
Advances in Computational Mathematics (2019) 45:1807–1823
https://doi.org/10.1007/s10444-018-09659-5

Parallel, asynchronous, fuzzy logic systems realized
in CMOS technology

Tomasz Talaśka1

Published online: 4 February 2019
© The Author(s) 2019

Abstract
Fuzzy systems play an important role in many industrial applications. Depending on
the application, they can be implemented using different techniques and technolo-
gies. Software implementations are the most popular, which results from the ease
of such implementations. This approach facilitates modifications and testing. On the
other hand, such realizations are usually not convenient when high data rate, low cost
per unit, and large miniaturization are required. For this reason, we propose efficient,
fully digital, parallel, and asynchronous (clock-less) fuzzy logic (FL) systems suit-
able for the implementation as ultra low-power-specific integrated circuits (ASICs).
On the basis of our former work, in which single FL operators were proposed, here
we demonstrate how to build larger structures, composed of many operators of this
type. As an example, we consider Lukasiewicz neural networks (LNN) that are fully
composed of selected FL operators. In this work, we propose FL OR, and AND
Lukasiewicz neurons, which are based on bounded sum and bounded product FL
operators. In the comparison with former analog implementations of such LNNs, dig-
ital realization, presented in this work, offers important advantages. The neurons have
been designed in the CMOS 130nm technology and thoroughly verified by means
of the corner analysis in the HSpice environment. The only observed influence of
particular combinations on the process, voltage, and temperature parameters was on
delays and power dissipation, while from the logical point of view, the system always
worked properly. This shows that even larger FL systems may be implemented in this
way.

Keywords Fuzzy logic systems · FL operators · FL neural networks · Asynchronous
circuits · Parallel circuits · CMOS implementation

Communicated by: Pavel Solin

� Tomasz Talaśka
tomasz.talaska@gmail.com

1 Faculty of Telecommunication, Computer Science and Electrical Engineering,
UTP University of Science and Technology, ul. Kaliskiego 7, 85-796, Bydgoszcz, Poland

Received: 30 September 2018 / Accepted: 18 December 2018 /

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-018-09659-5&domain=pdf
http://orcid.org/0000-0001-7252-8013
mailto: tomasz.talaska@gmail.com

1808 T. Talaśka

Mathematics Subject Classification (2010) 68T27

1 Introduction

The popularity of fuzzy logic systems (FLS) results from the fact that the real world is
analog (multivalued). Additionally, in solving real problems, we use a fuzzy approach
in a natural way. Bivalent logic is often insufficient, as its hard selection between the
TRUE and the FALSE values may lead to curious situations. For example, a group of
children may be divided into low and tall on the basis of their height. If we define the
limits between two sets, for example, as 110 cm, then in bivalent logic children with
the heights of 109.99 cm and 110.01 cm will belong to two different sets. Fuzzy sets
that allow the two children to belong to both sets with different percentage are more
natural in such situations.

Thanks to various interesting properties of the FLSs, they have found wide
application in various areas, for example, in control systems [1, 2], in electrical
engineering [3, 4], in planning and prognostic [5], and in aviation [6]. FLSs find
application in medical health care systems, used for example in human motion cap-
ture [7], in which they are counterparts to systems that are based on conventional
positioning algorithms [8]. In automotive area, the use of the FL is investigated in
the context of a support for vehicle-to-infrastructure (V2I) communication [9, 10].
In such applications, systems of this type may help in vehicle positioning on the
roads [9] that is essential from the point of view of autonomous driving safety,
especially in dense urban environment [11]. In the last two described areas, i.e., in
human motion capture systems and in recently developed automotive applications,
one of paramount features is reduced energy consumption of supporting and control-
ling systems. For this reason, the results presented in this work match the described
applications.

FLSs may cooperate with other neural networks (NNs) [12]. In neuro-fuzzy net-
works [13, 14], for example, the NN supports the work of the fuzzy system. An
interesting feature of these networks is their ability to use fuzzy inference methods
to determine the values of the output signals. For example, NNs may be used for
an adaptive selection of some parameters of the fuzzy systems, such as shapes and
locations of the membership functions (MFs).

The works in this area are carried out at different levels that include mathe-
matical investigations from one hand, and the ways of the implementation, on the
other hand. In the latter group of works, the most important are efficient hardware
implementations. In this work, we focus on the second aspect. In particular, we
focus on the transistor level implementation of such systems that offer the high-
est flexibility. Fuzzy systems are commonly realized in software, which is due to
the ease and flexibility of such implementation. However, many industry applica-
tions require miniaturization, low energy consumption, and low cost per unit. In such
cases, hardware implementations may be a better option [15]. This approach includes
programmable devices such as microcontrollers (μC) [16] and Field Programmable
Gate Array (FPGA) devices [15, 17, 18]. They are also reported full custom transis-
tor level systems of this type (ASIC), analog [19–21], digital [22], or mixed [23]. In

Parallel, asynchronous, fuzzy logic systems realized in CMOS technology 1809

case of the analog approach, the circuits are usually realized using the current-mode
technique, as in this case the summing and subtracting operations (commonly used
in FL) may be realized simply in junctions.

