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Abstract In this paper we are concerned with plane wave discretizations of nonho-
mogeneous Helmholtz equation and time-harmonic Maxwell equations. To this end,
we design a plane wave method combined with local spectral elements for the dis-
cretization of such nonhomogeneous equations. This method contains two steps: we
first solve a series of nonhomogeneous local problems on auxiliary smooth subdo-
mains by the spectral element method, and then apply the plane wave method to the
discretization of the resulting (locally homogeneous) residue problem on the global
solution domain. We derive error estimates of the approximate solutions generated
by this method. The numerical results show that the resulting approximate solutions
possess high accuracy.

Communicated by: Karsten Urban

The first author was supported by the Natural Science Foundation of China G11571352. The second
author was supported by China NSF under the grant 11501529 and Qingdao applied basic research
project under the grant 17-1-1-9-jch.

� Qiya Hu
hqy@lsec.cc.ac.cn

� Long Yuan
yuanlong@lsec.cc.ac.cn

1 LSEC, Institute of Computational Mathematics and Scientic/Engineering Computing,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences,
Beijing 100190, China

2 College of Mathematics and Systems Science, Shan Dong University of Science
and Technology, 579 Qian Wan Gang Road, Qingdao 266590, China

3 University of Chinese Academy of Sciences, Beijing, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-017-9542-z&domain=pdf
mailto:hqy@lsec.cc.ac.cn
mailto:yuanlong@lsec.cc.ac.cn


246 Q. Hu, L. Yuan

Keywords Helmholtz equation · Time-harmonic Maxwell equations ·
Nonhomogeneous · Local spectral element · Plane wave basis functions · Error
estimates

Mathematics Subject Classification (2010) 65N30 · 65N55

1 Introduction

The plane wave method, which falls into the class of Trefftz methods [31], differs
from the traditional finite element method and the boundary element method in the
sense that the basis functions are chosen as exact solutions of the governing differ-
ential equation without boundary condition. This type of numerical method was first
introduced to solve Helmholtz equations. Examples of this approach include the Ultra
Weak Variational Formulation (UWVF) (see [5, 7, 8]), the plane wave Lagrangian
multiplier (PWLM) method [1, 12, 30], the plane wave discontinuous Galerkin
(PWDG) method (see [15, 18]), the weighted plane wave least-squares (PWLS)
method (see [21, 26]) and the Variational Theory of Complex Rays (VTCR) intro-
duced in [27, 28]. The wave-based discontinuous Galerkin method was originally
proposed in [14] for time-harmonic hyperbolic equations. The plane wave discretiza-
tion method has been extended to the discretization of time-harmonic Maxwell
equations recently (see [19, 22, 23]). The plane wave methods have an important
advantage over the other methods for discretizations of Helmholtz equation and
time-harmonic Maxwell equations: the resulting approximate solutions have higher
accuracies. We would like to point out that the PWLS method and the PWDG method
not only can generate high accuracy approximations but also are easy to implement.

Since plane wave basis functions on each element are solutions of the homoge-
neous Helmholtz equation or time-harmonic Maxwell equations without boundary
condition, the plane wave methods can not be directly applied to discretizations of
the nonhomogeneous Helmholtz equation and time-harmonic Maxwell equations.
For example, a post-processor is needed in the UWVF method for the discretiza-
tion of the nonhomogeneous case (refer to [7]). Recently, a PWLS method combined
with local finite elements was proposed for the discretization of the nonhomoge-
neous time-harmonic Maxwell equations (see [22]). The basic ideas in this method
can be described as follows: at first nonhomogeneous local problems on every ele-
ments are discretized in the space consisting of linear or higher order polynomials,
then the resulting residue problem (which is approximately homogeneous on each
element) on the global solution domain is discretized by the PWLS method. How-
ever the high accuracy merit of the plane wave method can not be kept yet, because
the analytic solution of the nonhomogeneous local problem defined on each ele-
ment (which is a non-smooth domain) has only low regularity even if the analytic
solution of the original problem defined on the global solution domain is smooth
enough. This phenomenon also appears in the UWVF method for the discretization
of nonhomogeneous problems.

Based on the above observation we can amend the method introduced in [22] as
follows: for each element we define an auxiliary smooth domain that contains the
element as its subdomain and has almost the same size with the element, then we
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consider a nonhomogeneous local problem defined on the auxiliary smooth domain
instead of the original (non-smooth) element and we solve the nonhomogeneous
local problem by the spectral element method. The resulting residue problem (which
is approximately homogeneous on each element) on the global solution domain is
still solved by the plane wave (PWLS or PWDG) method. We call the new method
as “Plane wave method combined with local spectral finite elements”. For conve-
nience, we describe and analyze the new method associated with the PWLS method
only (the idea and results can be extended to PWDG in the natural manner), and we
call the method as PWLS-LSFE method. We prove that the approximate solutions
generated by the PWLS-LSFE method possess satisfactory error estimates with high
convergence orders.

In order to discretize the non-homogeneous Helmholtz equation by a plane
wave-type method, the idea that the solution of the non-homogeneous problem is
decomposed into the sum of a particular solution and a solution of the residual homo-
geneous problem has been considered in some existing works (see [2, 3, 9, 10, 20]),
but with different definitions of the particular solution from the present work. The
first existing method was developed in [2] and [3], where a particular solution was
approximated by a linear combination of the fundamental solutions (MFS) or the
plane waves (PWM) with multiple test frequencies, and was obtained by globally
solving an algebraic system. As pointed out in [3], the efficiency of this method
heavily depends on the choice of test frequencies. The second method was proposed
in [9, 10, 20], where only point sources (i.e., the source term is the Dirac function)
were considered so that the particular solution can be explicitly expressed as Hankel
function.

The paper is organized as follows: In Section 2, we describe the proposed PWLS-
LSFE method for nonhomogeneous Helmholtz equation and time-harmonic Maxwell
equations. In Section 3, we explain how to discretize the resulting variational
problems. In Section 4, we derive the desired error estimates for the approximate
solutions. In Section 5, we report some numerical results to confirm the effectiveness
of the PWLS-LSFE method.

2 Local-global variational formulation for nonhomogeneous
time-harmonic problems

In this section we introduce local-global variational formulations for the nonhomoge-
neous Helmholtz equation and the second-order system of time-harmonic Maxwell
equations.

The considered variational formulations are based on a triangulation of the solu-
tion domain. Let � be the underlying bounded and connected domain in R

n (n =
2, 3). We assume that the domain � is strictly star-shaped (refer to [11]). Let � be
decomposed into the union of some subdomains in the sense that

� =
N⋃

k=1

�k, �l

⋂
�j = ∅ for l �= j,
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where each �k is star-shaped with respect to a ball (refer to [24]), but it may be not
a polygon or polyhedron. Let Th denote the triangulation comprising the elements
{�k}, where h is the mesh width of the triangulation. As usual, we assume that Th is
quasi-uniform and regular. Define

�lj = ∂�l

⋂
∂�j for l �= j

and

γk = �k

⋂
∂� (k = 1, . . . , N), γ =

N⋃

k=1

γk.

2.1 The case of Helmholtz equation

Consider the following nonhomogeneous Helmholtz equation which is formalized,
normalizing the wave’s velocity to 1, by

{ −�u − ω2u = f in �,

(∂n + iω)u = g on γ = ∂�.
(2.1)

The outer normal derivative is referred to as ∂n and the angular frequency by ω,
and f ∈ L2(�), g ∈ L2(γ ).

As in [22], the basic idea is to decompose the solution u of (2.1) into

u = u(1) + u(2), (2.2)

where u(1) is a particular solution of the first equation in (2.1) (without the primal
boundary condition), and u(2) satisfies a locally homogeneous Helmholtz equation.
But, in the present paper we design a different manner from [22] to realise such
decomposition.

In most applications, the domain � is a truncation of an unbounded domain and
the problem (2.1) can be regarded as an approximation of a Helmholtz equation in
an unbounded domain. Thus the function f is well defined in an unbounded domain.
Then, without loss of generality, we assume that the function f is well defined in a
slightly large domain containing � as its subdomain.

For each element �k , let �∗
k be a fictitious domain that has almost the same size

of �k and contains �k as its subdomain. Let u(1) ∈ L2(�) be defined as u(1) |�k
=

u
(1)
k |�k

for each �k , where u
(1)
k ∈ H 1(�∗

k) satisfies the nonhomogeneous local
Helmholtz equation on the fictitious domain �∗

k :
{

−�u
(1)
k − ω2u

(1)
k = f in �∗

k

(∂nk
+ iω)u

(1)
k = 0 on ∂�∗

k

(k = 1, 2, . . . , N). (2.3)

The variational formulation of (2.3) is to find u
(1)
k ∈ H 1(�∗

k) such that
⎧
⎪⎨

⎪⎩

∫

�∗
k

(∇u
(1)
k · ∇v̄k − ω2u

(1)
k v̄k)dx +

∫

∂�∗
k

iωu
(1)
k v̄kdx =

∫

�∗
k

f v̄kdx,

∀vk ∈ H 1(�∗
k) (k = 1, 2, . . . , N).

