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Abstract
The paper develops the essentially optimal sparse tensor product finite element
method for a parabolic equation in a domain in R

d which depends on a microscopic
scale in space and a microscopic scale in time. We consider the critical self similar
case which has the most interesting homogenization limit. We solve the high dimen-
sional time-space multiscale homogenized equation, which provides the solution
to the homogenized equation which describes the multiscale equation macroscopi-
cally, and the corrector which encodes the microscopic information. For obtaining
an approximation within a prescribed accuracy, the method requires an essentially
optimal number of degrees of freedom that is essentially equal to that for solving a
macroscopic parabolic equation in a domain in R

d . A numerical corrector is deduced
from the finite element solution. Numerical examples for one and two dimensional
problems confirm the theoretical results. Although the theory is developed for prob-
lems with one spatial microscopic scale, we show numerically that the method is
capable of solving problems with more than one spatial microscopic scale.

Keywords High dimensional finite elements · Time-space multiscale parabolic
equations · Optimal complexity · Numerical corrector
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1 Introduction

Let D ⊂ R
d be a bounded domain where d = 1, 2 or 3. Let T > 0. Let Y =

(0, 1)d be the unite cube in R
d . We consider a symmetric matrix valued function
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a(t, x, τ, y) ∈ C([0, T ] × D̄ × [0, 1] × Ȳ ;Rd×d
sym ). The function a is periodic with

respect to τ and y, with the period being (0, 1) and Y respectively; from now on,
we say that it is (0, 1) × Y periodic with respect to τ and y. We assume that a is
uniformly coercive and bounded, i.e, there are positive constants c1 and c2 such that
for all ξ, ζ ∈ R

d

c1|ξ |2 ≤ a(t, x, τ, y)ξ · ξ, a(t, x, τ, y)ξ · ζ ≤ c1|ξ ||ζ | (1.1)

for all (t, x, τ, y) ∈ (0, T )×D×(0, 1)×Y , where | · | denotes the Euclidean norm in
R

d . Let ε > 0 be a small number that represents the microscopic scale. We consider
the time-space multiscale coefficient

aε(t, x) = a

(
t, x,

t

ε2
,
x

ε

)
.

We denote by V = H 1
0 (D) and H = L2(D). We note that V ⊂ H ⊂ V ′ form a

Gelfand triple. We define by 〈·, ·〉H the inner product in H, extended to the duality
pairing between V and V ′ by density. Let T > 0, f ∈ L2((0, T ), V ′) and g ∈ H . We
consider the parabolic problem

∂uε

∂t
− ∇ · (aε(t, x)∇uε) = f (t, x), x ∈ D, t ∈ (0, T ), (1.2)

uε(0, x) = g, x ∈ D

with the Dirichlet boundary condition for uε(t, ·). Problem (1.2) has a unique solution
uε ∈ L2((0, T ), V ) ∩ H 1((0, T ), V ′) which satisfies

‖uε‖L2((0,T ),V ) + ‖uε‖H 1((0,T ),V ′) ≤ c(‖f ‖L2((0,T ),V ′) + ‖g‖H )

where the constant c only depends on the constants c1, c2 in (1.1) and T ([31]
Chapter 4).

We develop an efficient finite element (FE) method for approximating the solution
to the parabolic Eq. 1.2 which depends on microscopic scales in both the temporal
and spatial variables. Homogenization of (1.2) is first studied by Benssousan et al.
in [5] where the general time scale εk is considered. However, the most interesting
case is when k = 2 where the derivative with respect to the fast time variable plays
a role in the limiting equation. When k < 2, this variable only plays the role of a
parameter; and when k > 2, it is averaged out in the homogenization limit. Thus, we
only consider the critical case k = 2.

A direct numerical discretization to take into account all the space and time scales
is prohibitively expensive. For general multiscale problems, there have been exten-
sive efforts in reducing the complexity of approximating the solutions, see, e.g. [1]
and [13]. For parabolic problems with microscopic scales in both time and space vari-
ables, Efendiev and Pankov [14] employ the ideas of the multiscale finite element
method (MsFEM) ([13, 22]) to perform numerical homogenization for quasilinear
parabolic equations, where multiscale FE basis functions are employed which are
solutions of multiscale local problems. The generalized multiscale finite element
method (GMsFEM) ([15]) is used for general parabolic equations with multiple space
and time scales in [10]. The Heterogeneous Multiscale Method [1] is employed by
Ming and Zhang for parabolic equations that depend on multiple time scale in [27].
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Owhadi and Zhang [29] construct a multiscale basis by solving a set of multiscale
parabolic problems with a non-homogeneous boundary condition. Though general,
the cost of these approaches can be high as microscopic meshes with respect to both
time and space have to be used. For general multiscale parabolic problems whose
coefficients are independent of time (and therefore are independent of microscopic
time scales), we note the work of Chen, E, and Shu [8]; Abdulle and Vilmart [3];
and Abdulle and Huber [2] using heterogeneous multiscale method. Malqvist and
Persson [25] use the local orthogonal decomposition technique introduced in [26] for
parabolic equations that depend on spatial multiscales.

Restricting the consideration to the case where the coefficient is locally periodic
with respect to both the temporal and spatial microscopic scales, we develop an essen-
tially optimal method for finding all the necessary macroscopic and microscopic
information. We employ the high dimensional finite element method to solve the
multiscale homogenized equation derived from multiscale convergence which was
introduced by Nguetseng [28] and developed further by Allaire [4]. The method was
initiated by Hoang and Schwab [20] for multiscale elliptic problems and employed
for other equations in [9, 33–35]. For parabolic monotone equations that depend only
on spatial multiscales, Tan and Hoang apply the method in [30]. The method requires
an essentially optimal number of degrees of freedom to approximate the solution of
the high dimensional multiscale homogenized equation within a prescribed level of
accuracy. It exploits the regularity of the corrector terms with respect to all the slow
and the fast variables at the same time. We note that for a one dimensional two scale
elliptic problem, assuming that the periodic coefficient a and the forcing f are ana-
lytic, Kazeev et al. [23] prove that an approximation for the solutions of two scale
elliptic problems can be obtained with an exponential convergence rate with respect
to the complexity. It is an interesting problem to study the convergence of the method
in [23] when the solution only possesses Sobolev regularity, and to develop it for
multiscale parabolic equations such as (1.2).

For Eq. 1.2, as the coefficient depends also on the microscopic time scale, the
concept of multiscale convergence of Nguetseng [28] and Allaire [4] needs to be
extended. This was first done by Holmbom et al in [21]. Using time-space multi-
scale convergence, the multiscale homogenized equation is derived. Solving it, we
obtain the solution to the homogenized equation which describes the solution to
the multiscale Eq. 1.2 macroscopically, and the corrector which encodes the micro-
scopic information. From the FE solution of this equation, we construct a numerical
corrector.

The paper is organized as follows. In Section 2, we recall the concept of multiscale
convergence in both time and space, we prove several results on time space multiscale
limit of a sequence of functions, and use them to derive the multiscale homogenized
equation. Numerical approximation of the multiscale homogenized equation is stud-
ied in Section 3. We first consider a numerical scheme with general FE spaces and
prove the convergence. We then consider the scheme using the full tensor product
FE spaces and the sparse tensor product FE spaces for the corrector in Sections 3.2
and 3.3 respectively. Assuming regularity for the solution of the multiscale homog-
enized equation, we derive FE error estimates in terms of the mesh size. We show
that the sparse tensor product FE approximation produces essentially equal level of
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accuracy as the full tensor product FE approximation, but uses only an essentially
optimal number of degrees of freedom. In Section 4, we construct a numerical cor-
rector from the FE solution. In Section 5, we show that the regularity required to
get the error estimates for the full and sparse tensor product FE approximations hold
under some regularity conditions for the coefficient of the multiscale equation, and
the functions f and g in (1.2). In Section 6, we present some numerical examples in
one and two dimensions to verify the FE rate of convergence for sparse tensor prod-
uct FE approximations. Though we only consider the theory for the case with only
one microscopic spatial scale, our method is fully capable of solving equations with
more than one microscopic spatial scales, e.g., those considered in Holmbom et al.
[21]. We show this by solving some examples with one microscopic time scale and
two microscopic spatial scales studied in [21], using sparse tensor product FEs.

Throughout the paper, by ∇ without indicating explicitly the variable, we denote
the gradient with respect to x of a function of x, or the partial gradient with respect to
x of a function that depends only on the time variable t and x; and by ∇x we denote
the partial gradient with respect to x of a function depending on x and/or t and the
fast variables τ and y . By # we denote spaces of periodic functions. For functions
depending on time t and other variables, when we only want to emphasize the time
dependence, we will only indicate the time variable t .

2 Multiscale homogenization of problem (1.2)

Benssousan et al. [5] performed the multiscale asymptotic expansion

uε(t, x) = u0

(
t, x,

t

ε2
,
x

ε

)
+ εu1

(
t, x,

t

ε2
,
x

ε

)
+ ε2u2

(
t, x,

t

ε2
,
x

ε

)
+ . . .

where ui(t, x, τ, y) is periodic with respect to τ and y with the period being 1 and
Y respectively. They show that u0 does not depends on τ and y, i.e. u0 = u0(t, x).
When u0 and u1 are smooth, Benssousan et al. [5] Theorem 2.3 page 283 show that

lim
ε→0

‖uε(·, ·) − u0(·, ·) − εu1

(
·, ·, ·

ε2
,

·
ε

)
‖L2((0,T ),V ) = 0,

i.e., we can use u0 and u1 to approximate uε. The function u0 satisfies the homoge-
nized equation, and u1 is the corrector as derived in Section 4. These functions form
the solution of Eq. 2.1 below which can be derived from multiscale convergence.
Thus solving (2.1) we get these functions which are necessary for approximating uε.
Multiscale convergence was initiated by Nguetseng in [28], and developed further by
Allaire [4] which is an efficient tool to find the solution of the homogenized equation
and the corrector. The concept is extended to functions depending on microscopic
scales with respect to both time and space in Holmbom et al. [21]. We first recall the
definition of multiscale convergence in [21]. We then prove some results on time-
space multiscale convergence and use them to derive the multiscale homogenized
equation of (1.2).
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2.1 Multiscale convergence

We first recall the definition of Holmbom et al. [21].

Definition 2.1 A sequence {wε}ε time-space multiscale (ts-ms) converges to a func-
tion w0 ∈ L2((0, T ) × D × (0, 1) × Y ) if for all functions φ ∈ C((0, T ) × D ×
(0, 1) × Y ) which are (0, 1) × Y periodic with respect to τ and y,

lim
ε→0

∫ T

0

∫
D

wε(t, x)φ

(
t, x,

t

ε2
,
x

ε

)
dxdt

=
∫ T

0

∫
D

∫ 1

0

∫
Y

w0(t, x, τ, y)φ(t, x, τ, y)dydτdxdt .

We can show that (see [21]):

Proposition 2.2 From a bounded sequence in L2((0, T ) × D), there is a time-space
multiscale convergent subsequence.