In the comparison with analog approach, digital realization also offers some
important advantages. Circuits of this type feature high noise immunity and low sen-
sitivity to the variation of transistor parameters. Furthermore, digital data can be
easily stored even for a long period of time that is different than in typical analog solu-
tions. This allows for accurate and reliable data and signal processing and facilitates
the realization of even very large, programmable, multi-stage fuzzy data processing.

The paper is organized as follows. In the next section, we present basics of selected
FL operators, as well as the proposed hardware implementation of these opera-
tors. Then, we propose also larger fuzzy logic systems. We focus, in particular, on
Lukasiewicz neural networks as an example of the systems that are fully based on the
FL operators. In the following section, we present transistor level verification of the
realized circuits. Finally, the conclusions are formulated in the last section.

2 Fuzzy logic network (FLN) and their implementation in hardware

In the literature, one can find a dozen different fuzzy logic operators (FLO) [20, 21,
24, 25]. As described earlier, FLOs may be realized using various techniques: analog,
digital and mixed. Each of them techniques offers some advantages and disadvan-
tages. For example, in the analog approach, especially in the current mode, it is easy
to carry out the addition and subtraction operation. On the other hand, in this case,
the circuits have to be realized very carefully to avoid or minimize an impact of vari-
ous phenomena typical for analog realizations—transistor mismatch, leakage, charge
injection, etc. In digital technology, however, data processing may be much faster
especially in the most advanced recent technologies. Circuits of this type exhibit a
better noise immunity. Usually, there is also no problem with data storage over long
periods of time.

In our previous work [24, 25], we proposed an efficient transistor level imple-
mentation of all FOs known in the literature in the form of digital parallel and
asynchronous circuits. The operators are composed of single logic gates and more
complex blocks, such as multi-bit adders, multi-bit subtractors that may serve as a
digital comparator as well. The proposed circuits can be easily scaled to differed tech-
nologies. The proposed FLOs became a basis for the works presented in this paper
that aimed at the realization of larger FLSs. Systems of this type may be used in dif-
ferent applications, and thus may be composed of different basic operators. As an
example, in this work, we focus on fuzzy logic Lukasiewicz neural networks that are
fully composed of such operators. As it is presented in the paper, such systems may
also be implemented as fully parallel and asynchronous solutions, that is an important
advantage here.

There are two types of the LNN, namely the AND-OR and the OR-AND ones.
They are build of the AND and OR FL neurons. These neurons, in turn, are based on
such FLOs as the bounded sum (operator or) and bounded product (operator and),
described below.

1810 T. Talaśka

2.1 Selected fuzzy logic operators

A transistor level realization of a full set of the FL operators have been described in
our previous works. For this reason, here we present only selected operators, those
that have been directly applied in the logical Lukasiewicz neurons, presented latter
in this work. The first of them is the Bounded Product (BP) operator, which may be
described in the following way:

YA�B = max[0, (A + B − 1)] (1)

The basic operations that are performed in this case are the determination the max-
imum value, the addition and the subtraction. It is important to clarify the meaning
of the 1 factor. This is a normalized value that depends on the type of the imple-
mentation and the signal resolution. It means the maximum possible signal value.
For example, in case of the current mode analog implementation, it would be the
maximum allowed value of each of the input signals (current). In case of digi-
tal implementations, the value of this signal depends on the signal resolution. For
example, cases of 8 and 16 bits, the 1 factor will be 255 and 65535, respectively.

This BP operator works as follows. If the sum of its inputs is less than 1, then its
output is 0. In all other cases, the output is the sum of its inputs minus 1. When both
inputs have maximum values, the output signal reaches 1.

The second operator in the LNN is the Bounded Sum (BS), which is expressed as
follows:

YA⊕B = min[1, A + B] (2)

The operations that are used in this case are the minimum function signal and the
summing operation. In this case, if the sum of the operator inputs is less than 1, the
value of this sum is provided to the output. When the sum become larger than 1, then
the output saturates at 1. Figure 1 shows our proposed structures of both described
operators.