(2.4)
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It is easy to see that u(2) = u − u(1) is uniquely determined by the following
homogeneous Helmholtz equations of u

(2)
k = u(2) |�k

:

− �u
(2)
k − ω2u

(2)
k = 0 in �k (k = 1, 2, . . . , N), (2.5)

with the following boundary condition on γ and the interface conditions on �kj :
⎧
⎪⎨

⎪⎩

(∂n+iω)u
(2)
k = g − (∂n + iω)u

(1)
k over γk,

u
(2)
k −u

(2)
j =−(u

(1)
k − u

(1)
j ) over �kj ,

∂nk
u

(2)
k +∂nj

u
(2)
j =−(∂nk

u
(1)
k +∂nj

u
(1)
j ) over �kj

(k �=j ;k,j =1, 2,· · ·,N). (2.6)

Set
V (Th) = {v ∈ L2(�); �v + ω2v = 0 in each �k}.

According to the idea of the PWLS method introduced in [26] and [21], the variational
problem of Eqs. (2.5)–(2.6) is: to find u(2) ∈ V (Th) such that (refer to [21])

∑

j �=k

(
α

∫

�kj

(u
(2)
k −u

(2)
j )· (vk−vj )ds+β

∫

�kj

(∂nk
u

(2)
k +∂nj

u
(2)
j )·(∂nk

vk+∂nj
vj )ds

)

+
N∑

k=1

∫

γk

(∂nk
+ iω)u

(2)
k · (∂nk

+ iω)vkds

= −
∑

j �=k

(
α

∫

�kj

(u
(1)
k −u

(1)
j )· (vk−vj )ds+β

∫

�kj

(∂nk
u

(1)
k +∂nj

u
(1)
j )· (∂nk

vk+∂nj
vj )ds

)

+
N∑

k=1

∫

γk

(g − (∂nk
+ iω)u

(1)
k ) · (∂nk

+ iω)vkds, ∀v ∈ V (Th), (2.7)

where α and β are given positive numbers (which will be defined later).
Equivalently, Eq. (2.7) can be written as (refer to [21])

{
Find u(2) ∈ V (Th) s.t.

a(u(2), v) = (ξ, v)V − a(u(1), v), ∀v ∈ V (Th),
(2.8)

where a(·, ·) denote the sesquilinear form associated with the left side of (2.7) and
ξ ∈ V (Th) is defined by Riesz representation theorem applied to the term containing
g at the right side of (2.7).

Now we give a reasonable choice of the parameters α and β in (2.7). When the
wave number ω is large, the solution u(2) becomes high oscillating, and so the inte-
grals containing the normal derivatives have larger scale than the other integrals. The
basic idea for the choice of α and β is to keep the same scale of ω for every terms in
the left side of (2.7).

To determine the values of α and β, we investigate the action of the operator ∂nk

on the discretization space. As we will see, a plane wave basis function can be written
as φl(x) = eiω(x·αl) with a unit wave propagation direction αl . It is clear that

∂nk
φl(x) = iω(αl · nk)φl(x) and (∂nk

+ iω)φl(x) = iω(αl · nk + 1)φl(x).

Namely, the operator ∂nk
generates a factor ω. Let u(2) and v be linear combina-

tions of the plane wave basis functions on every element. Then, in the left side of
(2.7), the second integral and the third integral contain the factor ω2, but the first
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integral does not contain such a factor. Thus, in order to remove the influence of the
factor ω2, we naturally choose α = ω2 and β = 1, such that all the terms in the
left side of (2.7) contain the common factor ω2 (in other words, the three terms are
balanced with respect to ω).

2.2 The case of Maxwell equations

Consider the following nonhomogeneous time-harmonic Maxwell equations in a
three-dimensional (3D) domain, written as a second-order system of equations (refer
to [22]): ⎧

⎪⎪⎨

⎪⎪⎩

∇ × (
1

iωμ
∇ × E) + iωεE = J in �,

− E × n + σ

iωμ
((∇ × E) × n) × n = g on γ.

(2.9)

Here, ω > 0 is the temporal frequency of the field, and J ∈ L2(�)3, g ∈ L2
T(∂�)3.

The material coefficients ε and μ denote the electric permittivity and magnetic per-
meability, respectively. The parameter σ is called the conductivity. In particular, if
ε is complex valued, then the material is known as an absorbing medium; otherwise
the material is called a non-absorbing medium (see [22]).

Similarly to the case of Helmholtz equation, we assume that J is well defined in a
slightly larger domain than �, and we decompose the solution E of the problem (2.9)
into E = E(1) + E(2), where E(1) is a particular solution of the first equation in (2.9)
(without the primal boundary condition), and E(2) locally satisfies homogeneous
Maxwell equations.

For each element �k , let �∗
k be the fictitious domain described in the last subsec-

tion. The particular solution E(1) ∈ (L2(�))3 is defined as E(1) |�k
= E(1)

k |�k
for

each �k , where E(1)
k ∈ H(curl; �∗

k) satisfies the nonhomogeneous local Maxwell
equations on the fictitious domain �∗

k :

∇ × (
1

iωμ
∇ × E(1)

k ) + iωεE(1)
k = J in �∗

k (k = 1, 2, . . . , N) (2.10)

with the homogeneous boundary condition

− E(1)
k × n + σ

iωμ
((∇ × E(1)

k ) × n) × n = 0 on ∂�∗
k. (2.11)

The variational formulation of (2.10)–(2.11) is to find E(1)
k ∈ H(curl, �∗

k) such
that

⎧
⎪⎨

⎪⎩

∫

�∗
k

(
1

iωμ
∇×E(1)

k ·∇×F̄k+ıωεE(1)
k · F̄k)dx+

∫

∂�∗
k

1

σ
(E(1)

k ×n)×n · F̄kdx=
∫

�∗
k

J· F̄kdx,

∀Fk ∈ H(curl, �∗
k) (k = 1, 2, . . . , N).

(2.12)

When J satisfies J ∈ (L2(�∗
k))

3, the variational problem (2.12) possesses a unique

solution E(1)
k ∈ H(curl, �∗

k) (see [25, Chap 4]).
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Set

V(Th) = {F ∈ (L2(�))3; ∇ × (
1

iωμ
∇ × F) + iωεF = 0 on each �k}

and F|�k
= Fk for F ∈ V(Th). For ease of notation, define

�(Fk) = σ

iωμ
((∇ × Fk) × nk) on γk = ∂�k ∩ γ

and

�(Fk) = 1

iωμ
(∇ × Fk), on �k.

For each local interface �lj (l < j), we define the jumps on �lj as follows (note
that nl = −nj ):

�F×n� = Fl ×nl +Fj ×nj and ��(F)×n� = �(Fl)×nl +�(Fj )×nj . (2.13)

It is easy to see that E(2) = E − E(1) is uniquely determined by the following
homogeneous Maxwell equations of E(2)

k (= E(2) |�k
):

∇ × (
1

iωμ
∇ × E(2)

k ) + iωεE(2)
k = 0 in �k (k = 1, 2, . . . , N), (2.14)

with the following boundary condition on γ and the interface conditions on �lj (l <

j ; l, j = 1, . . . , N):
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−E(2) × n + σ
iωμ

((∇ × E(2)) × n) × n
= g + E(1) × n + σ

iωμ
((∇ × E(1)) × n) × n, on γ ;

�E(2) × n� = −�E(1) × n�, on �lj ;
��(E(2)) × n� = −��(E(1)) × n�, on �lj .

(2.15)

The variational problem of Eqs. (2.14)–(2.15) is: to find E(2) ∈ V(Th) such that
(refer to [22])

N∑

k=1

∫

γk

(−E(2)
k × nk + �(E(2)

k ) × nk) · −Fk × nk + �(Fk) × nkds

+
∑

l<j

( ∫

�lj

�E(2) × n� · �F × n� ds +
∫

�lj

��(E(2)) × n� · ��(F) × n� ds

)

= −
N∑

k=1

∫

γk

(−E(1)
k × nk + �(E(1)

k ) × nk − g) · −Fk × nk + �(Fk) × nkds

−
∑

l<j

(∫

�lj

�E(1)×n�· �F×n� ds+
∫

�lj

��(E(1))×n�· ��(F)×n� ds

)
, ∀ F∈V(Th).

(2.16)

By the definitions of the functions �(·) and �(·), the left side of (2.16) has no
factor containing ω when E(2) and F are linear combinations of the plane wave basis
functions on every element (refer to the discussions at the end of Section 2.1).
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Equivalently, Eq. (2.16) can be written as (see [22])

{
Find E(2) ∈ V(Th) s.t.

