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Abstract A well-balanced van Leer-type numerical scheme for the shallow water
equations with variable topography is presented. The model involves a nonconserva-
tive term, which often makes standard schemes difficult to approximate solutions in
certain regions. The construction of our scheme is based on exact solutions in com-
putational form of local Riemann problems. Numerical tests are conducted, where
comparisons between this van Leer-type scheme and a Godunov-type scheme are
provided. Data for the tests are taken in both the subcritical region as well as super-
critical region. Especially, tests for resonant cases where the exact solutions contain
coinciding waves are also investigated. All numerical tests show that each of these
two methods can give a good accuracy, while the van Leer -type scheme gives a better
accuracy than the Godunov-type scheme. Furthermore, it is shown that the van Leer-
type scheme is also well-balanced in the sense that it can capture exactly stationary
contact discontinuity waves.
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1 Introduction

In this paper we will construct a van Leer - type scheme for the following shallow
water equations with variable topography

∂th + ∂x(hu) = 0,

∂t (hu) + ∂x

(
h

(
u2 + gh

2

))
= −gh∂xa,

(1.1)

where the height of the water from the bottom to the surface, denoted by h, and the
fluid velocity u are the main unknowns. Here, g is the gravity constant, and a = a(x)

(with x ∈ R) is the height of the bottom from a given level.
The system (1.1) has a source term on the right-hand side. By supplementing the

system (1.1) with the following trivial equation (see [24, 25]),

∂ta = 0, (1.2)

one can reduce it into a system of balance laws in nonconservative form. Weak solu-
tions of this kind of systems can be understood in the sense of nonconservative
products, see [12]. Often, nonconservative terms cause lots of inconveniences for
standard numerical schemes. Study of systems of balance laws in nonconservative
form has been a very intensive and challenging topic for many authors during the
past decades.

Recently, a Godunov-type scheme for Eq. 1.1 was constructed and tested in [28],
where most tests show that the Godunov-type scheme can provide good approxima-
tions of the solutions. However, an error in the programming makes the scheme fail to
approximate the exact solution in a resonant case in [28]. Since van Leer’s scheme for
hyperbolic systems of conservation laws can improve the accuracy of the Godunov
scheme, we are motivated to study a van Leer-type scheme for the nonconservative
system (1.1). As the Godunov-type scheme, this van Leer-type scheme is based on
exact solutions of local Riemann problems at each grid cell. Then, we will show that
the van Leer-type scheme is well-balanced in the sense that it can capture exactly
stationary discontinuity waves. Numerical tests are then conducted in all the cases,
where the initial data may belong to the subcritical region, or supercritical region,
or both kinds of regions. In particular, we present tests for the resonant cases where
the initial data belong to both subcritical and supercritical regions. In each of these
tests, we compute the errors for the Godunov-type and van Leer-type schemes. It is
shown that the error goes to zero as the mesh size goes to zero, and the errors for van
Leer-type scheme are much smaller than the ones of the Godunov-type scheme in all
the tests. Thus, both van Leer-type scheme and Godunov-type scheme can provide
convergent approximate solutions to the exact solutions, even in the resonant cases.
Moreover, the van Leer-type scheme gives a better accuracy than the Godunov-type
scheme.

There have been many works in the literature for the study of numerical approx-
imations of shallow water equations and nonconservative systems, see [7, 13, 15,
17, 18, 30]. Godunov-type schemes for hyperbolic systems of balance laws in non-
conservative forms are considered in [2, 9, 28, 31, 32]. The Riemann problem for
shallow water equations were studied in [27, 28]. The Riemann problem for other
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hyperbolic systems in nonconservative form were considered in [16, 19–21, 26, 29,
34–36]. Well-balanced numerical schemes for a single conservation law with source
term were studied in [3, 5, 6]. Well-balanced schemes for the model of a fluid flow in
a nozzle with variable cross-section were constructed in [22, 23]. Numerical schemes
for two-phase flow models were presented in [1, 4, 8, 11, 33]. See also the references
therein.

The organization of this paper is as follows. In Section 2 we will present basic
properties of the system Eqs. 1.1–1.2. The Riemann problem is revisited in Section 3.
Section 4 is devoted to the construction of the van Leer-type scheme, after a brief
review of theGodunov-type scheme for Eq. 1.1. Numerical tests are given in Section 5.
Finally, we draw several conclusions in Section 6.

2 Preliminaries

2.1 Wave curves

The system (1.1)–(1.2) can be re-written as a non-conservative system as

∂tU + A(U)∂xU = 0, (2.1)

where

U :=
⎛
⎝h

u

a

⎞
⎠ , A(U) :=

⎛
⎝u h 0

g u g

0 0 0

⎞
⎠ .

The matrix A = A(U) has three real eigenvalues

λ1(U) := u − √
gh < λ2(U) := u + √

gh, λ3(U) := 0, (2.2)

together with the corresponding eigenvectors which can be chosen as

r1(U) :=
⎛
⎝ h

−√
gh

0

⎞
⎠ , r2(U) :=

⎛
⎝ h√

gh

0

⎞
⎠ , r3(U) :=

⎛
⎝ gh

−gu

u2 − gh

⎞
⎠ . (2.3)

The system is strictly hyperbolic on the domain G1 ∪ G2 ∪ G3, where

G1 :=
{
U = (h, u, a) : λ1 > λ3

}
=

{
U = (h, u, a) : u >

√
gh

}
,

G2 :=
{
U = (h, u, a) : λ2 > λ3 > λ1

}
=

{
U = (h, u, a) : |u| <

√
gh

}
,

G3 :=
{
U = (h, u, a) : λ3 > λ2

}
=

{
U = (h, u, a) : u < −√

gh
}
.

(2.4)
The first and the third characteristic speeds λ1 and λ3 coincide on the surface

C+ :=
{
(h, u, a) : u = √

gh
}
.

The second and the third characteristic speeds λ2 and λ3 coincide on the surface

C− :=
{
(h, u, a) : u = −√

gh
}
.
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In water resource engineering, any state in the regions G1 and G2 is said to be
supercritical, while each state in the region G2 is said to be subcritical. A state on the
curves C± is said to be critical. These terminologies are corresponding to the value
of the Froude number

Fr := |u|√
gh

.

This means that a supercritical state is the one at which Fr > 1; a subcritical state is
the one at which Fr < 1; and a critical state is the one at which Fr = 1.