In the following propositions, we establish the time-space multiscale conver-
gent limits of bounded sequences in L2((0, T ), V )

⋂
H 1((0, T ), V ′) that will be

employed to derive the multiscale homogenization limit of the solution of (1.2).
These results are first derived in [21] (see also, e.g., Woukeng [32]).

Proposition 2.3 Let {wε}ε be a bounded sequence inL2((0, T ), V )
⋂

H 1((0, T ), V ′).
Then there are functions w0 ∈ L2((0, T ), V ) and w1 ∈ L2((0, T ) × D × (0, 1),
H 1

# (Y )), and a subsequence (still denoted by {wε}) such that

∇wε ts-ms−→ ∇w0 + ∇yw1.

Proposition 2.4 Let {wε}ε be a bounded sequence in L2((0, T ), H 1(D)) such that

∇wε ts-ms−→ ∇w0 + ∇yw1.

Then for all smooth functions ψ(t, x, τ, y) which are (0, 1)×Y periodic with respect
to τ and y and ∫

Y

ψ(t, x, τ, y)dy = 0,

lim
ε→0

∫ T

0

∫
D

1

ε
wε(t, x)ψ

(
t, x,

t

ε2
,
x

ε

)
dxdt

=
∫ T

0

∫
D

∫ 1

0

∫
Y

u1(t, x, τ, y)ψ(t, x, τ, y)dydτdxdt .

2.2 Multiscale homogenized equation of problem (1.2)

We have the following result on the time-space multiscale limit of the solution of the
multiscale problem (1.2). We denote by V# the subspace of H 1

# (Y ) which contains
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functions whose integrals over Y is 0, and H# the subspace of L2(Y ) which contains
function whose integrals over Y is 0. As V# ⊂ H# ⊂ V ′

# form a Gelfand triple, we
denote by 〈·, ·〉H# the inner product in H# extended to the duality pairing between V#
and V ′

#.

Proposition 2.5 There are functions u0 ∈ L2((0, T ), V )
⋂

H 1((0, T ), V ′) and
u1 ∈ L2((0, T ) × D × (0, 1), V#)

⋂
L2((0, T ) × D, H 1

# ((0, 1), V ′
#)) such that we

can extract a subsequence from the sequence of exact solution of (1.2) {uε}ε (still
denoted as {uε}ε) so that

∇uε ts-ms−→ ∇u0 + ∇yu1.

The functions u0 and u1 satisfy the problem

〈
∂u0

∂t
(t, ·), φ0(·)

〉
H

+
∫

D

∫ 1

0

〈
∂u1

∂τ
(t, x, τ, ·), φ1(x, τ, ·)

〉
H#

dτdx

+
∫

D

∫ 1

0

∫
Y

a(t, x, τ, y)(∇u0(t, x) + ∇yu1(t, x, τ, y))

· (∇φ0(x) + ∇yφ1(x, τ, y))dydτdx

=
∫

D

f (t, x)φ0(x)dx (2.1)

for all φ0 ∈ V and φ1 ∈ L2(D × (0, 1), V#) for almost all t ∈ (0, T ), with the initial
condition u0(0, x) = g.

Proof Let ψ0 ∈ C∞
0 ((0, T ) × D) and ψ1 ∈ C∞

0 ((0, T ) × D, C∞
# ((0, 1), C∞

# (Y )))

be such that ∫
Y

ψ1(t, x, τ, y)dy = 0

for all t, x, τ ∈ (0, T ) × D × (0, 1). Let

ψε(t, x) = ψ0(t, x) + εψ1

(
t, x,

t

ε2
,
x

ε

)
.

We have from (1.2) that

−
∫ T

0

∫
D

uε ∂ψε

∂t
dxdt +

∫ T

0

∫
D

a

(
t, x,

t

ε2
,
x

ε

)
∇uε(t, x) · ∇ψε(t, x)dxdt

=
∫ T

0

∫
D

f (t, x)ψε(t, x)dxdt .

We note that

∇ψε(t, x) = ∇ψ0(t, x) + ε∇xψ1

(
t, x,

t

ε2
,
x

ε

)
+ ∇yψ1

(
t, x,

t

ε2
,
x

ε

)
.
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We then have

−
∫ T

0

∫
D

uε

(
∂ψ0

∂t
(t, x) + ε

∂ψ1

∂t

(
t, x,

t

ε2
,
x

ε

)
+ 1

ε

∂ψ1

∂τ

(
t, x,

t

ε2
,
x

ε

))
dxdt

+
∫ T

0

∫
D

a

(
t, x,

t

ε2
,
x

ε

)
∇uε(t, x) ·

(
∇ψ0(t, x) + ε∇xψ1

(
t, x,

t

ε2
,
x

ε

)

+∇yψ1

(
t, x,

t

ε2
,
x

ε

))
dxdt

=
∫ T

0

∫
D

f (t, x)

(
ψ0(t, x) + εψ1

(
t, x,

t

ε2
,
x

ε

))
dxdt .

Passing to the multiscale convergence limit, using Propositions 2.3 and 2.4, we get

−
∫ T

0

∫
D

u0(t,x)
∂ψ0

∂t
(t,x)dxdt−

∫ T

0

∫
D

∫ 1

0

∫
Y

u1(t,x,τ,y)
∂ψ1

∂τ
(t,x,τ,y)dydτdxdt

+
∫ T

0

∫ 1

0

∫
D

∫
Y

a(t, x, τ, y)(∇u0(t, x) + ∇yu1(t, x, τ, y)) · (∇ψ0(t, x)

+∇yψ1(t, x, τ, y))dydτdxdt

=
∫ T

0

∫
D

f (t, x)ψ0(t, x)dxdt . (2.2)

By a density argument, we deduce that (2.2) holds for all ψ0 ∈ L2((0, T ), V ) and
ψ1 ∈ L2((0, T )×D, H 1

# ((0, 1), V#)). From this, we deduce (2.1). To show the initial
condition u0(0, ·) = g, we first note that ∂uε

∂t
⇀

∂u0
∂t

in L2((0, T ), V ′). Let ψ ∈
C∞((0, T ) × D) so that ψ(T , ·) = 0. We have

lim
ε→0

∫ T

0

∫
D

uε ∂ψ

∂t
dxdt =

∫ T

0

∫
D

u0
∂ψ

∂t
dxdt

= −
∫ T

0

∫
D

∂u0

∂t
ψdxdt −

∫
D

u0(0, x)ψ(0, x)dx.

On the other hand,
∫ T

0

∫
D

uε ∂ψ

∂t
dxdt = −

∫ T

0

∫
D

∂uε

∂t
ψdxdt −

∫
D

uε(0, x)ψ(0, x)dx →

−
∫ T

0

∫
D

∂u0

∂t
ψdxdt −

∫
D

g(x)ψ(0, x)dx

when ε → 0. These imply that u0(0, x) = g(x).

Proposition 2.5 implies that Eq. 2.1 has a solution. In the next proposition, we
show that a solution of (2.1) is unique.

Proposition 2.6 Problem (2.1) has a unique solution. The whole sequence {uε}ε
time-space multiscale converges to the solution (u0, u1) of (2.1).
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Proof We show that problem (2.1) has solution u0 = 0 and u1 = 0 when f = 0 and
g = 0. From (2.1), letting φ0 = u0(t, ·) and φ1 = u1(t, ·, ·, ·), and taking the integral
from 0 to T with respect to t , we have

1

2
‖u0(T )‖2

H +
∫ T

0

∫
D

∫ 1

0

∫
Y

a(∇xu0 + ∇yu1) · (∇xu0 + ∇yu1)dydτdxdt = 0

where we have used the fact that
∫
D

∫ 1
0 〈 ∂u1

∂τ
,u1〉H#dτdx = 1

2

∫
D

∫ 1
0

∂
∂τ

〈u1,u1〉H#dτdx =
0 due to the periodicity of u1 with respect to τ . From (1.1), we deduce that u0=0 and
u1 = 0.

Remark 2.7 To derive the multiscale homogenized problem (2.1), we need to use

a
(
t, x, t

ε2 , x
ε

)
as a test function. Indeed, in Definition 2.1, the test function can be

extended to functions in L2((0, T ) × D, C((0, 1) × Y )) which are periodic with
respect to τ and y with the period being 1 and Y respectively (see [4] for a discussion
in the case of time-independent functions). Therefore to derive (2.1), we only need
a to belong to L2((0, T ) × D, C((0, 1) × Y )). However, to prove the regularity of
u0 and u1 that are required for the convergence rate of the sparse tensor product FE
method developed ahead, we need more regularity for a.

Remark 2.8 For the case where k < 2, u1 depends on τ but τ only plays the role of a
parameter in the multiscale homogenized equation. The derivative ∂u1

∂τ
is not present.

For the case k > 2, u1 no longer depends on τ . The problem is equivalent to that of
the multiscale coefficient

∫
Y

a(t, x, τ, y)dτ which is independent of τ . Details can
be found in [5].

3 Finite element approximations

In this section, we establish the convergence of the Crank-Nicolson scheme for solving
Eq. 2.1. We first consider convergence for general finite element spaces. We then con-
sider the case of full tensor product and sparse tensor product FE approximations for
u1.

3.1 General finite element approximation

We denote by V1 the space L2(D × (0, 1), V#). Let V L ⊂ V and V L
1 ⊂ L2(D ×

(0, 1), V#)
⋂

L2(D, H 1
# ((0, 1), V ′

#)) be finite element spaces. Let M be an integer.
Let 
t = T/M . We consider the time sequence 0 = t0 < t1 < . . . < tM = T where
tm = m
t . Let gL ∈ V L be an approximation of g. Let tm+1/2 = tm + 
t/2. We
consider the problem: Find U0,m ∈ V L, U1,m ∈ V L

1 for m = 1, . . . , M so that〈
U0,m+1 − U0,m


t
, φ0

〉
H

+
∫

D

∫ 1

0

〈
∂

∂τ

U1,m+1 + U1,m

2
, φ1

〉
H#

dτdx

+
∫

D

∫ 1

0

∫
Y

a(tm+1/2, x, τ, y)

(
∇x

U0,m + U0,m+1

2
+ ∇y

U1,m + U1,m+1

2

)

· (∇xφ0 + ∇yφ1)dydτdx =
∫

D

f (tm+1/2, x)φ0(x)dx, (3.1)
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for all φ0 ∈ V L and φ1 ∈ V L
1 . Let u0,m = u0(tm) and u1,m = u1(tm). Let z0,m =

u0,m −U0,m, z1,m = u1,m −U1,m. For a sequence {wm} where m = 0, 1, . . . , M such
as {u0,m}, {u1,m}, {z0,m} and {z1,m}, we denote by

w0,m+1/2 = 1

2
(w0,m + w0,m+1).

We then have the following result.

Proposition 3.1 Problem (3.1) has a unique solution.