A(E(2),F) = (ξ, F)V − A(E(1),F) ∀F ∈ V(Th).
(2.17)

Remark 2.1 We would like to explain the motive to introduce the fictitious domains
{�∗

k}. It is certain that we can choose �∗
k as �k itself for each k (see [22] for the

details). But, such choice of �∗
k has a drawback: since the boundary of each �k is

not smooth, the solutions u(1) and E(1) of the nonhomogeneous local equations (2.3)
and (2.10) with �∗

k = �k have only low regularity even if the known functions f

and J are sufficiently smooth, which implies that the solutions u(2) and E(2) of the
residue homogeneous equations (2.5)–(2.6) and (2.14)–(2.15) may possess low reg-
ularity only. This means that the plane wave approximate solutions of the variational
problems (2.7) and (2.16) have only low accuracy. Because of this, we choose each
fictitious domain �∗

k so that it possesses sufficiently smooth boundary ∂�∗
k . A natu-

ral way is to choose �∗
k as the disc (for the two-dimensional case) or the sphere (for

the three-dimensional case) that has the same center Ok as �k and has the radius
rk = max

r
{dist (Ok, V r

k )}, where V r
k denotes a vertex of �k . Notice that the center

Ok and the radius rk can be calculated easily.

3 Discretization of the variational problems

In this section we introduce discretizations of the variational problems described in
the last section.

3.1 Spectral element discretization of the nonhomogeneous local problems

Since �∗
k is a sufficiently smooth domain and f (and J) is smooth on �∗

k , the solu-

tion u
(1)
k (and E(1)

k ) possesses high regularity on �∗
k . Moreover, the fictitious domain

�∗
k has almost the same size as the element �k . Thus the subproblems (2.4) and

(2.12) should be discretized by the spectral element method, so that the resulting
approximate solutions have higher accuracy.

Let q be a positive integer and D be a bounded and connected domain in R
n. Let

Sq(D) denote the set of polynomials defined on D, whose orders are less than or
equal to q. Set Sq(D) = (Sq(D))3.

The discrete variational problems of (2.4) are: find u
(1)
k,h ∈ Sq(�∗

k) such that

⎧
⎪⎨

⎪⎩

∫

�∗
k

(∇u
(1)
k,h · ∇v̄k − ω2u

(1)
k,hv̄k)dx +

∫

∂�∗
k

iωu
(1)
k,hv̄kdx =

∫

�∗
k

f v̄kdx,

∀vk ∈ Sq(�∗
k) (k = 1, 2, . . . , N).

(3.1)
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Similarly, the discrete variational problems of (2.12) are: find E(1)
k,h ∈ Sq(�∗

k) such
that

⎧
⎪⎨

⎪⎩

∫

�∗
k

(
1

iωμ
∇×E(1)

k,h ·∇×F̄k+iωεE(1)
k,h · F̄k)dx+

∫

∂�∗
k

1

σ
(E(1)

k,h×n)×n· F̄kdx=
∫

�∗
k

J · F̄kdx,

∀Fk ∈ Sq(�∗
k) (k = 1, 2, . . . , N).

(3.2)

In this paper we choose the fictitious domain �∗
k to be the disc (for the two-

dimensional case) or the sphere (for the three-dimensional case) described in
Remark 2.1. Then the variational problems (3.1) and (3.2) can be solved easily by
using the polar coordinate transformation for the calculation of the involved integra-
tions. We would like to emphasize that the discrete problems (3.1) (and (3.2)) are
local and independent each other for k = 1, · · · , N , so they can be solved in parallel
and the cost is very small.

Define u
(1)
h ∈ ∏N

k=1 Sq(�k) by u
(1)
h |�k

= u
(1)
k,h|�k

. Similarly, define E(1)
h ∈

∏N
k=1 Sq(�k) by E(1)

h |�k
= E(1)

k,h|�k
.

3.2 The plane wave basis function spaces

The discretization is based on a finite-dimensional space Vp(Th) ⊂ V (Th). In this
subsection, we first give the precise definition of such a space Vp(Th).

3.2.1 The case of Helmholtz equation

Let p be a given positive integer. For each element �k , we define p functions ykl

(l = 1, 2, · · · , p) as independent solutions of the homogeneous Helmholtz equation
(without boundary condition) in the element �k (k = 1, 2, · · · , N).

For simplification, we consider some constant number p of basis functions for
every elements �k . Particularly, in this paper we will choose ykl as the wave shape
functions on �k , which satisfy

⎧
⎨

⎩

ykl(x) = eiω(x·αl), x ∈ �k,

αl · αl = 1,

l �= s → αl �= αs,

(3.3)

where αl (l = 1, · · · , p) are unit wave propagation directions to be specified later.
The basis functions of Vp(Th) can be defined as

φkl(x)=
{
ykl(x), if x ∈ �k,

0, if x ∈ �j (for each j �= k)
(k = 1, · · · , N; l=1, · · · , p). (3.4)
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Thus the space V (Th) is discretized by the subspace

Vp(Th) = span

{
φkl : k = 1, · · · , N; l = 1, · · · , p

}
. (3.5)

During numerical simulations, the direction vectors αl in the wave functions
ykl(x), for two-dimensional problems, are uniformly distributed as follows:

αl =
(

cos(2π(l − 1)/p)

sin(2π(l − 1)/p)

)
(l = 1, · · · , p).

For three-dimensional problems, we use the optimal spherical codes from [29] to
generate the wave propagation directions αl (l = 1, · · · , p).

3.2.2 The case of Maxwell equations

In practice, following [6], a suitable family of plane waves, which are solutions of the
constant-coefficient Maxwell equations, are defined by choosing p unit propagation
directions dl (which is generated by the optimal spherical codes from [29]) and p real
unit polarization vectors Gl orthogonal to dl (l = 1, · · · , p). By using such prop-
agation directions and polarization vectors, we can define the complex polarization
vectors Fl and Fl+p as

Fl = Gl + iGl × dl , Fl+p = Gl − iGl × dl (l = 1, · · · , p).

Notice that the complex polarization vectors are the same as in [8, 23], but differ
slightly from those in [19]. We then define the complex functions El :

El = √
μ Fl exp(iκd∗

l · x) (l = 1, · · · , 2p), (3.6)

where d∗
l = dl when l = 1, · · · , p and d∗

l = dl−p when l = p + 1, · · · , 2p. It
is easy to verify that every function El (l = 1, · · · , 2p) satisfies the second-order
homogeneous Maxwell equation.

Let Q2p denote the space spanned by the 2p plane wave functions El (l =
1, · · · , 2p). Define the plane wave space

Vp(Th) =
{
v ∈ L2(�) : v|K ∈ Q2p for any K ∈ Th

}
. (3.7)

It is clear that the above space has N × 2p basis functions, which are given by

φk
l (x)=

{
El(x), if x ∈ �k,

0, if x ∈ �j (for each j �= k)
(k=1, · · · , N; l = 1, · · · , 2p). (3.8)

3.3 Discrete variational formulations of the homogeneous problems defined
on the global domain

With the finite-dimensional plane wave space Vp(Th) ⊂ V (Th), the discrete
variational problem of Eq. (2.8) can be described as follows:

{
Find u

(2)
h ∈ Vp(Th) s.t.

a(u
(2)
h , vh) = (ξ, vh)V − a(u

(1)
h , vh), ∀vh ∈ Vp(Th).

(3.9)
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The discrete variational problem associated with Eq. (2.17) can be described as
follows:

{
Find E(2)

h ∈ Vp(Th) s.t.

A(E(2)
h ,Fh) = (ξ, Fh)V − A(E(1)

h ,Fh), ∀Fh ∈ Vp(Th).
(3.10)

It is clear that a(v, v) ≥ 0. Moreover, it can be verified directly that, for v ∈
V (Th), a(v, v) = 0 if and only if v = 0 (some details can be found in [21]). Thus
a(v, v) is a norm on V (Th) and so the problem (3.9) is uniquely solvable. Similarly,
A(F,F) is a norm on V(Th) and the problem (3.10) is uniquely solvable (refer to
[22]).

Define uh = u
(1)
h + u

(2)
h and Eh = E(1)

h + E(2)
h . Then uh and Eh are the desired

approximations of u and E, respectively.

4 Error estimates of the approximate solutions

In this section, we derive error estimates of the approximate solutions uh and Eh

defined in the previous section.
In the rest of this paper, for a positive integer j and a bounded and connected

domain D, let ||v||j,D and |v|j,D denote the norm and the semi-norm of v on the
Sobolev space Hj(D), respectively. For convergence, let |v|0,D denote the L2 norm
of v on D. As in [24], define the ω−weighted Sobolev norm || · ||s,ω,D as

||v||s,ω,D = (

s∑

j=0

ω2(s−j)|v|2j,D)
1
2 .

4.1 The case of Helmholtz equations

Let || · ||V be the energy norm induced by the sesquilinear form a(·, ·) (some
explanations are given in Section 3.3), namely,

||v||2V =
N∑

k=1

∫

γk

|(∂n + iω)vk|2ds

+
∑

j �=k

(
α

∫

�kj

|vk − vj |2ds + β

∫

�kj

|∂nk
vk + ∂nj

vj |2ds

)
, v ∈ V (Th).

