k ∈ N0, the univariate interpolation formula Ik and the

univariate quadrature formula Qk associated with the quadrature points
(
ζ k
j

)nk

j=0
satisfy:

(i) Qk is of order k, i.e. (I − Qk)(pk) = 0 for all pk ∈ Pk , with Pk the set of
polynomials up to the k-th degree;

(ii) the Lebesgue constants λk of Ik and
∑nk

j=0 |wk
j | behave like O((k + 1)θ ) for

some θ ≥ 1.

The univariate interpolation and quadrature difference operators are defined as

�I
k = Ik − Ik−1, �

Q
k = Qk − Qk−1, k ≥ 0, (5.2)

where we set I−1 = 0, so that �I
0g = g(ζ 0

0 ), and Q−1 = 0, ζ 0
0 = 0, w0

0 = 1, so that
Q0g = g(0). Therefore, (5.1) can be rewritten as

Ik =
k∑

j=0

�I
j , Qk =

k∑

j=0

�
Q
j . (5.3)

We remark that any univariate family of interpolation points can be used for the above
construction, in particular the sequences need not to be nested.

To extend these concepts to the multi-dimensional case, we introduce the set

F =
{
ν ∈ N

N

0 : � supp ν < ∞
}

, (5.4)

where the support of a multi-index is defined as supp ν = {
j ∈ N : νj �= 0

}
.
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To any multi-index ν ∈ F , we associate the set of multivariate points ζ ν =
⊗

j≥1

(
ζ

νj

i

)nνj

i=0
⊂ P and the tensorized multivariate operators

Iν =
⊗

j≥1

Iνj
and �I

ν =
⊗

j≥1

�I
νj

, (5.5)

Qν =
⊗

j≥1

Qνj
and �

Q
ν =

⊗

j≥1

�Q
νj

. (5.6)

We refer to [9, p.608] and [43, p.9] for a more rigorous definition, using induction,
of the tensorized interpolation and quadrature operators, respectively.

Sparse interpolation and quadrature operators To define sparse interpolation and
quadrature operators, we introduce the following notion:

Definition 5.2 (Definition 3.1 in [43]) A subset � ⊂ F of finite cardinality N is
called downward closed1 if {0} ⊂ � and if, for every ν ∈ �, ν �= 0, it holds that
ν − ej ∈ � for all j ∈ supp ν, where ej ∈ {0, 1}N denotes the index vector with 1 in
position j ∈ N and 0 in all other positions i ∈ N \ {j}.

For any downward closed set � ⊂ F , the sparse interpolation and quadrature
operators are

I� =
∑

ν∈�

�I
ν, Q� =

∑

ν∈�

�Q
ν , (5.7)

with �I
ν and �

Q
ν the multivariate difference operators defined in (5.5) and (5.6),

respectively. Theorem 2.1 in [9] and Theorem 4.2 in [43] ensure that these operators
are well defined.

We have introduced the definitions for the case that g is a real- or complex-valued
function, but they can be extended in a straightforward way to functions taking values
in separable Banach spaces, see [9] and [43] for details.

Best N -term convergence rates for sparse interpolation and quadrature For
s > 1, we define the Bernstein ellipse in the complex plane as Es :={

w+w−1

2 : 1 ≤ |w| ≤ s
}

. Given a sequence ρ := (ρl)l≥1, Eρ = ⊗
l≥1 Eρl

denotes the

tensorized polyellipse [10].
Given a Q.o.I. g that, for each y ∈ P , takes values in a separable Hilbert space V ,

we call the map y ∈ P �→ g(y) ∈ V the solution map.
For the convergence results for the sparse interpolation and quadrature operators

to hold, we need that the function that we want to interpolate or of which we want to
compute the integral fulfills some regularity properties [10, 43, 44]:

(b, p, ε)-holomorphy assumption Let g : P → V denote a bounded, continu-
ous function of countably many variables y1, y2, . . ., defined on P = [−1, 1]∞ and
taking values in a separable Hilbert space V . We require that:

1Also referred to in the literature as lower index set or monotone index set.
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(i) Given a positive sequence b = (bl)l≥1 ∈ �p(N) for some 0 < p < 1, there
exists a real number 0 < ε < 1 such that, for every (b, ε)-admissible sequence
of poly-radii, i.e. for every sequence ρ = (ρl)l≥1 such that ρl > 1 and

∑

l≥1

(ρl − 1)bl ≤ ε, (5.8)

the solution map y �→ g(y) admits a holomorphic extension to a set of the form
Oρ := ⊗

l≥1 Oρl
, with Oρl

⊂ C an open set containing Eρl
, l ≥ 1.

(ii) g satisfies an a priori estimate (uniform upper bound)

sup
z∈Eρ

‖g(z)‖V ≤ B(ε), (5.9)

for a constant B = B(ε) independent of ρ and the dimension of the parameter
space.

Lemma 4.4 in [10] ensures that, for s > 1, the open set Os :=
{z ∈ C : dist(z, [−1, 1]) < s − 1} is an open neighborhood of Es . Then, it is suffi-
cient to verify the (b, p, ε)-holomorphy assumption on sets of the form

Oρ =
⊗

l≥1

Oρl
, with Oρl

= {z ∈ C : dist(z, [−1, 1]) < ρl − 1} , l ≥ 1. (5.10)

Under the (b, p, ε)-holomorphy assumption, one can prove the following conver-
gence results:

Theorem 5.3 (Theorem 4.4 in [9]) Let the (b, p, ε)-holomorphy assumption be sat-

isfied. If the univariate sequence
(
ζ k
j

)nk

j=0
is chosen so that Assumption 5.1 (ii) is

fulfilled, then there exists a sequence (�N)N≥1 of downward closed sets �N ⊂ F
such that ��N = N and

‖g − I�g‖L∞(P,V ) ≤ CN−s , s = 1

p
− 1. (5.11)

Theorem 5.4 (Lemma 4.10 in [43]) Let the (b, p, ε)-holomorphy assumption and
Assumption 5.1 be satisfied. Then there exists a sequence (�N)N≥1 of downward
closed sets �N ⊂ F such that ��N ≤ N and

‖I(g) − Q�g‖V ≤ CN−s , s = 1

p
− 1. (5.12)

These two results show convergence rates which depend only on p, referred to
as the ‘sparsity class of the unknown’, while they do not depend on the number of
dimensions activated. This means that we can break the curse of dimensionality by
algorithms which adaptively construct downward closed index sets for the sparse
interpolation and quadrature operators, as the algorithm that we present in the next
subsection.

Remark 5.5 Recent advances in [50] show that, for symmetric probability measures
(as the uniform measure used in the present paper), the convergence rate for the sparse
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quadrature operator can be improved to 2
p

− 1. However, numerical experiments in
[50] show that, when the deviation of the integrand around the mean is not small,
a long preasymptotic phase prevents us from observing the improved rate unless an
extremely large number of quadrature points is used.

5.2 The sparse adaptive Smolyak algorithm

The idea is to identify the index set �N of the N indices in F giving the highest
contribution to the approximations (5.7). However, the index set �N built in this way
would be nested but not downward closed and, even worse, the cardinality of the
set that should be considered to update �N at each step grows exponentially with
the number of dimensions activated and it would be infinite in the case of countably
many parameters. To overcome this, one considers a local subset of F , referred to as
the reduced set of neighbors of a given finite set � ⊂ F , specifically [23]:

N (�) = {
ν /∈ � : ν − ej ∈ �, for all j ∈ supp ν and νj = 0, all j > j (�) + 1

}

(5.13)
for any downward closed index set �, where j (�) = max

{
j : νj > 0 for some ν

∈ �}. Using this set of neighbors, at each iteration at most one additional dimension
can be activated.

The algorithm constructs then an anisotropic downward closed index set �

comprising those indices in N (�) which are expected to contribute most to the
approximation (see [43] for details):

Algorithm 1 Sparse adaptive Smolyak algorithm

1: function ASG
2: Set �1 = {0F } , k = 1 and compute �

Q
0 (g).

3: Determine the reduced set of neighbors N (�1).
4: Compute �

Q
ν (g) , for all ν ∈ N (�1).

5: while
∑

ν∈N (�k)
‖�Q

ν (g)‖V > tol do

6: Set �k+1 = �k∪
{
μ ∈ N (�k) : ‖�Q

μ (g)‖V ≥ϑ maxν∈N�k
‖�Q

ν (g)‖V

}
.