Proof Let B be the Gram matrix of the basis functions of V L in the inner product
of H . Let M be the matrix describing the interaction of the basis functions of V L

1
with themselves in the bilinear form representing the second term on the left hand
side of (3.1). Let A be the matrix describing the interaction of the basis functions
of V L × V L

1 in the bilinear form representing the third term on the left hand side
of (3.1). Let Fm+1/2 be the vector representing the interaction of f (tm+1/2) with the
basis functions of V L in the linear form of the right hand side in (3.1). Let c0,m

be the coordinate vector of U0,m in the linear expansion with respect to the basis
functions of V L. Let c1,m be the coordinate vector of U1,m in the linear expansion
with respect to the basis functions of V L

1 . Let cm be the coordinate vector of the
expansion of (U0,m, U1,m) with respect to the basis functions of V L × V L

1 , i.e. cm =
(c0,m, c1,m). Let d0 be the coordinate vector of φ0 in the expansion with respect to
the basis functions of V L. Let d1 be the coordinate vector of φ1 in the basis functions
of V L

1 . Let d be the coordinate vector of (φ0, φ1) in the expansion with respect to the
basis functions of V L × V L

1 , i.e. d = (d0, d1). Problem (3.1) can be written as

1


t
Bc0,m+1 · d0 + 1

2
Mc1,m+1 · d1 + 1

2
Acm+1 · d = Fm+1/2 · d0

− 1


t
Bc0,m · d0 − 1

2
Mc1,m · d1 − 1

2
Acm · d. (3.2)

We denote by A : RdimV L+dimV L
1 × R

dimV L+dimV L
1 be the bilinear form

A(c,d) = 1


t
Bc0 · d0 + 1

2
Mc1 · d1 + 1

2
Ac · d.

Let ψi(x, τ, y) and ψj (x, τ, y) be two basis functions in V L
1 . We have that

Mij =
∫

D

∫ 1

0

∫
Y

∂ψi

∂τ
ψjdydτdx.

Due to the periodicity of ψi and ψj with respect to τ , we have

Mij + Mji =
∫

D

∫ 1

0

∫
Y

∂

∂τ
(ψiψj )dydτdx = 0
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so Mij = −Mji . Thus for any vector c1 ∈ R
dimV L

1 , Mc1 · c1 = 0. Hence for c =
(c0, c1) ∈ R

dimV L+dimV L
1 where c0 ∈ R

dimV L
and c1 ∈ R

dimV L
1

A(c, c) = 1


t
Bc0 · c0 + 1

2
Ac · c.

As B is the Gram matrix, and A is a positive definite matrix due to (1.1), A(c, c) ≥
c|c|2 where the constant c is independent of c; here | · | denotes the Euclidean norm in
R

dimVL+dimVL
1 . Therefore, the bilinear form A is coercive. It is also bounded. Thus,

Eq. 3.2 has a unique solution.

Theorem 3.2 Assume that u0 ∈ C3([0, T ], H) ∩ C2([0, T ], V ), u1 ∈ C2([0, T ],
L2(D × (0, 1), V#)) and

∂u1
∂τ

∈ C2([0, T ], L2(D × (0, 1), V ′
#)). Then

‖z0,M‖2
H + 
t

M−1∑
m=0

(‖z0,m+1/2‖2
V + ‖z1,m+1/2‖2

V1
)

≤ c
t

(
M−1∑
m=0

‖(u0−ũ0)m+1/2‖2
V +‖(u1−ũ1)m+1/2‖2

V1
+

∥∥∥∥ ∂

∂τ
(u1−ũ1)m+1/2

∥∥∥∥
2

V ′
1

+
M−1∑
m=1

∥∥∥∥ (u0 − ũ0)m+1/2 − (u0 − ũ0)m−1/2


t

∥∥∥∥
2

H

)

+ max
m=1,...,M

‖(u0 − ũ0)m−1/2‖2
H + ‖g − gL‖2

H + c(
t)4 (3.3)

for all {ũ0m, m = 0, . . . , M} ⊂ V L and {ũ1m, m = 1, . . . , M} ⊂ V L
1 .

We prove this theorem in Appendix.

3.2 Full tensor finite element

To approximate u1(t) ∈ L2(D, L2((0, 1), V#))
⋂

L2(D, H 1
# ((0, 1), V ′

#))
∼= L2(D)⊗

L2(0, 1) ⊗ V#
⋂

L2(D) ⊗ H 1
# (0, 1) ⊗ V ′

#, we use tensor product finite elements. Let
hl = 2−l . Assuming that D is a polygonal domain in R

d , we divide the domain D

into a hierarchy of sets of triangular simplices {T l}l≥0. Each simplex in the set T l

of mesh size O(hl) is obtained by dividing each simplex in T l−1 into 4 congruent
triangles when d = 2 and 8 tedrahedra when d = 3. For each simplex T ∈ T l ,
we denote by P 1(T ) the set of linear polynomials in T . Similarly, we divide Y into
a hierarchy {T l

# }l≥0 of sets of simplices with mesh size O(hl) which are distributed
periodically. For each l = 1, 2, . . ., the interval (0, 1) for the variable τ is divided
into sets T l

τ# of 2l intervals of length 2−l . We define the following FE spaces:

V l = {φ ∈ H 1
0 (D), φ ∈ P 1(T ) ∀ T ∈ T l};

V l
# = {φ ∈ H 1

# (Y ), φ ∈ P 1(T ) ∀ T ∈ T l
# };

V l
τ# = {φ ∈ H 1

# (0, 1), φ ∈ P 1(T ) ∀ T ∈ T l
τ#}.
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We then have the following approximation properties

inf
wl∈V l

‖w − wl‖H 1
0 (D) ≤ chl‖w‖H 2(D), ∀ w ∈ H 1

0 (D) ∩ H 2(D);
inf

wl∈V l
‖w − wl‖L2(D) ≤ chl‖w‖H 1(D), ∀ w ∈ H 1(D);

inf
wl∈V l

#

‖w − wl‖H 1
# (Y ) ≤ chl‖w‖H 2

# (Y ), ∀ w ∈ H 2
# (Y );

inf
wl∈V l

#

‖w − wl‖L2(Y ) ≤ chl‖w‖H 1
# (Y ), ∀ w ∈ H 1

# (Y );

inf
wl∈V l

τ#

‖w − wl‖H 1
# ((0,1)) ≤ chl‖w‖H 2

# ((0,1)), ∀ w ∈ H 2
# ((0, 1));

inf
wl∈V l

τ#

‖w − wl‖L2((0,1)) ≤ chl‖w‖H 1
# ((0,1)), ∀ w ∈ H 1

# ((0, 1)).

For approximating u1(t) we define the full tensor product FE space as

V̄ L
1 = V L ⊗ V L

τ# ⊗ V L
# .

Let H be the regularity space H 1(D, H 1
# ((0, 1), H 1

# (Y ))) ∩ L2(D, H 2
# ((0, 1),

H 1
# (Y ))) ∩ L2(D, H 1

# ((0, 1), H 2
# (Y ))) with the norm

‖w‖H=‖w‖H 1(D,H 1
# ((0,1),H 1

# (Y )))+‖w‖L2(D,H 2
# ((0,1),H 1

# (Y)))+‖w‖L2(D,H 1
# ((0,1),H 2

# (Y))).

We then have the following approximation properties.

Proposition 3.3 For all w ∈ H

inf
wL∈V L

1

‖w − wL
1 ‖L2(D,H 1((0,1),V#))

≤ chL‖w‖H.

The proof of this proposition is quite standard. It is similar to the proof for similar
results in Bungartz and Griebel [7] and Hoang and Schwab [20]. We refer to these
references for details. We denote the solution of the Crank-Nicolson scheme (3.1)
when V L

1 = V̄ L
1 as Ū0,m and Ū1,m respectively, and z0,M , z0,m+1/2 and z1,m+1/2 as

z̄0,M , z̄0,m+1/2 and z̄1,m+1/2. We therefore have the following result.

Theorem 3.4 Assume that u0 ∈ C3([0, T ], H)∩C2([0, T ], V )∩C1([0, T ], H 2(D)),
u1 ∈ C2([0, T ], V1) ∩ C([0, T ],H). If we choose the initial condition gL such that
‖g − gL‖V ≤ chL, then

‖z̄0,M‖2
V + 
t

M−1∑
m=0

(‖z̄0,m+1/2‖2
V + ‖z̄1,m+1/2‖2

V1
) ≤ c((
t)4 + h2

L). (3.4)

Proof We estimate the right hand side of (3.3). As u1 ∈ C([0, T ],H), we can choose
ũ1,m ∈ V L

1 for m = 1, . . . , M such that

‖(u1 − ũ1)m+1/2‖L2(D,H 1((0,1),V#))
≤ chL(‖u1(tm)‖H + ‖u1(tm+1)‖H) ≤ chL,
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where c does not depend on t . Therefore

‖(u1 − ũ1)m+1/2‖V1 +
∥∥∥∥ ∂

∂τ
(u1 − ũ1)m+1/2

∥∥∥∥
V ′

1

≤ chL.

As u0 ∈ C([0, T ], H 2(D)) ⊂ C([0, T ], C(D̄)) (we consider d = 1, 2, 3), we can
define the interpolation IL(u0)(t) ∈ V L whose value at each node equals the value
of u0(t). We note that

‖u0(t) − IL(u0)(t)‖V ≤ chL‖u0(t)‖H 2(D) ≤ chL.

Choosing ũ0(t) = IL(u0)(t), we have

‖(u0 − ũ0)m+1/2‖V ≤ chL

where c does not depend on m. For the other terms in the right hand side of (3.3), we
have

M−1∑
m=1

∥∥∥∥ (u0 − ũ0)m+1/2 − (u0 − ũ0)m−1/2


t

∥∥∥∥
2

H

≤
M−1∑
m=1

1

2

(∥∥∥∥ (u0 − ũ0)m+1 − (u0 − ũ0)m


t

∥∥∥∥
2

H

+
∥∥∥∥ (u0 − ũ0)m − (u0 − ũ0)m−1


t

∥∥∥∥
2

H

)
.

We have ∥∥∥∥∂u0

∂t
− ∂ũ0

∂t

∥∥∥∥
H

≤ chL

∥∥∥∥∂u0

∂t

∥∥∥∥
H 1(D)

.

We estimate this using the procedure of [12]
∥∥∥∥ (u0 − ũ0)m+1 − (u0 − ũ0)m


t

∥∥∥∥
2

H

=
∥∥∥∥∥

∫ (m+1)
t

m
t

∂(u0 − ũ0)

∂t
(t)dt

∥∥∥∥∥
2

H

(
t)−2

≤
(∫ (m+1)
t

m
t

∥∥∥∥∂(u0 − ũ0)

∂t
(t)

∥∥∥∥
H

dt

)2

(
t)−2

≤ ch2
L

(∫ (m+1)
t

m
t

∥∥∥∥∂u0

∂t
(t)

∥∥∥∥
H 1(D)

dt

)2

(
t)−2

≤ ch2
L

(∫ (m+1)
t

m
t

∥∥∥∥∂u0

∂t
(t)

∥∥∥∥
2

H 1(D)

dt

)
(
t)−1.