Since u = u(1) + u(2) and uh = u
(1)
h + u

(2)
h , we have

||u − uh||V ≤ ||u(1) − u
(1)
h ||V + ||u(2) − u

(2)
h ||V . (4.1)

It suffices to establish estimates of the two terms in the right side of (4.1).

4.1.1 Error estimate of the local spectral element approximations

In this subsubsection, we derive an estimate of ||u(1) − u
(1)
h ||V .
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Throughout this paper we assume that each �∗
k is a disc or a sphere, whose radius

and center are denoted by rk and Ok respectively. According to the explanations in
Remark 2.1, the radius rk satisfies c0h ≤ rk ≤ C0h. Hereafter, c0 and C0 denote two
constants independent of ω, h, p and q. In general we assume that c0 ≤ C0 in one
place, but they may have different values in different places.

In the following discussion, we will use a smoothness assumption of f on each
�∗

k . But the domain �∗
k is not contained in � when the element �k adjoins ∂�, so

we need to know whether f is smooth in a larger domain than �.
For a small positive number δ, let �δ be the union of � and the boundary layer

with the thickness δ, i.e.,

�δ = � ∪ {x : dist (x, ∂�) < δ} = {x : dist (x, �) ≤ δ}.
Choose δ such that

�δ ⊇ ∪N
k=1�

∗
k = � ∪ (∪k∈�∂

(�∗
k\�)),

where

�∂ = {k; �k adjoins ∂�}.
As pointed out in Section 2.1, in most applications the domain � is a truncation

of an unbounded domain �̃. In theory, the smoothness of the analytic solution u in
� depends on the smoothness of f in the global domain �̃ and the regularity of
the boundary data g on ∂�. Since we only study the situation that u is sufficiently
smooth in �, we can naturally assume that f is smooth enough in �δ .

We would like to point out that the domain �δ is only slightly larger than � since
the size of each �∗

k\� is very small. Thus, even if the domain � is not a truncation
of an unbounded domain, the assumption is still very weak.

We first give a stability result of u
(1)
k for each k.

Lemma 4.1 Assume that c0 ≤ hω ≤ C0 and f ∈ Hs−2(�∗
k) with an integer s ≥ 2.

Let u(1)
k denote the solution of the nonhomogeneous local equation (2.3). Then u

(1)
k ∈

Hs(�∗
k) and

|u(1)
k |s,�∗

k
≤ C

s−2∑

r=0

ωs−r−2||f ||r,�∗
k
. (4.2)

Proof Define the scaling transformation x̂ = Fk(x) = r−1
k (x − Ok) + Ok . We use

the scaling transformation x̂ = Fk(x) to map �∗
k to a disc (2d case) or a sphere (3d

case) with the radius 1, which is denoted by D̂k . The image of u
(1)
k (x) is denoted by

û
(1)
k (x̂). Set ω̂k = rkω. Then the equation (2.3) becomes

{
−�̂û

(1)
k − ω̂2

k û
(1)
k = r2

k f̂ in D̂k

(∂̂nk
+ iω̂k)û

(1)
k = 0 on ∂D̂k.

(4.3)
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From the assumption, we have c0 ≤ ω̂k ≤ C0. By the smoothness assumption of
f and the existing regularity results (see, for example, Lemma 3.3 in [11]), we know
that û

(1)
k ∈ Hs(D̂k) and

|û(1)
k |

s,D̂k
≤ C

s−2∑

r=0

ω̂s−2−r
k ||r2

k f̂ ||
r,D̂k

. (4.4)

Now we use the integral transformation x̂ = Fk(x) to (4.4), and we get the desired
results.

Remark 4.1 If we directly use the existing results (see, for example, [17])), we can
only obtain a weaker result that the coefficient in the front of ||f ||0,�∗

k
is ωs−1. Thus

the estimate in (4.2) is better than that in the existing results. Here we have used the
condition c0 ≤ hω ≤ C0. The condition hω ≤ C0 is standard for the discretization of
Helmholtz equation and time-harmonic Maxwell equations, otherwise, the resulting
approximations may be not convergent.

However, it is unclear whether the assumption c0 ≤ hω is indeed necessary for
the estimate (4.2) since fast convergence of the proposed method still kept when
h → 0 (for a fixed ω). We observe that, at least in the case with nonsingular
solutions, for the plane wave method (and the spectral element method) for the con-
sidered equations, increasing the number p of basis functions on every element is
more efficient than decreasing the mesh size h to get approximate solutions with
high accuracy. This means that we do not hope to choose a very small mesh size h in
applications, provided that the approximation has a satisfactory accuracy. As we will
see, for the proposed method the approximation has a satisfactory accuracy when
hω ≥ c0, so we need not to choose a smaller h (we can simply choose h ≈ 1/ω).
Thus, the assumption hω ≥ c0 is not a limit in applications.

The following result gives estimates of the local spectral element approximations
u

(1)
k,h (k = 1, · · · , N).

Lemma 4.2 Let q ≥ 2 and 2 ≤ s ≤ q + 1. Under the assumptions in Lemma 4.1,
we have for each �∗

k

||u(1)
k − u

(1)
k,h||j,�∗

k
≤ Chs−j q−(s−j)|u(1)

k |s,�∗
k

(j = 0, 1, 2). (4.5)

Proof We use the same notation as that in the proof of the above Lemma. Under the
scaling transformation x̂ = Fk(x), the variational problems (2.4) and (3.1) become

⎧
⎪⎨

⎪⎩

∫

D̂k

(∇û
(1)
k · ∇v̄ − ω̂2

k û
(1)
k v̄)dx̂ + iω̂k

∫

∂D̂k

û
(1)
k v̄dx̂ = r2

k

∫

D̂k

f̂ v̄dx̂,

∀v ∈ H 1(D̂k) (k = 1, 2, . . . , N)

(4.6)
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and
⎧
⎪⎨

⎪⎩

∫

D̂k

(∇û
(1)
k,h · ∇v̄ − ω̂2

k û
(1)
k,hv̄)d x̂ + iω̂k

∫

∂D̂k

û
(1)
k,hv̄dx̂ = r2

k

∫

D̂k

f̂ v̄dx̂,

∀v ∈ Sq(D̂k) (k = 1, 2, . . . , N),

(4.7)

respectively. We first derive an error estimate of û
(1)
k − û

(1)
k,h based on the framework

introduced in [13]. Let P̂q : H 1(D̂k) → Sq(D̂k) denote the orthogonal projector
associated with the complex inner product

∫

D̂k

∇v · ∇w̄d x̂ + iω̂k

∫

∂D̂k

vw̄d x̂, v, w ∈ H 1(D̂k).

Then P̂q û
(1)
k satisfies

∫

D̂k

∇(P̂q û
(1)
k ) · ∇w̄d x̂ + iω̂k

∫

∂D̂k

(P̂q û
(1)
k )w̄dx̂

=
∫

D̂k

∇û
(1)
k · ∇w̄d x̂ + iω̂k

∫

∂D̂k

û
(1)
k w̄dx̂, ∀w ∈ Sq(D̂k). (4.8)

By the approximation of the spectral element method (see, for example, [16]),
there is function v̂q ∈ Sq(D̂k) such that

||û(1)
k − v̂q ||

j,D̂k
≤ Cq−(s−j)|û(1)

k |
s,D̂k

(j = 0, 1, 2). (4.9)

Then, by the standard technique, we can show that

||P̂q û
(1)
k − û

(1)
k ||

j,D̂k
≤ Cq−(s−j)|û(1)

k |
s,D̂k

(j = 0, 1). (4.10)

Set ξ = P̂q û
(1)
k −û

(1)
k and η = û

(1)
k,h−P̂q û

(1)
k . Combining (4.7) with (4.8), we know

that the function η ∈ Sq(D̂k) is the solution of the following variational problem (see
[13])

∫

D̂k

(∇η·∇w̄−ω̂2
kηw̄)dx̂+iω̂k

∫

∂D̂k

ηw̄d x̂ = ω̂2
k

∫

D̂k

ξ w̄d x̂, ∀w ∈ Sq(D̂k). (4.11)

Thus, by the stability result given in Proposition 3.3 of [17], we have

ω̂k||η||0,D̂k
+ |η|1,D̂k

≤ Cω̂2
k ||ξ ||0,D̂k

.

This, together with (4.10), leads to

||η||1,D̂k
≤ Cω̂kq

−s ||û(1)
k ||

s,D̂k
.

Notice that

û
(1)
k − û

(1)
k,h = (û

(1)
k − P̂q û

(1)
k ) + (P̂q û

(1)
k − û

(1)
k,h).

