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Abstract In this paper the reduced basis (RB) method is applied to solve quadratic
multiobjective optimal control problems governed by linear parametrized variational
equations. These problems often arise in applications, where the quality of the sys-
tem behavior has to be measured by more than one criterium. The weighted sum
method is exploited for defining scalar-valued linear-quadratic optimal control prob-
lems built by introducing additional optimization parameters. The optimal controls
corresponding to specific choices of the optimization parameters are efficiently com-
puted by the RB method. The accuracy is guaranteed by an a-posteriori error estimate.
An effective sensitivity analysis allows to further reduce the computational times for
identifying a suitable and representative set of optimal controls.
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1 Introduction

In real applications, optimization problems are often described by introducing sev-
eral objective functions conflicting with each other. This leads to multiobjective or
multicriterial optimization problems; see, e.g., [7, 9, 11, 31]. Finding the optimal
control that represents a good compromise is the main issue in these problems. For
that reason the concept of Pareto optimal or efficient points is developed. In contrast
to scalar-valued optimization problems, the computation of a set of Pareto opti-
mal points is required. Consequently, many scalar-valued constrained optimization
problems have to be solved.

In the present paper, we study infinite dimensional multiobjective optimization
problems governed by k ≥ 2 quadratic objectives and by linear parametrized varia-
tional constraints described by a weak formulation of a linear parametrized elliptic
partial differential equation (PDE). For the numerical solution, we apply the weighted
sum method [35], where parametrized scalar-valued quadratic programming prob-
lems have to be solved for many parameter values in order to define a sufficiently
accurate approximation of the set of Pareto optimal points. Note that we have two
sorts of parameters in our problem: parameters related to the variational constraints
and parameters required by the scalarization of the multiobjective problem through
the weighted sum method. Our scalar-valued parametrized optimal control problems
are infinite dimensional optimization problems (see [16, 32] for PDE constrained
problems). After a discretization by a high-fidelity (HF) discretization technique
like finite elements or finite volumes, the Pareto points can be computed by solv-
ing many large scale parametrized optimization problems. Therefore, we make use
of a reduced basis (RB) approximation [26], which is known to be very efficient for
parametrized linear-quadratic optimal control problems [8, 12]. Let us also refer to
[33] for POD based Galerkin schemes for time-dependent linear-quadratic optimal
control problems, the latter work is extended to nonlinear problems in [22].

The contribution of the present work is a successful combination of the greedy
approach for parametrized linear-quadratic optimal control problems [24] with the
weighted sum method. In each iteration of the greedy method appropriate Pareto
points to the HF multiobjective optimization problem are computed and used as
basis functions in the reduced-order discretization. For the construction of an accu-
rate RB scheme, we apply the a-posteriori error analysis presented in [24]. For each
value of the parameters, the RB method allows to drastically reduce the compu-
tational times required for the optimal solution of the corresponding scalar-valued
quadratic programming problem. The complete set of Pareto points is defined by
solving the problem for all the parameter values. A sensitivity analysis for the objec-
tives allows us to reduce the number of scalar-valued optimization solutions in the
weighted sum method. To sum up, our strategy allows to compute a sufficiently accu-
rate RB approximation of the set of Pareto optimal points for an arbitrarily chosen
parameter in the variation constraints. The present approach is already utilized for
more general problems including time-dependence and semilinear state equations in
[21]. Further preliminary results combining reduced-order modeling and multiobjec-
tive PDE-constrained optimization are recently derived in [2, 27], where different
optimization methods are used.
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The paper is organized as follows: in Section 2 we introduce the multiobjec-
tive optimal control problem and we recall the definition of efficient points and
Pareto optimal points. The first-order optimality conditions for the scalar-valued
parametrized minimization problems are formulated as a saddle point problem in
Section 3. Here we also introduce a HF approximation of the saddle point problem.
In Section 4 the RB discretization of the saddle point problem is proposed. More-
over, we discuss the offline and online decomposition of the RB method and, finally,
the a-posteriori error estimate from [24] is formulated for our problem. In Section 5
the sensitivity analysis is described. Numerical experiments are shown in Section 6.
Finally we draw some conclusions in Section 7.

2 The multiobjective optimization problem

In this section we introduce a constrained multiobjective optimal control problem.
The equality constraint is given by a parametrized affine variational equation, which
stands for a weak formulation of a parameter-dependent linear elliptic partial dif-
ferential equation. The parameter can refer to geometrical or model features of the
variational equation.

2.1 The state equation

Let V and H be real, separable Hilbert spaces and suppose that V is dense in H with
compact embedding. We denote by 〈· , ·〉H and 〈· , ·〉V the inner products in H and
V , respectively.