From this, we deduce that


t

M−1∑
m=1

∥∥∥∥ (u0 − ũ0)m+1/2 − (u0 − ũ0)m−1/2


t

∥∥∥∥
2

H

≤ ch2
L.

We then get the conclusion.
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3.3 Sparse tensor finite elements

To define the sparse tensor FE spaces, we consider the following orthogonal
projections. Let

P l : L2(D) → V l, P l
τ# : H 1

# ((0, 1)) → V l
τ#, P l

# : H 1
# (Y ) → V l

#

be the orthogonal projections with respect to the inner products of L2(D), H 1
# ((0, 1))

and H 1
# (Y ) respectively. We then define the following detail spaces

Wl = (P l − P l−1)V l, W l
τ# = (P l

τ# − P l−1
τ# )V l

τ#, W l
# = (P l

# − P l−1
# )V l

#,

with the convention that P −1 = 0, P −1
τ# = 0, and P −1

# = 0. We note that

V L =
⊕

0≤l≤L

Wl, V L
τ# =

⊕
0≤l≤L

Wl
τ#, V L

# =
⊕

0≤l≤L

Wl
#,

with respect to the norms of L2(D), H 1
# ((0, 1)) and H 1

# (Y ) respectively. The full
tensor finite element spaces are

V̄ L
1 =

⊕
0≤l0,l1,l2≤L

Wl0
⊗

W
l1
τ#

⊗
W

l2
# .

We define the sparse tensor product FE spaces as

V̂ L
1 =

⊕
0≤l0+l1+l2≤L

Wl0
⊗

W
l1
τ#

⊗
W

l2
# .

To quantify the approximation of u1 using the spaces V̂ L
1 , we define the regularity

spaces Ĥ that contains functions w ∈ L2(D, H 1
# ((0, 1), H 1

# (Y ))) so that

∂ |α0|

∂xα0

∂α1

∂τα
1

∂ |α2|

∂yα2
w ∈ L2(D × (0, 1) × Y ),

for all α0∈ N
d
0 so that |α0| ≤ 1, α1 ∈ {0, 1, 2} and α2∈ N

d
0 so that |α2| ≤ 2. In other

words, Ĥ = H 1(D, H 2
# ((0, 1), H 2

# (Y ))). We then have the following approximation
result.

Proposition 3.5 Assume that w ∈ Ĥ. Then

inf
wL∈ ˆV L

1

‖w − wL‖L2(D,H 1
# ((0,1),H 1

# (Y ))) ≤ cLhL‖w‖Ĥ.

The proof of this proposition is similar to those for sparse tensor product FE
approximations in [7] and [20]. We refer to these references for details. We denote
the solution of the Crank-Nicolson scheme in (3.1) using the sparse tensor product

FE space V̂ L
1 as Û0,m and Û1,m; and denote by z0,M , z0,m+1/2 and z1,m+1/2 as ẑ0,M ,

ẑ0,m+1/2 and ẑ1,m+1/2 respectively. We then have
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Theorem 3.6 Assume that u0 ∈ C3([0, T ], H)∩C2([0, T ], V )∩C1([0, T ], H 2(D)),
u1 ∈ C2([0, T ], V1) ∩ C([0, T ], Ĥ). If we choose the initial condition gL such that
‖g − gL‖V ≤ cLhL. Then

‖ẑ0,M‖2
V + 
t

M−1∑
m=0

(‖ẑ0,m+1/2‖2
V + ‖ẑ1,m+1/2‖2

V1
) ≤ c((
t)4 + L2h2

L). (3.5)

The proof is similar to that for Theorem 3.4

Remark 3.7 The dimension of the full tensor product FE space V̄ L
1 is O(2(2d+1)L).

The dimension of the sparse tensor product FE space V̂ L
1 is O(L22dL) which is much

less than the dimension of the full tensor product FE spaces V̄ L
1 .

Remark 3.8 Another way to construct the sparse tensor product FE spaces is to use
the equivalent norms of wavelet basis functions. We assume that:

(i) For each j ∈ N
d
0 , there exists a set I j ⊂ N

d
0 and a set of basis functions φjk ,

k ∈ I j , such that V l = span
{
φjk : |j |∞ ≤ l

}
. There are constants c2 > c1 >

0 which are independent of l such that if φ = ∑
|j |∞≤l,k∈I j φjkcjk ∈ V l , then :

c1

∑
|j |∞≤l

k∈I j

c2
jk ≤ ‖φ‖2

L2(D)
≤ c2

∑
|j |∞≤l

k∈I j

c2
jk . (3.6)

(ii) For each j ∈ N0, there exists a set I
j

0 ⊂ N0 and a set of basis functions φ
jk

0 ,

k ∈ I
j

0 , such that V l
τ# = span{φjk

0 : |j |∞ ≤ l}. There are constants c4 > c3 >

0 which are independent of l such that if φ = ∑
|j |∞≤l,k∈I

j
0

φ
jk

0 cjk ∈ V l
τ#, then

c3

∑
|j |∞≤l

k∈I
j
0

c2
jk ≤ ‖φ‖2

H 1
# ((0,1))

≤ c4

∑
|j |∞≤l

k∈I
j
0

c2
jk . (3.7)

(iii) For each j ∈ N
d
0 , there exists a set I

j

1 ⊂ N
d
0 and a set of basis functions

φ
jk

1 ∈ H 1
# (Y ), k ∈ I

j

1 , such that V l
# = span{φjk

1 : |j | ≤ l}. There are constants

c6 > c5 > 0 which are independent of l such that if φ = ∑
|j |∞≤l,k∈I

j
1

φ
jk

1 cjk ,

then
c5

∑
|j |∞≤l

k∈I
j
1

c2
jk ≤ ‖φ‖2

H 1
# (Y )

≤ c6

∑
|j |∞≤l

k∈I
j
1

c2
jk . (3.8)

Using the norm equivalences, we define

Wl = span{φjk : |j |∞ = l}, W l
τ# = span{φjk

0 : |j |∞ = l},
W l

# = span{φjk

1 : |j |∞ = l}.
Example: (i) We construct a basis for L2(0, 1) that satisfies (3.6) as follows. We

first take three continuous piecewise linear functions for level l = 0: ψ0
1 obtains
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values (1, 0) at (0, 1/2) and is 0 in (1/2, 1), ψ0
2 obtains values (0, 1, 0) at (0, 1/2, 1),

and ψ0
3 obtains values (0, 1) at (1/2, 1) and is 0 in (0, 1/2). The basis functions for

other levels are constructed from the function ψ that takes values (0, −1, 2, −1, 0)

at (0, 1/2, 1, 3/2, 2), the left boundary function ψlef t taking values (−2, 2, −1, 0) at
(0, 1/2, 1, 3/2), and the right boundary function ψright taking values (0, −1, 2, −2)

at (1/2, 1, 3/2, 2). For levels l ≥ 1, Il = {1, 2, . . . , 2l}, the wavelet basis functions
are defined as ψl

1(x) = 2−l/2ψlef t (2lx), ψl
k(x) = 2−l/2ψ(2lx − k + 3/2) for k =

2, · · · , 2l − 1 and ψl
2l = 2−l/2ψright (2lx − 2l + 2).

(ii) For Y = (0, 1), we construct a hierarchical basis for H 1
# (Y )/R that satisfies

(3.7) from those in (i). For level 0, we exclude ψ0
1 , ψ0

3 . At other levels, the func-
tions ψlef t and ψright are replaced by the continuous piecewise linear functions that
take values (0, 2, −1, 0) at (0, 1/2, 1, 3/2) and values (0, −1, 2, 0) at (1/2, 1, 3/2, 2)

respectively.
For the d dimensional cube (0, 1)d , the basis functions can be constructed by

taking the tensor products of the basis functions in (0, 1). They satisfy the norm
equivalence after appropriate scaling, see [18]. Examples on wavelet basis functions
on regular triangular mesh can be found in, e.g., Bieri et al. [6].

Remark 3.9 We can construct the sparse tensor product by using the hierarchies {T l},
{T l

τ#} and {T l
# }. We denote by S l the new nodes belonging to the set of simplices T l

but not the set of simplices T l−1. We let Wl be the set of basis functions in V l which
equals 1 at one of the nodes of S l and equals 0 at other nodes. We construct the
spaces Wl

τ# and Wl
# similarly. The estimate for the sparse tensor product FE spaces

still holds.

4 Numerical correctors

We employ the FE solutions for the multiscale homogenized problems (2.1) to
construct numerical correctors in this section. We first establish the homogenized
equation from (2.1). Letting φ0 = 0, we have∫

D

∫ 1

0

〈
∂u1

∂τ
(t, x, τ, ·), φ1(x, τ, ·)

〉
H#

dτdx

+
∫

D

∫ 1

0

∫
Y

a(t, x, τ, y)(∇u0(t, x)+∇yu1(t, x, τ, y))·∇yφ1(x, τ, y)dydτdx =0

∀ φ1 ∈ L2(D×(0, 1), V#). We therefore deduce that the solution u1 can be written as

u1(t, x, τ, y) = ∂u0

∂xi

(t, x)Ni(t, x, τ, y) (4.1)

where Ni(t, x, τ, y) ∈ L2((0, T )×D×(0, 1), V#)
⋂

L2((0, T )×D, H 1
# ((0, 1), V ′

#))

is the unique solution of the problem

∂Ni

∂τ
− ∇y · (a(ei + ∇yN

i)) = 0. (4.2)
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Here ei is the ith vector of the standard basis in R
d . The existence of a unique

solution of (4.2) is proved in Lions and Magenes [24] Chapter 3 Section 6.2. Due

to the periodicity with respect to y, we have
∫
Y

∂Ni

∂τ
dy = 0 so fixing x and t ,

for all τ ,
∫
Y

Nidy = c(t, x). Choosing the solution as Ni − c(t, x), we have∫
Y

Ni(t, x, τ, y)dy = 0. Then letting φ1 = 0 in (2.1) we have

〈
∂u0

∂t
(t, ·), φ0(·)

〉
H

+
∫

D

∫ 1

0

∫
Y

a(t, x, τ, y)(∇u0(t, x)

+ ∇yu1(t, x, τ, y)) · ∇φ0(x)dydτdx =
∫

D

f (t, x)φ0(x)dx

∀ φ0 ∈ V . Using (4.1), we have

∫ 1

0

∫
Y

aik(t, x, τ, y)(
∂u0

∂xk

(t, x) + ∂u1

∂yk

(t, x, τ, y))dydτ

=
∫ 1

0

∫
Y

aik(t, x, τ, y)(
∂u0

∂xk

(t, x) + ∂u0

∂xj

(t, x)
∂Nj

∂yk

(t, x, τ, y))dydτ

=
∫ 1

0

∫
Y

aik(t, x, τ, y)(δjk + ∂Nj

∂yk

(t, x, τ, y))
∂u0

∂xj

(t, x)dydτ .