The BP operator is based on two multi-bit full adders (MBFAs), composed of a
chain of one bit full adders (1BFAs). Since 1BFA is one of basic building blocks in the
proposed FL operators, in Fig. 2, we present selected transistor level implementations
of such a block. Figure 2a presents a conventional approach, in which the circuit is
composed of distinct binary logic gates, as visible in Fig. 3. In this case, the adder is
built of 38 transistors. In Fig. 2b, we present a simpler circuit of this type, composed
of 30 transistors, which has been used in our realization. In the literature one can also
find 1BFAa composed of even smaller numbers of transistors. However, we observed
some problems when many MBFAs composed of such 1BFA were connected in a
chain. Our assumption, however, is to create larger fuzzy systems, composed of many
FL operators. For this reason, we decided to use a more stable solution, even at the
expense of a bit larger number of transistors.

The circuit shown in Fig. 2b, as well as the MBFAs built of such circuits, has been
used by us in a prototype chip, designed by us in the CMOS 130 nm technology for
other purposes. The chip has been verified by means of laboratory measurements.
Since the realized MBFA passed the tests, we used it also in the current work.

First of the described operations, A+B, is performed using the MBFA. The second
operation (the subtraction of the 1 factor) is also based on the summing circuit. We

Parallel, asynchronous, fuzzy logic systems realized in CMOS technology 1811

(a)

(b)

Fig. 1 Proposed realization of the: a FL bounded product operator, and b FL bounded sum operator

reverse all bits in the 1, add the resultant signal to A + B, and complement it by
addition of logical ‘1’. The advantage of this approach is that independently on the
signal resolution, the reversed and complemented value of 1 always equals ‘1’, so it
is sufficient to add the ‘1’ signal at the least significant position.

If the Cout (carry out) signal from the first MBFA equals ‘0’, which means that the
sum of the A and B signals is ≤ 1, the final result of the A + B −1 operation is also
≤ 0. In this case, the output signal of the overall circuit equals ‘0’.

In the BP operator, the MBFA is used to calculate the sum of both input signals.
If A + B > 1, then the COUT signal becomes ‘1’ and this signal through the OR
(bivalent) logic gate sets all output signals to ‘1’. The resolution of the output signal
equals the resolution of the A and the B signals. This allows to avoid the situation, in
which the operator provides to the output signal with greater resolution than one of
its inputs.

Gate level diagrams of both proposed and used operators are shown in Fig. 3. The
circuits are presented for the situation, in which conventional 1BFA are used, shown
in Fig. 2a.

In case of the LNN, the Bounded Product operator is called the and operation,
whereas the Bounded Sum operator is referred to as the or operation. In the further
part of this work these operators will be denoted in this way, for a better clarity.

In the literature, various realizations of the full adder can be found. The differences
are mainly visible in the number of transistors used, and these in turn to some extent
result from different implementation of the XOR gate. However, the adder itself is
not the main topic of this work, which means that in the FL operators presented in
this work, different adders may be used, without an impact on functional behavior of
the proposed FL operators.

In the context of fuzzy logic systems, and state-of-the-art study, it is worth men-
tioning multivalued adders reported in the literature. Such adders are interesting

1812 T. Talaśka

S

VDD

A

B

CIN

COUT

VDD

VSS

VSS

VDD

VSS

VDD

VSS

S

VDD

A

B

(a)

(b)

CIN

COUT

VDD

VSS

VSS

VDD

VSS

VDD

VSS

S

VSS

VDD

VSS

VDD
VSS

VDD

VSS

VDD VSS

VDD

VSS

VDDVSS

VDD

VSS

VDD VSS

VDD

VDD

VSS
A

B

CIN
COUT

S

VSS

VDD
VSS

VDD

VSS

VDD VSS

VDD

VDD

VSS
A

B

CIN
COUT

Fig. 2 Selected transistor level realizations of the 1-bit full adder: a a conventional approach in which the
circuit is composed of 38 transistors, b the circuit composed of 30 transistors, used in presented realization

Parallel, asynchronous, fuzzy logic systems realized in CMOS technology 1813

A0
B0

S0

n-bits Full Adder

CIN n

AnBn

Sn

COUT n

A1B1
S1

VDD

A0

S0

n-bits Full Adder (subtractor)

CIN n

An

Sn

COUT n

A1

S1
A+B

n-bits

m
a
x
(0

, (
A

+B
-1

))

A0
B0

S0

n-bits Full Adder

CIN n

AnBn

Sn

COUT n

A1B1
S1

VDD

A0

S0

n-bits Full Adder (subtractor)

CIN n

An

Sn

COUT n

A1

S1
A+B

n-bits

m
a
x
(0

, (
A

+B
-1

))

A0
B0

S0

n-bits Full Adder

CIN n

AnBn

Sn

COUT n

A1B1
S1

m
in

(0
, A

+B
)

