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Abstract

The paper develops the essentially optimal sparse tensor product finite element
method for a parabolic equation in a domain in R¢ which depends on a microscopic
scale in space and a microscopic scale in time. We consider the critical self similar
case which has the most interesting homogenization limit. We solve the high dimen-
sional time-space multiscale homogenized equation, which provides the solution
to the homogenized equation which describes the multiscale equation macroscopi-
cally, and the corrector which encodes the microscopic information. For obtaining
an approximation within a prescribed accuracy, the method requires an essentially
optimal number of degrees of freedom that is essentially equal to that for solving a
macroscopic parabolic equation in a domain in R¢. A numerical corrector is deduced
from the finite element solution. Numerical examples for one and two dimensional
problems confirm the theoretical results. Although the theory is developed for prob-
lems with one spatial microscopic scale, we show numerically that the method is
capable of solving problems with more than one spatial microscopic scale.

Keywords High dimensional finite elements - Time-space multiscale parabolic
equations - Optimal complexity - Numerical corrector
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1 Introduction

Let D C R? be a bounded domain where d = 1,2 or 3. Let T > 0. Let Y =
(0, 1)? be the unite cube in RY. We consider a symmetric matrix valued function
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a(t,x,t,y) € C([0, T] x D x [0, 1] x ¥; R¢x?). The function a is periodic with
respect to T and y, with the period being (0, 1) and Y respectively; from now on,
we say that it is (0, 1) x Y periodic with respect to 7 and y. We assume that a is
uniformly coercive and bounded, i.e, there are positive constants c; and ¢, such that

forall £, ¢ € R?

cill? <al,x, 7, y)E &, alt,x, 7, )E ¢ <cllEll¢] (1.1)

forall (z,x,7,y) € (0, T) x Dx (0, 1) x Y, where | - | denotes the Euclidean norm in
R?. Let ¢ > 0 be a small number that represents the microscopic scale. We consider
the time-space multiscale coefficient

e r x
a’(t,x) =a rLx,—=,— ).
gt ¢

We denote by V = HOI(D) and H = L*(D). We note that V. H C V' form a
Gelfand triple. We define by (-, -) g the inner product in H, extended to the duality
pairing between V and V' by density. Let T > 0, f € L>((0,T), V/)and g € H. We
consider the parabolic problem
ou’
ot

— V.-, x)Vu®) = f(t,x), xe D, te€(0,T), (1.2)
u®0,x) =g, xeD

with the Dirichlet boundary condition for u® (¢, -). Problem (1.2) has a unique solution
ut € L2((0, T), V)N H'((0, T), V') which satisfies

||M£||L2((0,T),V) + ||u8||H1((o,T),V') = C(||f||L2((0,T),V/) + lgla)

where the constant ¢ only depends on the constants ¢y, ¢z in (1.1) and T ([31]
Chapter 4).

We develop an efficient finite element (FE) method for approximating the solution
to the parabolic Eq. 1.2 which depends on microscopic scales in both the temporal
and spatial variables. Homogenization of (1.2) is first studied by Benssousan et al.
in [5] where the general time scale & is considered. However, the most interesting
case is when k = 2 where the derivative with respect to the fast time variable plays
a role in the limiting equation. When k < 2, this variable only plays the role of a
parameter; and when k > 2, it is averaged out in the homogenization limit. Thus, we
only consider the critical case k = 2.

A direct numerical discretization to take into account all the space and time scales
is prohibitively expensive. For general multiscale problems, there have been exten-
sive efforts in reducing the complexity of approximating the solutions, see, e.g. [1]
and [13]. For parabolic problems with microscopic scales in both time and space vari-
ables, Efendiev and Pankov [14] employ the ideas of the multiscale finite element
method (MSFEM) ([13, 22]) to perform numerical homogenization for quasilinear
parabolic equations, where multiscale FE basis functions are employed which are
solutions of multiscale local problems. The generalized multiscale finite element
method (GMsFEM) ([15]) is used for general parabolic equations with multiple space
and time scales in [10]. The Heterogeneous Multiscale Method [1] is employed by
Ming and Zhang for parabolic equations that depend on multiple time scale in [27].
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Owhadi and Zhang [29] construct a multiscale basis by solving a set of multiscale
parabolic problems with a non-homogeneous boundary condition. Though general,
the cost of these approaches can be high as microscopic meshes with respect to both
time and space have to be used. For general multiscale parabolic problems whose
coefficients are independent of time (and therefore are independent of microscopic
time scales), we note the work of Chen, E, and Shu [8]; Abdulle and Vilmart [3];
and Abdulle and Huber [2] using heterogeneous multiscale method. Malqvist and
Persson [25] use the local orthogonal decomposition technique introduced in [26] for
parabolic equations that depend on spatial multiscales.

Restricting the consideration to the case where the coefficient is locally periodic
with respect to both the temporal and spatial microscopic scales, we develop an essen-
tially optimal method for finding all the necessary macroscopic and microscopic
information. We employ the high dimensional finite element method to solve the
multiscale homogenized equation derived from multiscale convergence which was
introduced by Nguetseng [28] and developed further by Allaire [4]. The method was
initiated by Hoang and Schwab [20] for multiscale elliptic problems and employed
for other equations in [9, 33-35]. For parabolic monotone equations that depend only
on spatial multiscales, Tan and Hoang apply the method in [30]. The method requires
an essentially optimal number of degrees of freedom to approximate the solution of
the high dimensional multiscale homogenized equation within a prescribed level of
accuracy. It exploits the regularity of the corrector terms with respect to all the slow
and the fast variables at the same time. We note that for a one dimensional two scale
elliptic problem, assuming that the periodic coefficient a and the forcing f are ana-
Iytic, Kazeev et al. [23] prove that an approximation for the solutions of two scale
elliptic problems can be obtained with an exponential convergence rate with respect
to the complexity. It is an interesting problem to study the convergence of the method
in [23] when the solution only possesses Sobolev regularity, and to develop it for
multiscale parabolic equations such as (1.2).

For Eq. 1.2, as the coefficient depends also on the microscopic time scale, the
concept of multiscale convergence of Nguetseng [28] and Allaire [4] needs to be
extended. This was first done by Holmbom et al in [21]. Using time-space multi-
scale convergence, the multiscale homogenized equation is derived. Solving it, we
obtain the solution to the homogenized equation which describes the solution to
the multiscale Eq. 1.2 macroscopically, and the corrector which encodes the micro-
scopic information. From the FE solution of this equation, we construct a numerical
corrector.

The paper is organized as follows. In Section 2, we recall the concept of multiscale
convergence in both time and space, we prove several results on time space multiscale
limit of a sequence of functions, and use them to derive the multiscale homogenized
equation. Numerical approximation of the multiscale homogenized equation is stud-
ied in Section 3. We first consider a numerical scheme with general FE spaces and
prove the convergence. We then consider the scheme using the full tensor product
FE spaces and the sparse tensor product FE spaces for the corrector in Sections 3.2
and 3.3 respectively. Assuming regularity for the solution of the multiscale homog-
enized equation, we derive FE error estimates in terms of the mesh size. We show
that the sparse tensor product FE approximation produces essentially equal level of
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accuracy as the full tensor product FE approximation, but uses only an essentially
optimal number of degrees of freedom. In Section 4, we construct a numerical cor-
rector from the FE solution. In Section 5, we show that the regularity required to
get the error estimates for the full and sparse tensor product FE approximations hold
under some regularity conditions for the coefficient of the multiscale equation, and
the functions f and g in (1.2). In Section 6, we present some numerical examples in
one and two dimensions to verify the FE rate of convergence for sparse tensor prod-
uct FE approximations. Though we only consider the theory for the case with only
one microscopic spatial scale, our method is fully capable of solving equations with
more than one microscopic spatial scales, e.g., those considered in Holmbom et al.
[21]. We show this by solving some examples with one microscopic time scale and
two microscopic spatial scales studied in [21], using sparse tensor product FEs.

Throughout the paper, by V without indicating explicitly the variable, we denote
the gradient with respect to x of a function of x, or the partial gradient with respect to
x of a function that depends only on the time variable ¢ and x; and by V, we denote
the partial gradient with respect to x of a function depending on x and/or ¢ and the
fast variables T and y . By # we denote spaces of periodic functions. For functions
depending on time ¢ and other variables, when we only want to emphasize the time
dependence, we will only indicate the time variable 7.

2 Multiscale homogenization of problem (1.2)

Benssousan et al. [5] performed the multiscale asymptotic expansion

e t X t X 2 t x
u (tax):’/lo 1, x, _27_ +8M1 1, x, _27_ + ¢ uz 1, x, _27_ +
& & & & & &

where u; (t, x, T, y) is periodic with respect to T and y with the period being 1 and
Y respectively. They show that uy does not depends on 7 and y, i.e. ug = ug(t, x).
When ug and u; are smooth, Benssousan et al. [5S] Theorem 2.3 page 283 show that

lim [|uf(-, ") — ug(-, -) — eu (.,.,;,;) =0,
s—)OH Cy) —uo(, ) 1 o lz2¢0.7).v)

i.e., we can use ug and u; to approximate u®. The function u satisfies the homoge-
nized equation, and u is the corrector as derived in Section 4. These functions form
the solution of Eq. 2.1 below which can be derived from multiscale convergence.
Thus solving (2.1) we get these functions which are necessary for approximating u®.
Multiscale convergence was initiated by Nguetseng in [28], and developed further by
Allaire [4] which is an efficient tool to find the solution of the homogenized equation
and the corrector. The concept is extended to functions depending on microscopic
scales with respect to both time and space in Holmbom et al. [21]. We first recall the
definition of multiscale convergence in [21]. We then prove some results on time-
space multiscale convergence and use them to derive the multiscale homogenized
equation of (1.2).
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2.1 Multiscale convergence
We first recall the definition of Holmbom et al. [21].