Using (4.10) again, we further get

||û(1)
k − û

(1)
k,h||j,D̂k

≤ Cq−(s−j)|û(1)
k |

s,D̂k
(j = 0, 1). (4.12)
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Making the integral transformation x̂ = Fk(x) to (4.12), we can deduce that

||u(1)
k − u

(1)
k,h||j,�∗

k
≤ Cr

s−j
k q−(s−j)|u(1)

k |s,�∗
k

≤ Chs−j q−(s−j)|u(1)
k |s,�∗

k
(j = 0, 1).

(4.13)
Here we have used the fact that rk = O(h).
On the other hand, it follows by (4.9) that

||u(1)
k − vq ||j,�∗

k
≤ Chs−j q−(s−j)|u(1)

k |s,�∗
k

(j = 1, 2). (4.14)

By the triangle inequality, we have

|u(1)
k − u

(1)
k,h|2,�∗

k
≤ |u(1)

k − vq |2,�∗
k
+ |vq − u

(1)
k,h|2,�∗

k
. (4.15)

Applying the inverse estimate to the second term in the right side of the above
inequality, leads to

|vq − u
(1)
k,h|2,�∗

k
≤ Cqh−1||vq − u

(1)
k,h||1,�∗

k

= Cqh−1(||u(1)
k − vq ||1,�∗

k
+ ||u(1)

k − u
(1)
k,h||1,�∗

k
).

Substituting this into (4.15), and using (4.14) and (4.13), yields

|u(1)
k − u

(1)
k,h|2,�∗

k
≤ Chs−2q−(s−2)|u(1)

k |s,�∗
k
.

This, together with (4.13), gives the desired result (4.5).

Combining Lemma 4.1 with Lemma 4.2, we can derive error estimates of the
approximation u

(1)
h easily.

Theorem 4.3 Let q ≥ 2 and 2 ≤ s ≤ q + 1. Assume that c0 ≤ hω ≤ C0 and
f ∈ Hs−2(�δ). Then the following error estimates hold

(

N∑

k=1

||u(1) − u
(1)
h ||2j,�k

)
1
2 ≤ C(

h

q
)s−j

s−2∑

l=0

ωs−l−2||f ||l,�δ (j = 0, 1, 2) (4.16)

and

||u(1) − u
(1)
h ||V ≤ C(1 + ω2h2

q2
)

1
2 (

h

q
)s−

3
2

s−2∑

l=0

ωs−l−2||f ||l,�δ . (4.17)

Proof By the definitions of u(1) and u
(1)
h , the estimate (4.16) is a direct result of

Lemmas 4.1 and 4.2. In the following we consider the inequality (4.17).
For each element K ∈ Th, we have the well known ε-inequality, which can be

derived by the trace inequality (Theorem 1.6.6 in [4])

||w||0,∂K ≤ C(ε−1||w||0,K + ε|w|1,K), w ∈ H 1(K) (ε ∈ (0, 1)).

Then

||u(1)
k − u

(1)
k,h||20,∂�k

≤ C(h−1q||u(1)
k − u

(1)
k,h||20,�k

+ hq−1|u(1)
k − u

(1)
k,h|21,�k

)
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and

||∂n(u(1)
k − u

(1)
k,h)||20,∂�k

≤ C(h−1q|u(1)
k − u

(1)
k,h|21,�k

+ hq−1|u(1)
k − u

(1)
k,h|22,�k

).

Plugging (4.5) in the above two inequalities, leads to

||u(1)
k − u

(1)
k,h||20,∂�k

≤ Ch2s−1q−(2s−1)|u(1)
k |2s,�∗

k

and

||∂n(u(1)
k − u

(1)
k,h)||20,∂�k

≤ Ch2s−3q−(2s−3)|u(1)
k |2s,�∗

k
.

Using the definition of the norm || · ||V , and summing the above two inequalities
over all the elements, we obtain (refer to [21])

||u(1) − u
(1)
h ||2V ≤ C

N∑

k=1

(ω2||u(1)
k − u

(1)
k,h||20,∂�k

+ ||∂n(u(1)
k − u

(1)
k,h)||20,∂�k

)

≤ C

N∑

k=1

(ω2h2s−1q−(2s−1) + h2s−3q−(2s−3))|u(1)
k |2s,�∗

k
.

This, together with (4.2), gives the desired result (4.17).

4.1.2 Error estimate of the plane wave approximations

Let s and m be given positive integers satisfying (see [24]) m ≥ 2(s−1)+1 = 2s−1.
Let the number p of plane wave propagation directions be chosen as p = 2m + 1 in
2D and p = (m + 1)2 in 3D, respectively. In Section 2.1, we have assume that each
element �k is star-shaped with respect to a ball.

The following approximate result holds thanks to Corollary 5.5 in [24] (for ease
of notation, we only give a simplified form of the result)

Lemma 4.4 Let 2 ≤ s ≤ m+1
2 with a sufficiently large m. Assume that ωh ≤ C0 and

w ∈ V (Th) satisfies w|�k
∈ Hs(�k) for each k. Then there is a function Qhw ∈

Vp(Th) such that

||w − Qhw||j,�k
≤ Chs−jm−λ(s−j−ε)||w||s,ω,�k

(0 ≤ j ≤ s; k = 1, · · · , N),

(4.18)
where λ > 0 is a constant depending only on the shape of the elements (in particular,
λ = 1 in two dimensions and for convex elements), and ε = ε(m) > 0 satisfies
ε(m) → 0 when m → ∞.

For ease of notation, in the rest of the paper we set

F(u, f, s) = ||u||s,ω,� +
s−2∑

l=0

ωs−l−2||f ||l,�δ .
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Theorem 4.5 Let q ≥ 2 and 2 ≤ s ≤ min{m+1
2 , q + 1}. Assume that c0 ≤ ωh ≤ C0,

f ∈ Hs−2(�δ) and u ∈ Hs(�). Then

||u(2) − u
(2)
h ||V , ||u − uh||V ≤ Chs− 3

2

(
m−λ(s−1−ε)+ δλ

2 + θq−(s− 3
2 )

)
F(u, f, s),

(4.19)
where δλ = max{2λ − 1, 1}, θ is a positive constant.

Proof From (2.8) and (3.9), we have

a(u(2) − u
(2)
h , vh) = a(u

(1)
h − u(1), vh), ∀vh ∈ Vp(Th). (4.20)

Let Qh be the operator defined in Lemma 4.4. It follows by (4.20) that

a(u(2) − u
(2)
h , Qhu

(2) − u
(2)
h ) = a(u

(1)
h − u(1), Qhu

(2) − u
(2)
h ).

Then, by the direct manipulation, we can deduce that

a(u(2)−u
(2)
h , u(2)−u

(2)
h ) = a(u(1)−u

(1)
h , u(2)−Qhu

(2))+a(u(2)−u
(2)
h , u(2)−Qhu

(2))

+a(u(1) − u
(1)
h , u

(2)
h − u(2)).

Furthermore, we obtain

||u(2) − u
(2)
h ||2V ≤ (ε

(1)
h + ε

(2)
h )||u(2) − u

(2)
h ||V + ε

(1)
h · ε

(2)
h , (4.21)

where

ε
(1)
h = ||u(1) − u

(1)
h ||V and ε

(2)
h = ||u(2) − Qhu

(2)||V .

It can be verified directly by (4.21) that

||u(2) − u
(2)
h ||V ≤

√
2 + 1

2
(ε

(1)
h + ε

(2)
h ). (4.22)

Notice that u(2)|�k
= (u − u(1))|�k

. By the assumptions and Lemma 4.1, we have
u(2)|�k

∈ Hs(�k) for each k. As in the proof of Theorem 4.3, by (4.18) and (4.2) we
can show that

||u(2)−Qhu
(2)||2V ≤ C

N∑

k=1

(
ω2||u(2) − Qhu

(2)||20,∂�k
+ ||∂n(u(2) − Qhu

(2))||20,∂�k

)

≤ C

N∑

k=1

(
ω2h2s−1m−2λ(s−ε)+δλ +h2s−3m−2λ(s−1−ε)+δλ

)
||u(2)||2s,ω,�k

≤ C(1+(
ωh

mλ
)2)h2s−3m−2λ(s−1−ε)+δλ

(
||u||2s,ω,�+

s−2∑

l=0

ω2(s−l)||f ||2s,�δ

)

≤ C1h
2s−3m−2λ(s−1−ε)+δλ

(
||u||2s,ω,� +

s−2∑

l=0

ω2(s−l)||f ||2s,�δ

)
.
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Substituting (4.17) and the above inequality into (4.22), yields

||u(2) − u
(2)
h ||V ≤ hs− 3

2

(
C1m

−λ(s−1−ε)+ δλ
2 + C2q

−(s− 3
2 )

)
F(u, f, s). (4.23)

This, together with (4.17), gives the desired result (4.19) (choosing θ = 2C2/C1).

4.1.3 L2 estimate of the approximations uh

Based on the discussions in the last two subsubsections, we can obtain the final result
easily.