A0
B0

S0

n-bits Full Adder

CIN n

AnBn

Sn

COUT n

A1B1
S1

m
in

(0
, A

+B
)

(a)

(b)

Fig. 3 Gate level implementation of both proposed operators: a the BP operator, and b the BS operator. For
a better illustration, we present these operators as if they were built of conventional 1BFA, shown in Fig. 2a

group of circuits, which allow to implement FL systems in different ways. Example
circuits of this, reported in [26], are a multivalued (fuzzy) analog adders operating in
the voltage and the current mode. These adders, unlike the classic solutions used for
adding voltages or currents, in addition to the S (SUM) signal, also have the COUT
(Carry Out) output terminal, while both the S and the COUT signals are multivalued.
These solutions, interesting itself, may also be used for digital implementation under
certain conditions. The use of fuzzy adders, as some components of a large fuzzy
system, requires that other components cooperating with such blocks should be able
to handle multivalued signals.

In the literature, one can also find various realizations of the full Bounded Prod-
uct and the Bounded Sum operators. In [27], an interesting implementation of such
operators is reported. In [27] work, the output block is built based on a multi-bit

1814 T. Talaśka

and1

B-PROD

and2

B-PROD

or
B-SUM

x1

w1

YOR
x2

w2

and1

B-PROD

and2

B-PROD

or
B-SUM

x1

w1

YOR
x2

w2

Fig. 4 Lukasiewicz fuzzy logic OR neuron

multiplexer. Compared to the operators presented in [27], this paper proposes
solutions, in which the multiplexers are replaced with classic logic gates.

2.2 Proposed realization of the FL OR and AND neurons

The OR neuron performs the and logic aggregation of its input signals, denoted as

x = [x1, x2, x3...xn]T (3)

with their corresponding connection (weights), denoted as

w = [w1, w2, w3...wn].T (4)

The partial results of particular and operations are then summed using the or
operation (hence the name of the neuron) [21].

The AND neuron is the counterpart of the OR neuron and is created by reversing
all basic FL operations. First, it performs the or FL aggregation of its inputs (Eq. 3
with their corresponding weights (Eq. 4). The partial results of these operations are
summed using the and operation (hence the name of the neuron). Block diagrams of
the OR and the AND neurons are shown in Figs. 4 and 5, respectively.

The output of the Lukasiewicz OR neuron may be described, as follows:

YOR = (x1 andw1) or (x2 andw2) or (x3 andw3)...... or (xn andwn) (5)

while the Lukasiewicz AND neuron as below:

YAND = (x1 orw1) and (x2 orw2) and (x3 orw3)...... and (xn orwn) (6)

An explanation is required how the output or and and operations in both neurons
are realized in the case of a larger number of the input signals. In this case, the use

or1

B-SUM

or2

B-SUM

and
B-PROD

x1

w1

YAND
x2

w2

or1

B-SUM

or2

B-SUM

and
B-PROD

x1

w1

YAND
x2

w2

or1

B-SUM

or2

B-SUM

and
B-PROD

x1

w1

YAND
x2

w2

Fig. 5 Lukasiewicz fuzzy logic AND neuron

Parallel, asynchronous, fuzzy logic systems realized in CMOS technology 1815

of only a single operator is not sufficient. In the proposed implementation, these
operators are implemented as binary trees consisting of the basic or and the and
operators. The number of such operators in the binary tree always equals the number
of the inputs minus one. The number of layers in the tree increases moderately with
the number of the inputs and is expressed as log2 M , where M is the number of the
input signals. As a result, the drop in the speed of the neurons is relatively small with
increasing the length of the input vector.

It is worth to explain the influence of the weights on the outputs of the neurons.
Let us consider extreme cases of the values of the weights. In case of the OR neuron,
when all its weights equal 0 (w1 = 0, w2 = 0, . . . , wn = 0), the output signal of
the neuron is insensitive to particular input x signals, independently on their values.
In this case, the output of the OR neuron, YOR = 0, in each case. On the other hand,
when all the neuron weights equal 1 (w1 = 1, w2 = 1, . . . , wn = 1) the output of
the OR neuron is expressed as: YOR = x1 or x2 or

Another situation appears when we consider the AND neuron. In this case, when
the values of all weights are 1 (w1 = 1, w2 = 1, . . . , wn = 1), the output signal
from this neuron, YAND = 1, independently on the values of the input x signals. In
the opposite case, when all neuron weights are 0, the output signal of the neuron is
expressed as YAND = x1 and x2 and

Taking into account formulas 1 and 2, the output of the OR neuron, shown in
Fig. 4, may be expressed as follows:

YOR = min[1, max (0, x1 + w1 − 1) + max (0, x2 + w2 − 1)] (7)

Analogously, taking into account formulas 1 and 2, the output of the AND neuron,
shown in Fig. 5, may be expressed as

YAND = max [0, min (1, x1 + w1) + min (1, x2 + w2) − 1] (8)

and1

B-PROD

and2

B-PROD

or1

B-SUM

or
B-SUM

and3

B-PROD

and4

B-PROD

or2

B-SUM

x1

w1

YOR

x2

w2

x3

w3

x4

w4

and1

B-PROD

and2

B-PROD

or1

B-SUM

or
B-SUM

and3

B-PROD

and4

B-PROD

or2

B-SUM

x1

w1

YOR

x2

w2

x3

w3

x4

w4

Fig. 6 An example FL OR neuron with four inputs implemented with the use of the parallel and
asynchronous binary tree

1816 T. Talaśka

and1

B-PROD

and2

B-PROD

or
B-SUM

x1
w11a YAND 1

x2
w12a

OR 1

or1

B-SUM

or2

B-SUM

and
B-PROD

w11b

YAND

w12b

YAND 2

AND

and1

B-PROD

and2

B-PROD

or
B-SUM

x1
w21a

x2
w22a

OR 2

and1

B-PROD

and2

B-PROD

or
B-SUM

x1
w11a YAND 1

x2
w12a

OR 1

or1

B-SUM

or2

B-SUM

and
B-PROD

w11b

YAND

w12b

YAND 2

AND

and1

B-PROD

and2

B-PROD

or
B-SUM

x1
w21a

x2
w22a

OR 2

Fig. 7 The proposed two-layer, Lukasiewicz OR-AND neural network

The considerations discussed above concern neurons that have two inputs, i.e., x1
and x2. In case of the software implementation, the output operations are realized in
an iterative fashion. In the proposed parallel implementation, it may be performed
asynchronously, using the binary tree described earlier. Such an implementation is
shown in Fig. 6. For an example case of four inputs, the output signals for the OR
and the AND neurons may be expressed, respectively, as follows:

YOR = min [1, min (1, max (0, x1 + w1 − 1) + max (0, x2 + w2 − 1))

+ min (1, max(0, x3 + w3 − 1) + max (0, x4 + w4 − 1))] (9)

and:

YAND = max [0, max (0, min (1, x1 + w1) + min (1, x2 + w2) − 1)

+ max (0, min(1, x3 + w3) + min (1, x4 + w4) − 1) − 1] (10)

or1

B-SUM

or2

B-SUM

and
B-PROD

x1
w11a YAND 1

x2
w12a

AND 1

and1

B-PROD

and2

B-PROD

or
B-SUM

w11b

YOR

w12b

YAND 2

OR

or1

B-SUM

or2

B-SUM

and
B-PROD

x1
w21a

x2
w22a

AND 2

or1

B-SUM

or2

B-SUM

and
B-PROD

x1
w11a YAND 1

x2
w12a

AND 1

and1

B-PROD

and2

B-PROD

or
B-SUM

w11b

YOR

w12b

YAND 2

OR

or1

B-SUM

or2

B-SUM

and
B-PROD

x1
w21a

x2
w22a

AND 2

Fig. 8 The proposed two-layer, Lukasiewicz AND-OR neural network

Parallel, asynchronous, fuzzy logic systems realized in CMOS technology 1817

x1

w11a

x2

w12a

x3

w13a

x4

w14a

w11b

w12b

w13b

w14b

OR

AND 3

AND 4

w21a

w22a

w23a

w24a

w31aw32a

w33a

w34a

w41a

w42a

w43aw44a

AND 1

AND 2

x1

w11a

x2

w12a

x3

w13a

x4

w14a

w11b

w12b

w13b

w14b

OR

AND 3

AND 4

w21a

w22a

w23a

w24a

w31aw32a

w33a

w34a

w41a

w42a

w43aw44a

AND 1

AND 2

YOR
x1

w11a

x2

w12a

x3

w13a

x4

w14a

w11b

w12b

w13b

w14b

OR

AND 3

AND 4

w21a

w22a

w23a

w24a

w31aw32a

w33a

w34a

w41a

w42a

w43aw44a

AND 1

(b)

(a)