Definition 2.1 A sequence {w?}, time-space multiscale (ts-ms) converges to a func-
tion wy € L2((O, T) x D x (0,1) x Y) if for all functions ¢ € C((0,T) x D x
(0, 1) x Y) which are (0, 1) x Y periodic with respect to 7 and y,

i ! r x
hm/ wa(t,x)¢ t.x, =, =) dxdt
e—=0Jo D e e
T 1
:/ / f / wo(t, x, 7, ) (t, %, 7, y)dydrdxd.
o JpJo Jy

We can show that (see [21]):

Proposition 2.2 From a bounded sequence in L2((0, T) x D), there is a time-space
multiscale convergent subsequence.

In the following propositions, we establish the time-space multiscale conver-
gent limits of bounded sequences in L2((0, T), V) () H'((0, T), V') that will be
employed to derive the multiscale homogenization limit of the solution of (1.2).
These results are first derived in [21] (see also, e.g., Woukeng [32]).

Proposition 2.3 Let {w®} be a bounded sequence in L>((0, T), V) () H'((0, T), V").
Then there are functions wy € L*((0,T), V) and wy € L*((0,T) x D x (0, 1),
Hﬁf (Y)), and a subsequence (still denoted by {w®}) such that

ts-ms
Vw® — Vwy + Vyw;.

Proposition 2.4 Let {w®}; be a bounded sequence in L*>((0, T), H'(D)) such that
vt &% Vwg + Vywy.

Then for all smooth functions (¢, x, T, y) which are (0, 1) X Y periodic with respect
to T and y and

/ Yt x,t,y)dy =0,
Y

T r1 t
lim / / —-wé(t, x)Y (t,x, > )—C> dxdt
e=>0Jo Jp & gc &

T 1
Z/ / ,/ /ul(tvxvf»y)lﬂ(f,xﬂ, y)dydtdxdt.
o JpJo Jy

2.2 Multiscale homogenized equation of problem (1.2)

We have the following result on the time-space multiscale limit of the solution of the
multiscale problem (1.2). We denote by Vi the subspace of H,} (Y) which contains
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functions whose integrals over Y is 0, and Hy the subspace of L2(Y) which contains
function whose integrals over Y is 0. As Va C Hy C Vé form a Gelfand triple, we
denote by (-, -) u, the inner product in Hy extended to the duality pairing between Vi
and V.

#

Proposition 2.5 There are functions ug € L*((0,T),V)(YH'((0,T), V') and
up € L*((0,T) x D x (0, 1), Vo) Y L*((0, T) x D, H}((0, 1), V;))) such that we

can extract a subsequence from the sequence of exact solution of (1.2) {u®}, (still
denoted as {uf}.) so that

ts-ms
Vu® — Vug + Vyuy.

The functions ug and uy satisfy the problem

dug U ou,
<8_(t7 ')7 ¢0()> +/ / <_(t7 X, T, ‘)a ¢1(X,T, )> dtdx
! # JpJo \ 0t Ha

1
+[ / / a(t,x,t,y)(Vup(t, x) + Vyui(t, x, 7, y))
pJo Jy
(Vo (x) + Vydi(x, T, y))dydtdx
= /D J(t, x)¢o(x)dx (2.1

forall ¢o € V and ¢ € L3(D x (0, 1), Vi) for almost all t € (0, T), with the initial
condition ug(0, x) = g.

Proof Let 9 € C3°((0,T) x D) and ¥y € C3°((0, T) x D, Cg°((0, 1), Cg°(Y)))
be such that

/wl(t,x,t, y)dy =0
Y
forallt,x, 7 € (0,T) x D x (0, 1). Let
. tox
Yo, x) = Yot x) +evi (1, x, =, — |-
gt ¢

We have from (1.2) that

T oure T ¢t
—/ / u® v dxdt +/ / alt,x, —, X Vu®(t,x) - Ve (t, x)dxdt
o Jp at o Jp 2’ ¢

T
= / / f &, )Y (t, x)dxdt.
o Jp

We note that

t X t X
v‘/fe(tax):VWO(tsx)“l‘gvxwl (ts-xs 2,—>+Vy‘¢f1 (tsxs za_>'
& & & &
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We then have
Y1 rox 1 0vn tox
/ Jyr (e (e o ) 50 (v o 7))
t X t x
+/ / a (l, X, =5 —> Vub(t, x) - <V@[f0(l‘,x)+evxlﬁ1 (t,x, > —)
0 JD &s € gc €
+Vy < tz, —>> dxdt
T r x
= [ [ s (wo<r,x>+sw1 (t,x,—z,—)>dxdt.
0 D & &

Passing to the multiscale convergence limit, using Propositions 2.3 and 2.4, we get

T 9 T 1 9
—/ / uo(z,x)ﬂ(t,x)dxdt—f / //ul(t,x,r,y)ﬂ(t,x,z,y)dydrdxdz
0Jp ot oJpJoly ot

T ,l
+/ / / / a(t, x, 7, y)(Vuo(t, x) + Vyur(t, x, 7, y)) - (Vpo(z, x)
o Jo JpJy
+Vy(t, x, T, y))dydrdxdt
T
= / / @, x)Po(t, x)dxdr. (2.2)
0 JD
By a density argument, we deduce that (2.2) holds for all ¥y € L%((0,T), V) and
Y € L2((0, T)x D, H#((O, 1), V)). From this, we deduce (2.1). To show the initial

condition (0, -) = g, we first note that 2& — 20 iy [2((0, T), V'). Let ¢ €
C*®((0,T) x D) sothat (T, -) = 0. We have

r 9 r B
lim / / w2V e / / uo—wdxdt
e=>0Jo Jp ot

/ /—wd dt — /uo(O,x)l/f(O,x)dx.
D
On the other hand,

T aw
/ /ug—dxdt / /—I/fdxdl fu%O,x)x[f(O,x)dx—)
o Jp 01 D D
/ /%wdxdt /g(x)w(O,x)dx
D

when ¢ — 0. These imply that u(0, x) = g(x). L]

Proposition 2.5 implies that Eq. 2.1 has a solution. In the next proposition, we
show that a solution of (2.1) is unique.

Proposition 2.6 Problem (2.1) has a unique solution. The whole sequence {u®},
time-space multiscale converges to the solution (uo, uy) of (2.1).
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1298 W.C.Tan, V.H. Hoang

Proof We show that problem (2.1) has solution #o = 0 and #; = 0 when f = 0 and
g = 0. From (2.1), letting ¢o = uo(z, -) and ¢1 = u1(t, -, -, -), and taking the integral
from O to T with respect to ¢, we have

1 T
§||u0(T)||%1+/0 /D/(; /;a(quo—FVyul)'(quo+Vyu1)dydtdxdt=O

where we have used the fact that [, fol (%,ul)y#drdxz %fD fol %(ul,ul)H#drdxz
0 due to the periodicity of u; with respect to . From (1.1), we deduce that #y=0 and
u;p =0. ]

Remark 2.7 To derive the multiscale homogenized problem (2.1), we need to use
a (t, X, ;_2 %‘) as a test function. Indeed, in Definition 2.1, the test function can be

extended to functions in LZ((0, T) x D, C((0, 1) x Y)) which are periodic with
respect to T and y with the period being 1 and Y respectively (see [4] for a discussion
in the case of time-independent functions). Therefore to derive (2.1), we only need
a to belong to L2((0, T) x D,C((0,1) x Y)). However, to prove the regularity of
ug and u that are required for the convergence rate of the sparse tensor product FE
method developed ahead, we need more regularity for a.

Remark 2.8 For the case where k < 2, u1 depends on t but t only plays the role of a
parameter in the multiscale homogenized equation. The derivative ‘)d L is not present.
For the case k > 2, u1 no longer depends on 7. The problem is equivalent to that of
the multiscale coefficient fY a(t, x, t, y)dt which is independent of . Details can
be found in [5].

3 Finite element approximations

In this section, we establish the convergence of the Crank-Nicolson scheme for solving
Eq. 2.1. We first consider convergence for general finite element spaces. We then con-
sider the case of full tensor product and sparse tensor product FE approximations for
ui.

3.1 General finite element approximation

We denote by V) the space L2(D x (0, 1), V). Let VE C V and VI € L*(D x
O, D, ve)N L*(D, H#((O, 1), V;;)) be finite element spaces. Let M be an integer.
Let At = T /M. We consider the time sequence 0 =7y < ] < ... < tyy = T where
tn = mAt. Let gL € VL be an approximation of g. Let tj,11/2 = ty, + At/2. We
consider the problem: Find Up , € VL, Uim € VL form =1,..., M so that

Uo.m+1 = Uom U0m // 3U1m+1+U1m 6 drdx
At Y

// /”‘(fm+1/2 X, T, y)( om T 0’"“+Vyw>

- (Vxdpo + Vyp1)dydrdx = /D S tmt172, X)o(x)dx, (3.1)
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forall ¢9 € VL and ¢y € VIL. Let ugm = uo(ty) and uy,, = ui(ty). Let 2o, =
uo.m —Uo,m, 21,m = u1,m — U1,m. For asequence {w,,} wherem =0, 1, ..., M such
as {uo,m}, {1,m}, {zo.m} and {21, }, we denote by

1
Wo,m+1/2 = E(wo,m + wo,m+1)-
We then have the following result.

Proposition 3.1 Problem (3.1) has a unique solution.