The set Dc ⊂ R
nc , nc ∈ N, stands for all considered geometrical and/or model

parameters. We suppose that for every parameter μc ∈ Dc the parameter-dependent
symmetric bilinear form a(· , · ; μc) : V × V → R satisfies

inf
ϕ∈V

a(ϕ, ϕ; μc)

‖ϕ‖2
V

≥ η1 for all ϕ ∈ V,

∣
∣a(ϕ, φ; μc)

∣
∣ ≤ η2 ‖ϕ‖V ‖φ‖V for all ϕ, φ ∈ V,

(1)

where η1 > 0 and η2 ≥ 0 are independent of μc. By identifying H with its dual H ′
we have V ↪→ H = H ′ ↪→ V ′, each embedding being continuous and dense. The
parameter-dependent inhomogeneity f (μc) is supposed to belong to V ′ for every
μc ∈ Dc.

We assume that the set U of admissible controls is a real, separable Hilbert space
endowed with the inner product 〈· , ·〉U and the induced norm ‖ · ‖U = 〈· , ·〉1/2

U . For
a parameter μc ∈ Dc and for a control u ∈ U , the state y ∈ V solves the following
linear elliptic and coercive variational problem

a(y, ϕ; μc) = 〈f (μc) + Eu, ϕ〉V ′,V for all ϕ ∈ V, (2)
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where 〈· , ·〉V ′,V stands for the dual pairing between V and its dual space V ′ and E
belongs to the Banach space L(U, V ′) of all bounded, linear operators from U to V ′
equipped with the norm

‖E‖L(U,V ′) = sup
{‖Eu‖V ′

∣
∣ u ∈ U and ‖u‖U = 1

}

.

The following result follows from the standard variational theory; see, e.g.,
[10, Chapter 6].

Proposition 2.1 Suppose that Eq. 1 and E ∈ L(U, V ′) hold. Then, for every μc ∈
Dc, u ∈ U and f (μc) ∈ V ′ there is a unique weak solution y = y(μc) ∈ V

satisfying (2) and
‖y‖V ≤ η

(‖f (μc)‖V ′ + ‖u‖U

)

(3)

for the constant η = (1 + ‖E‖L(U,V ′))/η1 > 0.

Remark 2.2 (Control-to-state operator) Let μc ∈ Dc be chosen arbitrarily. Due to
Proposition 2.1 there exists a unique solution ŷ = ŷ(μc) ∈ V to

a(ŷ, ϕ; μc) = 〈f (μc), ϕ〉V ′,V for allϕ ∈ V.

Furthermore, we define the parameter-dependent linear mapping S = S(μc) : U →
V as follows: y = S(μc)u, thanks again to Proposition 2.1, is the unique solution to

a(y, ϕ; μc) = 〈Eu, ϕ〉V ′,V for allϕ ∈ V.

Then, y = ŷ + Su solves (2). It follows from Eq. 3 that the operator S is bounded
for every μc ∈ Dc.

2.2 The vector-valued cost functional

We set X = V ×U and introduce the following vector-valued objective J : X → R
k

Ji(x) = 1

2
‖Ciy − wi‖2

Wi
fori = 1, . . . , k − 1 and Jk(x) = γ

2
‖u‖2

U ,

where x = (y, u) ∈ X, W1, . . . , Wk−1 are (real) Hilbert spaces, Ci ∈ L(V, Wi) and
wi ∈ Wi hold for 1 ≤ i ≤ k − 1. Furthermore, γ > 0 is a regularization parameter.

Example 2.3 Let us give an application which is utilized in our numerical experi-
ments carried out in Section 6. Suppose that � is an open and bounded domain in R

2

with Lipschitz-continuous boundary � = ∂�. We set H = L2(�), H 2 = H × H

and V = H 1(�). For more details on Lebesgue and Sobolev spaces we refer the
reader to [10, Chapter 5], for instance. Let k = 3 and W1 = H , W2 = H × H . The
operator C1 is the canonical embedding from V into H , the mapping C2 is given by
C2y = ∇y ∈ W2 for y ∈ V and w2 = 0 holds. Then, for x = (y, u) ∈ X the first
two components of the cost functional are given by

J1(x) = 1

2

∫

�

∣
∣y(x) − w1(x)

∣
∣2 dx and J2(x) = 1

2

∫

�

∣
∣∇y(x)

∣
∣2
2 dx,

where | · |2 denotes the Euclidean norm in R
2.
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Due to Remark 2.2 the state y = S(μc)u is uniquely determined by a control
u ∈ U for any parameter μc ∈ Dc. This is an intrinsic property of optimal control
problems. Motivated by this fact we reduce the number of optimization variables
by eliminating the control-dependent state variable in the objective: We define the
parameter-dependent reduced cost functional Ĵ (· ; μc) : U → R

k for any μc ∈ Dc

by

Ĵ (u; μc) = J (ŷ(μc) + S(μc)u, u) = 1

2

⎛

⎜
⎜
⎜
⎜
⎝

‖Ĉ1(μc)u − ŵ1(μc)‖2
W1

...