It is easy to see that the first and second characteristic fields (λ1, r1), (λ2, r2) are
genuinely non-linear, that is

∇λ1 · r1 �= 0, ∇λ2 · r2 �= 0,

and that the third characteristic field (λ3, r3) is linearly degenerate, that is

∇λ3 · r3 = 0.

Let us recall that a discontinuity wave of Eqs. 1.1–1.2 is a weak solution of the
form

U(x, t) =
{

U− = (h−, u−, a−), x < σ t,

U+ = (h+, u+, a+), x > σ t,
(2.5)

where U−, U+ are the left-hand and right-hand states, respectively, and σ =
σ(U−, U+) is the speed of the discontinuity wave.

The Rankine-Hugoniot relation associated with Eq. 1.2 takes the form

− σ [a] = 0, (2.6)

where σ denotes the speed of the discontinuity wave, [a] = a+ − a− is the jump of
the quantity a across the discontinuity wave. Therefore, as discussed in [27], across
a discontinuity wave there are two possibilities:

(i) either the bottom height a remains constant,
(ii) or the speed σ = 0 = λ3(U±), so this is the 3−contact discontinuity wave,

so called the stationary contact discontinuity, since this wave is independent of
time.

Let us consider the first the case (i), where the system (1.1)–(1.2) is reduced to the
usual shallow water equations with flat bottom. Then, we can determine the Rankine-
Hugoniot relations and the admissibility criterion for shock waves as usual.

A shock wave (2.5) is admissible, called the ith-Lax shock, if it satisfies the Lax
shock inequalities,

λi(U+) < σ(U−, U+) < λi(U−), i = 1, 2. (2.7)

From now on, we consider admissible shock waves, only.
Given a left-hand state U0, the set of all right-hand states that can be connected to

U0 by 1st-Lax shock forms a curve, denoted by S1(U0). In a backward way, given
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a right-hand state U0, the set of all left-hand states that can be connected to U0 by
2nd-Lax shock forms a curve, denoted by SB

2 (U0). These curves are defined by

S1(U0) : u = u0 −
√

g

2
(h − h0)

√
1

h
+ 1

h0
, h > h0,

SB
2 (U0) : u = u0 +

√
g

2
(h − h0)

√
1

h
+ 1

h0
, h > h0,

(2.8)

see [27].
It is interesting that the shock speeds in the non-linear characteristic fields may

coincide with the characteristic speed of the linearly degenerate field as stated in the
following lemma.

Lemma 2.1 (Lem. 2.1, [28]) Consider the projection of the wave curves on the
(h, u)-plan. To every UL = (hL, uL) ∈ G1 there exists exactly one point U# ∈
S1(UL)∩G+

2 such that the 1−shock speed σ1(UL, U#) = 0. The state U# = (h#, u#)

is defined by

h# =
−hL +

√
h2L + 8hLu2L/g

2
, u# = uLhL

h#
.

Moreover, for any U ∈ S1(UL), the shock speed σ1(UL, U) > 0 if and only if U is
located above U# on S1(UL).

Next, let us consider rarefaction waves, which are piecewise smooth self-similar
solutions of Eqs. 1.1–1.2, i.e.

U(x, t) = V (ξ), ξ = x

t
, x ∈ R, t > 0.

Substituting this into Eq. 2.1, we can see that rarefaction waves are solutions of the
following initial-value problem for ordinary differential equations

dV (ξ)

dξ
= rj (V (ξ)), ξ ≥ λj (U0),

V (λj (U0)) = U0, j = 1, 2,
(2.9)

where the eigenvectors r1 and r2 are given by Eq. 2.3. In particular, it holds along the
integral curves that

da(ξ)

dξ
= 0,

which means that the bottom height a remains constant through any rarefaction fan.
Given a left-hand state U0, the set of all right-hand states that can be connected

to U0 by 1-rarefaction wave of Eqs. 1.1–1.2 forms a curve, denoted by R1(U0). In
a backward way, given a right-hand state U0, the set of all left-hand states that can
be connected to U0 by 2-rarefaction wave forms a curve, denoted byRB

2 (U0). These
curves are given by

R1(U0) : u = u0 − 2
√

g(
√

h − √
h0), h ≤ h0,

RB
2 (U0) : u = u0 + 2

√
g(

√
h − √

h0), h ≤ h0,
(2.10)
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see [27]. We can therefore define the forward and backward wave curves in the non-
linear characteristic fields as follows

W1(U0) = R1(U0) ∪ S1(U0),

WB
2 (U0) = RB

2 (U0) ∪ SB
2 (U0).

(2.11)

As seen above, the curvesW1(U0) can be parameterized as a function u = w1(U0; h)

of h > 0, and the curvesWB
2 (U0) can be parameterized as a function u = wB

2 (U0; h)

of h > 0. It was shown in [27] that w1(U0; h) is strictly convex and strictly decreas-
ing functions of h > 0, while wB

2 (U0; h) is strictly concave and strictly increasing
functions of h > 0.

Let us now consider the case (ii), where the discontinuity satisfies the jump
relations

[hu] = 0,[
u2

2
+ g(h + a)

]
= 0.

(2.12)

The last jump relations determine the stationary-wave curve (parameterized with h)
as follows

W3(U0) : u = w3(U0; h) := u0h0

h
, h ≥ 0,

a = a0 + u20 − u2

2g
+ h0 − h.

(2.13)

It is easy to check that the function w3(U0; h), h ≥ 0,is strictly convex and strictly
decreasing for u0 > 0, and strictly concave and strictly increasing for u0 < 0.

2.2 Properties of stationary contact discontinuities

Given a state U0 = (h0, u0, a0) and another bottom level a �= a0, we let U =
(h, u, a) be the corresponding right-hand state of the stationary contact discontinuity
issuing from the given left-hand state U0. Arguing similarly as in [28], we can show
that h, u can be resolved in terms of U0, a, where h satisfies the nonlinear algebraic
equation

2gh3 +
(
2g(a − a0 − h0) − u20

)
h2 + h20u

2
0 = 0, (2.14)

and u is given by

u = u0h0

h
. (2.15)

Lemma 2.2 (Lem. 2.2, [28]) Given a state U0 = (h0, u0, a0) and a bottom level
a �= a0. The following conclusions holds.