Proof Let B be the Gram matrix of the basis functions of V! in the inner product
of H. Let M be the matrix describing the interaction of the basis functions of VlL
with themselves in the bilinear form representing the second term on the left hand
side of (3.1). Let A be the matrix describing the interaction of the basis functions
of VL x V[ in the bilinear form representing the third term on the left hand side
of (3.1). Let Fy,, 41,2 be the vector representing the interaction of f (#,,+1/2) with the
basis functions of V% in the linear form of the right hand side in (3.1). Let €o.m
be the coordinate vector of Uy, in the linear expansion with respect to the basis
functions of VL. Let ¢1,, be the coordinate vector of Uj ,, in the linear expansion
with respect to the basis functions of VIL. Let ¢, be the coordinate vector of the
expansion of (Ug ., U1,m) with respect to the basis functions of VX x V[, ie. ¢, =
(co.m, €1,m). Let dg be the coordinate vector of ¢ in the expansion with respect to
the basis functions of V. Let d; be the coordinate vector of ¢; in the basis functions
of VIL. Let d be the coordinate vector of (¢, ¢1) in the expansion with respect to the
basis functions of VX x V[, i.e. d = (do, d;). Problem (3.1) can be written as

1 1 1

EBCO,m-H ~do + EMcl,m+1 -dy + EAcm—H d=Fpyi1/2-do
1 1 1
— EBCo,m ~d0 — EMCl’m ~d] — EACm -d. (3.2)

We denote by A : RAmVE+dimVE  pdimVE+dimVE pe the bilinear form
Ale, d) 1B d+1M d+1A d
c,d) = —Bcy - —Mc; - —Ac-d.
N’ 0 - 4o ) 1 1 )

Let ¥;(x, 7, y) and ¥ (x, T, y) be two basis functions in VlL. We have that

Loy
M,’j = a—lﬁjdydrdx.
pJo Jy 0T

Due to the periodicity of v; and v; with respect to T, we have

|
0

M;; +Mji=// /—3 (Yiyj)dydrdx =0
DJo Jy 0T
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: L
so M;; = —M;. Thus for any vector ¢| € RIMV Me; - ¢; = 0. Hence for ¢ =
: L 3 L : L : L
(co, €1) € RIMVIHIMVE where ¢p € REMV™ apnd ¢; € RIMY

1 1
A(e,¢) = —Bcey - ¢g + =Ac - c.
(c,0 A7 BCo " o + 3
As B is the Gram matrix, and A is a positive definite matrix due to (1.1), A(c, ¢) >
c|c|? where the constant ¢ is independent of c; here | - | denotes the Euclidean norm in
RAimVE+dimVy Therefore, the bilinear form A is coercive. It is also bounded. Thus,
Eqg. 3.2 has a unique solution. O

Theorem 3.2 Assume that ug € C3([0, T1, H) N C2([0,T1, V), u; € C%(0, T,
L*(D x (0, 1), Vi) and 34 € C2([0, T1, L*(D x (0, 1), V})). Then

M—1
lzo.a 13 + A Y Uzoms1/213 + lz1mt1/213,)
m=0
M—1 2
<cA - 2 - 2 0 -
< cAt Z (o —t0)mt12ly +1 @1 =) mr1/21ly, + E(”l UDm+1/2
m=0 Vl/
M—-1 ~ ~
n Z (o — ue)m+1/2 — (U0 — UQ)m—1/2 2
At
m=1 H
+ max (o — i) m—1201% + g — g% + c(an)* 3.3)

yeens

for all {iiom, m =0, ..., M} C VL and (i1, m=1,...,M} c VL.
We prove this theorem in Appendix.
3.2 Full tensor finite element

To approximate u (1) € L*(D, L*((0, 1), V4)) (\ L*(D, H,} (0, 1), V;))) = L*(D)®
L*0,)® Ve L*(D) ® H# (0, 1) ® V,;, we use tensor product finite elements. Let
h; = 27!. Assuming that D is a polygonal domain in R?, we divide the domain D
into a hierarchy of sets of triangular simplices {7"};>0. Each simplex in the set 7'
of mesh size O(h;) is obtained by dividing each simplex in 77! into 4 congruent
triangles when d = 2 and 8 tedrahedra when d = 3. For each simplex T € 77,
we denote by P!(T') the set of linear polynomials in 7. Similarly, we divide Y into
a hierarchy {7;’}120 of sets of simplices with mesh size O (h;) which are distributed
periodically. For each I = 1,2, ..., the interval (0, 1) for the variable t is divided
into sets Trl# of 2 intervals of length 2=/, We define the following FE spaces:

vi= (¢ € HOI(D), ¢ € PI(T)VT c 7—[};
Vi={p € H{(Y), ¢ e PI(TIVT € Ty};
Vig=1{9p € Hy(0.1), ¢ € PAT)V T € T}y).
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We then have the following approximation properties
m{/ lw—w ||H ) = chilwllg2py, Yw € HO(D) N H*(D);
wle

ln[‘; ”w — w ”LZ(D) < Ch[”w”Hl(D), Vw S H (D)
wle

w}Ieﬂ\:/[ lw—w ”H#l(y) = Chl”'””[{&(y)v Vwe H# (Y);

inf |lw—w ||L2(Y) < ch1||w||H vy Yw e H#(Y)
weV

inf |lw— wl”H#((()’])) = Chl”w”[-[#%(((),]))y Ywe H#Z((O’ 1);

wleVl,

inf - Jlw —w'll 20,1 = chilwlgo,ryy. Yw € Hy (0. 1)

wleVl,
For approximating u1(¢) we define the full tensor product FE space as
vE=vi@ VLoVt
Let H be the regularity space H'(D, H}((0, 1), H}(Y))) N L*(D, H((0, 1),
H}(Y))) N L*(D, H}((0, 1), H3(Y))) with the norm
lwliz=1wl g o, i .0, 12 oy TN 20, 120,10, 1L 0o HIW 200 1) (0.1, 20

We then have the following approximation properties.

Proposition 3.3 Forallw € H

inf Jlw - will 20,11 0.1, v < hrllwllag.
w GV

The proof of this proposition is quite standard. It is similar to the proof for similar
results in Bungartz and Griebel [7] and Hoang and Schwab [20]. We refer to these
references for details. We denote the solution of the Crank-Nicolson scheme (3.1)

when VlL = VlL as Uo,m and l_/Lm respectively, and zo, p, 20,m+1/2 and 21 ;41,2 as
20,M» 20,m+1/2 and Z1 ;u41/2. We therefore have the following result.

Theorem 3.4 Assume that ug € C3([0, T1, HYNC2([0, T, V)NC([0, T1, HX(D)),
up € C2([0, T1, Vi) N C([0, T1, H). If we choose the initial condition g* such that
g — g"llv < chr, then

M-1
IZo,m I3 + At Z UZoms1207 + 121 m+1/2||V1) < c((AD* +h3). (3.4)

m=0

Proof We estimate the right hand side of (3.3). Asu; € C([0, T'], H), we can choose
Uim € VIL form =1, ..., M such that

1 — @D)m+1720 L2011 0.1y, viy) < hrUlur @)l + llur @) ll3) < chr,
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where ¢ does not depend on ¢. Therefore

<chg.
Vi

@1 — @) ms12llvy +

0 -
E(lfil — U m+1/2

As ug € C([0, T1, H*(D)) c C([0, T1, C(D)) (we consider d = 1,2, 3), we can
define the interpolation 1”(u¢)(t) € VL whose value at each node equals the value
of ug(t). We note that

luo(t) = I* o)) lv < chrlluo®)|l g2(py < chr.
Choosing iig(t) = I (uo)(t), we have
(o — uo)m+1/2llv < chi

where ¢ does not depend on m. For the other terms in the right hand side of (3.3), we
have

M—1 - -
(o — u0)m+1/2 — (Mo — UQ)m—1/2 2
M—1 ~ ~
- Z 1 < (o — i) m+1 — (o — tio)m ||
2 At -
(o — 0)m — (o — iiQ)m—1 |* )
+ .
At °
We have _
dug _ duol - _ oy, |20
Bt 8t H 8t Hl(D)
We estimate this using the procedure of [12]
- - 2 1 ~ 2
(o — u)m+1 — (Mo — U)m _ /("”r VAL (ug — dip) 0dt| (an=2
At H mAt d "
2
m+DAL 80 — i
< / Yo = u0) 1 ) (an2
mAt ot H
2
(m+1)At 9
< ch? / 200 dr) (an
mAt at HI(D)
(m+1)At P 2
< ch? / U0 4y dr | (an~".
mAt ot H(D)
From this, we deduce that
M—1 - ~ 2
At Z (o — u0)m+1/2 — (Mo — U0)m—1/2 <o,
m=1
We then get the conclusion. O
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3.3 Sparse tensor finite elements

To define the sparse tensor FE spaces, we consider the following orthogonal
projections. Let

P L*(D) — V!, Pl H{((0,1)) - V., PL:H}(Y)— V]

be the orthogonal projections with respect to the inner products of L*(D), H# (0, 1))
and H# (Y) respectively. We then define the following detail spaces

w! = (P - PIEYVI W, = (P, — Pl#l)v’#, Wi = (Pl — PV,
with the convention that P~! = 0, P #l =0, and P, " = 0. We note that
L 1yl l
=@W, r#Z@ #, V#—@W#»
0<I<L 0<I<L 0<I<L

with respect to the norms of L3(D), H#l((O, 1)) and H# (Y) respectively. The full
tensor finite element spaces are

Lo I I b
Vi @ WeQWLRW
0=<lo.l1,b<L
We define the sparse tensor product FE spaces as

vi= @D wh@wiLQwr

0<lp+Il1+<L

To quantlfy the approximation of #; using the spaces V1 , we define the regularity
spaces # that contains functions w € L%(D, H (0, 1), H (Y))) so that

glaol gar gleal

o 2
35 Brf‘ 8y0‘2w e L°(Dx (0,1) xY),

for all ape Ng so that |ag] < 1,1 € {0, 1,2} and oz € Ng so that |ap| < 2. In other

words, H = H! (D, H,f((O, 1), H#%(Y))). We then have the following approximation
result.