‖Ĉk−1(μc)u − ŵk−1(μc)‖2
Wk−1

γ ‖u‖2
U

⎞

⎟
⎟
⎟
⎟
⎠

,

where we set Ĉi (μc) = CiS(μc) ∈ L(U, Wi) and ŵi(μc) = wi − Ci ŷ(μc), for
i = 1, . . . , k − 1.

2.3 The multiobjective optimal control problem

To define our multiobjective optimization problem the concepts of order relation and
Pareto optimality is needed; see, e.g., Chapter 3 in [15].

Definition 2.4 (Order relation) Let (Rk, ≤) denote the order relation in R
k defined

by

z1 ≤ z2 ⇔ z2 − z1 ∈ R
k+ = {

z ∈ R
k
∣
∣ zi ≥ 0 for i = 1, . . . , k

}

for all z1, z2 ∈ R
k .

Definition 2.5 (Pareto optimal) Let Z = Ĵ (U ; μc) ⊂ R
k be the image set of U

under the cost functional Ĵ (· ; μc) for a given μc ∈ Dc.

1) We call a point z̄ ∈ Z globally efficient with respect to the order relation ≤, if
there exists no z ∈ Z \ {z̄} with z ≤ z̄.

2) If z̄ is efficient and ū ∈ U satisfies z̄ = Ĵ (ū; μc), we call ū Pareto optimal.
3) Let ū ∈ U hold. If there exists a neighborhood N(ū) ⊂ U of ū so that z̄ =

Ĵ (ū; μc) is efficient for the (local) image set Ĵ (N(ū); μc) ⊂ Z, the point ū is
called locally Pareto optimal. Moreover, z̄ is said to be locally efficient.

The parametrized multiobjective optimal control problem can be defined as fol-
lows: Find Pareto optimal points for the vector-valued reduced cost functional
Ĵ (· ; μc) for any μc ∈ Dc.

2.4 First-order optimality conditions

The cost functional Ĵ (· ; μc) is continuously differentiable for every μc ∈ Dc. First-
order necessary optimality conditions for Pareto optimality are presented in the next
theorem which is proved in [9, Theorem 3.21 and Corollary 3.23]. The proof is based
on the result of Kuhn-Tucker [23].
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Theorem 2.6 Suppose that ū ∈ U is Pareto optimal. Then, there exists a parameter
vector μ̄o = (μ̄0,1, . . . , μ̄o,k) ∈ R

k satisfying the Karush-Kuhn-Tucker conditions

0 ≤ μ̄o,i ≤ 1,

k
∑

i=1

μ̄o,i = 1 and
k
∑

i=1

μ̄o,i Ĵ
′
i (ū; μc) = 0. (4)

Since all k components of Ĵ (· ; μc) are convex on U , Eq. 4 is also a sufficient
condition for ū to be Pareto optimal.

Motivated by Theorem 2.6, let us choose 0 < μlb 
 1 and define the set

Do =
{

μo = (μo,i) ∈ R
k+
∣
∣
∣

k
∑

i=1

μo,i = 1, μo,k ≥ μlb

}

⊂ [0, 1] × . . . × [0, 1]
︸ ︷︷ ︸

k-times

for the optimization parameters in Eq. 4. Let us mention that the condition μo,k ≥
μlb will be necessary for the well-posedness of the scalar-valued optimal problem
(P̂μ) introduced below. Moreover, we combine the optimization parameters with the
parameters involved in the state Eq. 2 by setting D = Do × Dc ⊂ R

n with n =
k + nc. For any μ = (μo, μc) ∈ D we define the parameter-dependent, quadratic,
scalar-valued cost functional as

Ĵ(u; μ) =
k
∑

i=1

μo,i Ĵi (u; μc) = μ�
o Ĵ (u; μc) for u ∈ U,

where the symbol ‘�’ stands for the transpose of a vector or matrix. Then, Eq. 4 are
the first-order suffiient optimality conditions for a local solution ū = ū(μ) to the
parameter-dependent quadratic optimization problem

min Ĵ(u; μ) subject to (s.t.) u ∈ U (P̂μ)

for the parameter μ = μ̄. In the weighted sum method – first introduced by Zadeh
[35] – Pareto optimal points are computed by solving (P̂μ) for various μo ∈ Do;
see [9, Chapter 3], for instance. To solve (P̂μ) we can apply methods from quadratic
programming; see, e.g., [25, Chapter 16].