AND 2

YOR

or1

B-SUM

or2

B-SUM

and1

B-PROD

and
B-PROD

or3

B-SUM

or4

B-SUM

and2

B-PROD

x1

w11a

YAND 1

x2

w12a

x3

w13a

x4

w14a

AND 1

and1

B-PROD

and2

B-PROD

or1

B-SUM

or
B-SUM

and3

B-PROD

and4

B-PROD

or2

B-SUM

w11b

YOR

w12b

w13b

w14b

YAND 2

YAND 3

YAND 4

OR

AND 2

AND 3

AND 4

w21a w22a w23a w24a

x1 x2 x3 x4

w31a w32a w33a w34a

x1 x2 x3 x4

w41a w42a w43a w44a

x1 x2 x3 x4

or1

B-SUM

or2

B-SUM

and1

B-PROD

and
B-PROD

or3

B-SUM

or4

B-SUM

and2

B-PROD

x1

w11a

YAND 1

x2

w12a

x3

w13a

x4

w14a

AND 1

and1

B-PROD

and2

B-PROD

or1

B-SUM

or
B-SUM

and3

B-PROD

and4

B-PROD

or2

B-SUM

w11b

YOR

w12b

w13b

w14b

YAND 2

YAND 3

YAND 4

OR

AND 2

AND 3

AND 4

w21a w22a w23a w24a

x1 x2 x3 x4

w31a w32a w33a w34a

x1 x2 x3 x4

w41a w42a w43a w44a

x1 x2 x3 x4

Fig. 9 An example, four inputs, Lukasiewicz AND-OR neural network: a a general structure of the
network, b a more detailed view with a division into particular neurons

1818 T. Talaśka

Fig. 10 Selected simulation results of the fuzzy or and and operators

2.3 Fuzzy logic network OR-AND and AND-OR

Based on the proposed OR and AND type neurons, it is possible to build a fuzzy
logic Lukasiewicz OR-AND and AND-OR NN. Example networks of these types are
presented in Figs. 7 and 8, respectively.

The proposed network composed of previously described circuits operates fully
asynchronously. The signals are provided to its inputs in parallel, without using any
clock generator. The data processing rate itself depends on the number of the inputs. It
can be noticed, while comparing Figs. 8 and 9. If the number of the inputs increases,
the number of the operations in each neuron performed serially also increases. This
is visible in the increased number of layers in the binary tree. However, as described
earlier, the data processing rate decreases moderately with increasing number of
inputs.

The size of the LNN depends on the realized task. When the number of the inputs
increases, the neurons with larger number of inputs have to be used. An example
implementation of the 4-input AND-OR NN is shown in Fig. 9.

Fig. 11 Power dissipation for the fuzzy or and and operators

Parallel, asynchronous, fuzzy logic systems realized in CMOS technology 1819

Fig. 12 Performance of the OR (top) and the AND (bootom) Lukasiewicz neuron

3 Results—transistor level verification of the proposed systems

Verification of the proposed circuit has been performed in the HSpice environment
in the TSMC 130-nm CMOS technology. To check if the results are reliable, a full
corner analysis has been performed, in which the proposed circuits was tested for
different values of the process, voltage, and temperature (PVT) parameters. A series
of performed tests covered typical (TT), fast (FF), and slow (SS) transistor models,
temperatures varying in-between −40 and 100 ◦C and different values of the supply
voltage (from 1.2 to 1.5 V). The difference between the worst case (SS/1.2V) and the
best case (FF/1.5V) scenarios was equal to about 140%; however, the circuits worked
properly in each case.

Figure 10 presents selected results for the Bounded Product (and) and the Bouded
Sum (or) operations. The signal resolutions in the tests were equal to 4 bits, which
means that the value of 1 was 0xF.

The upper panel of Fig. 10 presents the input signals (A and B), while the bot-
tom diagram the output signals of the operators. The simulations were performed for
VDD=1.5V and T =20 ◦C.

Figure 11 presents the power dissipation for particular operators. In case of the BP
operator (and) the power dissipation approximately equals 7 nW, while in case of the
BS operator (or) it approximately equals 4 nW.

The difference results from the structure of both operators. Note (Figs. 1 and 3)
that for the and operator, two adders are used, while for the or operator only one.

Figure 12 presents simulations of the fuzzy OR and AND Lukasiewicz neurons.
The input signals for all simulations are the same, as in Fig. 10. For a better clarity,
the x1 signal has been changed to the A signal, whereas the x2 signal to B. Since the
output signals are 4-bit signals, the a3, a2, a1, a0 are particular bits of the A signal,

Fig. 13 The power dissipated for the the fuzzy neuron OR and AND

1820 T. Talaśka

Fig. 14 The delay time at the output of the OR neuron

Fig. 15 Simulation work of the Fuzzy OR-AND Network

Fig. 16 Simulation work of the Fuzzy AND-OR Network

Parallel, asynchronous, fuzzy logic systems realized in CMOS technology 1821

Fig. 17 The signal delay time at the AND-OR network output

with the a3 being the most significant bit. The same applies to the B signal. The
neuron weights in both cases have been set in the same way, i.e., w1=5 (0101), w2=4
(0100). As can be observed, both neurons operate properly.