Proposition 3.5 Assume that w € L. Then

inf JJw—w ||L2(D HE(0,1),HL (V) = = CLhL”w”H
wLEVL

The proof of this proposition is similar to those for sparse tensor product FE
approximations in [7] and [20]. We refer to these references for details. We denote
the solution of the Crank-Nicolson scheme in (3.1) using the sparse tensor product
FE space V]L as Uo,m and l?l,m; and denote by zo, s, 20,m+1/2 and 21, ;m+1/2 as 20.M>
Z0,m+1/2 and Z1 41,2 respectively. We then have
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Theorem 3.6 Assume that ug € Cf([O, T1, H)NC%([0, T], V)NCL([0, T1, HX(D)),
up € C2([0, T1, V1) N C([0, T1, H). If we choose the initial condition g% such that
lg — g%llv < cLhy. Then

M—1
1200115 + At D~ (zomsr2lly + 1zemir2ll},) < c(CAD* + L?h3). (3.9

m=0

The proof is similar to that for Theorem 3.4

Remark 3.7 The dimension of the full tensor product FE space V_IL is 0224+,
The dimension of the sparse tensor product FE space VIL is O (L?27%) which is much

less than the dimension of the full tensor product FE spaces VlL.

Remark 3.8 Another way to construct the sparse tensor product FE spaces is to use
the equivalent norms of wavelet basis functions. We assume that:

(i) Foreach j € N4, there exists a set I/ C Ng and a set of basis functions ¢/*,
k € 17, such that vl = span {¢jk Hjloo < l}. There are constants ¢ > ¢ >
0 which are independent of / such that if ¢ = Z\jb@sl,ken ¢«ikcjk € V! then:

2 2 2
Y =gl s Y e (3.6)
lloo<! ljloo<!
kel’ kel’

(i) For each j € Ny, there exists a set I({ C Ny and a set of basis functions ¢ék,
k € I({, such that Vrl# = span{¢ék : |jloo < l}. There are constants c4 > ¢3 >
0 which are independent of / such that if ¢ = leloofl,kel({ qﬁékcjk € VTI#, then

2 2 2
3 D G =Ml S D e (3.7)
ljloo <l 1iloo <l
kely kel

(iii) For each j € N¢, there exists a set [ 1] C Ng and a set of basis functions
¢'1’k € H# (Y), k € I, such that Vﬁ{ = span{qbfk . |j| < 1}. There are constants
¢6 > ¢5 > 0 which are independent of / such thatif ¢ = mesl’kellj ¢{kcjk,

then
2 2 2
& Z Cjk =< ”¢”H#}(Y) =< ¢C6 Z Cjk~ (3.8)
ljloo<! ljloo=l
ker{ kel

Using the norm equivalences, we define
j . ik .
W' = span{¢’* : |jloo = 1), Wy = span{ey : |jlee =1},
ik .
Wy = span{g]” : | jloo = 1}.

Example: (i) We construct a basis for L2(0, 1) that satisfies (3.6) as follows. We
first take three continuous piecewise linear functions for level I = 0: 1//? obtains

@ Springer



High dimensional finite elements for time-space multiscale parabolic... 1305

values (1, 0) at (0, 1/2) andis Oin (1/2, 1), 1//3 obtains values (0, 1, 0) at (0, 1/2, 1),
and ¢§) obtains values (0, 1) at (1/2, 1) and is 0 in (0, 1/2). The basis functions for
other levels are constructed from the function i that takes values (0, —1, 2, —1, 0)
at (0, 1/2,1,3/2,2), the left boundary function Wef’ taking values (—2, 2, —1, 0) at
(0,1/2,1,3/2), and the right boundary function wrigh’ taking values (0, —1, 2, —2)
at (1/2,1,3/2,2). Forlevels > 1, I, = {1,2, ..., 21}, the wavelet basis functions
are defined as ¥l (x) = 27/2y!e/12lx), yl(x) = 2712y (2'x — k + 3/2) for k =
2,2l —Tand yl, =271/ 2yrisht (2lx — 21 1 2),

(i) For Y = (0, 1), we construct a hierarchical basis for H#l(Y )/R that satisfies
(3.7) from those in (i). For level 0, we exclude w?, wé) . At other levels, the func-
tions ¥/¢/* and """ are replaced by the continuous piecewise linear functions that
take values (0, 2, —1,0) at (0, 1/2, 1, 3/2) and values (0, —1, 2, 0) at (1/2, 1,3/2, 2)
respectively.

For the d dimensional cube (0, 1)¢, the basis functions can be constructed by
taking the tensor products of the basis functions in (0, 1). They satisfy the norm
equivalence after appropriate scaling, see [18]. Examples on wavelet basis functions
on regular triangular mesh can be found in, e.g., Bieri et al. [6].

Remark 3.9 We can construct the sparse tensor product by using the hierarchies {77},
{TTI#} and {7;1}. We denote by S’ the new nodes belonging to the set of simplices 77
but not the set of simplices 7¢~!. We let W; be the set of basis functions in V! which
equals 1 at one of the nodes of S’ and equals 0 at other nodes. We construct the
spaces Wi# and Wé similarly. The estimate for the sparse tensor product FE spaces

still holds.

4 Numerical correctors

We employ the FE solutions for the multiscale homogenized problems (2.1) to
construct numerical correctors in this section. We first establish the homogenized
equation from (2.1). Letting ¢9 = 0, we have

1
// <%(t,x,r,-),¢1(x,r,-)> dtdx
D JO at Hy

1
+/ //a(t,x,r,y)(Vuo(t,x)—l—Vyul(t,x,r,y))-qubl(x,r,y)dydrdx:O
pJo Jy

V1 € L2(D x (0, 1), Vi). We therefore deduce that the solution u| can be written as
au

ui(t,x, 7,y) = 8—;(r,x)Ni(t,x, 7, y) (4.1)
1

where Ni (¢, x, 7, y) € L2((0, T) x D x (0, 1), Vy) (Y L*((0, T) x D, H} ((0, 1), V;}))
is the unique solution of the problem
AN!

- Vy - (a(e' + VyN')) = 0. 4.2)
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Here ¢’ is the ith vector of the standard basis in R?. The existence of a unique
solution of (4.2) is proved in Lions and Magenes [24] Chapter 3 Section 6.2. Due

to the periodicity with respect to y, we have fY dy 0 so fixing x and ¢,
for all r, fy Nidy = c(t,x). Choosing the solutlon as N' — ¢(t, x), we have
fY Ni(t,x, 1, y)dy = 0. Then letting ¢y = 0 in (2.1) we have

9 1
<$(’7 '),¢o(~)> + /f fa(t,x,r, y)(Vuo(t, x)
t H pJo Jy

+ Vyui(t, x, 7, y) - Voo(x)dydrdx = / [, x)po(x)dx
D

Y ¢o € V. Using (4.1), we have
1
u ou
/ /a,-k<t,x,r,y)(—°(r,x)+—1<t,x,r, Wdydr
0

/ /a,k(r N, y)( x50 )—(r x. 7, y)dydz

Xj

dug
=f /aik(t,x,r, y)(5jk+—(t,x,f, y)—(, x)dydr.
o Jy Yk 0x;
We therefore have

1
/ / / a(t,x,t,y)(Vuo(t, x) + Vyui(t, x, 1, y)) - Voo(x)dydrdx

-/ ( [ [ e xm e (r %t y))dydr) 0,0 22 (.

Thus the function ug satisfies the homogenized equation

o _ g @’ Vug) = f, 4.3)

at
where the homogenized coefficient a° is defined as

ap(t, x) = / fa,k(r X, T, y)(,k+ (t X, T, y)) dydr. (4.5

As shown in [5], u® — ug in L2((0, T), V). The homogenized Eq. 4.3 represents
(1.2) macroscopically. It is well-posed as the coefficient a® in (4.5) is positively
definite. Indeed, from (4.2), we have

L ran/ ;
—(t, x, T, y)N' (¢, x, T, y)dydt
0

oN'
a;k(txry)( k—i— )—ddt—O
/ / ! ke ) oy
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Thus

1 aNJ 8N’
0
0. x) = S 4+ —— ; —Ndd
aij (1. %) /o/;alk(JkJrayk)( 3y1) // yar.

Let & be a vector in RY. We have

ao(t X)EE = fI/a (5 +%€> (f _,_a_jvig.)d dt
ij\t isj = o Ylk k 3)’kj 1 Byzl y

From the uniform ellipticity of a, we have

! INJ INi 2
/O fy alk(sk+7@>(&+a—yla)dydr>cZ / / (sk+— ) dydr
“epieek [ (e) o
262513
k=1

due to the periodicity with respect to y of N;. We further have

L[ ONT el aNt )
; Ni .
: z / (5o o)

r#/

Due to the periodicity of N’, N/ with respect to 7, we have

f/(aNJ N' aN NJ)dyd //a(Nle)dd =0.