Remark 2.7 1) We apply the weighted sum method in this paper to compute Pareto
optimal points for a given parameter μc ∈ Dc. The computation of the Pareto
optimal points requires the solution of many scalar-valued optimization prob-
lems. Since we are interested in the Pareto optimal points for any μc ∈ Dc, we
have to solve a very large number of optimal control problems. For this reason
we propose a reduced-order approach using the reduced-basis method.

2) The reduced basis approximation allows a very fast computation of an approxi-
mate (i.e., suboptimal) solution to Eq. P̂μ. Moreover, we can estimate the error
between the suboptimal and the (unknown) optimal solution to Eq. P̂μ. There-
fore, we can ensure that our computed (suboptimal) Pareto optimal points are
sufficiently accurate.
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3) Note that μo,k = 1 − ∑k−1
i=1 μo,i holds, which is utilized in our numerical

experiments. Nevertheless, for sake of notation simplicity μo,1, . . . , μo,k will be
considered as independent parameters.

3 Optimality system for the scalar-valued quadratic problem

Let μ = (μo, μc) ∈ D be arbitrarily given. The solution of scalar-valued mini-
mization problem (P̂μ) can be characterized by its Karush-Kuhn-Tucker conditions,
which leads to a system of variational problems having the structure of a saddle point
problem and containing the state equation, the adjoint equation and the optimality
condition. This saddle point structure is particularly advantageous, since its solution
can be efficiently solved by the RB method.

3.1 Saddle point formulation for Eq. P̂μ

First we mention that Eq. P̂μ is a quadratic programming problem. We set Z =
X × V . Let us define the bilinear forms

A(x, x̃; μ) =
k−1
∑

i=1

μo,i 〈Ciy, Ci ỹ〉Wi
+ μo,kγ 〈u, ũ〉U ,

B(x, p̃; μ) = a(y, p̃; μc) − 〈Eu, p̃〉V ′,V

for all x = (y, u) ∈ X and (x̃, p̃) ∈ Z with x̃ = (ỹ, ũ).

Lemma 3.1 Suppose that Eq. 1, E ∈ L(U, V ′), γ > 0, μ ∈ D and Ci ∈ L(V, Wi)

for 1 ≤ i ≤ k − 1. Then:

1) The mapping X � x �→ B(x, · ; μ) ∈ V ′ is continuous and surjective.
2) For the constant η > 0 introduced in Eq. 3 we have

‖ỹ‖V ≤ η ‖ũ‖U for all (ỹ, ũ) ∈ X0, (1)

where we define X0 = {x ∈ X |B(x, p̃; μ) = 0 for allp̃ ∈ V } ⊂ X.
3) The bilinear form A(· , · ; μ) is continuous on X × X and coercive on X0. In

particular, we have

A(x̃, x̃; μ) ≥ α ‖x̃‖2
X for all x̃ ∈ X0, (2)

where α = μlbγ min(1/η, 1)/2 is independent of μ.

Proof 1) The continuity follows directly from Eq. 1 and E ∈ L(U, V ′). To verify
that x �→ B(x, · ; μ) is surjective we have to show that there exists an element
x = (y, u) ∈ X such that B(x, · ; μ) = F holds in V ′ for any F ∈ V ′. From
B(x, · ; μ) = F it follows that

a(y, p; μc) − 〈Eu, p〉V ′,V = 〈F, p〉V ′,V for all p ∈ V. (3)
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Equation 3 coincides – after replacing F by f (μc) – with the state (2), which is
uniquely solvable. Hence, for any u ∈ U there exists a unique state y(u) ∈ V

satisfying B(x, · ; μ) = F in V ′ with x = (y(u), u), i.e., the mapping x �→
B(x, · ; μ) is surjective from X to V ′.

2) Let p ∈ V be chosen arbitrarily and (ỹ, ũ) ∈ X0. Then, a(ỹ, p; μc) =
〈E ũ, p〉V ′,V holds, which is the state equation for the choice f (μc) = 0. Thus,
Eq. 1 follows directly from Eq. 3.