7: Determine the reduced set of neighbors N (�k+1).
8: Compute �

Q
ν (g) , for all ν ∈ N (�k+1).

9: Set k = k + 1.
10: end while
11: end function

In line 6, ϑ ∈ [0, 1] is a parameter chosen at the beginning of the algorithm,
and determining how many indices in the reduced set of neighbors are included
in the set � at each iteration. For θ = 1, we have �k+1 = �k ∪ {ν̄} with
ν̄ = argmaxν∈N�

‖�Q
ν (g)‖V .
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For the interpolation, the difference operators are the ones defined in (5.5). For
each ν ∈ F , ‖�Q

ν (g)‖V is replaced by ‖�I
ν(g)‖L∞(P,V ), and the stopping criterion

∑
ν∈N (�k)

‖�Q
ν (g)‖V ≤ tol at line 5 of Algorithm 1 is substituted by the condition

maxν∈N (�k) ‖�I
ν(g)‖V ≤ tol.

Remark 5.6 We remark that there is no guarantee and it has not been proved that the
downward closed index sets obtained with Algorithm 1 are the ones for which the
estimates in Theorems 5.3 and 5.4 hold, and it could be possible to encounter cases
where no convergence can be observed. However, in [43] several numerical examples
are shown where the convergence rates of Theorems 5.3 and 5.4 are achieved. Also
our numerical experiments of Section 7 will confirm that the proposed algorithm
remains effective in all test cases.

5.3 Analyticity and uniform boundedness of solutions to elliptic PDEs

Let us now return to our model problem as stated in (4.2). We need to show that this
case satisfies the (b, p, ε)-holomorphy assumption, so that the convergence results
stated in Theorems 5.3 and 5.4 hold.

To this aim, we replace the definition of (b, ε)-admissible sequence of polyradii
by the following:

Definition 5.7 A sequence ρ = (ρl)l≥1 of polyradii, with ρl > 1 for every l ∈ N,
is said to be (b, ε)∗-admissible if it is (b, ε)-admissible for a sequence b that has
a monotonic majorant in �p(F) for 0 < p < 1

2 and is such that (lb
p
l )l≥1 has a

monotonic majorant, and if (5.8) is replaced by
∑

l≥1

(ρl − 1)lbl ≤ ε. (5.14)

We use the term (b, p, ε)∗-holomorphy assumption to denote the (b, p, ε)-
holomorphy assumption when (b, ε)-admissible sequences are replaced by (b, ε)∗-
admissible sequences.

Proposition 5.8 Let the (b, p, ε)-assumption be replaced by the (b, p, ε)∗-
assumption. Then the algebraic convergence of the sparse interpolation and quadra-
ture operators, prescribed by Theorems 5.3 and 5.4 respectively, still holds with rate
of convergence s = 1

p
− 2.

Proof Since the sequence b has a monotonic majorant in �p(F) and the sequence
(lb

p
l )l≥1 has a monotonic majorant, Lemma C.0.7 in [42] ensures that the sequence

(lbl)l≥1 belongs to �q(F) with q = p
1−p

. Applying Theorems 5.3 and 5.4 using the

(b, p, ε)-assumption for the sequence b̃ = (lbl)l≥1, we obtain the claim.

Remark 5.9 The condition expressed by the inequality in (5.14), differently from
the condition b ∈ �p(N), entails an implicit ordering of the dimensions of the
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parameter space with respect to decreasing significance. However, thanks to Assump-
tion 2.4, the bound ε in (5.14) does not depend on the sequence b itself but on its
(monotonically decreasing) majorant.

Remark 5.10 Condition (5.14) implies in particular condition (5.8) for the same
sequence b.

Our plan is to show that the (b, p, ε)∗-holomorphy assumption is fulfilled for our
model problem.

As it is done in [10, Sect. 5.3], we choose the sequence b as

bl = ‖βlψl‖C0
per([0,2π)) + ∥∥βlψ

′
l

∥∥
C0

per([0,2π))
= |βl | + l|βl |, l ≥ 1, (5.15)

with βl and ψl as in Remark 2.6, l ≥ 1. Notice that, thanks to Assumption 2.4 on the
sequence (βl)l≥1 (i.e. existence of a monotonic majorant belonging to �p(N) with
p < 1

2 ), there exist sequences of polyradii that are (b, ε)∗-admissible.
We show explicitly that the (b, ε)∗-holomorphy assumption is fulfilled when using

the domain mapping (3.2). However, our results hold for a generic mapping fulfilling
the following conditions, slightly stronger than the ones in Assumption 3.1:

Assumption 5.11 (i) The domain mapping � = �(y), its Jacobian matrix D�(y)

and its inverse D�−1(y), y ∈ PJ , J ∈ N, admit a holomorphic extension to
the subsets Oρ ⊂ C

N as defined in (5.10), for any (b, ε)∗-admissible sequence of
polyradii ρ.

(ii) For every z ∈ Oρ , � = �(z) fulfills Assumption 3.1, with bounds possibly
depending on ε. For Assumption 3.1(i), the requirement on the diffeomorphism to be
orientation-preserving is replaced by: there exists a real constant σ− = σ(ε) > 0
independent of z ∈ Oρ such that

Re det D�(z) > σ(ε) for every z ∈ Oρ . (5.16)

Let us first look at the uniform bound (5.9).
Assumption 2.3 ensures that there exist 0 < r−, r+ < ∞ such that

r− ≤ r(y, ϕ) ≤ r+ for a.e. ϕ ∈ [0, 2π), all J ∈ N, and all y ∈ PJ (5.17)

(more precisely, in our case r− = r−
0
2 , r+ = r+

0 + r−
0
2 , with r+

0 = supϕ∈[0,2π) r0(ϕ)

and r−
0 as in Assumption 2.3). Moreover, Assumption 2.4 guarantees (see e.g. [42,

Lemma C.0.5]) that there exists a J - and y- independent constant 0 < Cr < ∞ such
that
∥∥∥

∂r

∂ϕ
(y)

∥∥∥
C0

per([0,2π))
≤
∥∥∥
∂r0

∂ϕ

∥∥∥
C0

per([0,2π))
+ Cr for all J ∈ N and all y ∈ PJ .

(5.18)
Using these facts, we can prove the following:

Lemma 5.12 Let b be as in (5.15) and 0 < ε < r−
2 , with r− as in (5.17). Then,

for every (b, ε)∗-admissible sequence ρ and every z ∈ Oρ , with Oρ as in (5.10), we
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have the z-independent bounds

r−
2 ≤ Re r(z, ϕ), ϕ ∈ [0, 2π), (5.19)
r−
2 ≤ |r(z, ϕ)| ≤ r+ + ε, ϕ ∈ [0, 2π), (5.20)

∣∣∣
∂r

∂ϕ
(z, ϕ)

∣∣∣ ≤
∥∥∥
∂r0

∂ϕ

∥∥∥
C0
per([0,2π))

+ Cr + ε, ϕ ∈ [0, 2π), (5.21)

with r+ as in (5.17) and Cr as in (5.18).
In particular, the mapping � defined in (3.2) fulfills Assumption 5.11 (ii) if the

mollifier fulfills Assumption 3.3 and 0 < ε < min
{
cχ , r−

2

}
.

Proof The results follow immediately from the bounds (5.17) and (5.18). We refer to
Lemma 4.3.6 in [42] for the complete proof.

The same argument used in the proof of Lemma 4.5 leads to:

Proposition 5.13 Let the sequence b be as in (5.15) and 0 < ε < r−
2 , with r− as in

(5.17).
If the mapping � satisfies Assumption 5.11, then part (ii) of the (b, p, ε)∗-

holomorphy assumption is fulfilled, i.e. there exist constants B1 = B1(ε) and
B2 = B2(ε) such that

sup
z∈Oρ

∥∥û(z)
∥∥

H 1(KR)
≤ B1(ε) ‖ui‖H 1(∂KR) + B2(ε)

∥∥∥∥
∂ui

∂nR

∥∥∥∥
L2(∂KR)

(5.22)

for every Oρ , with Oρ as in (5.10) and ρ any sequence of (b, ε)∗-admissible
polyradii. The constants B1 and B2 are independent of J ∈ N, y ∈ PJ and ρ.

In particular, the bound (5.22) holds for the mapping � given in (3.2) if the

mollifier fulfills Assumption 3.3 and 0 < ε < min
{
cχ , r−

2

}
.