(i) amax(U0) ≥ a0, amax(U0) = a0 if and only if (h0, u0) ∈ C±.
(ii) The non-linear equation (2.14) admits a root if and only if

a ≤ amax(U0) := a0 + h0 + u20

2g
− 3

2g1/3
(h0u0)

2/3,

and in this case it has two roots hs
0 ≤ h∗ ≤ hb

0, which coincide only if a =
amax(U0).
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(iii) According to the part (ii), whenever a ≤ amax(U0), there are two states
Us
0 , Ub

0 corresponding to two roots hs
0, hb

0 to which a stationary contact
discontinuity from U0 is possible, i.e

U(x, t) =

⎧⎪⎨
⎪⎩

U0 = (h0, u0, a0), x < 0,

Us
0 =

(
hs
0,

h0u0

hs
0

, a
)
, x > 0,

(2.16)

and

U(x, t) =

⎧⎪⎨
⎪⎩

U0 = (h0, u0, a0), x < 0,

Ub
0 =

(
hb
0,

h0u0

hb
0

, a
)
, x > 0,

(2.17)

are stationary contact discontinuities. Moreover, the locations of two states
Us
0 , U

b
0 can be determined as follows

Us ∈ G1 if u0 > 0,
Us ∈ G3 if u0 < 0,
Ub ∈ G2.

From Lemma 2.2 , we can construct two-parameter wave sets. The Riemann prob-
lemmay therefore admit up to a one-parameter family of solutions. To select a unique
solution, we impose an admissibility condition, called Monotonicity Criterion or
(MC) for short, for stationary contact discontinuities as follows

(MC) Along any stationary curve W3(U0), the bottom level a is monotone as a
function of h. The total variation of the bottom level component of any Rie-
mann solution must not exceed |aL − aR|, where aL, aR are left-hand and
right-hand bottom levels.

A similar criterion was used in [27].

Lemma 2.3 TheMonotonicity Criterion (MC) implies that any stationary shock does
not cross the boundary of strict hyperbolicity, in other words

(i) If U0 ∈ G1 ∪ G3, then only the stationary contact discontinuity Us
0 is allowed.

(ii) If U0 ∈ G2, then only the stationary contact discontinuity Ub
0 is allowed.

3 The Riemann problem revisited

Observe that by the transformation x �→ −x, u �→ −u, a left-hand (right-hand)
state U = (h, u, a) in G2 (in G3 ∪ C−) will be transformed to the right-hand (left-
hand, respectively) state V = (h,−u, a) in G2 (in G1 ∪ C+, respectively). Thus, the
construction of wave curves and therefore the Riemann solutions for Riemann data
around C− can be obtained from the one for Riemann data around C+. Thus, without
loss of generality, in the sequel we consider only the case where Riemann data are in
G1 ∪ C+ ∪ G2.
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Fig. 1 The composite wave curves W3.1(UL), W3.1.3(UL) and WcaseA
1.3 (UL)

Notations

(i) Wk(Ui, Uj ) (Sk(Ui, Uj ), Rk(Ui, Uj )) denotes the kth-wave (kth-shock, kth-
rarefaction wave, respectively) connecting the left-hand state Ui to the right-
hand state Uj , k = 1, 2, 3.

(ii) Wm(Ui, Uj ) ⊕ Wn(Uj , Uk) indicates that there is an mth-wave from the left-
hand state Ui to the right-hand state Uj , followed by an nth-wave from the
left-hand state Uj to the right-hand state Uk , m, n ∈ {1, 2, 3}.

(ii) U#
0 denotes the state resulted by a shock wave from U0 with zero speed.

(iv) Us
0 , U

b
0 denote the states resulted by stationary contact discontinuity wave

from U0.
(v) U± = W1(UL) ∩ C±.
(vi) V1(ξ ; UL, UR) =

(
h(ξ), u(ξ), a(ξ)

)
denotes the 1−rarefaction fan connect-

ing UL to UR .

3.1 Case A : UL ∈ G1 ∪ C+

Construction A1: The first part of the Riemann solution can be W3(UL, Us), i.e.

Uexact (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

UL = (hL, uL, aL), if x/t < 0,

Us =
(
hs,

hLuL

hs
, aR

)
, if 0 < x/t < . . . ,

. . .

(3.1)
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Taking any U ∈ R1(U
s), the second part of the solution can be R1(U

s, U), i.e.

Uexact (x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

UL = (hL, uL, aL), if x/t < 0,

Us =
(
hs,

hLuL

hs
, aR

)
, if 0 < x/t < λ1(U

s),

V1(x/t; Us, U), if λ1(U
s) ≤ x/t ≤ λ1(U),

U, if λ1(U) < x/t < . . . ,

. . .

(3.2)

On the other hand, by Lemma 2.2, there is one state Us# ∈ S(Us) such that the shock
speed σ1(U

s, Us#) = 0 and σ1(U
s, U) > 0 for hs < h < hs#, σ1(U

s, U) < 0 for
h > hs#. So, if U ∈ S1(U

s) such that hs < h < hs#, then the second part of the
solution can be S1(U

s, U), i.e.

Uexact (x, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

UL = (hL, uL, aL), if x/t < 0,

Us =
(
hs,

hLuL

hs
, aR

)
, if 0 < x/t < σ1(U

s, U),

U, if σ1(U
s, U) < x/t < . . . ,

. . .

(3.3)

Thus, if U ∈ W1(U
s) such that 0 < h < hs# then first two parts of the Riemann

solution are
W3(UL, Us) ⊕ W1(U

s, U),

as Eqs. 3.2 or 3.3. Therefore, we call the set

{U ∈ W1(U
s) : 0 < h < hs#} (3.4)

as the composite wave curveW3.1(UL).
If the curve WB

2 (UR) intersects the curve W3.1(UL) at a point U1, then the
Riemann problem of Eqs. 1.1–1.2 admits a solution of the form

W3(UL, Us) ⊕ W1(U
s, U1) ⊕ W2(U1, UR). (3.5)

Construction A2: For each level a between aL and aR , the first part of the Rie-

mann solution can be W3(UL, Us), where Us =
(
hs,

hLuL

hs
, a

)
. The second

part of the solution can be S1(U
s, Us#). The third part of the solution can be

W3(U
s#, Us#b), where Us#b =

(
hs#b, us#b, aR

)
. Since these three parts are dis-

continuity waves with same zero speed, we have a wave collision (resonant case),
i.e.