We therefore have
∫

D

∫ 1

0

∫
Y

a(t, x, τ, y)(∇u0(t, x) + ∇yu1(t, x, τ, y)) · ∇φ0(x)dydτdx

=
∫

D

(∫ 1

0

∫
Y

aik(t, x, τ, y)(δjk+ ∂Nj

∂yk

(t, x, τ, y))dydτ

)
∂u0

∂xj

(t, x)
∂φ

∂xi

(x)dx.

Thus the function u0 satisfies the homogenized equation

∂u0

∂t
− ∇ · (a0∇u0) = f, (4.3)

u0(0, ·) = g (4.4)

where the homogenized coefficient a0 is defined as

a0
ij (t, x) =

∫ 1

0

∫
Y

aik(t, x, τ, y)

(
δjk + ∂Nj

∂yk

(t, x, τ, y)

)
dydτ . (4.5)

As shown in [5], uε ⇀ u0 in L2((0, T ), V ). The homogenized Eq. 4.3 represents
(1.2) macroscopically. It is well-posed as the coefficient a0 in (4.5) is positively
definite. Indeed, from (4.2), we have

∫ 1

0

∫
Y

∂Nj

∂τ
(t, x, τ, y)Ni(t, x, τ, y)dydτ

+
∫ 1

0

∫
Y

alk(t, x, τ, y)

(
δjk + ∂Nj

∂yk

)
∂Ni

∂yl

dydτ = 0.
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Thus

a0
ij (t, x) =

∫ 1

0

∫
Y

alk

(
δjk + ∂Nj

∂yk

) (
δil + ∂Ni

∂yl

)
−

∫ 1

0

∫
Y

∂Nj

∂τ
Nidydτ .

Let ξ be a vector in R
d . We have

a0
ij (t, x)ξiξj =

∫ 1

0

∫
Y

alk

(
ξk + ∂Nj

∂yk

ξj

) (
ξl + ∂Ni

∂yl

ξi

)
dydτ

−
∫ 1

0

∫
Y

∂Nj

∂τ
Nidydτξiξj .

From the uniform ellipticity of a, we have

∫ 1

0

∫
Y

alk

(
ξk+ ∂Nj

yk

ξj

)(
ξl+ ∂Ni

∂yl

ξi

)
dydτ ≥ c

d∑
k=1

∫ 1

0

∫
Y

(
ξk+ ∂Nj

∂yk

ξj

)2

dydτ

= c

d∑
k=1

ξ2
k +c

d∑
k=1

∫ 1

0

∫
Y

(
∂Nj

∂yk

ξj

)2

dydτ

≥ c

d∑
k=1

ξ2
k

due to the periodicity with respect to y of Nj . We further have

∫ 1

0

∫
Y

∂Nj

∂τ
Nidydτξiξj =

d∑
i=1

∫ 1

0

∫
Y

∂Ni

∂τ
Nidydτξ2

i

+
∑
i �=j

i,j=1,...,d

∫ 1

0

∫
Y

(
∂Nj

∂τ
Ni + ∂Ni

∂τ
Nj

)
dydτξiξj .

Due to the periodicity of Ni, Nj with respect to τ , we have
∫ 1

0

∫
Y

(
∂Nj

∂τ
Ni + ∂Ni

∂τ
Nj

)
dydτ =

∫ 1

0

∫
Y

∂(NiNj )

∂τ
dydτ = 0.

Therefore ∫ 1

0

∫
Y

∂Nj

∂τ
Nidydτξiξj = 0.

We thus get the uniform coercivity of a0 with respect to t and x.
We note that uε only converges weakly to u0 in L2((0, T ), V ) when ε → 0.

We now derive a corrector result i.e. a computable function that approximates uε in
the norm of L2((0, T ), V ). We first consider the operator T ε : L1((0, T ) × D) →
L1((0, T ) × D × (0, 1) × Y ) as

T ε() = 

(
ε2

[
t

ε2

]
1
+ ε2τ, ε

[x

ε

]
+ εy

)
(4.6)
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where [·]1 denotes the integer part of a real number, and [·]Y denotes the “interger
part” with respect to the unit cube Y of a vector in R

d . Let Dε be the 2ε

neighbourhood of D. We have
∫ T

0

∫
D

(t, x)dxdt =
∫ T +2ε

−2ε

∫
Dε

∫ 1

0

∫
Y

T ε()(t, x, τ, y)dydτdxdt; (4.7)

 is extended by 0 outside (0, T ) × D (see, e.g., [11]). We now show that if {wε}ε
time-space multiscale converges to w0 in L2((0, T ) × D × (0, 1) × Y ) then

T ε(wε) ⇀ w0 in L2((0, T ) × D × (0, 1) × Y ).

Let {wε}ε be a bounded sequence in L2((0, T ) × D) that time-space multiscale
converges to w0. We note that (T ε(wε))2 = T ((wε)2). We have from (4.7)

∫ T +2ε

−2ε

∫
Dε

∫ 1

0

∫
Y

T ε(wε)(t, x, τ, y)2dydτdxdt

=
∫ T +2ε

−2ε

∫
Dε

∫ 1

0

∫
Y

T ε((wε)2)(t, x, τ, y)dydτdxdt =
∫ T

0

∫
D

wε(t, x)2dxdt .

Thus T ε(wε) is bounded in L2((0, T ) × D × (0, 1) × Y ) so we can extract a subse-
quence that weakly converges. Let ψ(t, x, τ, y) be a smooth function that is (0, 1)×Y

periodic with respect to τ and y. We have

lim
ε→0

∫ T

0

∫
D

wε(t, x)ψ(t, x,
t

ε2
,
x

ε
)dxdt

=
∫ T

0

∫
D

∫ 1

0

∫
Y

w0(t, x, τ, y)ψ(t, x, τ, y)dydτdxdt .

On the other hand, from (4.7), we have
∫ T

0

∫
D

wε(t, x)ψ(t, x,
t

ε2
,
x

ε
)dxdt

=
∫ T +2ε

−2ε

∫
Dε

∫ 1

0

∫
Y

T ε(wε)ψ(ε2
[

t

ε2

]
1
+ ε2τ, ε

[x

ε

]
+ εy, τ, y)dydτdxdt,

where we have used the periodicity of ψ . Since ψ is smooth in (0, T )×D×(0, 1)×Y ,
we have

∣∣∣ψ(ε2
[

t

ε2

]
1
+ ε2τ, ε

[x

ε

]
+ εy, τ, y) − ψ(t, x, τ, y)

∣∣∣ ≤ cε

where c is independent of t, x, τ and y. Therefore

lim
ε→0

∫ T

0

∫
D

wε(t, x)ψ(t, x,
t

ε2
,
x

ε
)dxdt

= lim
ε→0

∫ T

0

∫
D

∫ 1

0

∫
Y

T ε(wε)ψ(t, x, τ, y)dydτdxdt,
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i.e.

lim
ε→0

∫ T

0

∫
D

∫ 1

0

∫
Y

T ε(wε)ψ(t, x, τ, y)dydτdxdt

=
∫ T

0

∫
D

∫ 1

0

∫
Y

w0(t, x, τ, y)ψ(t, x, τ, y)dydτdxdt .

As the space of smooth functions which are (0, 1) × Y periodic with respect to τ and
y is dence in L2((0, T ) × (0, 1) × D × Y ), we deduce that the weak limit of T ε(wε)

in L2((0, T ) × (0, 1) × D × Y ) is w0.
To establish the numerical correctors, we define the operator Uε : L1((0, T ) ×

D × (0, 1) × Y ) → L1((0, T ) × D) as

Uε() =
∫ 1

0

∫
Y



(
ε2

[
t

ε2

]
1
+ ε2θ, ε

[x

ε

]
+ εz,

{
t

ε2

}
1
,
{x

ε

})
dzdθ (4.8)

where [·]1 and {·}1 denote the integer and the fractional parts of a real number, and
[·] and {·} denote the “integer” and the “fractional” part with respect to the unit cube
Y of a vector in R

d . Let D2ε be the 2ε neighbourhood of D. We have that
∫ T +2ε2

−2ε2

∫
D2ε

Uε()(t, x) =
∫ T

0

∫
D

∫ 1

0

∫
Y

(t, x, τ, y)dydτdxdt (4.9)

for all  ∈ L1((0, T ) × D × (0, 1) × Y ). The proof of these facts can be found in
[11]. We first establish the following result.

Proposition 4.1 For the solution of Eq. 2.1

lim
ε→0

‖∇uε − ∇u0 − Uε(∇yu1)‖L2((0,T )×D) = 0.

Proof First we note that as ∇uε ts-ms−→ ∇u0 + ∇yu1, T ε(∇uε) ⇀ ∇u0 + ∇yu1 in
L2((0, T ) × D × (0, 1) × Y ). Let

I =
∫ T

0

〈
∂uε

∂t
− ∂u0

∂t
, uε − u0

〉
H

+
∫ T

0

∫
D

∫ 1

0

∫
Y

T ε(a(t, x,
t

ε2
,
x

ε
))(T ε(∇uε) − (∇u0 + ∇yu1))

· (T ε(∇uε) − (∇u0 + ∇yu1))dydτdxdt .

From (1.2), (2.1), and the fact that T ε(a(t, x, t

ε2 , x
ε
)) → a(t, x, τ, y) pointwise, we

have

lim
ε→0

I = lim
ε→0

∫ T

0

〈
∂uε

∂t
, uε

〉
H

−
〈
∂u0

∂t
, u0

〉
H

dt+
∫ T

0

∫
D

a(t, x,
t

ε2
,
x

ε
)∇uε ·∇uεdxdt

−
∫ T

0

∫
D

∫ 1

0

∫
Y

a(t, x, τ, y)(∇u0+∇yu1)·(∇u0+∇yu1)dydτdxdt

= lim
ε→0

∫ T

0

∫
D

f uεdx−
∫ T

0

∫
D

f u0dx

= 0
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due to uε ⇀ u0 in L2((0, T ), V ) when ε → 0. As uε(0) = u0(0) = g, using the
coercivity of a, we have

lim
ε→0

‖uε(T ) − u0(T )‖H + ‖T ε(∇uε) − (∇u0 + ∇yu1)‖L2((0,T )×D×(0,1)×Y) = 0.

From (4.8), we have (Uε()(t, x))2 ≤ Uε(2)(t, x). From (4.9), we have

‖Uε()‖2
L2((0,T )×D)

≤ ‖Uε(2)‖L1((0,T )×D)) ≤ ‖‖2
L2((0,T )×D×(0,1)×Y)

.

We therefore have

‖Uε(T ε(∇uε) − (∇u0 + ∇yu1))‖L2((0,T )×D)

≤ ‖T ε(∇uε) − (∇u0 + ∇yu1)‖L2((0,T )×D×(0,1)×Y) → 0

when ε → 0. Using Uε(T ε(∇uε)) = ∇uε, we get the conclusion.

For the full tensor product FE approximation, we define the functions Ū0 :
(0, T ) → V and Ū1 : (0, T ) → L2(D × (0, 1), V#) as

Ū0(t) = 1

2
(Ū0,m + Ū0,m+1), Ū1(t) = 1

2
(Ū1,m + Ū1,m+1) for t ∈ [tm, tm+1).