To prove that part (i) of the (b, p, ε)∗-holomorphy assumption holds, we first
show the existence of a holomorphic extension for the parameter-dependent radius
(2.6) and its ϕ-derivative; from this, analyticity of the map �(y) and then of the
solution to the PDE on the nominal configuration follow. The proof is rather gen-
eral and actually it applies, with minor modifications, to any elliptic PDE as long
as the parameter-dependent configuration can be mapped to a reference configura-
tion through a mapping satisfying Assumption 5.11 and depending smoothly on the
stochastic quantity r = r(y).

Lemma 5.14 For every z ∈ Oρ , with Oρ as in (5.10) and ρ any (b, ε)∗-admissible

sequence, the maps z �→ r(z) ∈ C1
per ([0, 2π)) and z �→ ∂r

∂ϕ
(z) ∈ C0

per ([0, 2π)),

with r = r(z) given by (2.6), are holomorphic.

Proof The result follows immediately from Hartogs’ theorem on separate analyticity
and the bounds (5.8), (5.14) on the sequence b.
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Let Diffk+, ˆpw(KR, KR) be the space of diffeomorphisms which are of order Ck in

each of the two subdomains D̂1 ∩ KR and D̂2, and with determinant with positive real
part. Since algebraic sum, multiplication and division by holomorphic functions which
are not zero is still holomorphic, it follows immediately from Lemma 5.14 that:

Lemma 5.15 Let us consider the map � defined in (3.2) with mollifier fulfilling
Assumption 3.3. Then the mappings z �→ �(z, ·) ∈ Diff1+,pw(KR, KR) and z �→
det D�(z, ·)∈ C0

pw(KR) are holomorphic inOρ , withOρ as defined in (5.10) for any
(b, ε)∗-admissible sequence ρ.

Together with Lemma 5.12, this implies that the mapping defined in (3.2) (with
Assumption 3.3 on the mollifier) satisfies Assumption 5.11.

Proof It is easy to check that, thanks to Assumption 2.3 and the restrictions on
the mollifier χ , the denominators in the entries of D�(z) and D�−1(z) are never
zero, for every z ∈ Oρ . Thus z �→ �(z), z �→ D�(z) and z �→ D�−1(z) are
holomorphic.

For the same reasons as for the previous lemma, we also have:

Lemma 5.16 Let Assumption 5.11 be fulfilled. Then the coefficients α̂(y), κ̂2(y) as
defined in (4.3) are holomorphic when considered as maps from z ∈ Oρ to C0

p̂w(KR).

This implies immediately:

Lemma 5.17 Let Assumptions 4.4 and 5.11 hold, the former with τ < T and T as
in Lemma 4.5. Then, if û is a solution to (4.2), the solution map y �→ û(y), admits
a holomorphic extension to any open set Oρ ⊂ C

N as defined in (5.10), with ρ a
(b, ε)∗-admissible sequence.

For each variable zl , l ≥ 1, the complex derivative
(
∂zl

û
)
(z) ∈ V is the weak

solution to the variational problem:

Find
(
∂zl

û
)
(z) ∈ V :

∫

KR

(
α̂(z, x̂)∇̂∂zl

û(z, x̂) · ∇̂v̂(x̂) − κ̂2(z, x̂)∂zl
û(z, x̂)v̂(x̂)

)
dx̂

−
∫

∂KR

DtN(∂zl
û(z, x̂))v̂(x̂) dS =L0(z, v̂) for all v̂ ∈ V and all z ∈ Oρ .(5.23)

The right-hand side L0 is given by

L0(z, v̂) =
∫

KR

− ∂α̂

∂zl

(z, x̂)∇̂û(z, x̂) · ∇̂v̂(x̂) dx̂ + ∂κ̂2

∂zl

(z, x̂)û(z, x̂)v̂(x̂) dx̂.

In particular, this result holds when using the domain mapping defined in (3.2) with
the mollifier fulfilling Assumption 3.3.
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Proof Lemma 5.16 shows that the bilinear form in (4.2), with y ∈ PJ , J ∈ N,
replaced by z ∈ Oρ , is holomorphic in Oρ . The right-hand side in (4.2) does not
depend on the stochastic parameter, so in this particular case we do not have to show
its analyticity. Then, the result follows from Theorem 4.1 in [10].

Remark 5.18 The use of Theorem 4.1 in [10] in the above proof, makes the result of
Lemma 5.17 easily generalizable to any elliptic PDE with analytic data.

We summarize the results obtained so far in the following proposition:

Proposition 5.19 Let the parameter-dependent radius r(y) characterizing a star-
shaped stochastic interface be given by the expansion (2.6) and let Assumptions 2.2,
2.3, 2.4 and 4.4 hold. If the map �(y) : KR → KR satisfies Assumption 5.11,
then the solution û to (4.2) is holomorphic in every Oρ as defined in (5.10), with

ρ a (b, ε)∗-admissible sequence of polyradii and 0 < ε < r−
2 . In particular, if the

mapping is given by (3.2) with the mollifier fulfilling Assumption 3.3, then the solu-
tion û to (4.2) is holomorphic in every Oρ with ρ a (b, ε)∗-admissible sequence and
0 < ε < min

{
cχ , r−

2

}
.

Propositions 5.13 and 5.19 together give finally:

Theorem 5.20 Let Assumptions 2.2, 2.3, 2.4 and 4.4 be satisfied. Then the (b, p, ε)∗-
holomorphy assumption is fulfilled for the domain mapping (3.2) with mollifier
fulfilling Assumption 3.3, and the convergence rates given by Theorems 5.3 and 5.4
are achieved with s = 1

p
− 2.

For a generic domain mapping, the (b, p, ε)∗-holomorphy assumption is satisfied
and the convergence rates of Theorems 5.3 and 5.4 are achieved with s = 1

p
− 2 if

the map fulfills Assumption 5.11.

Remark 5.21 It is clear from our treatment that the above result can be easily
extended when for the mapping (3.2) we use the mollifier (3.3).

6 Spatial regularity and convergence of the finite element solution

We first establish the relationship between the order of summability p of the coeffi-
cient sequences C = (cj )j≥1, S = (sj )j≥1 in (2.6) and the regularity of the solution
to (4.2) for a single parameter realization (Section 6.1). This information is then used
to get the order of convergence of the finite element solution and couple it to the
convergence results for sparse interpolation and quadrature in the parameter space,
so that in the end we get convergence estimates for the fully discretized solution.
The latter estimates are first obtained in the simpler case that the same finite ele-
ment discretization is used for all realizations (Section 6.2.1). Then, a more refined
estimate is obtained for the case that the spatial discretization is different for each
interpolation / quadrature point (Section 6.2.2), although these results are restricted
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to nested sequences of points in the parameter space. Finally (Section 6.3), the above
convergence results are extended for linear output functionals as Q.o.I.s.

6.1 Spatial regularity of the parametric solution

In Lemma 2.5 we have shown how the summability of the coefficient sequences
C = (cj )j≥1 and S = (sj )j≥1 relates to the smoothness of the radius r = r(y, ϕ)

given by (2.6), for every J ∈ N and every y ∈ PJ . In Lemma 3.4, we have then seen
that the smoothness of the radius turns into smoothness of the mapping (3.2) for the
particle in free space case.

Starting from these results, in this section we state how the summability of the
coefficient sequences C = (cj )j≥1 and S = (sj )j≥1 turns in the end into spatial
smoothness of the solution to (4.2) for every parameter realization.

It is important to highlight that, in view of the convergence estimates, we need
norm bounds which are independent of the truncation dimension J ∈ N in the radius
expansion.

The theorem implying smoothness of the solution to a PDE from the smoothness
of the coefficients requires the latter to have essentially bounded derivatives. It turns
out that the proper spaces in which to state regularity are the Sobolev spaces Wk,∞
of functions with essentially bounded weak derivatives up to the k-th order. However,
since we do not want to distinguish between weak and strong measurability of the
coefficient maps ω �→ α̂(ω), ω �→ κ̂(ω), and, thus, of the solution map ω �→ û(ω),
we prefer to work in separable Banach spaces, stating the regularity results in the
spaces of piecewise-Ck functions.