Theorem 4.6 Let q ≥ 2 and 2 ≤ s ≤ min{m+1
2 , q + 1}. Assume that c0 ≤ ωh ≤ C0,

f ∈ Hs−2(�δ) and u ∈ Hs(�). Then

||u − uh||0,� ≤ Chs−2ω−1(1 + hω)
(
m−λ(s−1−ε)+ δλ

2 + θq−(s− 3
2 )

)
F(u, f, s).

(4.24)

Proof By the triangle inequality, we have

||u − uh||0,� ≤ ||u(1) − u
(1)
h ||0,� + ||u(2) − u

(2)
h ||0,�. (4.25)

Notice that the triangulation Th is quasi-uniform, as in the proof of Lemma 3.7 in
[18], we can show the following Poincare-type inequality

||w||0,� ≤ Cdiam(�)(h1/2ω1/2 +h−1/2ω−1/2)ω−1/2||w||V , ∀w ∈ V (Th). (4.26)

Since u(2), u
(2)
h ∈ V (Th), we further get

||u(2) − u
(2)
h ||0,� ≤ C(1 + ωh)ω−1h−1/2||u(2) − u

(2)
h ||V . (4.27)

Plugging (4.23) in this inequality, leads to

||u(2) − u
(2)
h ||0,� ≤ C(1 + ωh)hs−2ω−1

(
m−λ(s−1−ε)+ δλ

2 + θq−(s− 3
2 )

)
F(u, f, s).

(4.28)
Combing (4.25) with (4.16) and (4.28), yields

||u−uh||0,� ≤C
(
hsq−s +hs−2ω−1(1+ωh)(m−λ(s−1−ε)+ δλ

2 +θq−(s− 3
2 ))

)
F(u,f, s),

(4.29)
which implies (4.24).

Remark 4.2 As pointed out in [24], if we do not care about the dependence of the esti-
mate (4.18) on the number m and we only hope to obtain a h-estimate with optimal
order, it is enough to require 2 ≤ s ≤ m+1 in Lemma 4.4. This means that the param-
eter s in Theorem 4.5 and Theorem 4.6 can be chosen as 2 ≤ s ≤ min{m + 1, q + 1}
to get h-estimates with the optimal order.

Remark 4.3 The only difference between Theorem 4.5-Theorem 4.6 and the existing
results for homogeneous Helmholtz equations (see [18] and [21]) is that the estimates
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(4.19) and (4.24) contain the error term θq−(s− 3
2 ) of the spectral approximations for

the nonhomogeneous local problems.

Remark 4.4 In order to obtain an approximate solution with high accuracy but with-
out superfluous cost, the values of the parameters m (or p) and q should satisfy some
balance relations.

We first consider the V -norm error (4.19). We hope that

m−λ(s−1−ε)+ δλ
2 ≈ θq−(s− 3

2 ).

For example, when every �k is a convex element in two dimensions, we have
λ = 1 and δλ = 1, and so

m−λ(s−1−ε)+ δλ
2 = m−(s− 3

2 −ε(m)) → m−(s− 3
2 )

when m → +∞. Of course, for a fixed m, we have ε(m) > 0, i.e.,

m−(s− 3
2 −ε(m)) > m−(s− 3

2 ).

Then we should choose the parameters (m, q) such that the value m−(s− 3
2 ) is

slightly smaller than the value θq−(s− 3
2 ), i.e., m > θ−(s− 3

2 )−1
q.

When θ = 1, we can choose m > q, for example, m = q + 1; if θ < 1, then m

should be much greater than q; if θ > 1, we may choose m = q.

In particular, for a large number s, we have θ−(s− 3
2 )−1 → 1, which implies m =

q + 1 for a large number s (its necessary condition is that q is large). The numerical
results in Section 5 indicate that the parameter m can be roughly chosen as m = q+2
or m = q + 3, i.e., the direction number p = 2q + 5 or p = 2q + 7, so that
the resulting approximate solutions possess satisfactory accuracies but without extra
cost. It can be inferred from the numerical results that the constant θ < 1.

We point out that we are not able to give a unified optimal relation between m and
q in theory, since the estimate (4.19) only gives a upper bound of the V -norm error
and the value of the constant θ is unknown.

As to the L2-norm errors, the situation is similar but is a bit different. It is known
that the plane wave method has higher order convergence than the spectral element
method. Since m and q define the degrees of freedom of the plane wave method
and the spectral element method respectively, we can choose m ≈ q. The numerical
results in Section 5 indicate that m should be chosen as an integer in the range q−1 ≤
m ≤ q + 1, i.e, the direction number p is an odd number in the range 2q − 1 ≤ p ≤
2q + 3. Similarly, for the case of three dimensions, we can choose m = q + 1, i.e.,
the direction number p = (q + 2)2. As in the case of V -norm errors, we are not able
to give a unified optimal balance relation.

4.2 The case of Maxwell equations

Error estimates for the case of Maxwell’s equations can be built as in the previous
subsection, so we will omit the details and only give the main results.
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Let || · ||V be the energy norm induced by the sesquilinear form A(·, ·).
The following result can be proved as in Theorem 4.3 (using Lemma 4.1 and

Lemma 4.2)

Theorem 4.7 Under the assumptions in Theorem 4.3 (replacing f with J), we have

||E(1) − E(1)
h ||j,� ≤ C(

h

q
)s−j

s−2∑

l=0

ωs−l−2||J||l,�δ (j = 0, 1, 2) (4.30)

and

||E(1) − E(1)
h ||V ≤ C(1 + ω2h2

q2
)

1
2 (

h

q
)s−

3
2

s−2∑

l=0

ωs−l−2||J||l,�δ . (4.31)

Assume that the mesh triangulation Th satisfies the definition stated in Ref. [19,
Section 5] and set λ = minK∈Th

λK , where λK is the positive parameter that depends
only on the shape of an element K of Th introduced in Ref. [24, Th. 3.2]. Let s and
m be given positive integers satisfying m ≥ 2(s − 1) + 1 and m ≥ 2(1 + 21/λ). Let
the number p of plane wave propagation directions be chosen as p = (m + 1)2.

By Theorem 5.4 of [19] and Theorem 4.7, we can derive the following result as in
the proof of Theorem 4.5 (refer to Theorem 4.3 in [21]).

Theorem 4.8 Let s, m, q, h and ω satisfy the assumptions in Theorem 4.5. Assume
that J ∈ Hs−2(�δ) and E ∈ Hs(curl; �). Then

||E(2) − E(2)
h ||V, ||E − Eh||V ≤ Chs− 3

2 (ω−1m−λ(s− 5
2 ) + q−(s− 3

2 ))F(∇ × E, J, s).
(4.32)

Remark 4.5 Notice that the conditions c0 ≤ hω ≤ C0 between h and ω is assumed
in Theorem 4.5-Theorem 4.8. As pointed out in Remark 4.1, the condition hω ≤ C0
is standard for the discretization of Helmholtz equation and time-harmonic Maxwell
equations. The assumption hω ≥ c0 was used in the derivation of the h-convergence
orders in Theorem 4.3 (by Lemma 4.1). Although we do not know whether this
assumption is absolutely necessary in theory, the numerical results (Figures 1,5,7) in
the next section indicate that the h−convergence orders of the approximation uh can
be kept without such an assumption (i.e., h decreases but ω is fixed).

As pointed out in [19], it is difficult to obtain an ideal L2 error estimate of the plane
wave approximate solutions of the time-harmonic Maxwell equations. In the present
paper we do not investigate L2 error estimate of the plane wave approximation E(2)

h ,
but we will report satisfactory L2 errors of the final approximation Eh in the next
section.
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5 Numerical experiments

In this section we apply the PWLS-LSFE method to solve several nonhomogeneous
Helmholtz and time-harmonic Maxwell equations, and we report some numerical
results to confirm our theoretical results.

We consider Helmholtz equation in two or three dimensions and time-harmonic
Maxwell equations in three dimensions. As pointed out in Section 4, we choose α =
ω2 and β = 1 in the Helmholtz’s variational problem (2.7).

For the examples discussed in this section, we consider square or cube domains �

and we adopt uniform partitions Th for the domain � as follows. Let � be divided
into elements �k , which are small cubes (for three-dimensional case) or squares (for
two-dimensional case) with an equal length h of a side. As described in Sections 3
and 4, we choose the same number p of basis functions for every elements �k . The
resulting discrete systems (3.9) and (3.10) are solved by the direct method.

To measure the accuracy of the numerical solutions uh and Eh, we introduce the
L2 relative error

L2 Relat. Err. := ||uex − uh||L2(�)

||uex ||L2(�)

, or L2 Relat. Err. := ||Eex − Eh||L2(�)

||Eex ||L2(�)

for the analytic solution uex ∈ L2(�), or Eex ∈ (L2(�))3.
We perform all computations on a Dell Precision T5500 graphics workstation

(2*Intel Xeon X5650 and 6*12GECC ) using MATLAB implementations. Here
“6*12GECC” means that the Dell Precision T5500 graphics workstation has 6*12G
internal memory and adopts the Error Checking and Correcting (ECC) Technology.