Uexact (x, t) =

⎧⎪⎨
⎪⎩

UL = (hL, uL, aL), if x/t < 0,

Us#b, if 0 < x/t < . . . ,

. . .

(3.6)

Thus, for each level a between aL and aR , first three parts of the solution can be

W3(UL, Us) ⊕ S1(U
s, Us#) ⊕ W3(U

s#, Us#b),



1206 D. H. Cuong, M. D. Thanh

as Eq. 3.6. Therefore, the set

{Us#b : avaries between aL and aR} (3.7)

is called the composite wave curve W3.1.3(UL). We can check that U#b and Us# are
two endpoints of this curve.

If the curve WB
2 (UR) intersects the curve W3.1.3(UL) at a point U1, then the

Riemann problem of Eqs. 1.1–1.2 admits a solution of the form

W3(UL, Us) ⊕ S1(U
s, Us#) ⊕ W3(U

s#, U1 = Us#b) ⊕ W2(U1, UR). (3.8)

Construction A3: The first part of the Riemann solution can be S1(UL, U1),
where U1 ∈ S1(UL) ∩ G2 such that σ1(UL, U1) < 0, i.e.

Uexact (x, t) =

⎧⎪⎨
⎪⎩

UL = (hL, uL, aL), if x/t < σ1(UL, U1),

U1 = (h1, u1, aL), if σ1(UL, U1) < x/t < . . . ,

. . .

(3.9)

So, U1 is located between U# and U− on the curve S1(UL). The second part of the
solution can be W3(U1, U

b
1 ), i.e.

Uexact (x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

UL = (hL, uL, aL), if x/t < σ1(UL, U1),

U1 = (h1, u1, aL), if σ1(UL, U1) < x/t < 0,

Ub
1 = (hb

1, u
b
1, aR), if 0 < x/t < . . . ,

. . .

(3.10)

Thus, for each U1 ∈ S1(UL) ∩ G2 such that σ1(UL, U1) < 0, first two parts of the
solution can be

S1(UL, U1) ⊕ W3(U1, U
b
1 ),

as Eq. 3.10. So, we call the set

{Ub
1 : U1 ∈ S1(UL) ∩ G2, σ1(UL, U1) < 0} (3.11)

as the composite wave curve WcaseA
1.3 (UL). Observe that U#b and U−b are two

endpoints of this curve.
If the curve WB

2 (UR) intersects the curve WcaseA
1.3 (UL) at a point U2, then the

Riemann problem of Eqs. 1.1–1.2 admits a solution of the form

S1(UL, U1) ⊕ W3(U1, U2 = Ub
1 ) ⊕ W2(U2, UR). (3.12)

Figure 1 illustrates the composite wave curves W3.1(UL), W3.1.3(UL) and
WcaseA

1.3 (UL).

3.2 Case B: UL ∈ G2
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Fig. 2 The composite wave curves W1.3.1(UL), W1.3.1.3(UL) and WcaseB
1.3 (UL)

Construction B1: The first part of the Riemann solution can be R1(UL, U+), i.e.

Uexact (x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL = (hL, uL, aL), if x/t < λ1(UL),

V1(x/t; UL, U+), if λ1(UL) ≤ x/t ≤ λ1(U
+) = 0,

U+ = (h+, u+, aL), if 0 < x/t < . . . ,

. . .

(3.13)

The second part of the Riemann solution can be W3(U
+, U+s), where U+s =

(h+s , u+s , aR), i.e.

Uexact (x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL = (hL, uL, aL), if x/t < λ1(UL),

V1(x/t; UL, U+), if λ1(UL) ≤ x/t ≤ λ1(U
+) = 0,

U+s = (h+s , u+s , aR), if 0 < x/t < . . . ,

. . .

(3.14)
Taking any U ∈ R1(U

+s), the third part of the solution can be R1(U
+s , U), i.e.

Uexact (x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL = (hL, uL, aL), if x/t < λ1(UL),

V1(x/t; UL, U+), if λ1(UL) ≤ x/t ≤ λ1(U
+) = 0,

V1(x/t; U+s , U), if 0 ≤ x/t ≤ λ1(U),

U, if λ1(U) < x/t < . . . ,

. . .

(3.15)
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On the other hand, if U ∈ S1(U
+s) such that hs+ < h < h+s#, i.e. σ1(U+s , U) > 0,

then the third part of the solution can be S1(U
+s , U), i.e.

Uexact (x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL = (hL, uL, aL), if x/t < λ1(UL),

V1(x/t; UL, U+), if λ1(UL) ≤ x/t ≤ λ1(U
+) = 0,

U+s , if 0 < x/t < σ1(U
+s , U),

U, if σ1(U
+s , U) < x/t < . . . ,

. . .

(3.16)

Thus, if U ∈ W1(U
+s) such that 0 < h < h+s# then first three parts of the Riemann

solution are
R1(UL, U+) ⊕ W3(U

+, U+s) ⊕ W1(U
+s , U),

as Eqs. 3.15 or 3.16. Therefore, we call the set

{U ∈ W1(U
+s) : 0 < h < h+s#} (3.17)

as the composite wave curve W1.3.1(UL). Observe that W1.3.1(UL) is a part of the
curve W1(U

+s).
If the curve WB

2 (UR) intersects the curve W1.3.1(UL) at a point U1, then the
Riemann problem of Eqs. 1.1–1.2 admits a solution of the form

R1(UL, U+) ⊕ W3(U
+, U+s) ⊕ W1(U

+s , U1) ⊕ W2(U1, UR). (3.18)

Construction B2: The first part of the Riemann solution can be R1(UL, U+),
as Eq. 3.13. For each level a between aL and aR , the second part of the Rie-
mann solution can be W3(U

+, U+s), where U+s = (h+s , u+s , a). The third part
of the Riemann solution can be S1(U

+s , U+s#). The fourth part of the Riemann
solution can be W3(U

+s#, U+s#b), where U+s#b = (h+s#b, u+s#b, aR). Since
W3(U

+, U+s), S1(U
+s , U+s#), W3(U

+s#, U+s#b) are discontinuity waves with
same zero speed, first these parts of solution R1(UL, U+) ⊕ W3(U

+, U+s) ⊕
S1(U

+s , U+s#) ⊕ W3(U
+s#, U+s#b) infer that

Uexact (x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

UL = (hL, uL, aL), if x/t < λ1(UL),

V1(x/t; UL, U+), if λ1(UL) ≤ x/t ≤ λ1(U
+) = 0,

U+s#b = (h+s#b, u+s#b, aR), if 0 < x/t < . . . ,

. . .