From Lemma 2.5 and Lemma 3.4 it follows immediately:

Lemma 6.1 Let Assumption 2.4 hold and let the map � : PJ × KR → PJ × KR

satisfy Assumption 3.1.
Then, for every r(y) given by (2.6), every J ∈ N and every y ∈ PJ , the coefficients

α̂ and κ̂2 in (4.2) satisfy

‖α̂(y)‖
Ck−1
p̂w (KR)

≤ C1(C,S), ‖κ̂2(y)‖
Ck−1
p̂w (KR)

≤ C2(C,S),

with ‖·‖
Ck−1
p̂w (KR)

:= ‖·‖
Ck−1(D̂1∩KR)∪Ck−1(D̂2)

, under the additional hypothesis that

the nominal radius r0 belongs to Ck
per ([0, 2π)). The constants C1 and C2 depend

on the regularity parameter k and on the coefficient sequences C = (cj )j≥1, S =
(sj )j≥1, but they are independent of the truncation dimension J ∈ N and of y ∈ PJ .
The regularity parameter k is the same as in Lemma 2.5:

k =
{ ⌊

1
p

− 1
⌋

if 1
p

− 1 is not an integer,
1
p

− 2 otherwise.

Corollary 6.2 Under Assumption 2.4, the result of Lemma 6.1 holds for the mapping
3.2 if the mollifier fulfills Assumption 3.3.
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To state the space regularity of the solution, we proceed in three steps: local inte-
rior regularity, local regularity at the interface �̂ and at the boundary ∂KR , and global
regularity. Here we confine ourselves to the Helmholtz transmission problem, refer-
ring to [42, Sect. 6.1] for a more general treatment, valid for any strongly elliptic
equation.

The local interior regularity is a consequence of Theorem 8.10 in [25]:

Theorem 6.3 Let Assumptions 2.3, 2.4 hold, let the nominal radius r0 belong to
Ck

per ([0, 2π)), and let the map � : PJ ×KR → PJ ×KR fulfill Assumption 3.1, with

k as in Lemma 2.5. If k ≥ 2, then, for any subdomain D′ such that D′ ⊂ KR ∩ D̂1 or
D′ ⊂ D̂2, the solution û(y) to (4.2) belongs to Hk(D′) and satisfies

‖û(y)‖Hk(D′) ≤ C‖û(y)‖H 1(KR), (6.1)

for C = C(a−,K, d ′, k, |D̂1 ∩ KR|, |D̂2|), where |D̂1 ∩ KR| and |D̂2| denote the

sizes of the two subdomains, d ′ = min
{
dist(D′, ∂KR), dist(D′, �̂)

}
and

K = max

{

sup
y∈PJ ,J∈N

‖α̂(y)‖
Ck−1
p̂w (KR)

, sup
y∈PJ ,J∈N

‖κ̂2(y)‖
Ck−2
p̂w (KR)

}

.

The symbol a− denotes the uniform coercivity constant as in Lemma 4.5 (a), depend-
ing on the lower and upper singular value bounds σmin, σmax for D�−1(y) as from

Lemma 3.2. In (6.1) we have denoted Ck−1
p̂w (KR) = Ck−1

(
KR ∩ D̂1

)
∪ Ck−1

(
D̂2

)

and similarly for Ck−2
p̂w (KR).

Furthermore, if Assumption 4.4 holds, then we have a J - and y-independent
bound:

‖û(y)‖Hk(D′) ≤ C̃

(

‖ui‖
H

1
2 (∂KR)

+
∥∥∥∥

∂ui

∂nR

∥∥∥∥
H

− 1
2 (∂KR)

)

, (6.2)

with C̃ = C̃(R, a−,K, d ′, k, |D̂1 ∩ KR|, |D̂2|).

Proof One can verify that, in Theorem 8.10 in [25], if the lower bound on the coer-
civity constant and the upper bounds on the PDE coefficients and right-hand side are
independent of J ∈ N and y ∈ PJ , then the upper bound on ‖û(y)‖Hk(D′) is also
uniform in J ∈ N and y ∈ PJ . In the case of equation (4.2), the lower bound on
the coercivity constant is given by Lemma 4.5 (a), the upper bounds on the coeffi-
cients are ensured by Lemma 6.1, and the right-hand side is independent of J ∈ N

and y ∈ PJ .
If Assumption 4.4 holds, then we can use (4.6) to bound ‖û(y)‖H 1(KR), obtaining

(6.2).

The local regularity at the interface �̂ and at ∂KR follows from Theorem 4.20 in
[36]:

Theorem 6.4 Let Assumptions 2.3 and 2.4 hold, let the nominal radius r0 belong to
Ck

per ([0, 2π)) and the map � : PJ × KR → PJ × KR fulfill Assumption 3.1, with k
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as in Lemma 2.5. Moreover, let the interfaces �̂ and ∂KR be Ck−1,1. If k as in Lemma
2.5 is such that k ≥ 2, then:

• for any subdomain D′
� KR intersecting �̂ (but not ∂KR), the solution û(y) to

(4.2) belongs to Hk(D′ ∩ D̂1) ∪ Hk(D′ ∩ D̂2) and satisfies

‖û(y)‖
Hk(D′∩D̂1)∪Hk(D′∩D̂2)

≤ C‖û(y)‖
H 1(KR∩D̂1)∪H 1(D̂2)

, (6.3)

where C = C(a−,K, d ′, k, |KR|) with d ′ = dist(D′, ∂KR) and the other
constants defined as in Theorem 6.3;

• for any open set D′ intersecting ∂KR (but not �̂), the solution û(y) to (4.2)
satisfies

‖û(y)‖
Hk(D̂′∩KR)

≤ C‖û(y)‖
H 1(D̂′∩KR)

+C

(

‖ui‖
H

k− 1
2 (∂KR)

+
∥∥∥∥

∂ui

∂nR

∥∥∥∥
H

k− 3
2 (∂KR)

)

,

where C = C(a−,K, d ′, k, |KR|) with d ′ = dist(D′, �̂) and the other constants
defined as in Theorem 6.3.

Furthermore, if Assumption 4.4 holds, then in both cases we have bounds on the
norms which are independent of the truncation dimension J ∈ N and of y ∈ PJ :

‖û(y)‖
Hk(D′∩D̂1)

+ ‖û(y)‖
Hk(D′∩D̂2)

≤ C̃1

(

‖ui‖
H

1
2 (∂KR)

+
∥∥∥∥

∂ui

∂nR

∥∥∥∥
H

− 1
2 (∂KR)

)

,

‖û(y)‖Hk(D′∩KR) ≤ C̃2

(

‖ui‖
H

k− 1
2 (∂KR)

+
∥∥∥∥

∂ui

∂nR

∥∥∥∥
H

k− 3
2 (∂KR)

)

.

Proof The proof is analogous to the one for Theorem 6.3, and we refer to [42, Sect.
6.1] for details.

Considering Theorems 6.3 and 6.4 together, we get the following global result
(where we consider ∂KR to be a circle and thus C∞):

Theorem 6.5 Let Assumptions 2.3 and 2.4 hold and let the nominal radius r0 belong
to Ck

per ([0, 2π)), with k as in Lemma 2.5. Let the map � be given by (3.2) with the

mollifier fulfilling Assumption 3.3. Moreover, let the interface �̂ be Ck−1,1. If k as in
Lemma 2.5 is such that k ≥ 2, then û belongs to Hk(KR ∩ D̂1) ∪ Hk(D̂2) and

‖û(y)‖
Hk(KR∩D̂1)

+ ‖û(y)‖
Hk(D̂2)

≤ C‖û(y)‖H 1(KR),

with C = C(a−,K, k, |KR|) independent of J ∈ N and of y ∈ PJ . In particular, if
Assumption 4.4 holds, then we have the J - and y-independent bound

‖û(y)‖
Hk(KR∩D̂1)

+ ‖û(y)‖
Hk(D̂2)

≤ C̃

(

‖ui‖
H

k− 1
2 (∂KR)

+
∥∥∥∥

∂ui

∂nR

∥∥∥∥
H

k− 3
2 (∂KR)

)

,

(6.4)
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with C̃ = C̃(R, a−,K, k, |KR|), and a−, K defined as in Corollary 6.3.

Remark 6.6 As it is evident from (2.3), we have that k → ∞ as p → 0.

Remark 6.7 Theorem 6.5 holds not only for the map (3.2), but for any map satisfying
Assumption 3.1 with k as in Lemma 2.5.