We then have the following approximation

Theorem 4.2 Assume that the hypothesis of Theorem 3.4 hold. Then for the solution
of the numerical scheme (3.1) using the full tensor product FEs, we have

lim
L→∞
ε→0

∥∥∇uε − ∇Ū0 − Uε(∇y(Ū1))
∥∥

L2((0,T )×D)
= 0,

i.e. for all δ > 0 we can find L0 > 0 and ε0 > 0 such that if L > L0 and ε < ε0∥∥∇uε − ∇Ū0 − Uε(∇y(Ū1))
∥∥

L2((0,T )×D)
< δ.

Proof We note that

∫ T

0
‖∇u0(t) − ∇Ū0(t)‖2

H dt =
M−1∑
m=0

∫ (m+1)
t

m
t

‖∇u0(t) − ∇Ū0(t)‖2
H dt

≤
M−1∑
m=0

(

t‖∇u0(tm+1/2) − ∇Ū0(tm+1/2))‖2

H + c(
t)3
)

,

where we have used the midpoint approximation for the integral. As u0 ∈
C2([0, T ], V ), the constant c is independent of m. We note that

∥∥∥∥1

2
(∇u0(tm) + ∇u0(tm+1)) − ∇u0(tm+1/2)

∥∥∥∥
H

≤ c(
t)2
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Therefore

∫ T

0
‖∇u0(t)−∇Ū0(t)‖2

H dt ≤
M−1∑
m=0

(

t‖∇u0,m+1/2 − ∇Ū0(tm+1/2))‖2

H + c(
t)3
)

= 
t

M−1∑
m=0

‖∇ z̄0,m+1/2‖2
H + O((
t)2)

≤ c((
t)2 + h2
L).

Similarly we have

∫ T

0
‖∇yu1(t) − ∇yŪ1(t)‖2

L2(D×(0,1)×Y)
dt ≤ 
t

M−1∑
m=0

‖∇y z̄0,m+1/2‖2
L2(D×(0,1)×Y)

+O((
t)2) ≤ c((
t)2 + h2
L).

From (4.8), we have that (Uε()(t, x))2 ≤ Uε(2)(t, x). Therefore, from (4.9),
we have

‖Uε()‖L2((0,T )×D) ≤ ‖Uε(2)‖L1((0,T )×D) ≤ ‖‖L2((0,T )×D×(0,1)×Y).

From this, we have

‖Uε(∇yu1−∇yŪ1)‖L2((0,T )×D) ≤ ‖∇yu1−∇yŪ1‖L2((0,T )×D×(0,1)×Y) ≤ c(
t+hL).

From this, we have

‖∇uε−∇Ū0 − Uε(∇yŪ1)‖L2((0,T )×D) ≤‖∇uε−∇u0 − Uε(∇yu1)‖L2((0,T )×D)

+‖∇u0−∇Ū0‖L2((0,T )×D) + ‖Uε(∇yu1) − Uε(∇yŪ1)‖L2((0,T )×D) →0

when L → ∞ and ε → 0.

For the sparse tensor product approximations, we define

Û0(t) = 1

2
(Û0,m + Û0,m+1), Û1(t) = 1

2
(Û1,m + Û1,m+1) for t ∈ [tm, tm+1).

We have:

Theorem 4.3 Assume that the hypothesis of Theorem 3.6 hold. Then for the solution
of the numerical scheme (3.1) using the sparse tensor product FEs, we have

lim
L→∞
ε→0

∥∥∥∇uε − ∇Û0 − Uε(∇y(Û1))

∥∥∥
L2((0,T )×D)

= 0.

The proof of this theorem is similar to that for Theorem 4.2.

Remark 4.4 Geng and Shen [17] deduce a corrector with a convergence rate in terms
of the microscopic scale ε in the H 1(D) norm for the solution uε. This corrector
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involves functions other than u0 and u1, which cannot be found from problem (2.1).
The corrector of [17] involves a parabolic smoothness operator for the solution u0.
We are not aware of a simple corrector with an explicit homogenization rate of con-
vergence in terms of ε similar to that for elliptic problems, i.e., a rate of convergence
for the limit in Proposition 4.1 in terms of ε. However, from Theorem 1.1 of [17], if
u0 ∈ C([0, T ], H 1(D)), then

‖uε − u0‖L2((0,T )×D) ≤ cε.

Using this, we will have

‖uε − Ū0‖L2((0,T )×D) ≤ c(ε + hL)

for the solution of the full tensor product FE approximation, and

‖uε − Û0‖L2((0,T )×D) ≤ c(ε + LhL)

for the solution of the sparse tensor product FE approximation.

5 Regularity

We show that the regularity required on the solution u0 and u1 of the multiscale
homogenized problem (2.1) for obtaining the full and sparse tensor product FE errors
and for obtaining the corrector hold under regularity conditions for the coefficients
and the initial condition. We have the following results.

Proposition 5.1 Assume that a ∈ C3([0, T ], C3(D̄, C([0, T ] × Y ))), f ∈
H 3((0, T ), V ′), f (0) ∈ H 3

0 (D), ∂f
∂t

(0) ∈ H 2
0 (D), ∂2f

∂t2 (0) ∈ H , and g ∈ H 4
0 (D),

then u0 ∈ C3([0, T ], H) ∩ C2([0, T ], V ). Further, if f ∈ H 2((0, T ), H) and if the
domain D is convex, then u0 ∈ C1([0, T ], H 2(D)).

Proof As a ∈ C3([0, T ], C3(D̄, C([0, T ] × Y ))), from (4.5) we deduce that a0 ∈
C3([0, T ], C3(D̄)). From the condition, we have

∂

∂t

∂u0

∂t
− ∇ ·

(
a0∇ ∂u0

∂t

)
= ∂f

∂t
+ ∇ ·

(
∂a0

∂t
∇u0

)
∈ L2((0, T ), V ′),

∂u0

∂t
(0) = f (0) + ∇ · (a0∇g) ∈ H,

so ∂u0
∂t

∈ L2((0, T ), V ) ∩ C([0, T ], H). Therefore

−∇ ·
(
a0∇u0

)
= f − ∂u0

∂t
∈ C([0, T ], H)
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so u0 ∈ C([0, T ], H 2(D)). We then have

∂

∂t

∂2u0

∂t2
− ∇ ·

(
a0∇ ∂2u0

∂t2

)
= ∂2f

∂t2
+ ∇ ·

(
∂2a0

∂t2
∇u0

)
+ 2∇ ·

(
∂a0

∂t
∇ ∂u0

∂t

)

∈ L2((0, T ), V ′),
∂2u0

∂t2
(0) = ∂f

∂t
(0) + ∇ ·

(
∂a0

∂t
(0)∇g

)

+∇ ·
(
a0∇(f (0) + ∇ · (a0∇g))

)
∈ H .

Arguing as for ∂u0
∂t

, we deduce that ∂2u0
∂t2 ∈ L2((0, T ), V ) ∩ C([0, T ], H) and ∂u0

∂t
∈

C([0, T ], H 2(D)). Continuing this process, we have

∂

∂t

∂3u0

∂t3
−∇·(a0∇ ∂3u0

∂t3
) = ∂3f

∂t3
+∇·

(
∂3a0

∂t3
∇u0

)
+3∇·

(
∂2a0

∂t2
∇ ∂u0

∂t

)

+ 3∇·
(

∂a0

∂t
∇ ∂2u0

∂t2

)
∈L2((0, T ), V ′),

∂3u0

∂t3
(0) = ∂2f

∂t2
(0)+∇·

(
a0∇·

(
∂f

∂t
(0)+∇·

(
∂a0

∂t
(0)∇g

)

+ ∇· (a0∇(f (0)+∇·(a0∇g)))

))
+∇·

(
∂2a0

∂t
(0)∇g

)

+ 2∇·
(

∂a0

∂t
∇(f (0)+∇·(a0∇g))

)
∈H .

Therefore ∂3u0
∂t3 ∈ C([0, T ], H) ∩ L2([0, T ], V ). As u0 ∈ H 3((0, T ), V ), we deduce

that u0 ∈ C2([0, T ], V ). We note that

−∇ · (a0(t)∇ ∂2u0

∂t2
(t)) = ∂2f

∂t2
− ∂3u0

∂t3
+ ∇ ·

(
∂2a0

∂t2
∇u0

)

+ 2∇ ·
(

∂a0

∂t
∇ ∂u0

∂t

)
∈ C([0, T ], H).

Therefore for all t ∈ [0, T ], ∂2u0
∂t2 (t) ∈ H 2(D) with

∥∥∥∥∂2u0

∂t2
(t)

∥∥∥∥
H 2(D)

≤ c

(∥∥∥∥∂2f

∂t2
(t)

∥∥∥∥
H

+
∥∥∥∥∂3u0

∂t3
(t)

∥∥∥∥
H

+
∥∥∥∥∂2u0

∂t2
(t)

∥∥∥∥
H

+ ‖u0(t)‖H

)

where the constant c depends only on the domain D and the Lipschitz norm of a0(t)

which is uniform for all t (see [19] Theorems 3.1.3.1 and 3.2.1.2). Therefore u0 ∈
H 2((0, T ), H 2(D)) ⊂ C1([0, T ], H 2(D)).

For the regularity of Ni , we have the following result.

Proposition 5.2 Assume that a ∈ C2([0, 1] × D̄, C3([0, 1], C(Ȳ ))), then Ni ∈
C1([0, 1] × D̄, H 2((0, 1), H 2

# (Y ))).
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Proof We extend Ni for all τ ∈ (0, ∞) periodically. It then belongs to
L2

loc((0, ∞), V#). Fixing t and x, we consider problem

∂Ni

∂τ
− ∇y · (a∇yN

i) = ∇y · (aei), (5.1)

with the initial condition at τ1. From Theorem 5 of Section 7.1 of Evans [16] we
deduce that if Ni(τ1) ∈ V#, then Ni ∈ H 1((τ1, �), H#). Indeed the theorem of [16] is
for the Dirichlet boundary condition, but the it remains valid for the periodic bound-
ary condition. As Ni ∈ L2

loc((0, ∞), V#) we can choose a value τ , without loss of
generality we let it be τ1, so that Ni(τ1) ∈ V# which implies Ni ∈ H 1((τ1, �), H#).
Therefore

− ∇y · (a∇yN
i) = ∇y · (aei) − ∂Ni

∂τ
∈ L2((τ1, �), H#). (5.2)

Thus from elliptic regularity, we deduce that Ni ∈ L2((τ1, �), H 2
# (Y )). We now

consider the equation

∂

∂τ

∂Ni

∂τ
− ∇y ·

(
a∇y

∂Ni

∂τ

)
= ∇y ·

(
∂a

∂τ
ei

)
+ ∇y ·

(
∂a

∂τ
∇yN

i

)
∈ L2((τ1, �), V ′

#).