Figure 13 presents the power dissipation for both neurons. The power dissipation
in the case of an OR neuron is approximately 17 nW, while for the AND neuron
approximately 15 nW.

A slight difference results from the structure of both neurons and the use of par-
ticular operators in them. In case of the OR neuron, we use two operators: and and
one or, while for the AND neuron two or operators and one and operation. As shown
earlier, the and operator dissipates more power than the or one.

The signal at the output of the OR neuron appears approximately 2 ns after chang-
ing the signals at its input, as shown in Fig. 14. This means that the neuron works at a
frequency of about 500 MHz. The simulations were performed at the supply voltage
of VDD = 1.5V and at 20 ◦C. In case of the AND neuron, the reaction time of the
system is similar.

Figures 15 and 16 present the simulations of two-layer Lukasiewicz OR-AND and
AND-OR neural networks.

To more accurately illustrate the processes occurring inside the network, we
present both the output signal and the signals at the outputs of particular neurons, i.e.,
in the first layer of the NN. The values of the weights for both NNs have the same
values, i.e., w11a= 5 (0101), w12a = 4 (0100), w21a=3 (0011), w22a = 4 (0100), w11b
= 7 (0111), w12b = 9 (1001). In both cases, the network works correctly. The time
delay appearing at the output of the AND-OR network in relation to the changes of
its input signals equals 3 ns, as shown in Fig. 17.

4 Conclusion

Novel transistor-level implementations of fuzzy logic neurons and networks suitable
for very fast, low power data processing has been presented in the paper.

The proposed circuits operate fully asynchronously, which means that no clock
generator is required to perform particular fuzzy logic operations. The circuits

1822 T. Talaśka

can be used in larger fuzzy systems, working in parallel, in which larger chains
of such operators also operate fully asynchronously. The synchronization is still
possible, if necessary, by the use of switches controlled by a clock generator.
However, the synchronization may be applied at the ends of larger chains, which
is an advantage here, as it simplifies the control of such realized larger fuzzy
systems.

The presented circuits (operators, neurons and networks) have been designed and
verified in the CMOS 130-nm technology. They offer data processing rates at the
level of even several Msamples/s. These parameters can be substantially improved if
the circuits are redesigned in newer CMOS technologies.

One of basic (atom) building blocks here are the 1-bit full adders that are com-
ponents of larger multi-bit full adders. Recently, we developed a prototype chip, in
which such full adders as the ones used here have been implemented and verified by
means of laboratory measurements.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Tan, Q., Wei, Q., Hu, J., Aldred, D.: Road vehicle detection using fuzzy logic rule-based method. In:
International Conference on Fuzzy Systems and Knowledge Discovery, pp. 3 (2010)

2. Sharma, K., Kumar Palwalia, P.: A modified PID control with adaptive fuzzy controller applied to
DC motor. In: International Conference on Information, Communication, Instrumentation and Control
(ICICIC) (2017)

3. Chen, Z., Gomez, S.A., McCormick, M.: A fuzzy logic controlled power electronic system for vari-
able speed wind energy conversion systems. In: International Conference on Power Electronics and
Variable Speed Drives (2000)

4. Sreedivya, K.M., Aruna Jeyanthy, P., Devaraj, D.: Fuzzy logic based power system stabilizer for
damping low frequency oscillations in power system. In: International Conference on Innovations in
Electrical, Electronics, Instrumentation and Media Technology (ICEEIMT) (2017)

5. Seker, H., Odetayo, M.O., Petrovic, D., Naguib, R.N.G.: A fuzzy logic based-method for prog-
nostic decision making in breast and prostate cancers. IEEE Trans. Inf. Technol. Biomed. 7, 2
(2003)

6. Cetin, O., Kurnaz, S., Kaynak, O.: Fuzzy logic based approach to design of autonomous landing
system for unmanned aerial vehicles. J. Intell. Robot. Syst. 61, 239–250 (2011)

7. Jin, M., Zhao J., Jin J., Yu G., Li W.: The adaptive Kalman filter based on fuzzy logic for inertial
motion capture system. Measurement, Elsevier 7, 196–204 (2014)

8. Banach, M., Wasilewska, A., Długosz, R., Pauk, J.: Novel techniques for a wireless motion capture
system for the monitoring and rehabilitation of disabled persons for application in smart buildings.
Technol. Health Care, IOS Press 26(S2), 671–677 (2018)

9. Milanés, V., Villagrá, J., Godoy, J., Simó, J., Pérez, J., Onieva, E.: An intelligent V2I-Based traffic
management system. IEEE Trans. Intell. Transp. Syst. 1(49-58), 13 (2012)