Remark 6.8 In the case of the mapping (3.2) with the mollifier given by (3.3), we
treat ∂D̂in

2 as an additional interface with homogeneous transmission conditions,
across which the coefficients are discontinuous because of the jump of the Jacobian
matrix of �. Proceeding as before, we obtain

‖û(y)‖
Hk(KR∩D̂1)

+‖û(y)‖
Hk(D̂2\D̂in

2 )
+‖û(y)‖

Hk(D̂in
2 )

≤ C̃

(

‖ui‖
H

k− 1
2 (∂KR)

+
∥∥∥∥

∂ui

∂nR

∥∥∥∥
H

k− 3
2 (∂KR)

)

,

(6.5)

with constants defined as in (6.4).

6.2 Convergence of the fully discrete solution

The results stated in Theorems 5.3 and 5.4 assume that the solution û = û(y) to (4.2)
at the interpolation/quadrature points can be computed exactly, which is usually not
the case in applications. Here we study instead the convergence of the sparse interpo-
lation/quadrature operators coupled to a finite element discretization to compute the
realizations. We consider a simplicial, quasi-uniform mesh on KR , and assume that
at ∂KR the exact DtN map is available. Since we use a conforming discretization,
for every realization existence, uniqueness and stability of the discrete solution are
inherited from the continuous case.

Throughout this subsection, k ∈ N denotes the spatial regularity of the exact
solution as from Theorem 6.5.

6.2.1 Convergence estimate for fixed finite element discretization

We first observe that:

Lemma 6.9 Let Assumptions 4.4 and 5.11 hold, the former with τ < T and T as in
Lemma 4.5. Then the discrete finite element solution ûh(y) to (4.2) admits an analytic
extension ûh(z) to the complex domain, with the same domain of analyticity Oρ as
the exact solution û(y) (Oρ as defined in Eq. (5.10), with ρ a (b, ε)∗-admissible
sequence).

Proof Since the Galerkin solution still satisfies the variational formulation (4.2) on
the discrete, finite-dimensional space, Vh ⊂ V , the proof is the same as for Lemma
5.17.

1501 



R. Hiptmair et al.

The convergence estimate for the fully discrete solution follows then simply
applying the triangle inequality:

Theorem 6.10 Let I�ûh and Q�ûh denote the solutions obtained respectively from
sparse interpolation and quadrature of the discrete solution ûh to (4.2). Assume that
the univariate interpolation and quadrature operators fulfill Assumption 5.1. More-
over, let Assumptions 4.4 and 5.11 be fulfilled. Assume that the same finite element
discretization is used for all parameter realizations yν , ν ∈ �, with polynomial order
q and Ndof degrees of freedom, and that a q-th order boundary approximation is
used for the interface �̂ and ∂KR .

Then there exists a downward closed set � of cardinality at most N such that

‖û − I�ûh‖L∞(PJ ,V ) ≤ CN
− min(k−1,q)

2
dof + C1N

−s , s = 1
p

− 2, (6.6)

‖I(û) − Q�ûh‖V ≤ CN
− min(k−1,q)

2
dof + C2N

−s , s = 1
p

− 2. (6.7)

with k ≥ 1 and s, C,C1, C2 > 0 independent ofN ,Ndof , of the truncation dimension
J ∈ N and of y ∈ PJ .

Proof We apply the triangle inequality:

‖û(y) − I�ûh(y)‖V ≤ ‖û(y) − ûh(y)‖V + ‖ûh(y) − I�ûh(y)‖V . (6.8)

The first term is bounded using classical finite element results (see e.g. [34], where
the interface problem is considered) together with (6.4) in Theorem 6.5, while the
second term is bounded using Lemma 6.9 and Theorem 5.3. The result for the quadra-
ture case is obtained in an analogous way using Theorem 5.4 to bound the second
term.

6.2.2 Convergence estimate for parameter-adaptive discretization

The idea is to distinguish the finite element error contribution for each difference
operator �I

ν as defined in (5.2) and (5.5) for the interpolation case, or �
Q
ν as defined

in (5.2) and (5.6) for the quadrature case. The approach is the same as the one
followed in [45] for the Legendre coefficients.

In the following theorem, we denote by H l(y) the multivariate hierarchical poly-
nomial associated with the node yl in the case of nested sequences of interpolation

points (see [9] for details). Also,
{
yl ∈ �I

ν

}
(resp.

{
yl ∈ �

Q
ν

}
) indicates the set of

new interpolation (resp. quadrature) points introduced by the difference operator �I
ν

(resp. �
Q
ν ), wl denotes the quadrature weight associated with yl and LRν

is the
Lebesgue constant of the interpolation operator IRν

on Rν := {μ ∈ F : μ < ν}.

Theorem 6.11 Let I�ûh,� and Q�ûh,� denote the solutions obtained respectively
from sparse interpolation and quadrature of the discrete solution ûh,� to (4.2).
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Assume that the univariate interpolation and quadrature operators fulfill Assump-
tion 5.1. Let Assumptions 4.4 and 5.11 be fulfilled. Let us denote by ql and Ndof,l

the polynomial order and number of degrees of freedom used to compute the solution
ûh,�(yl) at the interpolation/quadrature point yl . Furthermore, let us suppose that,
for each realization yl , a ql-th order boundary approximation is used for the interface
�̂ and ∂KR .

Then there exists a downward closed set � of cardinality at most N such that

‖û − I�ûh,�‖L∞(PJ ,V ) ≤ ∑
ν∈�‖�I

ν(û − ûh,�)‖L∞(PJ ,V ) + C1N
−s , s = 1

p
− 2, (6.9)

‖I(û) − Q�ûh,�‖V ≤ ∑
ν∈�‖�Q

ν (û − ûh,�)‖V + C2N
−s , s = 1

p
− 2, (6.10)

with s, C1, C2 > 0 independent of N , Ndof , of J ∈ N and of y ∈ PJ .
If the sequences (ζi)i≥0 of interpolation/quadrature points are nested, then

the addends in the first sum satisfy, for the interpolation and quadrature case
respectively:

‖�I
ν(û − ûh,�)‖L∞(PJ ,V ) ≤ (1 + LRν

)C(k)

·
∑

yl∈�I
ν

‖H l (·)‖L∞(PJ )N
− min(k−1,ql )

2
dof,l ‖û(yl )‖Hk(KR∩D̂1)∪Hk(D̂2)

(6.11)

‖�Q
ν (û − ûh,�)‖V ≤ C(k)

∑

yl∈�
Q
ν

|wl |N− min(k−1,ql )

2
dof,l ‖û(yl )‖Hk(KR∩D̂1)∪Hk(D̂2)

, (6.12)

with C independent of N , Ndof , of J ∈ N and of y ∈ PJ . The Lebesgue constant is
bounded by LRν

≤ (�Rν)
θ+1.

We recall that ‖H l(·)‖L∞(PJ ) ≥ 1 for every sequence of interpolation points and
‖H l(·)‖L∞(PJ ) = 1 for every l in the case of Leja points on the real interval [−1, 1]
(see e.g. [11] for their definition).

Proof We first consider the interpolation case. Simply applying the triangle inequality:

‖û − I�ûh,�‖L∞(PJ ,V ) ≤ ‖û − I�û‖L∞(PJ ,V ) + ‖I�û − I�ûh,�‖L∞(PJ ,V )

≤ ‖û − I�û‖L∞(PJ ,V ) +
∑

ν∈�

‖�I
νû − �I

νûh,�‖L∞(PJ ,V );

thanks to Lemma 5.17, Theorem 5.3 holds and thus we get (6.9).
If the sequence of interpolation points is nested, then, according to [9, Formula

(2.25)], one can write, for a generic element g ∈ L∞(PJ , V ),

�I
νg(y) =

∑

yl∈�I
ν

(
g(yl) − IRν

g(yl)
)
H l (y)
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(with IRν
the interpolation operator on Rν). Thus, for each ν ∈ �:

‖�I
νû − �I

νûh,�‖L∞(PJ ,V )

≤
∑

yl∈�I
ν

‖û(yl ) − ûh,�(yl) − IRν
(û(yl ) − ûh,�(yl))‖V ‖H l (·)‖L∞(PJ )

≤
∑

yl∈�I
ν

(1 + LRν
)‖û(yl ) − ûh,�(yl)‖V ‖H l(·)‖L∞(PJ )

≤ (1 + LRν
)C(k)

∑

yl∈�I
ν

N
− min(k−1,ql )

2
dof,l ‖û(yl)‖Hk(KR∩D̂1)∪Hk(D̂2)

‖H l(·)‖L∞(PJ ),

obtaining (6.11). Under the hypothesis on the Lebesgue constant for the univariate
operator, we have that LRν

≤ (�Rν)
θ+1 and thus it grows with �Rν .