(3.19)
Therefore, we refer the set

{U+s#b : avaries betweenaLandaR} (3.20)

as the composite wave curveW1.3.1.3(UL).
If the curve WB

2 (UR) intersects the curve W1.3.1.3(UL) at a point U1, then the
Riemann problem of Eqs. 1.1–1.2 admits a solution of the form

R1(UL,U+)⊕W3(U
+, U+s )⊕S1(U

+s , U+s#)⊕W3(U
+s#, U1=U+s#b)⊕W2(U1, UR). (3.21)



A well-balanced van Leer-type scheme for shallow water... 1209

Construction B3: Take any U1 ∈ R1(UL) ∩ G2, the first part of the Riemann
solution can be R1(UL, U1), i.e

Uexact (x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

UL = (hL, uL, aL), if x/t < λ1(UL),

V1(x/t; UL, U1), if λ1(UL) ≤ x/t ≤ λ1(U1),

U1, if λ1(U1) < x/t < . . . ,

. . .

(3.22)

On the other hand, if we take U1 ∈ S1(UL) ∩ G2, the first part of the Riemann
solution can be S1(UL, U1), i.e

Uexact (x, t) =

⎧⎪⎨
⎪⎩

UL = (hL, uL, aL), if x/t < σ1(UL, U1),

U1, if σ1(UL, U1) < x/t < . . . ,

. . .

(3.23)

Thus, for any U1 ∈ W1(UL) ∩ G2, we have the first part of the Riemann solution
W1(UL, U1). Then, the second part of the Riemann solution can be W3(U1, U

b
1 ),

where Ub
1 = (hb

1, u
b
1, aR), i.e.

Uexact (x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

UL = (hL, uL, aL), if x/t < λ1(UL),

Rare1(x/t; UL, U1), if λ1(UL) ≤ x/t ≤ λ1(U1),

U1, if λ1(U1) < x/t < 0,

Ub
1 = (hb

1, u
b
1, aR), if 0 < x/t < . . . ,

. . .

(3.24)

or

Uexact (x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

UL = (hL, uL, aL), if x/t < σ1(UL, U1),

U1, if σ1(UL, U1) < x/t < 0,

Ub
1 = (hb

1, u
b
1, aR), if 0 < x/t < . . . ,

. . .

(3.25)

Therefore, we refer the set

{Ub
1 : U1 ∈ W1(UL) ∩ G2} (3.26)

as the composite wave curve, denoted by WcaseB
1.3 (UL). Observe that U−b and U+b

be the two endpoints of this curve.
If the curve WB

2 (UR) intersects the curve WcaseB
1.3 (UL) at a point U2, then the

Riemann problem of Eqs. 1.1–1.2 admits a solution of the form

W1(UL, U1) ⊕ W3(U1, U2 = Ub
1 ) ⊕ W2(U2, UR). (3.27)

Figure 2 illustrates the composite wave curves W1.3.1(UL), W1.3.1.3(UL) and
WcaseB

1.3 (UL).



1210 D. H. Cuong, M. D. Thanh

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

1.02

1.04

1.06

1.08

1.1

x

h

 

 

Exact solution
van Leer−type

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
4.6

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

5.05

x

u

 

 

Exact solution
van Leer−type

Fig. 3 Test 1: Well-balanced. Van Leer-type scheme can capture contact stationary wave exactly

4 A van Leer-type scheme

Relying on the constructions of Riemann solutions in the previous section, we are
now in a position to build up a van Leer-type scheme for Eq. 1.1. Let us set

U :=
(

h

hu

)
, F (U) :=

(
hu

h
(
u2 + gh

2

))
, H(U) :=

(
0

−gh

)
. (4.1)
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Table 1 States that separate the
elementary waves of the exact
solution of the Riemann problem
in Test 2: Construction A1

U1 U2

h 0.59808364 1.27834878

u 4.68161945 2.32256983

a 1.8 1.8

Then, the system (1.1) can be written in form

∂tU + ∂xF (U) = H(U)∂xa. (4.2)

Accordingly, given the initial condition

U(x, 0) = U0(x), x ∈ R, (4.3)

then, the discrete initial values U0 = (U0
j )j∈Z are given by

U0
j := 1

�x

∫ xj+1/2

xj−1/2

U0(x)dx, j ∈ Z. (4.4)

4.1 The Godunov-type scheme revisited

Suppose Un = (Un
j )j∈Z is known. We define the approximation Un+1 = (Un+1

j )j∈Z
of U(., tn+1) as follows:
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Fig. 4 Test 2: Construction A1. Exact solution and approximate solutions for the mesh size h = 1/128
corresponding to the Godunov-type scheme and the van Leer-type scheme
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(i) We extend the sequence Un as a piecewise constant function Up.con(., tn)

defined by

Up.con(x, tn) = Un
j , xj−1/2 < x < xj+1/2, j ∈ Z. (4.5)

(ii) We solve the local Riemann problems for Eq. 4.2 with the initial condition

U(x, 0) = Up.con(x, tn), (4.6)

to find the solution U(., �t). This solution is obtained by solving a juxtaposi-
tion of local Riemann problems, so

U(x, t) = Uexact

(x − xj+1/2

t
; Un

j , Un
j+1

)
, xj < x < xj+1, j ∈ Z,

(4.7)

where Uexact

(x

t
; UL, UR

)
denote the exact solution of the Riemann problem

for Eq. 4.2 corresponding to the Riemann data (UL, UR).
(iii) We project (L2-projection) the exact solution U(., �t) onto the piecewise

constant functions, i.e.

Un+1
j := 1

�x

∫ xj+1/2

xj−1/2

U(x, �t)dx. (4.8)

Provided we assume the C.F.L. condition

�t

�x
max{|λk(U

n
j )| : k = 1, 2} ≤ 1

2
, (4.9)

so that the waves issued from the points xj−1/2 and xj+1/2 do not interact. Since the
a-component is constant in each interval (xj−1/2, xj+1/2), then the right-hand side
of Eq. 4.2 vanishes. Thus, the Godunov-type scheme is

Un+1
j = Un

j − �t

�x

(
F(Uexact (0−; Un

j , Un
j+1)) − F(Uexact (0+; Un

j−1, U
n
j ))

)
.