Therefore
| .
oN/ .
/ /—N’dydr$i§j=0.
o Jy ot

We thus get the uniform coercivity of a” with respect to ¢ and x.

We note that u® only converges weakly to ug in LZ((O, T),V) when ¢ — 0.
We now derive a corrector result i.e. a computable function that approximates u® in
the norm of L2((0, T), V). We first consider the operator 7¢ : L'((0, T) x D) —
L'((0,T) x D x (0,1) x Y) as

7'8(<I>)=CI>(52 [é} + &1, s[ ]+8y) (4.6)
1

@ Springer



1308 W.C.Tan, V.H. Hoang

where [-]; denotes the integer part of a real number, and [-]y denotes the “interger
part” with respect to the unit cube ¥ of a vector in R?. Let D® be the 2
neighbourhood of D. We have

T T+2e 1
/ / ®(t, x)dxdt = f / / / TE(®)(, x, T, y)dydrdxdt; (4.7)
0 D —2¢ D¢ JO Y

® is extended by 0 outside (0, T) x D (see, e.g., [11]). We now show that if {w®},
time-space multiscale converges to wy in L2((0, T) x D x (0, 1) x Y) then

TE(wf) — wgin L2((0, T) x D x (0, 1) x Y).

Let {w®}, be a bounded sequence in L%((0,T) x D) that time-space multiscale
converges to w’. We note that (7 (w®))> = T ((w®)?). We have from (4.7)

T+2e

1
/ / /Te(wg)(t,x,r,y)zdydrdxdt
—2¢ eJo JY

T+2e 1 T
= f / /T’s((wg)z)(t,x,r, y)dydrdxdt:f /ws(t,x)zdxdt.
—2¢ D¢ JO Y 0 D

Thus 7 (w?) is bounded in L2((0, T) x D x (0, 1) x Y) so we can extract a subse-
quence that weakly converges. Let ¥/ (¢, x, T, ¥) be a smooth function thatis (0, 1) x Y
periodic with respect to T and y. We have

(T . rox
lim w(t, x)Y(t, x, — —)dxdt
0 JD &s €

e—0

T 1
:/ / / / wolt, x, T, V)V (t, x, T, y)dydtdxdt.
0o JpJo Jy

On the other hand, from (4.7), we have
T
t
| [ wrenwer 5 Davar
0 JD e &

T+2e 1 t X
[ L freme 2] e s
—2¢ JpeJo Jy & 1 &

where we have used the periodicity of ¥. Since ¥ is smooth in (0, T)x D x (0, 1) x Y,
we have

‘w(sz |:8t—2]1 +£2r, & [E] +ey,T,y) — ¥, x, T, y)) <ce

where c is independent of ¢, x, T and y. Therefore

r rox
lim / / w’(t, )P (1, x, —, —)dxdt
0 D I &

e—>0
T 1
= lim/ / / /Te(wa)Ip(t,x,r, y)dydrtdxdt,
e=>0Jo JpJo Jy
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T 1
lim/ // /Ts(wg)‘”(f’x»f,y)dydrdxd;
e—0 0 pJo Y
T 1
2/ // /wO(t’x’Ta)’)w(t,x,r,y)dydrdxdt.
0 D Jo Y

As the space of smooth functions which are (0, 1) x ¥ periodic with respect to T and
y is dence in L2((0, T) x (0, 1) x D x Y), we deduce that the weak limit of 7% (w?®)
in L2((0, T) x (0, 1) x D x Y) is wo.

To establish the numerical correctors, we define the operator U¢ : L! (0, T) x
D x (0,1) xY) = L1((0,T) x D) as

1
e _ 2 L 2 X L X
L{(q>)_/0 /ch(g Lzlﬂ 9,8[8]+82,{82}],{8}>dzd9 .8)

where [-]; and {-}; denote the integer and the fractional parts of a real number, and
[-] and {-} denote the “integer” and the “fractional” part with respect to the unit cube
Y of a vector in R%. Let D?* be the 2¢ neighbourhood of D. We have that

T+2¢2 T 1
/ / UE(DP)(t, x) = / / / / o(t, x, T, y)dydrdxdt “4.9)
D2 o JpJo Jy

forall ® € L! (0, T) x D x (0,1) x Y). The proof of these facts can be found in
[11]. We first establish the following result.

ie.

Proposition 4.1 For the solution of Eq. 2.1
lim |Vu® — Vug — U (Vyu)ll 12¢0.7yxp) = 0

e—>0

Proof First we note that as Vu® sms Vug + Vyuy, T#(Vu®) = Vug + Vyuy in
L?((0,T) x D x (0,1) x Y). Let

/T<au6 dug >
I = —, U — U
0 at
/ // /Ts(a(t x, 2,—))(7'8(Vu8)—(Vuo+V ur))

(T*(Vu®) — (Vug + Vyuy))dydrdxdt.

From (1.2), (2.1), and the fact that 7¢(a(t, x, 2, =) — a(t, x, T, y) pointwise, we
have

T 5 T
a ad t
lim / = lim L, uf) — ﬂ, uo dt—i—/ f a(t,x, —, f)Vus'Vugdxdt
e—0 e—0Jo ot H at H 0 JD gc &

T 1
—/ f//a(t,x,f,y)(Vuo+Vyu1)'(Vuo+Vyu1)dydfdxdt

—Slgr})//fusdx /T/Dfuodx
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due to u® — ug in L>((0, T), V) when ¢ — 0. As u®(0) = uo(0) = g, using the
coercivity of a, we have

Elg% [ (T) — uo(T) | + 1T (Vu®) = (Vuo + Vyu) l 12¢0.7yx px0.1)x¥) = 0-

From (4.8), we have (¢ (D)(t, x))? < UE(D?)(z, x). From (4.9), we have

3 2 € hH2 2
”Z/[ (CD)”LZ((O,T)XD) = ”u ((D )”LI((O’T)xD)) = “q)”Lz((O,T)XDX(O,l)XY)'
We therefore have

145 (T*(Vu®) — (Vuo + Vyu)ll 120.7yx b
< IT*(Vu®) = (Vuo + Vyu)ll 120, 7yx Dx0.1)xy) —> O

when ¢ — 0. Using U (T4 (Vu®)) = Vu®, we get the conclusion. O

For the full tensor product FE approximation, we define the functions Uy :
(0,T) — Vand U; : (0, T) — L*(D x (0, 1), Vi) as

- 1 - _ - 1 - _
UO(t) = E(UO,m + UO,m—H)v Ul(t) = E(Ul,m + Ul,m—H) fort e [tm» t1n+1)-
We then have the following approximation

Theorem 4.2 Assume that the hypothesis of Theorem 3.4 hold. Then for the solution
of the numerical scheme (3.1) using the full tensor product FEs, we have
lim |Vu® — VUy — U (V,

L—oo
e—>0

O L2.1)xp) = 0

i.e. forall 5 > 0 we can find Ly > 0 and eg > 0 such that if L > Lo and ¢ < &g

|Vu® — VU, - us(v)’(l'_,]))“Lz((O,T)xD) <3d.
Proof We note that
T _ ) M-l Gm+1)Ar _ )
f IVuo(t) = VO 0)lI3dt = ) IVuo(t) = VUo(0)l|3dt
0 mAt
m=0

M—1
= 2 (Ar1Vuolmt1/2) = Voltmsr ) Iy + (A1),
m=0

where we have used the midpoint approximation for the integral. As ug €
C2([0, T, V), the constant c is independent of m. We note that

< c(Ar)?
H

1
H E(VMO(Im) + Vuo(tm+1)) — Vuo(tn+1/2)

@ Springer



High dimensional finite elements for time-space multiscale parabolic... 1311

Therefore

T M—1
/ 1Vuo®) =V T }dr = Y (At Vutoms/2 = Vlom1 ) +e(an?)
0 m=0

M—1
= A1 Y IVZomrly + 0(ADY)

m=0
2 2
< (A2 + 1)),
Similarly we have
M—1
_ 2
ALY 1Yy Z0m+120 72 0,1y )

m=0

+0((AD?) < c((AD? +13).
Ue (®2)(t, x). Therefore, from (4.9),

IA

T
3 2
/(\) ”Vyul(t) - VyUl(t)”LZ(DX(O’l)Xy)dt

From (4.8), we have that (L& (®)(z, x))?
we have

A

2
||u£(©)||L2((0,T)XD) < U (@ Wrio.myxpy = M Pl 20, 1yxDx0,1)x7)-
From this, we have
I24° (Vyur=Vy UD 20,1y x 0y < IVy1=VyUtll 20,1y x Dx 0.1y ) < C(At+hL).
From this, we have
”VME—VU() — Z/{S(Vy[]])”LZ((O’T)XD) < ”VL{S—VM() — U‘E(Vyu1)I|Lz((O,T)XD)
+IVuo—=VUoll20,1)x by + IU° (Vyur) = U (VyUDIl 20,7yx p) = O

when L — oo and ¢ — 0. O]

For the sparse tensor product approximations, we define

A | BN A A 1 - A
UO(t) = E(UO,m + UO,m—H)v Ul(t) = E(Ul,m + Ul,m—H) fort € [tm, tm+1)-
We have:

Theorem 4.3 Assume that the hypothesis of Theorem 3.6 hold. Then for the solution
of the numerical scheme (3.1) using the sparse tensor product FEs, we have

lim HVu"3 — VU —UE(Vy(Ul))‘ =
L2((0,T)x D)

L—o0
e—0

The proof of this theorem is similar to that for Theorem 4.2.