3) The continuity of A(· , · ; μ) follows directly from Ci ∈ L(V, Wi), 1 ≤ i ≤ k−1.
Let (x, p) ∈ Z hold. By definition of the parameter set Do we have μo,k ≥
μlb > 0. Moreover, γ is positive. Utilizing (1), it follows that

A(x̃, x̃; μ) =
k−1
∑

i=1

μo,i ‖Ci ỹ‖2
Wi

+ μo,kγ ‖ũ‖2
U ≥ μo,kγ ‖ũ‖2

U ≥ μlbγ ‖ũ‖2
U

≥ μlbγ

2

(
1

η
‖ỹ‖2

V + ‖ũ‖2
U

)

for all x̃ = (ỹ, ũ) ∈ X0,

which imply (2).

Remark 3.2 From closed range theory [4, Chapter 2] and Lemma 3.1-1) we infer that

β(μ) := inf
p∈V

sup
x∈X

B(x, p; μ)

‖x‖X‖p‖V

> 0 for all μ ∈ D. (4)

The condition (4) is called the Brezzi inf-sup-condition and β(μ) the Brezzi inf-sup
constant; see [5]. It follows from [24, Lemma 2.1] that β(μ) ≥ α is valid for all
μ ∈ D. Hence the Brezzi inf-sup constant is bounded from below by a positive
constant which is independent of the parameter μ.

Utilizing Lemma 3.1 the existence of a unique solution ū = ū(μ) for Eq. P̂μ can
be proved in a standard way for any μ ∈ D; see, e.g., [16, 32]. We introduce the
μ-dependent Lagrangian functional for Eq. P̂μ as

L(x, p; μ) =
k
∑

i=1

μo,iJi(x; μc) + a(y, p; μc) − 〈f (μc) + Eu, p〉V ′,V ,

where x = (y, u) ∈ X stands for the primal variable, p ∈ V is theLagrange multiplier
(or adjoint variable) associated with the equality constraint (2) and μ ∈ D holds.
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The optimal solution ū can be characterized by first-order sufficient optimality con-
ditions: ū satisfies together with the unique associated optimal state ȳ = ȳ(μ) and
optimal adjoint p̄ = p̄(μ) the coupled linear equation system

0 = ∂L
∂y

(x̄, p̄; μ)y = a(y, p̄; μc) +
k−1
∑

i=1

μo,i 〈Ci ȳ − wi, Ciy〉Wi
,

0 = ∂L
∂u

(x̄, p̄; μ)u = μo,kγ 〈ū, u〉U − 〈Eu, p̄〉V ′,V ,

0 = ∂L
∂p

(x̄, p̄; μ)p = a(ȳ, p; μc) − 〈f (μc) + E ū, p〉V ′,V ,

for all directions (x, p) ∈ Z with x = (y, u). In order to write the first-order
optimality conditions in a more compact form, we define the two linear forms

F(x̃; μ) =
k−1
∑

i=1

μo,i 〈wi, Ci ỹ〉Wi
, G(p̃; μ) = 〈f (μc), p̃〉V ′,V ,

for any x = (y, u) ∈ X and (x̃, p̃) ∈ Z with x̃ = (ỹ, ũ). The first-order optimality
conditions can be expressed as follows: find (x̄(μ), p̄(μ)) ∈ Z such that

A(x̄(μ), x; μ) + B(x, p̄(μ), μ) = F(x; μ) for all x ∈ X,

B(x̄(μ), p; μ) = G(p; μ) for all p ∈ V.
(5)

Proposition 3.3 Let all hypotheses of Lemma 3.1 be satisfied. Then, Eq. 5 admits
a unique solution (x̄(μ), p̄(μ)) ∈ Z with x̄(μ) = (ȳ(μ), ū(μ)) for any parameter
μ ∈ D.

Proof The claim follows from the Brezzi theorem [6, Chapter II.1.1] and Lemma
3.1.

Remark 3.4 Note that Eq. 5 involves optimization parameters μo ∈ Do as well as
geometrical or model parameters μc ∈ Dc.