(4.10)

To complete the Godunov-type scheme (4.10), we will specify the values

Ulef t := Uexact

(
0−; UL, UR

)
,

Uright := Uexact

(
0+; UL, UR

)
,

(4.11)

as follows.

Construction Ulef t Uright

A1(3.5) UL Us

A2(3.8) UL Us#b

A3(3.12) U1 U2
B1(3.18) U+ U+s

B2(3.21) U+ U+s#b

3(3.27) U1 U2

(4.12)
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Table 2 Errors and orders of convergence for Test 2: Construction A1

Godunov-type scheme van Leer-type scheme

N L1−error L1−relative error Order L1−error L1−relative error Order

128 0.0767 0.00980 − 0.0505 0.00646 −
256 0.0545 0.00696 0.49 0.0398 0.00508 0.35

512 0.0219 0.00279 1.32 0.0153 0.00196 1.38

1024 0.0097 0.00124 1.17 0.0073 0.00094 1.06

4.2 Building a van Leer-type scheme

Suppose Un = (Un
j )j∈Z at the time tn is known. We define the approximation

Un+1 = (Un+1
j )j∈Z of U(·, tn+1) as follows:

(i) From the sequence Un, we construct a piecewise linear function Up.lin(·, tn)
defined by

Up.lin(x, tn) = Un
j + Sn

j

�x
(x−xj ), xj−1/2 < x < xj+1/2, j ∈ Z, (4.13)

where the slopes Sn
j are defined by

Sn
j = (Un

j+1 − Un
j )�(θn

j ),

θn
j = Un

j − Un
j−1

Un
j+1 − Un

j

,

�(θ) = |θ | + θ

1 + |θ | , the van Leer’s limiter function.

(4.14)

(ii) We solve the Cauchy problem for Eq. 4.2 with the initial condition

U(x, 0) = Up.lin(x, tn), (4.15)

to find the solution U(·, �t).
(iii) We project (in the sense of L

2) the solution U(·, �t) onto the piecewise
constant functions, i.e., we set

Un+1
j := 1

�x

∫ xj+1/2

xj−1/2

U(x, �t)dx. (4.16)

Table 3 States that separate the
elementary waves of the exact
solution of the Riemann problem
in Test 3: Construction A2

U1 U2 U3

h 0.83623250 2.08708713 2.24123887

u 5.97919835 2.39568340 2.23090902

a 2.61525664 2.61525664 2.5
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Fig. 5 Test 3: Construction A2. Exact solution and approximate solutions for the mesh size h = 1/128
corresponding to the Godunov-type scheme and the van Leer-type scheme

Provided we assume some C.F.L. condition so that the waves issued from the points
xj−1/2 and xj+1/2 do not interact, the solution is obtained by juxtaposition of local
Riemann problems

�t

�x
max{|λk(U

n
j )| : k = 1, 2} ≤ 1

2
. (4.17)

In order to derive a more explicit form of the scheme, we integrate the Eq. 4.2 over
the rectangle (xj−1/2, xj+1/2) × (0, �t). Since a is constant on (xj−1/2, xj+1/2), we
obtain ∫ xj+1/2

xj−1/2

(U(x, �x) − U(x, 0))dx +
∫ �t

0

(
F(U(xj+1/2 − 0, t))

−F(U(xj−1/2 + 0, t))
)
dt = 0. (4.18)

Using Eqs. 4.13, 4.15 and 4.16, we get

�x(Un+1
j −Un

j )+
∫ �t

0

(
F(U(xj+1/2−0, t))−F(U(xj−1/2+0, t))

)
dt = 0. (4.19)

Using the midpoint rule, we write

1

�t

∫ �t

0
F(U(xj+1/2 − 0, t))dt = F(U(xj+1/2 − 0, �t/2)) + O(�t2). (4.20)
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Table 4 Errors and orders of convergence for Test 3: Construction A2

Godunov-type scheme van Leer-type scheme

N L1−error L1−relative error Order L1−error L1−relative error Order

128 0.0748 0.00796 − 0.0211 0.00225 −
256 0.0402 0.00427 0.90 0.0163 0.00173 0.37

512 0.0200 0.00212 1.01 0.0053 0.00056 1.63

1024 0.0099 0.00106 1.01 0.0035 0.00037 0.59

For approximating F(U(xj+1/2 − 0, �t/2)), we use a predictor-corrector scheme.

First, we define the updated values U
n+1/2
j+1/2,± at time tn + �t/2 by

U
n+1/2
j+1/2,− = Un

j+1/2,− − �t

2�x
(F(Un

j+1/2,−) − F(Un
j−1/2,+)),

U
n+1/2
j+1/2,+ = Un

j+1/2,+ − �t

2�x
(F(Un

j+3/2,−) − F(Un
j+1/2,+)),

(4.21)

where

Un
j+1/2,− = Up.lin(xj+1/2 − 0) = Un

j + 1

2
Sn

j ,

Un
j+1/2,+ = Up.lin(xj+1/2 + 0) = Un

j+1 − 1

2
Sn

j ,

(4.22)

see [14], for example. Second, we solve the Riemann problem of Eq. 4.2 at the point
xj+1/2 with piecewise constant initial dataU

n+1/2
j+1/2,±, whose solution is noted as usual

Uexact

(x − xj+1/2

t
; U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+

)
.

Third, we replace U(xj+1/2 ± 0, �t/2) by

Uexact

(
0±; U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+

)
.

Thus, the scheme (4.19) becomes

Un+1
j = Un

j − �t

�x

(
F(Uexact (0−, U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+)) − F(Uexact (0+, U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+))

)
.

(4.23)

The scheme (4.23) is capable of capturing stationary waves exactly. This means
that for any stationary wave, it holds that

Un+1
j = Un

j , j ∈ Z, n = 0, 1, 2, . . . (4.24)

Therefore, it is a well-balanced scheme. To see this, we first suppose that Un

corresponds to a stationary wave. From Eq. 4.14, we imply

Sn
j = 0, j ∈ Z.
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Table 5 States that separate the
elementary waves of the exact
solution of the Riemann problem
in Test 4: Construction A3

U1 U2

h 2.78773441 3.50171819

u 3.38414574 2.69413443

a 2.0 1.5

Then, we get from Eqs. 4.21, 4.22

U
n+1/2
j+1/2,− = Un

j+1/2,− = Un
j ,

U
n+1/2
j+1/2,+ = Un

j+1/2,+ = Un
j+1.