The result for the quadrature operator follows the same lines. The difference is,
of course, in the definition of the difference operators for nested sequences: for a
continuous g ∈ L1(PJ , V ), �

Q
ν g = ∑

yl∈�
Q
ν

wlg(yl), and thus

‖�Q
ν û − �Q

ν ûh,�‖V ≤ C(k)
∑

yl∈�
Q
ν

|wl |N− min(k−1,ql )

2
dof,l ‖û(yl )‖Hk(KR∩D̂1)∪Hk(D̂2)

.

We remark that the smoothness s = 1
p

− 2 in the parameter space and the spatial
smoothness k of the exact solution are not independent, owing to Theorem 6.5. This
is formalized in the following important corollary, obtained by combining Theorem
6.5 with Theorem 6.10 or Theorem 6.11:

Corollary 6.12 Let I�ûh, Q�ûh I�ûh,�, Q�ûh,� as in Theorem 6.10 and 6.11
respectively. Let Assumptions 2.3 and 4.4 be fulfilled, and � given by (3.2) with the
mollifier fulfilling Assumption 3.3.

Then if the coefficient sequences C = (
cj

)
j≥1, S = (

sj
)
j≥1 satisfy Assumption

2.4 and the nominal radius r0 belongs to Ck
per ([0, 2π)), with k as below, then the

estimates (6.6)–(6.7) and (6.11)–(6.12) hold with

k =
{ ⌊

1
p

− 1
⌋

if 1
p

− 1 is not an integer,
1
p

− 2 otherwise.
(6.13)

Remark 6.13 When using the mapping (3.2) with mollifier (3.3), Corollary 6.12
holds if we use a high order boundary approximation also for ∂D̂in

2 .

Remark 6.14 In this paper, we have considered a given truncated expansion of the
radius as starting point, cf. (2.1), and focused on sparse quadrature and interpolation
errors and their robustness with respect to the parameter J . If the expansion (2.1)
results from the truncation of an infinite sum, then an additional source of error has
to be considered in (6.6)–(6.7) and (6.9)–(6.10) (when measuring the convergence
with respect to the solution to (4.2) where the radius expansion is not truncated).
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More precisely, a truncation error of CJ
−
(

1
p

−2
)

has to be added to right-hand sides
of (6.6)–(6.7) and (6.9)–(6.10), where C = C(p, C,S, R, a−, |KR|) is independent
of J ∈ N, see [18, Thm. 4.1] and [21, Sect. 3.2].

6.3 Convergence of linear output functionals

We extend here the results of the previous subsection to the case that we want to
interpolate or compute moments of a linear output functional F = F(y, u). Let
F̂ = F̂ (y, û) denote the functional F after change of coordinates to the nominal
space.

Throughout this subsection, k ∈ N denotes the spatial regularity of the exact
solution as from Theorem 6.5.

If the functional depended only on the solution û, then, thanks to linearity, the
analyticity of F̂ would follow immediately from the analyticity of the solution and of
the map �, with the same polyradii for the polyellipses. However, in general this is
not the case, and, to make sure that the (b, p, ε)∗-holomorphy assumption is satisfied,
we require:

Assumption 6.15 The linear output functional F̂ = F̂ (y, û) admits an analytic
extension to the complex plane, with the same domain of analyticity as the solution û.

In particular, this assumption is satisfied when

F̂ (y, û) =
∫

Â

L1(û(y)) dx̂, (6.14)

where Â ⊆ KR is a nonzero measure set and L1 is a first order linear differential
operator of the form L1(v) = â1(y, x̂) · ∇̂v̂ + b̂1(y, x̂)v̂, with coefficients which are
measurable with respect to x̂ and admit a holomorphic extension, with respect to the
high-dimensional parameter, to the same domain of analyticity as û.

We also require that the linear output functional is stable in the following sense:

Assumption 6.16 The linear output functional F̂ belongs to (Hm(KR))∗ for an
integer m ≤ 1, i.e. there exist C > 0 such that

∣∣∣F̂ (y, v̂)

∣∣∣ ≤ C‖v̂‖Hm(KR), for all v̂ ∈ Hm(KR), (6.15)

with C independent of the truncation dimension J ∈ N and of y ∈ PJ (but possibly
on the radius R of KR).

This assumption is fulfilled, at least for m = 1, by functionals of the form (6.14).
We denote by F̂h := F̂ (y, ûh) and F̂h,� := F̂ (y, ûh,�) the value of F̂ when eval-

uated on the discrete solutions ûh and ûh,�, respectively (nonadaptive and adaptive
case).

For the case of uniform finite element order, if F̂ = F̂ (û) satisfies Assumption
6.15, also its discrete version F̂h does, thanks to Lemma 6.9, and we have:
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Theorem 6.17 Let F̂ be a linear output functional defined on the nominal con-
figuration and satisfying Assumption 6.15. We denote by I�F̂h and Q�F̂h the
solutions obtained respectively from sparse interpolation and sparse quadrature of
F̂h = F̂ (y, ûh(y)). Let the assumptions of Theorem 6.10 be satisfied.

Then there exists a downward closed set � of cardinality at most N such that the
following estimates hold:

‖F̂ − I�F̂h‖L∞(PJ ,V ) ≤ CN−t
dof + C1N

−s , s = 1
p

− 2, (6.16)

‖I(F̂ ) − Q�F̂h‖V ≤ CN−t
dof + C2N

−s , s = 1
p

− 2, (6.17)

with s, C,C1, C2 > 0 independent of N , Ndof , of J ∈ N and of y ∈ PJ .

If F̂ fulfills Assumption 6.16, then t = min(k−1,q)+1
2 for m ≤ 0, t = min(k−1,q)

2 for
m = 1, k ≥ 1.

For the parameter-adaptive case:

Theorem 6.18 Let F̂ be a linear output functional defined on the nominal con-
figuration and satisfying Assumption 6.15. We denote by I�F̂h,� and Q�F̂h,� the
solutions obtained respectively from sparse interpolation and sparse quadrature of
F̂h,� = F̂ (y, ûh,�(y)). Let the assumptions of Theorem 6.11 be satisfied.

Then there exists a downward closed set � of cardinality at most N such that

‖F̂ − I�F̂h,�‖L∞(PJ ,V ) ≤
∑

ν∈�

‖�I
ν(F̂ − F̂h,�)‖L∞(PJ ,V ) + C1N

−s , s = 1

p
− 2, (6.18)

‖I(F̂ ) − Q�F̂h,�‖V ≤
∑

ν∈�

‖�Q
ν (F̂ − F̂h,�)‖V + C2N

−s , s = 1

p
− 2, (6.19)

with s, C1, C2 > 0 independent of N , Ndof , of J ∈ N and of y ∈ PJ .
If the sequences (ζi)i≥0 of interpolation/quadrature points are nested, then

the addends in the first sum satisfy, for the interpolation and quadrature case
respectively:

‖�I
ν(F − F̂h,�)‖L∞(PJ ,V ) ≤ (1 + LRν

) C(k)

·
∑

yl∈�I
ν

‖H l (·)‖L∞(PJ )N
−t
dof,l‖û(yl )‖Hk(KR∩D̂1)∪Hk(D̂2)

, (6.20)

‖�Q
ν (F − F̂h,�)‖V ≤ C(k)

∑

yl∈�
Q
ν

|wl |N−t
dof,l‖û(yl )‖Hk(KR∩D̂1)∪Hk(D̂2)

, (6.21)

with C > 0 independent of N , Ndof , of J ∈ N and of y ∈ PJ , and the Lebesgue
constant bounded as in Theorem 6.11.

If F̂ fulfills Assumption 6.16, then t = min(k−1,q)+1
2 for m ≤ 0, t = min(k−1,q)

2 for
m = 1, k ≥ 1.
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The proofs for the two theorems are analogous to the proofs of Theorem 6.10 and
6.11, respectively. The gain of one order of convergence in (6.16) and (6.20) is a
standard result of finite element analysis using a duality argument (see e.g. [5]).