5.1 A Helmholtz equation in two dimensions

The first model problem is the Helmholtz equation (2.1), with � = [0, 1] × [0, 1],
and g = ( ∂

∂n + iω)uex . The exact solution of the above problem is defined in the
closed form

uex(x, y) = ωx cos y + y sin(ωx).

Then the source term f = (ω2 − 1)ωx cos y.
In order to illustrate the efficiency of the PWLS-LSFE method more clearly, we

state the number of elements (and degrees of freedom) per wavelength for the experi-
ments made in this subsection. Let ne denote the number of elements per wavelength,
which is defined by ne = λ/h = 2π/(ωh), and let dof. denote the degrees of freedom
per wavelength, i.e., dof.=nep.

At first we set ω = 4π . We fix the number of the plane wave basis functions
and the order number of polynomials in the local spectral space as p = 7, 9 and
q = 3, but decrease the mesh size h. The resulting V -norm errors and relative L2-
norm errors of the approximations generated by the PWLS-LSFE method are listed
in Table 1 and Fig. 1.

Figure 1 shows the plots of h-convergence orders of the V -norm errors and the
relative L2-norm errors, respectively. The plots highlight regions of high order con-
vergence for decreasing h, which verifies the validity of the theoretical results given
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Table 1 Errors of approximations with respect to h (ω = 4π, q = 3)

h 1
4

1
8

1
16

1
32

1
64

p = 7 ||u − uh||V 24.569 3.608 5.991e-1 1.047e-1 2.067e-2

L2 Relat. Err. 1.110e-1 5.856e-3 3.334e-4 2.041e-5 1.433e-6

ne 2 4 8 16 32

dof. 14 28 56 112 224

p = 9 ||u − uh||V 11.026 5.668e−1 3.487e−2 2.475e−3 6.479e−4

L2 Relat. Err. 1.279e−1 6.134e−3 3.528e−4 2.156e−5 1.387e−6

ne 2 4 8 16 32

dof. 18 36 72 144 288

in Theorem 4.5 and Theorem 4.6. According to Remark 4.2, the number s defining
the h-convergence orders in Theorem 4.5 and Theorem 4.6 is s = min{m+1, q+1} =
4, which implies that the V -norm errors and the relative L2-norm errors respectively
have only 2.5-order and 2-order convergence with respect to h (for a fixed ω). Fortu-
nately, the plots indicate that L2-norm errors possess about 4-order convergence with
respect to h, which is obviously superior to the theoretical results. We can see from
Fig. 1 that the numerical convergence order in V -norm are almost equal to the the-
oretical convergence order defined by s for the case of p = 7 and q = 3. We point
out that, for the case of homogeneous equations, the numerical h-convergence order
in L2-norm is also higher than the theoretical h-convergence order (see Remark 4.12
and Remark 4.15 in [15] and the numerical results reported in [21]). Notice that, for
sufficiently small h satisfying λ/h > 30, where the wavelength λ is equal to 2π/ω,
the high convergence orders are still kept.

We can also fix the mesh size h, but increase both p and q. In applications, the
mesh size h can be chosen as h ≈ 1

ω
. When ω increases, the parameters p and q also

slightly increase such that the resulting approximate solution has some satisfactory
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Fig. 1 Left: h−covergence in V -norm in logarithmic scale. Right: h−covergence in relative L2−norm
in logarithmic scale
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Table 2 Errors of approximations in V -norm with respect to p (ω = 4π, h = 1/12, ne = 6)

p 5 7 9 11 13 15

q = 2 2.388 1.200 1.246e−1 5.900e−2 3.053e-2 1.353e-2

q = 3 2.095 1.249 1.068e−1 5.065e−2 2.877e-2 1.281e-2

q = 4 1.714 1.774e−1 2.785e−2 2.017e−2 1.045e-2 6.919e-3

q = 5 1.716 1.778e−1 2.362e−2 1.713e−2 9.304e-3 6.148e-3

dof. 30 42 54 66 78 90

accuracy. Here ω = 4π , so we can choose h as h = 1
12 . Then the number of elements

per wavelength equals 6. The resulting V -norm errors and relative L2-norm errors of
the approximations generated by the PWLS-LSFE method are listed in Tables 2–3
and Figs. 2–3.

It can be seen from Tables 2 and 3 that both the relative L2-norm errors and the
V -norm errors decrease when both p and q increase.

For the L2-norm errors, balance values of p are p = p∗(q) = 7 (rep. 9) when
q = 2, 3 (rep. q = 4, 5), i.e., p∗ is an odd number roughly satisfying p∗ ≈ 2q + 1;
for the V -norm errors, we can choose the balance value of p as p∗ = 13 or 15, which
is an odd number roughly satisfying p∗ ≈ 2q + 5.

Figure 2 shows the plots of the errors in V -norm with respect to p for different
orders q of local polynomials. It can be seen from Fig. 2 that the V -norm errors
gradually decrease in a large range of p, so the balance value p∗ is not sensitive to
q and may not be unique for a fixed q. Moreover, Fig. 2 indicates that the value p∗
should not be too large, otherwise, numerical instability prevents us from obtaining
the desired accuracy of the approximation (this phenomenon was also observed for
the PWDG method and was pointed out in [18]).

When p ≥ p∗, the L2-norm errors of uh are mainly determined by the L2-norm
errors of u

(1)
h , which are independent of p, so the L2-norm errors decrease very

slowly when p further increases from p∗. Since the L2-norm errors first rapidly
decrease and then decrease very slowly, the balance value p∗ for the L2-norm errors
is more important than that for the V -norm errors.

The plots in Fig. 3 display the dependence of the errors of the approximate solu-
tions on the values q for a fixed p. It can be seen from the above figure that

Table 3 Errors of approximations in relative L2-norm with respect to p (ω = 4π, h = 1/12, ne = 6)

p 5 7 9 11

q = 2 1.852e-2 8.626e-3 8.601e-3 8.586e-3

q = 3 1.899e-2 1.153e-3 1.144e-3 1.138e-3

q = 4 1.907e-2 3.064e-4 1.281e-4 1.272e-4

q = 5 1.918e−2 3.225e−4 1.276e−4 1.263e−4

dof. 30 42 54 66
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Fig. 2 Left: The error in V -norm with respect to p for different orders q of local polynomials. Right: The
error in V -norm with respect to p for different orders q of local polynomials in logarithmic scale

the relative errors in the L2 norm decrease faster than the V -norm errors when q

increases from 2 to 4 for the cases of p = 7, 9, 11. But, when q further increases
from 4 to 5 for the case of p = 5, 7, the two errors do not decrease yet, since the
errors of the plane wave approximations u

(2)
h are dominant in the errors of the global

approximation uh. There are interesting phenomenons for the case of p = 5: the L2-
norm errors are smaller than the V -norm errors and do not decrease when q increases
from 2 to 4, but the V -norm errors decrease when q increases from 2 to 4. These
phenomenons indicate that the L2-norm errors possess higher order convergence of
q than the V -norm errors.

Then we consider a larger wave number ω = 8π , and investigate the convergence
order of the approximate solutions with respect to the mesh size h when we fix p and
q. For the choices p = 13 and q = 3, the corresponding errors are shown in Table 4
and Fig. 4.
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Fig. 3 The errors in V -norm and relative L2-norm with respect to q for different numbers p of plane
wave basis functions in logarithmic scale are plotted
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Table 4 Errors of approximations with respect to h (ω = 8π, p = 9, q = 3)

h 1
8

1
16

1
32

1
64

1
128

||u − uh||V 51.053 2.502 1.556e-1 1.984e-2 1.185e-3

L2 Relat. Err. 1.285e-1 6.101e-3 3.515e-4 2.209e-5 2.470e-6

ne 3 3.5 4 4.5 5

dof. 39 45.5 52 58.5 65

The results listed in Tables 1–3 indicate that the approximations generated by the
PWLS-LSFE method possess high accuracy when both p and q increase, or the mesh
size h decreases.

Figure 4 shows the plot of −log(||u−uh||V and −log(L2 Relat.Err.) with respect
to −log(h), respectively. It displays a linear plot, which verifies the validity of the
theoretical results given in Theorem 4.6. In fact, the orders of convergence obtained
from the plots are superior to the theoretical estimates given in Theorems 4.5 and 4.6.

5.2 A Helmholtz equation in three dimensions

The exact solution of the second model problem is defined in the closed form

uex = z ln(1 + ωxy), (x, y, z) ∈ �,

where � = [0, 1] × [0, 1] × [0, 1].
We set ω = 2π and choose the number p of the plane wave basis functions

as p = 16. The V -norm errors and the relative L2-norm errors of the resulting
approximations are shown in Table 5 and Fig. 5.