3.2 High-fidelity (HF) Galerkin approximation

The parametrized problem (5) is an infinite-dimensional saddle point problem which
has to be discretized for computing its numerical solution. Hence, we introduce a HF
Galerkin approximation of Eq. 5. Let us assume that {ϕi}N1

i=1 and {φi}N2
i=1 denote sets

of linearly independent basis functions in V and U , respectively, where N1 ∈ N and
N2 ∈ N are typically very large. We set N12 = N1 + N2. We introduce the finite
dimensional spaces:

VN = span
{

ϕ1, . . . , ϕN1

} ⊂ V, UN = span
{

φ1, . . . , φN2

} ⊂ U.
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The high-fidelity Galerkin approximation of the optimality system (5) reads as
follows: find (x̄N (μ), p̄N (μ)) ∈ ZN such that

A(x̄N (μ), xN ; μ) + B(xN , p̄N (μ),μ) = F(xN ; μ) for all xN ∈ XN ,

B(x̄N (μ), pN ; μ) = G(pN ; μ) for all pN ∈ VN ,
(6)

where we have set ZN = XN ×VN , XN = VN ×UN , x̄N (μ) = (ȳN (μ), ūN (μ))

and

ȳN (μ) =
N1∑

i=1

x̄Ni (μ)ϕi =
N1∑

i=1

ȳNi (μ)ϕi, p̄N (μ) =
N1∑

i=1

p̄Ni (μ)ϕi,

ūN (μ) =
N2∑

i=1

x̄NN1+i (μ)φi =
N2∑

i=1

ūNi (μ)φi .

The following results can be derived by the same arguments in the proof of Lemma
3.1.

Lemma 3.5 Suppose that Eq. 1, E ∈ L(U, V ′), γ > 0, μ ∈ D and Ci ∈ L(V, Wi)

for 1 ≤ i ≤ k − 1. Then it follows:

1) The mapping XN � xN �→ B(xN , · ; μ) ∈ (VN )′ is continuous and surjective.
2) The bilinear form A(· , · ; μ) is continuous on XN × XN and coercive on the

subspace XN
0 = {xN ∈ XN ∣

∣B(xN , pN ; μ) = 0 for allpN ∈ VN }, i.e.,

A(x̃N , x̃N ; μ) ≥ α ‖x̃N ‖2
X for all x̃N ∈ XN

0 ,

where the coercivity constant α is the same as in Eq. 2.

Remark 3.6 As in Remark 3.2 it follows from closed range theory and Lemma 3.5-1)
that the Brezzi HF inf-sup condition hold:

βN (μ) := inf
pN ∈VN

sup
xN ∈XN

B(xN , pN ; μ)

‖xN ‖X‖pN ‖V

> 0 for all μ ∈ D.

Since the state yN and the adjoint pN belong to the same subspace VN we derive
analogously to the proof of Lemma 2.1 in [24] that βN (μ) ≥ α > 0, where α =
μlbγ min(1/η, 1)/2 is independent of N and μ.

Proposition 3.7 Let all hypotheses of Lemma 3.5 hold. Then, Eq. 6 possesses a
unique solution (x̄N (μ), p̄N (μ)) for any parameter μ ∈ D.

Proof The existence of a unique solution to Eq. 6 is ensured by the Brezzi theorem
[6, Chapter II.1.1] and Lemma 3.5.
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The numerical solution of problem (6) leads to a linear algebraic system of
dimension N12 + N1 of the following structure:

N12∑

j=1

AN
ij (μ)x̄Nj (μ) +

N1∑

j=1

BN
ji (μ)p̄Nj (μ) = FN

i (μ), i = 1, . . . ,N12,

N12∑

j=1

BN
ij (μ)x̄Nj (μ) = GN

i (μ), i = 1, . . . ,N1,

(7)

where the matrices AN ∈ R
N12×N12 , BN ∈ R

N12×N1 and the vectors FN ∈ R
N12 ,

GN ∈ R
N1 are given by

AN
ij (μ) =

⎧

⎪⎨

⎪⎩

A
(

(ϕj , 0), (ϕi, 0); μ
)

, i, j = 1, . . . ,N1,

A
(

(0, φj−N1), (0, φi−N1);μ
)

, i, j = N1 + 1, . . . ,N12,

0 otherwise,

BN
ij (μ) =

{

B
(

(ϕj , 0), ϕi; μ
)

, i, j = 1, . . . ,N1,

B
(

(0, φj−N1), ϕi; μ
)

, i = 1, . . . ,N1, j = N1+1, . . . ,N12,

FN
i (μ) =

{

F
(

(ϕi, 0); μ
)

, i = 1, . . . ,N1,

F
(

(0, φi−N1);μ
)

, i = N1 + 1, . . . ,N12,

GN
i (μ) = G(ϕi; μ), i = 1, . . . ,N1.

Remark 3.8 (Motivation for the reduced-order approach) In order to compute a suf-
ficiently accurate approximation (x̄N , p̄N ) ∈ ZN of the solution (x̄, p̄) ∈ Z to the
infinite dimensional saddle point problem (5), we generally have to choose large N1
and N2. Consequently, the solution of system (7) could require long computational
times. Moreover, to compute approximations of the Pareto optimal points for various
geometrical and/or model parameters we have to solve (7) for many different param-
eters μ ∈ D. The following reduced-basis approach is proposed for allowing very
fast and accurate solutions of the saddle point problem.