Therefore, it holds that

Uexact

(
0−; U

n+1/2
j+1/2,−, U

n+1/2
j+1/2,+

)
= Un

j = Uexact

(
0+; U

n+1/2
j−1/2,−, U

n+1/2
j−1/2,+

)
,

which yield (4.24).
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Fig. 6 Test 4: Construction A3. Exact solution and approximate solutions for the mesh size h = 1/128
corresponding to the Godunov-type scheme and the van Leer-type scheme
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Table 6 Errors and orders of convergence for Test 4: Construction A3

Godunov-type scheme van Leer-type scheme

N L1−error L1−relative error Order L1−error L1−relative error Order

128 0.0953 0.00719 − 0.0573 0.00433 −
256 0.0511 0.00386 0.90 0.0184 0.00139 1.64

512 0.0370 0.00280 0.46 0.0132 0.00100 0.48

1024 0.0256 0.00193 0.54 0.0089 0.00067 0.57

5 Numerical experiments

This section is devoted to numerical tests by using MATLAB, which demonstrate the
advantages of our scheme (4.23). For each test, we compare the numerical solution
Uh with the corresponding exact solution U . By taking

g = 9.8,

we plot the solutions Uh and U for

x ∈ [−1, 1], t = 0.1.

5.1 Test 1: Well-balanced property

Let the Riemann data be given by

UL ∈ G1 UR ∈ G1
h 1.0 1.07809232
u 5.0 4.63782175
a 3.0 3.1

(5.1)

It is not difficult to check that the initial data (5.1) satisfies the jump relations (2.12).
Therefore, the solution is just a stationary wave from UL to UR . Figure 3 displays an
exact contact stationary wave and its approximation with 500 mesh points by the van
Leer-type scheme (4.23). This figure shows that the van Leer-type scheme (4.23) can
capture contact stationary solutions, so it is well-balanced.

Table 7 States that separate the
elementary waves of the exact
solution of the Riemann problem
in Test 5: Construction B1

U+ U1 U2

h 0.77374106 0.58589019 0.64142927

u 2.75366345 3.63655599 3.41438207

a 1.1 1.0 1.0
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Fig. 7 Test 5: Construction B1. Exact solution and approximate solutions for the mesh size h = 1/128
corresponding to the Godunov-type scheme and the van Leer-type scheme

5.2 Test 2: Construction A1

In this test we approximate a Riemann solution of Construction A1. Precisely, let the
Riemann data be given by

UL ∈ G1 UR ∈ G2
h 0.7 1.0
u 4.0 1.5
a 2.0 1.8

(5.2)

It holds that the initial data (5.2) satisfies the Construction A1. Therefore, acccord-
ing to Eq. 3.5, the exact solution is a stationary wave from UL to U1, followed by
a 1−shock wave from U1 to U2, then followed by a 2−shock wave from U2 to UR ,
where U1, U2 are reported in Table 1, see the top of Fig. 4. The rest of Fig. 4 displays
the exact solution and its approximate solutions for the mesh size h = 1/128 cor-
responding to the Godunov-type scheme and the van Leer-type scheme. The errors,
orders of convergence are reported by Table 2. Moreover, Table 2 shows that the
accuracy of the van Leer-type scheme is better than the Godunov-type scheme while
the order of the van Leer-type scheme seems equal to the one of the Godunov-type
scheme.
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Table 8 Errors and orders of convergence for Test 5: Construction B1

Godunov-type scheme van Leer-type scheme

N L1−error L1−relative error Order L1−error L1−relative error Order

128 0.0597 0.00810 − 0.0230 0.00312 −
256 0.0401 0.00543 0.58 0.0117 0.00158 0.98

512 0.0262 0.00356 0.61 0.0057 0.00078 1.03

1024 0.0167 0.00227 0.65 0.0028 0.00038 1.05

5.3 Test 3: Construction A2

In this test we approximate a Riemann solution of Construction A2. Precisely, we
consider the Riemann problem for Eqs. 1.1–1.2 with the initial data of the form

UL ∈ G1 UR ∈ G2
h 1.0 1.5
u 5.0 0.5
a 3.0 2.5

(5.3)

It holds that the initial data (5.3) satisfies Construction A2. According to Eq. 3.8, the
exact solution is a stationary wave from UL to U1, followed by a 1−shock which
has zero speed from U1 to U2, followed again by a stationary from U2 to U3, then
followed by a 2−shock from U3 to UR , where U1, U2, U3 are reported in Table 3, see
the top of Fig. 5. The rest of Fig. 5 displays the exact solution and its approximate
solutions for the mesh size h = 1/128 corresponding to the Godunov-type scheme
and the van Leer-type scheme. This figure illustrates good approximations to the
exact solution. The errors and order of convergence for Test 3 are reported in the
Table 4, where one can see that the accuracy of the van Leer-type scheme is better
than the Godunov-type scheme while the order of the van Leer-type scheme looks
like equal to the one of the Godunov-type scheme. Note that second-order schemes
may have the order of accuracy less than 1 when approximating shock waves and
therefore solutions containing shock waves even for the conservative systems such as
the usual gas dynamics equations, see [10].