10. Salman, M.A., Ozdemir S., Celebi F.V.: Fuzzy traffic control with vehicle-to-everything communica-
tion, Sensors, https://doi.org/10.3390/s1802036827, (368) (2018)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s1802036827

Parallel, asynchronous, fuzzy logic systems realized in CMOS technology 1823

11. Banach, M., Długosz, R.: Real-time locating systems for smart city and intelligent transportation
applications. In: IEEE 30th International Conference on Microelectronics (Miel 2017) (231-234)
(2017)

12. Li, T.H.S., Chen, Ch.-Y., lim, K.-CH.: Combination of fuzzy logic control and back propagation neural
networks for the autonomous driving control of car-like mobile robot systems. In: Proceedings of
SICE Annual Conference (2010)

13. Kayacan, E., Kayacan, E.L., Ramon, H., Saeys, W.: Adaptive Neuro-Fuzzy control of a spherical
rolling robot using Sliding-Mode-Control-Theory-Based online learning algorithm. IEEE Transac-
tions on Cybernetics 43, 1 (2013)

14. Allah Hooshmand, R., Parastegari, M., Forghani, Z.: Adaptive neuro-fuzzy inference system approach
for simultaneous diagnosis of the type and location of faults in power transformers. IEEE Electr. Insul.
Mag. 28, 5 (2012)

15. Yen, J., Langari, R., Zadeh, L.A.: Industrial Applications of Fuzzy Logic and Intelligent Systems.
IEEE Press, New York (1995)

16. Nagaraj, R., Mayurappriyan, P.S., Jerome, J.: Microcontroller based fuzzy logic technique for dc-dc
converter. In: International Conference on Power Electronics (2006)

17. Rudas, I.J., Batyrshin, I.Z., Hernández Zavala, A., Camacho Nieto, O., Horváth, L., Villa Vargas, L.:
Generators of fuzzy operations for hardware implementation of fuzzy systems, advances in artificial
intelligence. In: 7th Mexican International Conference on Artificial Intelligence (MICAI) (2008)

18. Meisam Ramzanzad. M., Rashidy Kanan, H.: A new method for design and implementation of intel-
ligent traffic control system based on fuzzy logic using FPGA. In: Iranian Conference on Fuzzy
Systems (IFSC) (2013)

19. Guo, S., Peters, L., Surmann, H.: Design and application of an analog fuzzy logic controller. IEEE
Trans. Fuzzy Syst. 4, 4 (1996)

20. Yamakawa, T., Miki, T.: The current mode fuzzy logic integrated circuits fabricated by the standard
CMOS process. IEEE Trans. Comput. C-35, 2 (1986)

21. Długosz, R., Pedrycz, W.: Łukasiewicz fuzzy logic networks and their ultra low power hardware
implementation, Neurocomputing, Elsevier, 73 (2010)

22. Sanchez-Solano, S., Barriga, A., Jimenez, C.J., Huertas, J.L.: Design and application of digital fuzzy
controllers. In: International Fuzzy Systems Conference (1997)

23. Baturone, I., Sanchez-Solano, S., Barriga, A., Huertas, J.: Implementation of CMOS fuzzy controllers
as Mixed-Signal integrated circuits. IEEE Trans. Fuzzy Syst. 5, 1 (1997)

24. Talaśka, T., Długosz, R., Skruch, P.: Efficient transistor level implementation of selected fuzzy logic
operators used in control systems. In: Advances in Intelligent Systems and Computing, Trends in
Advanced Intelligent Control, Optimization and Automation, vol. 577. Springer (2017)

25. Talaśka, T.: Implementation of fuzzy logic operators as digital asynchronous circuits in CMOS
technology. In: International Conference on Microelectronics (MIEL) (2017)

26. Navi, K., Doostaregan, A., Moaiyeri, M., Hashemipour, O.: A hardware-friendly arithmetic method
and efficient implementations for designing digital fuzzy adders. Fuzzy Set. Syst, Elsevier 185(1),
111–124 (2011)

27. Zavala, A.H., Batyrshin, L.Z., Nieto, O.C., Castillo, O.: Conjunction and disjunction operations for
digital fuzzy hardware. Appl. Soft. Comput. 13, 7 (2013)

	Parallel, asynchronous, fuzzy logic systems realized in CMOS technology
	Abstract
	Introduction
	Fuzzy logic network (FLN) and their implementation in hardware
	Selected fuzzy logic operators
	Proposed realization of the FL OR and AND neurons
	Fuzzy logic network OR-AND and AND-OR

	Results—transistor level verification of the proposed systems
	Conclusion
	References