Remark 4.4 Geng and Shen [17] deduce a corrector with a convergence rate in terms
of the microscopic scale ¢ in the H'(D) norm for the solution u®. This corrector
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involves functions other than u¢ and u, which cannot be found from problem (2.1).
The corrector of [17] involves a parabolic smoothness operator for the solution u.
We are not aware of a simple corrector with an explicit homogenization rate of con-
vergence in terms of & similar to that for elliptic problems, i.e., a rate of convergence
for the limit in Proposition 4.1 in terms of ¢. However, from Theorem 1.1 of [17], if
ug € C([0, T1, H' (D)), then

llu® — MOHLZ((O,T)XD) =< ce.
Using this, we will have
llu® — UO“LZ((O,T)XD) <cle+hr)
for the solution of the full tensor product FE approximation, and
llu® — 00||L2((0,T)><D) <c(e+ Lhr)

for the solution of the sparse tensor product FE approximation.

5 Regularity

We show that the regularity required on the solution ug and u; of the multiscale
homogenized problem (2.1) for obtaining the full and sparse tensor product FE errors
and for obtaining the corrector hold under regularity conditions for the coefficients
and the initial condition. We have the following results.

Proposition 5.1 Assume that a € C3([0,T],C3(D,C([0,T] x Y))), f €
a2
H3((0,T), V'), f(0) € H}(D), 2(0) € H}(D), ©4(0) € H, and g € H}(D),

rre
then ug € C3([0, T1, H) N C2([0, T, V). Further, if f € H*>((0, T), H) and if the
domain D is convex, then ug € C'([0, T1, HZ(D)).

Proof Asa € C3([0,T], C3(D, C([0, T] x Y))), from (4.5) we deduce that a° €
C3([O, T1, c3 (D)). From the condition, we have

3 dug 0o duo\  Af 3a® ) /
—_ Y _y. V—|=24+V.|—V L°((0,T), V"),
o (a at) o (a; uo) € L2, 7, V')

d
Z00) = £O) + V- @Vg) € H,
$0 (’% € L2((0,T), V)N C([0, T1, H). Therefore

V- (Vo) = f - % € C([0, T, H)
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so ug € C([0, T1, H2(D)). We then have

3 9%ug 0w 9%uo 32 f 924" 3a® _ dug
—v-(dVv = —2 4+V.(—V W[ —v—
o a2 (“ a2 ) T B2 VM)t ot | o1

e L*(0,T), V",

8%ug of 9a°
W(O) —(0)+V (W(O)Vé.’)

4v. (aOV(f(O) V. (aOVg))> €H.

Arguing as for 3”;’, we deduce that a ”0 e L%2((0,T),V)NC([0,T], H) and 3“0 €
([0, T1, H*(D)). Continuing this process we have

9 33 33 83 33 0 82 0 9
Y _v.a'v ”0):—f+v< a wo>+3v< vﬂ>

ar o3 ot3 at3 ot3 otz ot
da® _ 3%u 9
3V —V L=((0,T), V),
+ (81‘ 3t2>€ (0, 1), V)
83ug 3% f oo (Of 3a°
0)=—=0)+V-("V- [ =0)+V- | —(O)V
az3() 8t2()+ <a (at()+ <8t() g)

2.0
+V. (aOV(f(0)+V~<aOVg>)))> +V. (8—<0>Vg>
da’ 0
+2V~(?V(f(0)+v(a Vg)))eH.

Therefore 3 L € C(0,T], H) N L2([0,T1, V). As ug € H3((0, T), V), we deduce
that ug € CZ([O T, V). We note that

2 3 2.0
v. <a°<t>v ") = f—mw-(a—“wo)

912 ar3 912
3a 9
+2v. (%v%) e C([0, T, H).
Therefore for all 7 € [0, 71, £ (1) € H2(D) with
9%ug 32 f a3uo 82
Fo| ze(|Fr0] +|550) +|F20] + ol

where the constant ¢ depends only on the domain D and the Lipschitz norm of a®(r)
which is uniform for all ¢ (see [19] Theorems 3.1.3.1 and 3.2.1.2). Therefore ug €
H*((0,T), H*(D)) C C'([0, T1, H*(D)). O

For the regularity of N?, we have the following result.

Proposition 5.2 Assume that a € C*([0,1] x D, C3([0,1], C(Y))), then N' €
Cl([0, 11 x D, H*((0, 1), H (Y))).
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1314 W.C.Tan, V.H. Hoang

Proof We extend N’ for all 7 € (0,00) periodically. It then belongs to
loc((O 00), Vi). Fixing ¢ and x, we consider problem

i

% -V, @V, N = V,y - (ae'), 5.1
with the initial condition at 7;. From Theorem 5 of Section 7.1 of Evans [16] we
deduce that if N' (1) € Vg, then N* € H'((t1, ®), Hy). Indeed the theorem of [16] is
for the Dirichlet boundary condition, but the it remains valid for the periodic bound-
ary condition. As N i IOC((O 00), V&) we can choose a value 7, without loss of
generality we let it be 71, so that N'(t;) € Vi which implies N’ € H'((11, ©), Hy).
Therefore

. . 9N! )
—Vy - (@VyN') =V, - (ae') — - € L*((11, ©), Hy). (5.2)

Thus from elliptic regularity, we deduce that N e L*(z1, ©), Hﬁ(Y)). We now
consider the equation

9 ON! IN! da da .
81’ a‘[ - V)’ . <aVy¥> = Vy (3-,; [> +V <EV,VNI> (S Lz((fl, @), V#;)
(5.3)

As N' € Cioe([0, 00), H) is uniquely determined, without loss of generality, we
assume that N'(1]) € H#%(Y), so Eq. 5.3 with the compatibility initial condition at

71 implies that 8Ni € L2((rl ®), Vi) N C([t1, ®], Hy). Without loss of general-
ity, we assume that (7:1) e V# By the same argument as above, we deduce that

""afj e H' (11, ©), H#) so LN e 12((1y, @) Hy). We then deduce from (5.3) that

% € LZ((11,®),H§(Y)). We note that 2 e C([0, T, Hy) is uniquely deter-

mined. Without loss of generality, we assume that 33—1\;1(11) € Hé(Y ). We consider
equation

d 3*N! 3>N‘ d%a Fa_
9t 9t —Vy-<aVy 972 >:Vy'(ar >+V (812VyN>

da _ AN' 2 ,
+2Vy 97 V 8_ eL ((le ®)a V#)’ (54)

with the compatible initial condition at 7| derived from (5.3). Arguing sim-

ilarly, we have % € HY(t1,©), Hy). Thus from (5.4), we deduce that

PN e [2((1, ©), HZ(Y)) ie N' € H?((r1,©), H}(Y)). As a is twice con-

at2 .
tinuously differentiable with respect to x and 7, we have that N' € C%([0, T x
D, H*((0, 1), HF (V). O

Propositions 5.1 and 5.2 and (4.1) imply that u; € Cc%([0, 11, Vi) n c([o, T1, 7:1,).
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6 Numerical results

We show some numerical examples in this section to illustrate the theoretical results
on the convergence of the scheme (3.1).

For a one dimensional example, we consider the domain D = (0, 1). We con-
sider the coefficient a(z, x, t, y) = 3 4+ cosQmy) + cos?(2 7). The initial condition
u®(0) = 0. Equation 4.2 cannot be solved exactly. We solve it numerically using
fine mesh to compute the homogenized coefficient a° in (4.5). The reference solu-
tion u1 is computed numerically. The exact solution is chosen as ug = r2(x — x2).
With the homogenized coefficient a®(z, x) approximated numerically as a°
3.352429824667637, the function f = 2¢(x — x?) + 2a"*. For the sparse tensor
product FE approximation Uo m and U1 m» we plot the errors |lug — Uo mll HL((0.1))

and ||u; — Ul,mHLz(Dx(o,l),H;(Y)) in Figs. 1 and 2 respectively where At = 5 |'h1/2'|

at t = 1. The numerical results show that the errors are 0((At)2) + O(hr). When
these errors hold for all 7,,,, we get the errors estimate (3.5). This result supports the
theoretical finding. The factor L is not visible in these figures.