Table 9 States that separate the
elementary waves of the exact
solution of the Riemann problem
in Test 6: Construction B2

U+ U1 U2 U3

h 0.77374106 0.52701539 1.08828154 1.47743632

u 2.75366345 4.04280884 1.95778610 1.44210782

a 1.5 1.29970317 1.29970317 1.0
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Fig. 8 Test 6: Construction B2. Exact solution and approximate solutions for the mesh size h = 1/128
corresponding to the Godunov-type scheme and the van Leer-type scheme

5.4 Test 4: Construction A3

Let the Riemann data be given by

UL ∈ G1 UR ∈ G2
h 2.0 4.0
u 5.0 3.5
a 2.0 1.5

(5.4)

It holds that the initial data (5.4) satisfies the Construction A3. According to Eq. 3.12,
the exact solution is a 1−shock wave from UL to U1, followed by a stationary wave
from U1 to U2, then followed by a 2−rarefaction wave from U2 to UR , where U1,
U2 are reported in Table 5, see the top of Fig. 6. The rest of Fig. 6 displays the exact
solution and its approximate solutions for the mesh size h = 1/128 corresponding
to the Godunov-type scheme and the van Leer-type scheme. One can see from this
figure that the approximate solutions are closed to the exact solution. The errors,
orders of convergence are reported by Table 6. Moreover, Table 6 shows that the
van Leer-type scheme has a better accuracy than the Godunov-type scheme while
the order of the van Leer-type scheme seems equal to the one of the Godunov-type
scheme.
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Table 10 Errors and orders of convergence for Test 6: Construction B2

Godunov-type scheme van Leer-type scheme

N L1−error L1−relative error Order L1−error L1−relative error Order

128 0.0173 0.00290 − 0.0116 0.00193 −
256 0.0116 0.00193 0.58 0.0058 0.00098 0.98

512 0.0076 0.00128 0.60 0.0029 0.00049 0.99

1024 0.0049 0.00082 0.63 0.0015 0.00025 1.00

5.5 Test 5: Construction B1

In this test we approximate a Riemann solution of Construction B1. Precisely, let the
Riemann data be given by

UL ∈ G2 UR ∈ G1
h 1.0 0.8
u 2.0 4.0
a 1.1 1.0

(5.5)

It holds that the initial data (5.5) satisfies the Construction B1. Therefore, according
to Eq. 3.18, the exact solution is a 1−rarefaction wave from UL to U+, followed by
a stationary wave from U+ to U1, followed by a 1−shock wave from U1 to U2, then
followed by a 2−rarefaction wave from U2 to UR , where U+, U1, U2 are reported
in Table 7, see the top of Fig. 7. The rest of Fig. 7 displays the exact solution and its
approximate solutions for the mesh size h = 1/128 corresponding to the Godunov-
type scheme and the van Leer-type scheme. We can see from this figure that the
approximate solutions are closed to the exact solution. The errors, orders of conver-
gence are reported by Table 8. Moreover, Table 8 shows that the accuracy and the
order of the van Leer-type scheme are better than the Godunov-type scheme.

5.6 Test 6: Construction B2

In this test we approximate a Riemann solution of Construction B2. Precisely, we
consider the Riemann problem for Eqs. 1.1–1.2 with the initial data of the form

UL ∈ G2 UR ∈ G2
h 1.0 1.5
u 2.0 1.5
a 1.5 1.0

(5.6)

Table 11 States that separate
the elementary waves of the
exact solution of the Riemann
problem in Test 7: Construction
B3

U1 U2

h 1.48876884 1.99695818

u 0.60112084 0.44814658

a 1.5 1.0
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Fig. 9 Test 7: Construction B3. Exact solution and approximate solutions for the mesh size h = 1/128
corresponding to the Godunov-type scheme and the van Leer-type scheme

It holds that the initial data (5.6) satisfies Construction B2. According to Eq. 3.21,
the exact solution is a 1−rarefaction wave from UL to U+, followed by a stationary
wave from U+ to U1, followed by a 1−shock which has zero speed from U1 to U2,
followed again by a stationary from U2 to U3, then followed by a 2−rarefaction from
U3 to UR , where U+, U1, U2, U3 are reported in Table 9, see the top of Fig. 8. The
rest of Fig. 8 displays the exact solution and its approximate solutions for the mesh
size h = 1/128 corresponding to the Godunov-type scheme and the van Leer-type
scheme. This figure illustrates good approximations to the exact solution. The errors
and orders of convergence for this test are reported in the Table 10, where one can
see that the accuracy and the order of the van Leer-type scheme are better than the
Godunov-type scheme.

5.7 Test 7: Construction B3

Let the Riemann data be given by

UL ∈ G2 UR ∈ G2
h 1.0 2.5
u 2.0 1.5
a 1.5 1.0

(5.7)
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Table 12 Errors and orders of convergence for Test 7: Construction B3

Godunov-type scheme van Leer-type scheme

N L1−error L1−relative error Order L1−error L1−relative error Order

128 0.1121 0.01894 − 0.0496 0.00838 −
256 0.0709 0.01198 0.66 0.0306 0.00517 0.70

512 0.0403 0.00681 0.82 0.0120 0.00202 1.35

1024 0.0235 0.00397 0.78 0.0055 0.00094 1.11

It holds that the initial data (5.7) satisfies the Construction B3. According to Eq. 3.27,
the exact solution is a 1−shock wave from UL to U1, followed by a stationary wave
from U1 to U2, then followed by a 2−rarefaction wave from U2 to UR , where U1, U2
are reported in Table 11, see the top of Fig. 9. The rest of Fig. 9 displays the exact
solution and its approximate solutions for the mesh size h = 1/128 corresponding
to the Godunov-type scheme and the van Leer-type scheme. One can see from this
figure that the approximate solutions are closed to the exact solution. The errors,
orders of convergence are reported by Table 12. Moreover, Table 12 shows that the
accuracy and the order of the van Leer-type scheme are better than the Godunov-type
scheme.

6 Conclusions

Nonconservative systems often cause lots of inconvenience for numerical approxi-
mations. The resonance problem is a typically difficult one in this kind of systems
when wave speeds associated with different characteristic fields coincide. The sig-
nificant gain of this work is the success in numerical treatments for the resonance
problem by constructing a well-balanced van Leer-type numerical scheme for the
shallow water equations with variable topography (1.1). Moreover, a Godunov-type
scheme for Eq. 1.1 is also revisited. These schemes are constructed based on exact
solutions of local Riemann problems at each grid cell. The two methods are shown
to be well-balanced, since they can capture exactly stationary contact discontinuity
waves. Numerical tests are conducted for data in all the cases: data belong to the sub-
critical region, supercritical region, or both. Tests are also made for the resonant cases
where the exact Riemann solutions contain coinciding waves. All of these tests show
that both schemes can give approximate solutions which are convergent to the exact
solutions. Furthermore, the van Leer-type scheme can give a better accuracy than the
Godunov-type scheme-as expected. This work motivates for further developments for
numerical treatments of the resonance problem in more complicated systems such as
multi-phase flow models.
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