(5.3)
As Ni ∈ Cloc([0, ∞), H) is uniquely determined, without loss of generality, we
assume that Ni(τ1) ∈ H 2

# (Y ), so Eq. 5.3 with the compatibility initial condition at

τ1 implies that ∂Ni

∂τ
∈ L2((τ1, �), V#) ∩ C([τ1, �], H#). Without loss of general-

ity, we assume that ∂Ni

∂τ
(τ1) ∈ V#. By the same argument as above, we deduce that

∂Ni

∂τ
∈ H 1((τ1, �), H#), so ∂2Ni

∂τ 2 ∈ L2((τ1, �), H#). We then deduce from (5.3) that
∂Ni

∂τ
∈ L2((τ1, �), H 2

# (Y )). We note that ∂Ni

∂τ
∈ C([0, T ], H#) is uniquely deter-

mined. Without loss of generality, we assume that ∂Ni

∂τ
(τ1) ∈ H 2

# (Y ). We consider
equation

∂

∂τ

∂2Ni

∂τ 2
−∇y ·

(
a∇y

∂2Ni

∂τ 2

)
= ∇y ·

(
∂2a

∂τ 2
ei

)
+∇y ·

(
∂2a

∂τ 2
∇yN

i

)

+ 2∇y ·
(

∂a

∂τ
∇y

∂Ni

∂τ

)
∈L2((τ1, �), V ′

#), (5.4)

with the compatible initial condition at τ1 derived from (5.3). Arguing sim-

ilarly, we have ∂2Ni

∂τ 2 ∈ H 1((τ1, �), H#). Thus from (5.4), we deduce that
∂2Ni

∂τ 2 ∈ L2((τ1, �), H 2
# (Y )) i.e Ni ∈ H 2((τ1, �), H 2

# (Y )). As a is twice con-

tinuously differentiable with respect to x and t , we have that Ni ∈ C2([0, T ] ×
D̄, H 2((0, 1), H 2

# (Y )).

Propositions 5.1 and 5.2 and (4.1) imply that u1 ∈ C2([0, 1], V1) ∩ C([0, T ], Ĥ).
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6 Numerical results

We show some numerical examples in this section to illustrate the theoretical results
on the convergence of the scheme (3.1).

For a one dimensional example, we consider the domain D = (0, 1). We con-
sider the coefficient a(t, x, τ, y) = 3 + cos(2πy) + cos2(2πτ). The initial condition
uε(0) = 0. Equation 4.2 cannot be solved exactly. We solve it numerically using
fine mesh to compute the homogenized coefficient a0 in (4.5). The reference solu-
tion u1 is computed numerically. The exact solution is chosen as u0 = t2(x − x2).
With the homogenized coefficient a0(t, x) approximated numerically as a0 =
3.352429824667637, the function f = 2t (x − x2) + 2a0t2. For the sparse tensor
product FE approximation Û0,m and Û1,m, we plot the errors ‖u0 − Û0,m‖H 1

0 ((0,1))

and ‖u1 − Û1,m‖L2(D×(0,1),H 1
# (Y )) in Figs. 1 and 2 respectively where 
t = 1

2�h1/2
L �

at t = 1. The numerical results show that the errors are O((
t)2) + O(hL). When
these errors hold for all tm, we get the errors estimate (3.5). This result supports the
theoretical finding. The factor L is not visible in these figures.

For a two dimensional example, we consider the case where the domain D =
(0, 1)×(0, 1). We choose a(t, x, τ, y) = (3+sin(2πy′)+sin2(2πτ))(3+sin(2πy′′)+
sin2(2πτ)) for y = (y′, y′′) ∈ Y = (0, 1)2. The initial condition uε(0) = 0.
Cell problem (4.2) is solved numerically with fine mesh from which the homoge-
nized coefficient a0 = 11.863904995808440 is computed. We choose u0(t, x) =
t2x′x′′(1 − x′)(1 − x′′) for x = (x′, x′′). The function f = 2t (x′ − x′2)(x′′ − x′′2)+
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Fig. 1 The error ‖u0 − Û0,m‖H 1
0 (D) for 1 dimensional problem at t = 1
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Fig. 2 The error ‖u1 − Û1,m‖L2(D×(0,1),H 1
# (Y )) for 1 dimensional problem at t = 1

2a0t2(x′−x′2+x′′−x′′2). The reference solution u1 is computed from the numerical
solution for Ni and the solution u0. For t = 1, we plot the error ‖u0 − Û0,m‖H 1

0 (D)

and ‖u1 − Û1,m‖L2(D×(0,1),H 1
# (Y )/R) for the sparse tensor product FE solutions in

Figs. 3 and 4 respectively. The numerical results agree with the error estimate (3.5).
Although we only develop the theory for the case of one microscopic spatial scale,

our method is capable of treating the case of multiple spatial scales. For illustration,
we solve some limiting time-space multiscale homogenized equation established in
[21]. Holmbom et al. [21] consider the case of two microscopic spatial scales with
the coefficient

aε = a

(
t, x,

t

εk
,
x

ε
,

x

ε2

)

where a = a(t, x, τ, y1, y2) is Y -periodic with respect to y1 and y2, and (0, 1)

periodic with respect to τ . The multiscale convergence limit of uε are

∇uε ts-ms−→ ∇xu0 + ∇y1u1 + ∇y2u2,

where u1 ∈ L2((0, T ) × D, H 1
# (Y )/R) and u2 ∈ L2((0, T ) × D × Y, H 1

# (Y )/R).
Holmbom et al. [21] establish the multiscale homogenized equation for k > 0 but the
most interesting critical cases where both u1 and u2 depend on τ , and the derivatives
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Fig. 3 The error ‖u0 − Û0,m‖H 1
0 (D) for 2 dimensional problem at t = 1
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Fig. 4 The error ‖u1 − Û1,m‖L2(D×(0,1),H 1
# (Y )) for 2 dimensional problem at t = 1
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of these with respect to τ appear in the equation occur when k = 2 and k = 3. When
k = 2, we have〈

∂u0

∂t
(t), φ0

〉
H

+
∫

D

∫ 1

0

〈
∂u1

∂τ
(t, x, τ, ·), φ1

〉
H#

dτdx

+
∫

D

∫ 1

0

∫
Y1

∫
Y2

a(t, x, τ, y1, y2)(∇xu0(t, x)

+∇y1u1(t, x, τ, y1) + ∇y2u2(t, x, τ, y1, y2))

· (∇xφ0(x) + ∇y1φ1(x, τ, y1) + ∇y2φ2(x, τ, y1, y2))dy2dy1dτdx

=
∫

D

f (t, x)φ0(x)dx

∀ φ0 ∈ H 1
0 (D), φ1 ∈ L2(D×(0, 1), H 1

# (Y )/R), φ2 ∈ L2(D×(0, 1)×Y, H 1
# (Y )/R),

with the initial condition u0(0) = g.
We choose the coefficient

a(t, x, τ, y1, y2) = (3 + sin(2πy1) + sin(2πτ))(3 + sin(2πy2) + sin(2πτ)). (6.1)

We need to solve two separate cell problems with respect to y1 and y2. In this case,
the cell problem for y1 is identical to (4.2) and is solved numerically, where the cell
problem with respect to y2 is the elliptic problem, i.e., without the derivative with
respect to τ , and can be solved exactly. The homogenized coefficient is computed
numerically as a0 = 8.500245683736688, We choose u0(t, x) = t2x(1 − x) so that
f (t, x) = t (x−x2)+2a0t2. In Figs. 5, 6 and 7, we plot the errors ‖u0 −Û0,m‖H 1

0 (D),

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

meshsize

er
ro
r

Fig. 5 The error ‖u0 − Û0,m‖H 1
0 (D) for 1 dimensional 3 spatial scales problem at t = 1 for k = 2
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Fig. 6 The error ‖u1 − Û1,m‖L2(D×(0,1),H 1
# (Y )/R) for 1 dimensional 3 spatial scales problem at t = 1 for

k = 2
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Fig. 7 The error ‖u2 − Û2,m‖L2(D×(0,1)×Y,H 1
# (Y )/R) for 1 dimensional 3 spatial scales problem at t = 1

for k = 2
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‖u1 −Û1,m‖L2(D×(0,1),H 1
# (Y )/R), and ‖u2 −Û2,m‖L2(D×(0,1)×Y,H 1

# (Y )/R) for the sparse

tensor FE approximation respectively. The error agrees with the estimate O((
t)2)+
O(hL) that we establish in this paper.

For k = 3, the time-space multiscale homogenized equation becomes:

〈
∂u0

∂t
(t), φ0

〉
H

+
∫

D

∫ 1

0

〈
∂u1

∂τ
(t, x, τ, ·), φ1

〉
H#

dτdx

+
∫

D

∫ 1

0

∫
Y

〈
∂u2

∂τ
(t, x, τ, y1, ·), φ2

〉
H#

dy1dτdx

+
∫

D

∫ 1

0

∫
Y1

∫
Y2

a(t, x, τ, y1, y2)(∇xu0(t, x)

+∇y1u1(t, x, τ, y1) + ∇y2u2(t, x, τ, y1, y2))

· (∇xφ0(x) + ∇y1φ1(x, τ, y1) + ∇y2φ2(x, τ, y1, y2))dy2dy1dτdx

=
∫

D

f (t, x)φ0(x)dx

∀ φ0 ∈ H 1
0 (D), φ1 ∈ L2(D×(0, 1), H 1

# (Y )/R), φ2 ∈ L2(D×(0, 1)×Y, H 1
# (Y )/R),

with the initial condition u0(0) = g.
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Fig. 8 The error ‖u0 − Û0,m‖H 1
0 (D) for 1 dimensional 3 spatial scales problem at t = 1 for k = 3
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Fig. 9 The error ‖u1 − Û1,m‖L2(D×(0,1),H 1
# (Y )/R) for 1 dimensional 3 spatial scales problem at t = 1 for

k = 3
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Fig. 10 The error ‖u2 − Û2,m‖L2(D×(0,1)×Y,H 1
# (Y )/R) for 1 dimensional 3 spatial scales problem at t = 1

for k = 3
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We choose the coefficient a as in (6.1). We need to solve two cell problems in the
form (4.2) with respect to y1 and y2 respectively. They are solved numerically. The
numerical value of the homogenized coefficient is a0 = 7.929947333234398. We
then choose u0 = t2x(1 − x) so that f (t, x) = 2t (x − x2) + 2a0t2. In Figs. 8, 9 and
10, we plot the errors ‖u0 − Û0,m‖H 1

0 (D), ‖u1 − Û1,m‖L2(D×(0,1),H 1
# (Y )/R), and ‖u2 −

Û2,m‖L2(D×(0,1)×Y,H 1
# (Y )/R) respectively. The errors again agree with the estimate

O((
t)2) + O(hL) that we establish in this paper.

Acknowledgments The research topic originates from a discussion with Professor Christoph Schwab,
ETH, Zurich. The authors gratefully acknowledge a postgraduate scholarship of A*Star, Singapore, the
AcRF Tier 1 grant 2016-T1-001-202 RG30/16, the Singapore A*Star SERC grant 122-PSF-0007, and the
AcRF Tier 2 grant MOE 2013-T2-1-095 ARC 44/13.