Remark 6.19 As noted in Remark 6.14 for the solution û, in the case that (2.1) is
obtained by the truncation of an infinite sum, then, in order to take into account
the truncation error, an additional term on the right-hand sides of (6.16)–(6.17) and
(6.18)–(6.19) should be added. Namely, the linearity of the output functional ensures

that the truncation error is bounded by C̃J
−
(

1
p

−2
)

, where, denoting by C the constant
in (6.15), C̃ = C̃(p, C,S, R, a−, |KR|, C) is independent of J ∈ N [18, Sect. 2.3].

7 Numerical experiments

The geometry is as shown in Fig. 1, with a nominal, angle-independent radius of
size r0 = 10nm. We consider the transverse electric mode (TE), i.e. the solution u

represents the component of the electric field which is perpendicular to the plane in
which the equations are solved (plane of incidence); in this case α2 = 1 in (1.2). The
incident wave ui is coming from the left with an incidence angle 0 with respect to the
horizontal axis (d = (1, 0)), and frequency f = 104THz. The wavenumber in free
space is κ0 = 2πf

c0
, with c0 = 3 · 108m/s the light speed. The scatterer is a dielectric

with relative permittivity ε2 = 2 and the surrounding medium is air (ε1 = 1), so that
κ1 = κ0 and κ2 = κ0

√
ε2.

To compute interpolants and means of the quantities of interest, we use the sparse
grid algorithm described in Section 5.2 (Algorithm 1) with ϑ = 1.

As domain mapping, we use (3.2) with the mollifier (3.3).
For each experiment, we compare two choices for the univariate sequence(

ζ k
j

)nk

j=0
of interpolation/quadrature points:

• Clenshaw-Curtis (CC):

ζ k
0 = 0 if nk = 1

ζ k
j = − cos

(
πj

nk − 1

)
, j = 0, . . . , nk − 1, if nk > 1,

with n0 = 1 and nk = 2k + 1, for k ≥ 1;
• R-Leja sequence (RL): projection on [−1, 1] of a Leja sequence for the complex

unit disk initiated at 1:

ζ k
0 = 0, ζ k

1 = 1, ζ k
2 = −1, if j = 0, 1, 2,

ζ k
i = R(ẑ), with ẑ = argmax|ζ |=1

j−1∏

l=1

|ζ − ζ k
l |, j = 3, . . . , nk, if j odd,

ζ k
i = −ζ k

j−1, j = 3, . . . , nk, if j even,

with nk = 2k + 1, for k ≥ 0, see [6].
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The Clenshaw-Curtis and R-Leja points satisfy Assumption 5.1.
The finite element solutions are computed using the C++ NGSolve library,2 pro-

viding high order elements for any shape; NGSolve has been linked to the MKL
version of the PARDISO library to compute the solution of the resulting algebraic
system.

To truncate the domain and approximate the DtN map, we consider a circular
Perfectly Matched Layer (PML, see [3, 15]) around the boundary ∂KR; for every
y ∈ PJ , the mapping �(y) is prolongated as the identity in the PML. In [33] it is
shown that, if the fictitious absorption coefficient in the PML is properly chosen,
then the PML can be used in the finite element framework to truncate the domain for
Helmholtz equation in an almost reflectionless manner for all frequencies. We use a
PML that starts at radius R = 80nm and ends at radius R′ = 110nm, with absorption
coefficient (or damping parameter) α = 0.5 [15].

As Q.o.I.s, we consider the interpolation and quadrature of the real part of the
solution to (4.2) and of the modulus of the far field pattern (defined below). In each
of these four cases, we consider the expansion of the stochastic radius (2.1) for three
variations of the sparsity parameter: sj = cj = 0.1r0

j
1
p

, j ≥ 1, for 1
p

= 2, 3, 4.

Moreover, for the interpolation and quadrature of the real part of the solution, for
each value of the summability exponent p, we compare the cases 2J = 16, 2J = 32
and 2J = 64, with 2J = d the dimension of the parameter space. The maximal
shape variations with respect to r0 are of the order of 22% for 1

p
= 2, 17% for 1

p
= 3

and 15% for 1
p

= 4 (for all the three truncations of the radius expansion). For the
interpolation and quadrature of the far field pattern, instead, we only consider the
truncation 2J = 16, because of the higher computational effort needed to compute
realizations for this Q.o.I..

For quadrature, the error ‖I(g) − Q�(g)‖V , where g is the Q.o.I., is computed
considering as I(g) the reference solution obtained with the high order quasi-
Monte Carlo algorithm described in [20] and [22], using 216 quadrature points and
C = 0.1 as bound on the Walsh coefficient. For the interpolation error supy∈PJ

‖g −
I�(g)(y)‖V , the supremum is approximated calculating, at each of the 216 points
used by the high order quasi-Monte Carlo algorithm in the quadrature case, the dif-
ference between the realization of the Q.o.I and the value of the interpolant, and then
taking the maximum error among the 216 realizations. We will provide the explicit
expression of the error (in particular defining the space V ) for each of the cases con-
sidered. The reference solutions are computed on the same finite element space used
for the Smolyak algorithm. The quadrature error is calculated for every iteration of
the algorithm, while the interpolation error is calculated every 10 iterations, starting
from the last one and going backward until the last iteration with number bigger or
equal to 10.

2https://sourceforge.net/projects/ngsolve/
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7.1 Test cases

7.1.1 Interpolation of the real part of the solution on the nominal configuration

To compute the finite element solution given a parameter realization, we have used
globally continuous, piecewise 2-nd order polynomial ansatz functions on an unstruc-
tured, quasi-uniform triangulation, leading to a total of 37309 degrees of freedom
(including the PML), and using a 2-nd order polynomial boundary approximation.
The Smolyak interpolation has been applied to the part of the solution that is not
inside the PML, corresponding to an array carrying 28415 degrees of freedom.

The error considered is supy∈PJ
‖Re ûh(y) − I�(Re ûh)(y)‖H 1(KR). Figure 4

shows the forementioned interpolation error versus the cardinality of the index set
� and versus the number of PDE solves. In Figure 5, instead, we compare, for each
variation of the sparsity parameter, the performance of the algorithm for the three
different dimensions of the parameter space considered.

7.1.2 Interpolation of the modulus of the far field pattern

Given a radiating solution us = u−ui to the Helmholtz equation, the far field pattern
is a function defined on the unit circle S1 describing the asymptotic behavior of us(x)

for |x| → ∞.
The far field mapping F : H 1

loc(R
2) → C∞(S1) associates to a scattered wave us

its far field pattern. It is given by [37, Formulae (3) and (5)]

F(us)(ξ̂) = CF

∫

�

{

us(x)
∂G(ξ̂ , x)

∂n(x)
− ∂us

∂n
(x)G(ξ̂ , x)

}

dS(x), ξ̂ ∈ S1, (7.1)

where � is a simple closed path around the scatterer and n its outward unit nor-
mal vector field. The function G = G(ξ̂ , x) describes the behavior of the Green’s
function when the modulus of the second argument tends to infinity (we refer to

[16, Sect. 2.2] for details); for a particle in free space, G(ξ̂ , x) = 1
4π

e−iκ1 ξ̂ ·x (with κ1

the wavenumber in free space). CF is a normalizing constant, set to CF =
√

2π
κ1

ei π
4 .

A simple application of Green’s formula shows that the far field pattern is inde-
pendent of the path � chosen to enclose the scatterer. Thus, we can consider two
circles �1 and �2 around the particle, with �1 contained in �2, and the annulus A

enclosed between them, and choose a cut-off function ψ ∈ C2(A) such that

ψ |�2 = 1, ψ |�1 = 0, ∇ψ |�1 = ∇ψ |�2 = 0. (7.2)
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Fig. 4 Comparison of the errors for the interpolated solution with respect to the cardinality of the index
set � (top) and to the number of PDE solves (bottom), using Clenshaw-Curtis and R-Leja points for 16
(left), 32 (middle) and 64 (right) dimensions. Maximal shape variations with respect to r0 of about 22%
for 1

p
= 2, 17% for 1

p
= 3 and 15% for 1

p
= 4

Applying Green’s formula, it is easy to see [30] that (7.1) is equivalent to the modified
far field mapping

F ∗(us)(ξ̂) = CF

∫

A

∇ψ(x) ·
(
us(x)∇G(ξ̂ , x) − ∇us(x)G(ξ̂ , x)

)
dx, ξ̂ ∈ S1.