For a two dimensional example, we consider the case where the domain D =
(0, 1)x (0, 1). We choose a(t, x, T, y) = (3+sin(27ry’)+sin2(2nt))(3+sin(2ny”)+
sin”(2nt)) for y = (y,y”") € Y = (0, 1)2. The initial condition u®(0) =
Cell problem (4.2) is solved numerically with fine mesh from which the homoge-
nized coefficient a® = 11.863904995808440 is computed. We choose ug(t, x) =
2x'x"(1 — x')(1 — x"") for x = (x', x”"). The function f = 2¢(x’ —x'*)(x" — x"*) +

error

_3 L

10 107 10
meshsize

Fig.1 The error |lug — ljovm ”HOI (D) for 1 dimensional problem at t = 1
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error

-3 H H I S S S S |

10 107" 10
meshsize

Fig.2 The error |lu; — lA]Lm ”LZ(Dx(O,I),H#](Y)) for 1 dimensional problem at t = 1

2492 (x' —x’ 2y X —x" 2). The reference solution #1 is computed from the numerical
solution for N* and the solution uq. For t = 1, we plot the error |ug — Ug ||H0| (D)

and |lu; — ﬁlvm||L2(D><(0,1),H#1(Y)/]R) for the sparse tensor product FE solutions in
Figs. 3 and 4 respectively. The numerical results agree with the error estimate (3.5).
Although we only develop the theory for the case of one microscopic spatial scale,
our method is capable of treating the case of multiple spatial scales. For illustration,
we solve some limiting time-space multiscale homogenized equation established in
[21]. Holmbom et al. [21] consider the case of two microscopic spatial scales with

the coefficient
a® =a (t, X, )

where a = al(t, x, T, y1, y2) is Y-periodic with respect to y; and yp, and (0, 1)
periodic with respect to t. The multiscale convergence limit of u® are

o~
™ | =
| =

ts-ms
Vu® — Viug + Vyur + Vy,uo,

where u; € L*((0,T) x D, H{(Y)/R) and u» € L*((0,T) x D x Y, H}(Y)/R).
Holmbom et al. [21] establish the multiscale homogenized equation for k > 0 but the
most interesting critical cases where both 11 and u, depend on 7, and the derivatives
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error
-
o

10 H H R S S S R A | H H I S S S
-2

10 107 10°
meshsize

Fig.3 The error |luog — Uo,m I HY (D) for 2 dimensional problem at t = 1

-2

error
-
o
T

10 H H R S S S R A | H H I S S S
2

10 10 10°
meshsize

Fig.4 The error |lu; — Ul,m ||L2(DX(O’|)_H#1(Y)) for 2 dimensional problem at t = 1
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of these with respect to T appear in the equation occur when k = 2 and k = 3. When
k = 2, we have

1
<%(Z),¢o> +// <%(I,x,t,~),¢1> drdx
Jt H pJo aT H

1
+/f f/a(z,x,r,yl,m(vxuo(r,x)
D JO Y1 />

+Vyui(t, x, T, y1) + Vy,ua(t, x, T, y1, ¥2))
~(Vxgo(x) + Vy,01(x, T, y1) + Vy,¢2(x, T, y1, y2))dy2dy1dtdx

= / [, x)po(x)dx
D

Vo € Hy(D), ¢p1 € LA(Dx(0,1), H{(Y)/R), ¢2 € L2(Dx (0, 1) x Y, Hy (Y)/R),
with the initial condition uo(0) = g.
We choose the coefficient

a(t,x,t,y1,y2) = 3+ sin2ry;) + sin(2r 7)) (3 + sin(2wyz) + sin(2w 7)). (6.1)

We need to solve two separate cell problems with respect to y; and y;. In this case,
the cell problem for y; is identical to (4.2) and is solved numerically, where the cell
problem with respect to y, is the elliptic problem, i.e., without the derivative with
respect to T, and can be solved exactly. The homogenized coefficient is computed
numerically as a® = 8.500245683736688, We choose ug(t, x) = t2x(1 — x) so that
ft,x) =t(x—x2)+2a%>.In Figs. 5, 6 and 7, we plot the errors ||ug — Uoﬁm ||H(} (D)’

error
S
T

107 -
10 10
meshsize

Fig.5 The error |lug — Uo,m IIH(; (D) for 1 dimensional 3 spatial scales problem atr = 1 for k = 2
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error
-
o

10 H H R S S S R A |
-2

10 107 10°
meshsize

Fig.6 The error ||u; — Ul,m “Lz(Dx(O,l),H#l(Y)/]R) for 1 dimensional 3 spatial scales problem at ¢t = 1 for
k=2

error
-
o
T

10 i i i i i P ; i " i i i PR o
10 10° 10
meshsize

Fig.7 The error |juy — 02,,,1 HLz(Dx(o,l)xY.H,}(y)/R) for 1 dimensional 3 spatial scales problem at ¢ = 1
fork =2
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lur=Utmll 2px . 1), HL (V)/R)? and [lu2 —U2,m |l ;2 px o, DY, H} (¥)/R) for the sparse
tensor FE approximation respectively. The error agrees with the estimate O ((A1)%)+
O (h1) that we establish in this paper.

For k = 3, the time-space multiscale homogenized equation becomes:

9 F
<ﬂ<r),¢o> +/f <ﬂ(r,x,r,~),¢1> dvdx
Jt H pJo at Hy
1 9
+/ / /<£(I,x,f, yl")’ ¢2> dyld‘[d-x
pJo Jyr\ ot Hy
1
+// //a(r,x,r,yl,m(vxuo(r,x)
D JO Y1 /1>

+Vy1ul(t’ X, T, )’1) + VyQMZ(tv X, T, Y1, yZ))
< (Vxpo(x) + Vy d1(x, T, y1) + Vy,2(x, T, y1, y2))dy2dy1dtdx

= / [, x)po(x)dx
D

Vo € Hy(D), ¢1 € L*(Dx (0, 1), H{ (Y)/R), ¢2 € L*(D x (0, 1) x ¥, H{ (Y)/R),
with the initial condition uo(0) = g.

error
S
T

107 = .
10 10
meshsize

Fig.8 The error |lug — Uo,m ||H<}(D) for 1 dimensional 3 spatial scales problem atr = 1 for k = 3

@ Springer



High dimensional finite elements for time-space multiscale parabolic... 1321

error
-
o

10 H H R S S S R A | H H I S S S
-2

10 107" 10
meshsize

Fig.9 The error ||u; — Ul,m “Lz(Dx(O,l),H#l(Y)/]R) for 1 dimensional 3 spatial scales problem at ¢t = 1 for
k=3

error

i

10 107" 10
meshsize

Fig. 10 The error |uy — 02,,,,||L2(DX(O’1)XY’HJ(Y)/R) for 1 dimensional 3 spatial scales problem at t = 1
fork =3

@ Springer



1322 W.C.Tan, V.H. Hoang

We choose the coefficient a as in (6.1). We need to solve two cell problems in the
form (4.2) with respect to y; and y, respectively. They are solved numerically. The
numerical value of the homogenized coefficient is a® = 7.929947333234398. We
then choose ug = t2x(1 — x) SO that f(z,x) = 2f (x —x%) +2a%2. In Figs. 8,9 and
10, we plot the errors |ug — Ug,m ||H01(D), llug — UIJ"||L2(D><(O,1),H#1(Y)/]R)’ and |jup —

02,m|| L2(Dx(0.1)x Y, H} (Y)/R) respectively. The errors again agree with the estimate
O((A1)?) 4+ O(hy) that we establish in this paper.
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Appendix

We prove Theorem 3.2 in this appendix. Let po,, = Ait(uo(tmﬂ) — uo(ty)) —
B (tg1/2)s Som = 3 WUo(tms1) + uo(tm)) — uo(tms1/2), Cim = 31 (tmsr) +
u(tm)) — ui(tmy1y2) and &1, = 5 (3"1 (1) + 24 (tm)> %41 (ty41/2). Since

up € C3([0, T, H) N C%([0,T], V), uy € CZ<[0, T],LQ(D x (0,1), Vy)) and
1 e C2([0, T1, L2(D x (0, 1), V), we deduce that

lo0.mllL2(py < (AD? Zomlly < (A, [E1mlly, < c(An)?, and

161,m ”LZ(DX(O,l),Vé) < C(At)2

where the constant ¢ does not depend on m. From (2.1) and (3.1) considered at t =
tm+1,2 we deduce that

20, 1 — <0,
<M, ¢o> + (P0.m» o) 1

9 9
//< (Zl’”“+ Z“") ¢1> drdx—l—// (&1, é1) mydTdx
// /a(th/z)( ZOm+1+Z()m+VyZl,m+12+Zl,m)

1
+/ /0 / a(tms1/2) (Vxlo,m + VyCim) - (Vxgo + Vyd)dydrdx = 0.
D Y
(A.1)
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Consider

/ <Zom+1—zom 20m+1+zo,m>
2 H

/' / 311 mil 0Z1,m 7 Zlm+1 + Zm dedx
aT 2 Hy
20, 1+Zo Z,m+1 + 21,
L e (st sz

, <VXM M) dydtdx

v
2 TV 2

1
> ——(lzom+1ll7 = Izom ) + ¥ Ulzoms12ly + lztms12l3,). (A2)
For {iigm, m=0,..., M} C VEand {iiy;n, m = 1,..., M} C V[, we have

20,m+1 — 20, 20m+1 = 20,m  , ~
I = <M (o — “0)m+1/2> + <M (o — Uo)m+1/2>
At " At

d 0
/ / < < SLUARANE Zl’m>,(ul —ﬁl)m+1/2> drdx
ot Hy
021, m+1 021, -
/ / < < ol arm),(ul _Ul)m+1/2> drdx

Hy

Z +z Z +z
// fa(tm+1/2)< 0m+1 Om—l—Vy 1,m+12 1,m>

(Vi uo — o) my12 + Vyluy — M1)m+1/2) dydrtdx

1
Z +z Z +z
+/f /a(tm+1/2) (Vx 0,m+12 0,m +v, l,m+12 1,m>
pJo Jy

(Va(o = U)mt12 + Vy @iy — Up)my1/2) dyddx.
From (3.1) we have

H

; — [20mt1 = 20m
At

1
Zmtl +21m O -
—// <%’_(ul_ul)m+l/2> drdx
Hy
z +z z +z
/'/ /a(th/z)( 0m+1 Om—l—Vy 1,m+12 1,m>

(Ve(uo — t0)my1/2 + Vy(uy — u1)m+1/2) dydtdx

, (g — fto)m+1/z>
H

1
—{p0,m> (o — Uo)m+1/2)H — / /0 Evm, 1 — UDmy12) mpdtdx
D

1
+/ / /a(lm+l/2) (Vxé“o,m +vy§1,m)
DJo JY

(Vi(ito = U)mt12 + Vy @iy — Up)m1/2) dyddx.
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We note that (itg — Up)m+1/2 = (@o — u0)m+1/2 + 20,m+1/2 and (@1 — U172 =
(@61 —u1)m+1/2+21,m+1,2. For a positive constant § > 0, using the Cauchy-Schwartz
inequality, we have