Figure 5 shows the plots of −log(||u−uh||V and −log(L2 Relat.Err.) with respect
to −log(h), respectively. Similarly to the first test example, it displays a linear plot
which verifies the validity of the theoretical results in Theorem 4.5–Theorem 4.6.
It can be seen from Table 5 and Fig. 5 that the approximations generated by the
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Fig. 4 The errors in V -norm and relative L2-norm with respect to h in logarithmic scale for different
orders q of local polynomials
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Table 5 Errors of approximations with respect to h and q (ω = 2π, p = 16)

h 1
4

1
8

1
16

1
32

q = 2 ||u − uh||V 1.717e-1 2.414e-2 3.405e-3 4.846e-4

L2 Relat. Err. 1.014e-1 2.325e-2 5.315e-3 1.206e-3

q = 3 ||u − uh||V 1.408e-1 2.246e-2 3.711e-3 5.941e-4

L2 Relat. Err. 4.794e-2 1.050e-2 2.297e-3 5.257e-4

PWLS-LSFE method with the local space consisting of third order polynomials are
more accurate than that generated by the same method with the local space con-
sisting of second order polynomials. Moreover, the convergence orders indicated in
the figure are much higher than that obtained by the theoretical results. For exam-
ple, we investigate the h-convergence orders of the L2-norm errors for the case of
q = 2. According to Remark 4.2, the number s in the error estimate (4.24) is equal
to s = min{m + 1, q + 1} = 3 (here m = 3), which means that the theoretical con-
vergence order is s − 2 = 1 (for a fixed ω). However, the numerical convergence
order, i.e., the slope of the line at the bottom row in Fig. 5 is 2.12, which is obviously
superior to the theoretical order.

We can also fix the mesh size h as h = 1
6 , but increase both p and q. Here the

number of elements per wavelength equals 6. The resulting V -norm errors and rela-
tive L2-norm errors of the approximations generated by the PWLS-LSFE methd are
shown in Table 6 and Fig. 6.

It can be seen from Table 6 that both the relative L2-norm errors and the V -norm
errors decrease when both p and q increase in a suitable range. For the L2-norm
errors, the balance values of p are p = p∗(q) = 16 (rep. 25) when q = 2 (rep.
q = 3); for the V -norm errors, we can choose the balance value of p as p∗ = 64.

Similarly to the first example, for a fixed q, the relative L2-norm errors decrease
very slowly when p further increases from p∗.
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Fig. 5 The errors in V -norm and relative L2-norm with respect to h in logarithmic scale for different
orders q of local polynomials
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Table 6 Errors of approximations with respect to p (ω = 2π, h = 1/6)

p 16 25 36 49 64

q = 2 ||u − uh||V 5.428e-2 1.823e-2 8.965e-3 3.234e-3 1.327e-3

L2 Relat. Err. 4.285e-2 4.278e-2 4.276e-2 4.275e-2 4.274e-2

q = 3 ||u − uh||V 4.781e-2 8.624e-3 4.946e-3 3.401e-3 1.803e-3

L2 Relat. Err. 1.959e-2 1.946e-2 1.945e-2 1.944e-2 1.943e-2

Figure 6 shows the plots of the errors in V -norm with respect to p for different
orders q of local polynomials. It can be seen from Fig. 6 that the V -norm errors
gradually decrease in a large range of p, so the balance value p∗ is not sensitive
to q.

Besides, for a fixed p, the L2-norm errors decrease faster than the V -norm
errors when q increases, which indicates that the L2-norm errors have higher order
convergence with respect to q than the V -norm errors.

5.3 An example of Maxwell equations in three dimensions

As pointed out in [22], the PWLS method has an advantage over the other plane wave
methods: the PWLS method is a unified method for both non-absorbing medium (i.e.,
ε is a real number) and absorbing medium (i.e., ε is a complex number), and there is
no difference in implementation and convergence of the PWLS method between the
two different media. For the other plane wave methods, the discretization of Maxwell
equations with absorbing medium is more complicated than that with non-absorbing
medium (refer to [23]). In order to reflect this superiority, in this subsection we only
consider an example with absorbing medium.

To illustrate the effectiveness of the proposed approach for nonhomogeneous
Maxwell equations (2.9), we set μ = 1 and ε = 1 + i in (2.9). σ is determined

Fig. 6 The error in V -norm
with respect to p in logarithmic
scale for different orders q of
local polynomials
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Table 7 Errors of approximations with respect to h (ω = 2π , p = 25, q = 2)

h 1
4

1
6

1
8

PWLS-LSFE ||E − Eh||V 4.371e-1 1.732e-1 9.135e-2

L2 Relat. Err. 2.952e-2 1.216e-2 6.417e-3

Method in [22] ||E − Eh||V 1.712 1.456 1.353

L2 Relat. Err. 1.021e-1 7.569e-2 6.366e-2

by σ =
√

μ
|ε| according to the known formula introduced in Ref. [23, Sec. 1].

Considering the following analytical solution

Eex = εω(xz cos y,−z sin y, xy)t , (5.1)

where the superscript “t” denote the transpose of a vector. In this example, the source
term J determined by the above solution does not vanish over the entire computa-
tional domain [0, 1]3. The discretization of the underlying equations is the same as
that of the equations described in Section 3.

As in the previous subsection, we set ω = 2π and choose the number p of the
plane wave basis functions as p = 25. We first compare the proposed PWLS-LSFE
method with the method introduced in [22], here the degree q of polynomials in the
local spaces is fixed as q = 2. Table 7 shows the V -norm errors and the relative L2-
norm errors of the approximations generated by the two methods. The results listed
in Table 7 indicate that the approximations generated by the PWLS-LSFE method
indeed have higher accuracy than that generated by the method introduced in [22].

Then we report the results of the PWLS-LSFE methd when h decreases and q

increases. Table 8 and Fig. 7 show the V -norm errors and the relative L2-norm errors
of the approximations generated by the proposed method.

The results listed in Table 8 indicate that both V -norm accuracy and L2-norm
accuracy of the approximations generated by the PWLS-LSFE method are satisfac-
tory. Moreover, the approximations associated with third order polynomials in local
spectral spaces are more accurate than that associated with second order polynomials
in local spectral spaces.

Table 8 Errors of approximations with respect to h and q (ω = 2π , p = 25)

h 1
4

1
8

1
16

1
32

q = 2 ||E − Eh||V 4.371e-1 9.135e-2 1.913e-2 4.015e-3

L2 Relat. Err. 2.952e-2 6.417e-3 1.407e-3 2.998e-4

q = 3 ||E − Eh||V 1.853e-1 2.031e-2 2.312e-3 2.578e-4

L2 Relat. Err. 1.133e-2 7.474e-4 4.941e-5 3.268e-6
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Fig. 7 The errors in V -norm and relative L2-norm with respect to h in logarithmic scale for different
orders q of local polynomials

Figure 7 shows the plot of −log(||u−uh||V and −log(L2 Relat.Err.) with respect
to −log(h), respectively. It also displays a linear plot which verifies the validity of
the theoretical results in Theorem 4.8. As in the second example, the numerical con-
vergence orders indicated in the plots are superior to the theoretical ones from the
Theorem 4.8.

We can also fix the mesh size h as h = 1
5 , but increase both p and q. Here the

number of elements per wavelength equals 5. The resulting V -norm errors and rela-
tive L2-norm errors of the approximations generated by the PWLS-LSFE methd are
listed in Table 9 and Fig. 8.

It can be seen from Table 9 that both the relative L2-norm errors and the V -
norm errors decrease when both p and q increase in a suitable range. For the
L2-norm errors, the balance values of p are p = p∗(q) = 16 (rep. 25) when
q = 2 (rep. q = 3); for the V -norm errors, we can choose the balance value
of p as p∗ = 64. Similarly to the previous two examples, for a fixed q, the
L2-norm errors decrease very slowly when p further increases from p∗; while,
for a fixed p, the L2-norm errors decrease faster than the V -norm errors when q

increases.
Figure 8 shows the plots of the errors in V -norm with respect to p for different

orders q of local polynomials. It can be seen from Fig. 8 that the V -norm errors
gradually decrease in a large range of p, so the balance value p∗ is not sensitive to q.

Table 9 Errors of approximations with respect to p (ω = 2π, h = 1/5)

p 16 25 36 49 64

q = 2 ||E − Eh||V 3.505e-1 2.651e-1 2.216e-1 1.041e-1 7.079e-2

L2 Relat. Err. 1.804e-2 1.800e-2 1.842e-2 1.855e-2 1.944e-2

q = 3 ||E − Eh||V 2.612e-1 9.173e-2 2.151e-2 1.849e-2 1.475e-2

L2 Relat. Err. 5.363e-3 4.706e-3 5.992e-3 6.994e-3 8.441e-3
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Fig. 8 The error in V -norm
with respect to p in logarithmic
scale for different orders q of
local polynomials
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6 Conclusion

In this paper we have introduced a plane wave method combined with local spectral
elements for the discretization of nonhomogeneous Helmholtz equation and time-
harmonic Maxwell equations and derived error estimates of the resulting approximate
solutions. The error estimates show that the approximate solutions generated by the
new method possess high accuracy. We reported some numerical results to illustrate
the theoretical results.
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