Appendix

We prove Theorem 3.2 in this appendix. Let ρ0,m = 1

t

(u0(tm+1) − u0(tm)) −
∂u0
∂t

(tm+1/2), ζ0,m = 1
2 (u0(tm+1) + u0(tm)) − u0(tm+1/2), ζ1,m = 1

2 (u1(tm+1) +
u1(tm)) − u1(tm+1/2) and ξ1,m = 1

2

(
∂u1
∂τ

(tm+1) + ∂u1
∂τ

(tm)
)

− ∂u1
∂τ

(tm+1/2). Since

u0 ∈ C3([0, T ], H) ∩ C2([0, T ], V ), u1 ∈ C2([0, T ], L2(D × (0, 1), V#)) and
∂u1
∂τ

∈ C2([0, T ], L2(D × (0, 1), V ′
#)), we deduce that

‖ρ0,m‖L2(D) ≤ c(
t)2, ‖ζ0,m‖V ≤ c(
t)2, ‖ζ1,m‖V1 ≤ c(
t)2, and

‖ξ1,m‖L2(D×(0,1),V ′
#)

≤ c(
t)2

where the constant c does not depend on m. From (2.1) and (3.1) considered at t =
tm+1/2 we deduce that

〈
z0,m+1 − z0,m


t
, φ0

〉
H

+ 〈ρ0,m, φ0〉H

+
∫

D

∫ 1

0

〈
1

2

(
∂z1,m+1

∂τ
+ ∂z1,m

∂τ

)
, φ1

〉
H#

dτdx +
∫

D

∫ 1

0
〈ξ1, φ1〉H#dτdx

+
∫

D

∫ 1

0

∫
Y

a(tm+1/2)

(
∇x

z0,m+1 + z0,m

2
+ ∇y

z1,m+1 + z1,m

2

)

·(∇xφ0 + ∇yφ1)dydτdx

+
∫

D

∫ 1

0

∫
Y

a(tm+1/2)(∇xζ0,m + ∇yζ1,m) · (∇xφ0 + ∇yφ1)dydτdx = 0.

(A.1)
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Consider

I =
〈
z0,m+1 − z0,m


t
,
z0,m+1 + z0,m

2

〉
H

+
∫

D

∫ 1

0

〈
1

2

(
∂z1,m+1

∂τ
+ ∂z1,m

∂τ

)
,
z1,m+1 + z1,m

2

〉
H#

dτdx

+
∫

D

∫ 1

0

∫
Y

a(tm+1/2)

(
∇x

z0,m+1 + z0,m

2
+ ∇y

z1,m+1 + z1,m

2

)

·
(

∇x

z0,m+1 + z0,m

2
+ ∇y

z1,m+1 + z1,m

2

)
dydτdx

≥ 1

2
t
(‖z0,m+1‖2

H − ‖z0,m‖2
H ) + γ (‖z0,m+1/2‖2

V + ‖z1,m+1/2‖2
V1

). (A.2)

For {ũ0,m, m = 0, . . . , M} ⊂ V L and {ũ1,m, m = 1, . . . , M} ⊂ V L
1 , we have

I =
〈
z0,m+1 − z0,m


t
, (u0 − ũ0)m+1/2

〉
H

+
〈
z0,m+1 − z0,m


t
, (ũ0 − U0)m+1/2

〉
H

+
∫

D

∫ 1

0

〈
1

2

(
∂z1,m+1

∂τ
+ ∂z1,m

∂τ

)
, (u1 − ũ1)m+1/2

〉
H#

dτdx

+
∫

D

∫ 1

0

〈
1

2

(
∂z1,m+1

∂τ
+ ∂z1,m

∂τ

)
, (ũ1 − U1)m+1/2

〉
H#

dτdx

+
∫

D

∫ 1

0

∫
Y

a(tm+1/2)

(
∇x

z0,m+1 + z0,m

2
+ ∇y

z1,m+1 + z1,m

2

)

· (∇x(u0 − ũ0)m+1/2 + ∇y(u1 − ũ1)m+1/2
)
dydτdx

+
∫

D

∫ 1

0

∫
Y

a(tm+1/2)

(
∇x

z0,m+1 + z0,m

2
+ ∇y

z1,m+1 + z1,m

2

)

· (∇x(ũ0 − U0)m+1/2 + ∇y(ũ1 − U1)m+1/2
)
dydτdx.

From (3.1) we have

I =
〈
z0,m+1 − z0,m


t
, (u0 − ũ0)m+1/2

〉
H

−
∫

D

∫ 1

0

〈
z1,m+1 + z1,m

2
,

∂

∂τ
(u1 − ũ1)m+1/2

〉
H#

dτdx

+
∫

D

∫ 1

0

∫
Y

a(tm+1/2)

(
∇x

z0,m+1 + z0,m

2
+ ∇y

z1,m+1 + z1,m

2

)

· (∇x(u0 − ũ0)m+1/2 + ∇y(u1 − ũ1)m+1/2
)
dydτdx

−〈ρ0,m, (ũ0 − U0)m+1/2〉H −
∫

D

∫ 1

0
〈ξ1,m, (ũ1 − U1)m+1/2〉H#dτdx

+
∫

D

∫ 1

0

∫
Y

a(tm+1/2)
(∇xζ0,m + ∇yζ1,m

)
· (∇x(ũ0 − U0)m+1/2 + ∇y(ũ1 − U1)m+1/2

)
dydτdx.
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We note that (ũ0 − U0)m+1/2 = (ũ0 − u0)m+1/2 + z0,m+1/2 and (ũ1 − U1)m+1/2 =
(ũ1 −u1)m+1/2 +z1,m+1/2. For a positive constant δ > 0, using the Cauchy-Schwartz
inequality, we have

I ≤
〈
z0,m+1 − z0,m


t
, (u0−ũ0)m+1/2

〉
H

+ δ‖z1,m+1/2‖2
V1

+c

∥∥∥∥ ∂

∂τ
(u1−ũ1)m+1/2

∥∥∥∥
2

V ′
1

+ δ‖z0,m+1/2‖2
V +δ‖z1,m+1/2‖2

V1
+c‖(u0−ũ0)m+1/2‖2

V +c‖(u1−ũ1)m+1/2‖2
V1

+c‖ρ0,m‖2
H + c‖(ũ0 − u0)m+1/2‖2

H + δ‖z0,m+1/2‖2
H

+c‖ξ1,m‖2
V ′

1
+ c‖(ũ1 − u1)m+1/2‖2

V1
+ δ‖z1,m+1/2‖2

V1

+c‖ζ0,m‖2
V + c‖ζ1,m‖2

V1
+ c‖(ũ0 − u0)m+1/2‖2

V + δ‖z0,m+1/2‖2
V

+c‖(ũ1 − u1)m+1/2‖2
V1

+ δ‖z1,m+1/2‖2
V .

From this and (A.2), choosing δ sufficiently small, we have

1

2
t
(‖z0,m+1‖2

H − ‖z0,m‖2
H ) + c(‖z0,m+1/2‖2

V + ‖z1,m+1/2‖2
V1

)

≤
〈
z0,m+1 − z0,m


t
, (u0 − ũ0)m+1/2

〉
H

+c

∥∥∥∥ ∂

∂τ
(u1−ũ1)m+1/2

∥∥∥∥
2

V ′
1

+c‖(u0−ũ0)m+1/2‖2
V +c‖(u1−ũ1)m+1/2‖2

V1
+c(
t)4.

Fixing an integer P ≤ M , taking the sum for m = 0, . . . , P − 1, we have

‖z0,P ‖2
H − ‖z0,0‖2

H + c
t

P−1∑
m=0

(‖z0,m+1/2‖2
V + ‖z1,m+1/2‖2

V1
)

≤ c
t

P−1∑
m=0

(∥∥∥∥ ∂

∂τ
(u1 − ũ1)m+1/2

∥∥∥∥
2

V ′
1

+‖(u0−ũ0)m+1/2‖2
V +‖(u1−ũ1)m+1/2‖2

V1

)

cP (
t)5 + 2
t

P−1∑
m=0

〈
z0,m+1 − z0,m


t
, (u0 − ũ0)m+1/2

〉
H

. (A.3)
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We note that


t

P−1∑
m=0

〈
z0,m+1 − z0,m


t
, (u0 − ũ0)m+1/2

〉
H

= 〈
z0,P , (u0 − ũ0)P−1/2

〉
H

− 〈
z0,0, (u0 − ũ0)1/2

〉
H

+
t

P−1∑
m=1

〈z0,m


t
, (u0 − ũ0)m−1/2 − (u0 − ũ0)m+1/2

〉
H

≤ δ‖z0,P ‖2
H + c‖(u0 − ũ0)P−1/2‖2

H + ‖z0,0‖2
H + ‖(u0 − ũ0)1/2‖2

H

+δ
t

P−1∑
m=1

‖z0,m‖2
H +c
t

P−1∑
m=1

∥∥∥∥ (u0−ũ0)m+1/2−(u0−ũ0)m−1/2


t

∥∥∥∥
2

H

which is a consequence of the Cauchy-Schwartz inequality; δ is an arbitrary pos-
itive constant. We note that 
t

∑P−1
m=1 ‖z0,m‖2

H ≤ 
tP maxm=0,...,M ‖z0,m‖2
H ≤

T maxm=0,...,M ‖z0,m‖2
H . From this and (A.3), choosing δ sufficiently small, we have

‖z0,P ‖2
H ≤ c
t

P−1∑
m=0

(∥∥∥∥ ∂

∂τ
(u1 − ũ1)m+1/2

∥∥∥∥
2

V ′
1

+ ‖(u0 − ũ0)m+1/2‖2
V

+‖(u1 − ũ1)m+1/2‖2
V1

)

+ c(
t)4+c‖(u0−ũ0)P−1/2‖2
H +2‖z0,0‖2

H +‖(u0 − ũ0)1/2‖2
H

+ c
t

P−1∑
m=1

∥∥∥∥ (u0−ũ0)m+1/2−(u0−ũ0)m−1/2


t

∥∥∥∥
2

H

+δT max
m=0,...,M

‖z0,M‖2
H .

Choosing δ sufficiently small, we have

max
m=0,...,M

‖z0,m‖2
H ≤ c
t

M−1∑
m=0

(∥∥∥∥ ∂

∂τ
(u1 − ũ1)m+1/2

∥∥∥∥
2

V ′
1

+ ‖(u0 − ũ0)m+1/2‖2
V

+ ‖(u1 − ũ1)m+1/2‖2
V1

)

+c(
t)4 + c max
m=1,...,M

‖(u0 − ũ0)m−1/2‖2
H + c‖z0,0‖2

H

+‖(u0 − ũ0)1/2‖2
H

+c
t

M−1∑
m=1

∥∥∥∥ (u0 − ũ0)m+1/2 − (u0 − ũ0)m−1/2


t

∥∥∥∥
2

H

.

From this, we get the conclusion.
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