(7.3)
The advantage of formula (7.3) with respect to (7.1) is that, for fixed ξ̂ ∈ S1, us �→
F ∗(us)(ξ̂) is a linear functional that is continuous on the energy space H 1(A).
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Fig. 5 Comparison of the errors for the interpolated solution with respect to the cardinality of the index
set � (top) and to the number of PDE solves (bottom), using Clenshaw-Curtis and R-Leja points for
variations of the sparsity parameter 1

p
= 2 (left), 3 (middle) and 4 (right). Maximal shape variations with

respect to r0 of about 22% for 1
p

= 2, 17% for 1
p

= 3 and 15% for 1
p

= 4

If we now apply the far field computation to the case when the scatterer has a
stochastic boundary, we can fix an annular integration region Â and a cut-off function
ψ̂ on the nominal domain D̂1, and (7.3) reads:

F̂ ∗(ûs(y))(ξ̂) = CF

∫

Â

D�(y)−�∇̂ψ̂(x̂) · ûs (x̂)D�(y)−�∇̂Ĝ(ξ̂ , x̂)detD�(y) dx̂

−
∫

Â

D�−�(y)∇̂ψ̂ · D�(y)−�∇̂ûs (x̂)Ĝ(ξ̂ , x̂)detD�(y) dx̂, ξ̂ ∈ S1,

(7.4)
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where �(y) is the mapping from the nominal configuration, as considered in the
previous sections, ûs(y, x̂) = û(y, x̂) − ui(�(y, x̂)) and Ĝ(ξ̂ , x̂) = G(ξ̂ , �(y, x̂)).
For each ξ̂ ∈ S1, the functional F̂ ∗(ξ̂) satisfies Assumption 6.15 because � and ûs

are analytic, and thus Theorems 6.17 and 6.18 hold. Moreover, if ψ̂ ∈ C2(Â) and if �

fulfills Assumption 3.1 with k ≥ 2, integration by parts shows that, for fixed ξ̂ ∈ S1,
the functional F̂ ∗(ξ̂) fulfills Assumption 6.16 with m = 0; this means that, for each
realization y, we can expect the gain in one order for the finite element convergence
as explained in the second part of Theorems 6.17 and 6.18.

When referring to the modulus of the farfield pattern, we mean its modulus as a
complex-valued function for each ξ̂ ∈ S1. For the interpolation of |F̂ ∗(ûs(y))(ξ̂)|,
ξ̂ ∈ S1, we consider the first 11 coefficients in its real Fourier expansion with respect
to the angle ϕ ∈ [0, 2π).

The annulus Â has been chosen with inner radius 40nm and outer radius 70nm.
For each realization, we have used a 2-nd order finite element space (with 2-nd
order boundary approximation), carrying in total 33277 degrees of freedom, 13719
of which in the annulus region.

The results for the 16-dimensional case are shown in Fig. 6. Denoting by ‖·‖2
the Euclidean norm, the error considered is supy∈PJ

‖f̂h(ûh)(y) − I�(f̂h(ûh))(y)‖2,

where f̂h denotes the vector of the approximated 11 Fourier coefficients.

7.1.3 Quadrature of the real part of the solution on the nominal configuration

For these experiments we have considered the quadrature on the nominal space. The
finite element space is the same as in the interpolation case.

The error considered is ‖I(Re ûh) − Q�(Re ûh)‖H 1(KR). Figure 7 shows the
quadrature error for different dimensions of the parameter space, versus the cardinal-
ity of the index set � and versus the number of PDE solves. Figure 8 shows instead,
for each variation of the sparsity parameter, the comparison of the performance of
the algorithm for dimension 16, 32 and 64 of the parameter space.

7.1.4 Quadrature of the modulus of the far field pattern

The finite element space is the same as in the interpolation case. The results are
depicted in Fig. 9, where the error reported is ‖I(f̂h(ûh))−Q�(f̂h(ûh))‖2 (with again
f the vector of real Fourier coefficients).

7.2 Comments on the results of the numerical experiments

The results reported in the previous subsection show, in all the cases considered, that
the empirical convergence rate is almost one order higher than the theoretical one,
namely s = 1

p
−1 in place of s = 1

p
−2. This result is not new for anisotropic sparse

interpolation and quadrature, as similar observations can be found in [43], which
addresses Bayesian inversion for elliptic boundary value problems with unknown
diffusion coefficient. Thus, it seems that the nonoptimality of the theory has not to
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Fig. 6 Comparison of the errors for the interpolated far field Fourier coefficients with respect to the
cardinality of the index set � (left) and the number of PDE solves (right), using Clenshaw-Curtis and R-
Leja points for 16 dimensions. Maximal shape variations with respect to r0 of 22% for 1

p
= 2, 17% for

1
p

= 3 and 15% for 1
p

= 4.

be found in our application to elliptic interface problems with random interface, but
rather in the general theory for anisotropic sparse interpolation and quadrature. New
results in this direction can be found in [50], see Remark 5.5.

Our numerical experiments confirm the dimension robustness of our algorithm,
since, in each case, we observe the rate of at least s = 1

p
−1 for all dimensions of the

parameter space. Of course, the error is larger when more dimensions are activated,
which is visible, in Figs. 5 and 8, in the right shift of the error plots when increasing
the dimension of the parameter space. This is expected for two reasons. First, the rates
stated in Section 5 are for a possibly infinite-dimensional parameter space. Yet, for a
fixed, finite parametric dimension a dimension-dependent exponential convergence
rate can be expected, which degenerates to the algebraic, dimension-independent rate
of Theorem 5.20 as the number of dimensions increases; such behavior is particu-
larly evident in the plot for 1

p
= 2 in Fig. 5. Second, the constants on the right-hand

sides of (5.11) and (5.12) are dimension-independent upper bounds. When using a

1513 



R. Hiptmair et al.

Fig. 7 Comparison of the errors for the quadrature of the real part of the solution with respect to the
cardinality of the index set � (top) and to the number of PDE solves (bottom), using Clenshaw-Curtis and
R-Leja points for 16 (left), 32 (middle) and 64 (right) dimensions. Maximal shape variations with respect
to r0 of about 22% for 1

p
= 2, 17% for 1

p
= 3 and 15% for 1

p
= 4

dimension truncation in the parameter space, then the actual constants may be signif-
icantly below their upper bounds and will increase parallel to the number of activated
dimensions. The behavior of the exponential rate and of the multiplying constant with
respect to the dimension of the parameter space is studied in detail in [26].

The plots also show that there is no significant difference in the performance of
Clenshaw-Curtis and R-Leja points, also when considering the convergence with
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Fig. 8 Comparison of the errors for the quadrature of the real part of the solution with respect to the
cardinality of the index set � (top) and to the number of PDE solves (bottom), using Clenshaw-Curtis and
R-Leja points for variations of the sparsity parameter 1

p
= 2 (left), 3 (middle) and 4 (right). Maximal

shape variations with respect to r0 of about 22% for 1
p

= 2, 17% for 1
p

= 3 and 15% for 1
p

= 4

respect to the number of PDE solves. This is due to the fact that, although in
the univariate case the number of Clenshaw-Curtis points increases exponentially
with the order of the quadrature rule while the number of R-Leja points increases
polynomially, when the index set contains indices associated with low order interpo-
lation/quadrature operators, the number of PDE solves required by the two families
of quadrature points do not differ significantly.
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Fig. 9 Comparison of the errors for the quadrature of the far field Fourier coefficients with respect to the
cardinality of the index set � (left) and the number of PDE solves (right), using Clenshaw-Curtis and R-
Leja points for 16 dimensions. Maximal shape variations with respect to r0 of 22% for 1

p
= 2, 17% for

1
p

= 3 and 15% for 1
p

= 4

8 Conclusions

We have presented a methodology for shape uncertainty quantification for the
Helmholtz transmission problem, generalizable to any elliptic partial differential
equation on a stochastic domain. The theory developed and the numerical experi-
ments show that, under some regularity assumptions on the stochastic interface, it is
possible to obtain high order, dimension independent convergence rates for the sparse
interpolation and quadrature. We have also developed a regularity theory with respect
to the spatial coordinates on the nominal domain, with norm bounds that are inde-
pendent of the dimension truncation in the parameter space. The regularity results
have been used to obtain convergence rates for the space discretization with finite
elements, which, coupled to the results for sparse quadrature and interpolation, led to
convergence estimates for the fully discretized solution.

Acknowledgments Research supported by ERC under Grant AdG247277 and by ETH under CHIRP
Grant CH1-02 11-1.
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