20,m+1 — 20,m ~
I <{————, (wo—10)m+1,2
At Y

2

i) _
+8lzmi1 2l e | 2@ —E0m2

4
5 2 s 2 - 2 - 2
+éllzo,m+1/20ly +8lzt,mt1720ly, el (o —w)m+12lly +ell @i =) mt1/21y,
2 . 2 2
+ellpomllyg + cll@o — uo)m+1/21lg + dlz0.m+1/7215

2 - 2 2
Fel§umlly, + el — um2lly, +dlzimr1/21ly,

+ellGomlly + clleimlly, + cll@o — uoyms12115 + Sllzom+1/2117

~ 2 2
+ell@r — un)mr12lly, + 8lzim+121ly -

From this and (A.2), choosing § sufficiently small, we have

2 2 2 2
TAT zo,m+1 1y — Nzo,mIg) + clzomt1720y + z1,m+1/211y,)

< <Zo,m+1 - 20,m

A7 , (o — ﬁo)m+1/2>

H
d 2 2 2 4
+c g(ul —u)mt12|  Fcl@o—uo)my12lly +cll@i—u)mi2lly, +c(An)™
vi
Fixing an integer P < M, taking the sum form =0, ..., P — 1, we have
P—1
lzo.p 113 — llz0.03 + cAt D" Uzom1/213 + lz1ms1/213,)
m=0

P—1 9 i 2 i ) i )
<chr Y || —amiip e o (TR el
m=0

1

P-1

2 —Z ~

cP(AD+2A1 Y <M (o - Mo)m+1/2> : (A3)
= At H
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We note that

P-1
20,m+1 — 20,m -
Aty <— (uo — uo)m+1/2>

r At H

= (z0.p. (Mo — ii0) p—1/2); — (20,0, (o — 0)1/2)
20,m
+At Z <— (o — o)m—1/2 — (up — uo)m+1/2>H

- 2 2 ~ 2
< 8llzo, P||H +cll(uo — MO)P—1/2IIH + llzo,oll g + (o — Mo)l/zllH
P1

+SAL Y llzomlly+cAt Z

m=1 m=1

(wo—uo)m+1/2— WMo —o)m—1/2
At

H

which is a consequence of the Cauchy-Schwartz inequality; § is an arbitrary pos-
itive constant. We note that Af ZZ;% lzomll3;, < AtPmaxm—o, . mllzoml <

T max,,—o,...m 120.m ||%_I. From this and (A.3), choosing § sufficiently small, we have

P—1

2
lzo.plI7; < cAL >
m=0

2

8—T(u1 — @mt12||  F @0 — E0)mr1 2113

@ = @)mr2ll3,

+ (AN el (o —it0) p—1/211% +211z0.0 115 + 1l (o — o)1 /2115

P—1
+ cAt Z

m=1

(o —u0)mr172— @o—U0)m—1/2
At

+8T max  |zoml%.
H m=0,...,

Choosing § sufficiently small, we have

2
~ 2
+ (o — uo)ms1,21y
V/

yeney

2 ~
max ||z < cAt E — (U1 — uq 1/2
0 M” O,m”H . Hat( )m+/
m=

+ 1@ = @) w1213,

te(Ant +e max o —do)m-1720% +cllzooly

=l1,...,

+ (o — o)1 211%

M—1
+cAt Z

m=1

(wo — o) m+1/2 — (o — UQ)m—1,2
At

H
From this, we get the conclusion.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
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@ Springer



1326 W.C. Tan, V.H. Hoang

References

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Abdulle, A., E, W., Engquist, B., Vanden-Eijnden, E.: The heterogeneous multiscale method. Acta

Numer. 21, 1-87 (2012)

. Abdulle, A., Huber, M.E.: Finite element heterogeneous multiscale method for nonlinear monotone

parabolic homogenization problems. ESAIM Math. Model. Numer Anal. 50(6), 1659-1697 (2016)

. Abdulle, A., Vilmart, G.: Coupling heterogeneous multiscale FEM with Runge-Kutta methods for

parabolic homogenization problems: a fully discrete spacetime analysis. Math. Models Methods Appl.
Sci. 22(6), 1250002 (2012)

. Allaire, G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482-1518

(1992)

. Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures, volume 5

of studies in mathematics and its applications. North-Holland Publishing Co., Amsterdam (1978)

. Bieri, M., Andreev, R., Schwab, C.: Sparse tensor discretization of elliptic SPDEs. SIAM J. Sci.

Comput. 31(6), 4281-4304 (2009/10)

. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147-269 (2004)
. Chen, S., E, W., Shu, C.-W.: The heterogeneous multiscale method based on the discontinuous

Galerkin method for hyperbolic and parabolic problems. Multiscale Model Simul. 3(4), 871-894
(2005)

. Chu, V.T., Hoang, V.H.: High dimensional finite elements for multiscale Maxwell-type equations.

IMA J. Numer. Anal. 38(1), 227-270 (2018)

. Chung, E.T., Efendiev, Y., Leung, W.T., Ye, S.: Generalized multiscale finite element methods for

space-time heterogeneous parabolic equations. Comput. Math Appl. 76(2), 419-437 (2018)

. Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM

J. Math. Anal. 40(4), 1585-1620 (2008)

. Douglas, J. Jr.., Dupont, T.: Galerkin methods for parabolic equations. SIAM J. Numer. Anal. 7,

575-626 (1970)

. Efendiev, Y., Hou, T.Y.: Multiscale finite element methods: theory and applications. surveys and

tutorials in the applied mathematical sciences. Springer (2009)

. Efendiev, Y., Pankov, A.: Numerical homogenization of nonlinear random parabolic operators.

Multiscale Model Simul. 2(2), 237-268 (2004)

. Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods (GMsFEM). J.

Comput. Phys. 251, 116135 (2013)

. Evans, L.C.: Partial differential equations, volume 19 of Graduate Studies in Mathematics. American

Mathematical Society, Providence (1998)

. Geng, J., Shen, Z.: Convergence rates in parabolic homogenization with time-dependent periodic

coefficients. J. Funct Anal. 272(5), 2092-2113 (2017)

Griebel, M., Oswald, P.: Tensor product type subspace splittings and multilevel iterative methods for
anisotropic problems. Adv. Comput. Math. 4(1), 171-206 (1995)

Grisvard, P.: Elliptic problems in nonsmooth domains, volume 69 of Classics in Applied Mathematics.
Society for Industrial and Applied Mathematics (STAM), Philadelphia (2011)

Hoang, V.H., Schwab, C.: High-dimensional finite elements for elliptic problems with multiple scales.
Multiscale Model. Simul. 3(1), 168-194 (2004/05)

Holmbom, A., Svanstedt, N., Wellander, N.: Multiscale convergence and reiterated homogenization
of parabolic problems. Appl. Math. 50(2), 131-151 (2005)

Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials
and porous media. J. Comput. Phys. 134(1), 169-189 (1997)

Kazeev, V., Oseledets, 1., Rakhuba, M., Schwab, C.: QTT-finite-element approximation for multiscale
problems I: model problems in one dimension. Adv. Comput. Math. 43(2), 411-442 (2017)

Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. 1.
Springer, Berlin (1972)

Malgqvist, A., Persson, A.: Multiscale techniques for parabolic equations. Numer. Math. 138(1), 191—
217 (2018)

Malqvist, A., Peterseim, D.: Localization of elliptic multiscale problems. Math. Comp. 83(290),
2583-2603 (2014)

Ming, P.,, Zhang, P.: Analysis of the heterogeneous multiscale method for parabolic homogenization
problems. Math Comp. 76(257), 153-177 (2007)

@ Springer



High dimensional finite elements for time-space multiscale parabolic... 1327

28.

29.

30.

31.
32.

33.

34.

35.

Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.
SIAM J. Math. Anal. 20(3), 608-623 (1989)

Owhadi, H., Zhang, L.: Homogenization of parabolic equations with a continuum of space and time
scales. STAM J. Numer. Anal. 46(1), 1-36 (2008)

Tan, W.C., Hoang, V.H.: High dimensional finite element method for multiscale nonlinear monotone
parabolic equations. J. Comput. Appl. Math. 345, 471-500 (2019)

Wloka, J.: Partial differential equations. Cambridge University Press, Cambridge (1987)

Woukeng, J.L.: Periodic homogenization of nonlinear non-monotone parabolic operators with three
time scales. Ann. Mat. Pura Appl. (4) 189(3), 357-379 (2010)

Xia, B., Hoang, V.H.: High dimensional finite elements for multiscale wave equations. Multiscale
Model. Simul. 12(4), 1622-1666 (2014)

Xia, B., Hoang, V.H.: High-dimensional finite element method for multiscale linear elasticity. IMA J.
Numer. Anal. 35(3), 1277-1314 (2015)

Xia, B., Hoang, V.H.: Sparse tensor finite elements for elastic wave equation with multiple scales. J.
Comput. Appl. Math. 282, 179-214 (2015)

@ Springer



	High dimensional finite elements for time-space multiscale parabolic...
	Abstract
	Introduction
	Multiscale homogenization of problem (1.2)
	Multiscale convergence
	Multiscale homogenized equation of problem (1.2)

	Finite element approximations
	General finite element approximation
	Full tensor finite element
	Sparse tensor finite elements

	Numerical correctors
	Regularity
	Numerical results
	Appendix A 
	References