4 Reduced basis (RB) approximation

The basic idea of the RB method is to exploit the smooth parametric dependence
of the saddle point problem (6) and to define small and suitable basis spaces where
the problem is defined. The RB method consists in two main stages. During the first
one, so called offline phase, we define the reduced basis functions that are solu-
tion of the problem system for a properly chosen set of parameter values. After the
computationally expensive offline stage, during the online phase, for any new value
of the parameter μ ∈ D, the RB method provides a very effective dataset for the
computation of a accurate, reliable and fast approximation of the problem solution.
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4.1 The offline phase

In order to define the reduced basis spaces, we build a set of parameter samples S
μ
N =

{

μ1, . . . , μN
} ⊂ D and correspondingly the pairs {(x̄N (μi ), p̄N (μi ))}Ni=1 ⊂ ZN

which are solutions to Eq. 6 for parameters μi ∈ S
μ
N, i = 1, . . . , N . The choice

of the parameter set S
μ
N can be done by using both the classical greedy algorithm,

reviewed in [29], and the optimization greedy, recently proposed in [34], particularly
useful for problems involving a large number of parameters, i.e., a large number of
cost functionals or distributed parameter functions [18, 20].

The RB approximation of Eq. 6 consists in a Galerkin projection onto low dimen-
sional subspaces spanned by the solution pairs {(x̄N (μi ), p̄N (μi ))}Ni=1. In order to
guarantee the approximation stability of the RB method for the saddle point problem,
we fulfill the inf-sup condition by defining the following spaces:

V N = span
{

ȳN (μ1), . . . , ȳN (μN)
}

⊕ span
{

p̄N (μ1), . . . , p̄N (μN)
}

,

UN = span
{

ūN (μ1), . . . , ūN (μN)
}

.

Let {ψi}2N
i=1 and {ζi}Ni=1 denote orthonormal bases for V N and UN , respectively. We

set XN = V N ×UN and ZN = XN ×V N . The use of the same subspace for the state
and ajoint is cruical for stability of the reduced basis method. The RB approximation
of problem (6) reads: find the pair (x̄N (μ), p̄N (μ)) ∈ ZN such that

A(x̄N (μ), xN ; μ) + B(xN, p̄N (μ);μ) = F(xN ; μ) for all xN ∈ XN,

B(x̄N (μ), pN ; μ) = G(pN ; μ) for all pN ∈ V N.
(1)

Proposition 4.1 Let all hypotheses of Lemma 3.5 hold. Then, there exists a unique
solution (x̄N (μ), p̄N (μ)) to Eq. 1.

Proof As in Lemma 3.5-1) and Remark 3.6 we find that

βN(μ) := inf
pN∈V N

sup
xN∈XN

B(xN, pN ; μ)

‖xN‖X‖pN‖V

for all μ ∈ D

fulfills a Brezzi RB inf-sup condition

βN(μ) ≥ α > 0 for allμ ∈ D, (2)

where α = μlb min(1/η, 1)/2 has been introduced in Eq. 2. Since XN is a subspace
of XN we infer as in Lemma 3.5-2) that

A(x̃N , x̃N ; μ) ≥ α ‖x̃N‖2
X for all x̃N ∈ XN

0 , (3)

where XN
0 = {xN ∈ XN |B(xN, pN ; μ) = 0 for all pN ∈ V N }. From Eqs. 2 and 3

it follows that Eq. 1 admits a unique solution.

We have already mentioned that in the offline phase the selection of S
μ
N and the

computation of the basis functions are carried out. In the offline phase, we also
compute the parameter independent parts of the coefficient matrices and vectors,
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occurring in the algebraic formulation of Eq. 1. This allows us to accelerate our com-
putational effort in the online phase. For this purpose, an affine decomposition of
the linear and bilinear forms is required. In particular, we note that A(· , · ; μ) and
F(· ; μ) are affine by definition. Thus, we require the affine parametric dependence of
the μ-dependent expressions involved in the state (2), i.e., the forms a(· , · ; μc) and
f (μc) with μc ∈ Dc. However, if they are not affine, it is possible to approximate
them by affine linear and bilinear forms through the empirical interpolation method
[3]. So that it is possible to decouple the forms for any parameter μ ∈ D as follows:

A(x, x̃; μ) =
�A∑

i=1

�i
A(μ)Ai (x, x̃), F(x; μ) =

�F∑

i=1

�i
F (μ)F i (x̃)

and to approximate

B(x, p; μ) ≈
�B∑

i=1

�i
B(μ)Bi (x, p), G(p; μ) ≈

�G∑

i=1

�i
G(μ)Gi (p),

for x = (y, u) ∈ X and (x̃, p̃) ∈ Z with x̃ = (ỹ, ũ). Thanks to these assumptions,
the following low dimensional matrices can be computed only once and during the
offline phase:

A
i1
ij =

⎧

⎪⎨

⎪⎩

Ai1
(

(ψj , 0), (ψi, 0)
)

, i, j = 1, . . . , 2N,

Ai1
(

(0, ζj−2N), (0, ζi−2N)
)

, i, j = 2N + 1, . . . , 3N,

0 otherwise,

B
i2
ij =

{

Bi2
(

(ψj , 0), ψi

)

, i, j = 1, . . . , 2N,

Bi2
(

(0, ζj−2N), ψi

)

, i = 1, . . . , 2N, j = 2N + 1, . . . , 3N,

F
i3
i =

{

F i3
(

(ψi, 0)
)

, i = 1, . . . , 2N,

F i3
(

(0, ζi−2N)
)

, i = 2N + 1, . . . , 3N,

G
i4
i = Gi4(ψi), i = 1, . . . , 2N

for 1 ≤ i1 ≤ �A, 1 ≤ i2 ≤ �B, 1 ≤ i3 ≤ �F , and 1 ≤ i4 ≤ �G .

4.2 The online phase

In the online phase the parameter dependent part of the system can be rapidly eval-
uated for each new parameter value. Finally, a low dimensional linear system can be
assembled and solved efficiently during the online stage for any new value of μ ∈ D.
Analogously to Eq. 7, the algebraic formulation of Eq. 1 is the following:

3N
∑

j=1

AN
ij (μ)x̄N

j (μ) +
2N
∑

j=1

BN
ji (μ)p̄N

j (μ) = FN
i (μ), i = 1, . . . , 3N,

3N
∑

j=1

BN
ij (μ)x̄N

j (μ) = GN
i (μ), i = 1, . . . , 2N,

(4)
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where

AN(μ) =
�A∑

i=1

�i
A(μ)Ai, FN(μ) =

�F∑

i=1

�i
F (μ)F i,

BN(μ) =
�B∑

i=1

�i
B(μ)Bi, GN(μ) =

�G∑

i=1

�i
G(μ)Gi.

The solution vectors x̄ = (x̄N
i ) ∈ R

3N and p̄N = (p̄N
i ) ∈ R

2N to Eq. 4 define the
final RB solutions:

ȳN =
2N
∑

i=1

x̄N
i ψi, ūN =

N
∑

i=1

x̄N
i+2Nζi and p̄N =

2N
∑

i=1

p̄N
i ψi.

4.3 A-posteriori error estimates

A rigorous error estimate is one of the most important ingredients of the RB method.
It allows to define a suitable, efficient and relatively fast selection of the parameter set
S

μ
N in the offline phase and it provides a certified level of accuracy of the approximate

solution compared with the high-fidelity solution in the online phase. Thanks to the
saddle point formulation of the problem, we exploit the error estimates proposed in
[30] for Stokes problem and more recently in [24] for elliptic linear-quadratic optimal
control problems. Thus, we have a rigorous and inexpensive estimate for the error
between the HF solution of Eq. 6 and the RB solution of Eq. 1:

(‖x̄N (μ) − x̄N (μ)‖2
X + ‖p̄N (μ) − p̄N (μ)‖2

V

)1/2 ≤ �N(μ) for any μ ∈ D.

Moreover, we have a rigorous and inexpensive estimate for the error on the cost
functional evaluated by using the HF solution and the RB solution:

∣
∣Ĵ(ūN (μ);μ) − Ĵ(ūN (μ);μ)

∣
∣≤ �J

N(μ) for any μ ∈ D.

In Eq. 7 we will quantify the estimators �N(μ) and �J
N(μ). Note that the offline-

online computational decomposition can be adopted also for the computation of the
error estimates in order to be able to efficiently compute it online together with the
RB solution of the problem.

During the offline stage, performed once, the parameter independent parts of the
error estimates can be computed, while during the inexpensive online evaluation,
performed for any desired μ, the parameter dependent parts can be rapidly evaluated.
The fast evaluation of the error estimates permits to predict the RB error with respect
to the HF solution without computing the latter and it is crucial during the greedy
algorithm to speed up the efficient selection of the snapshots. For more details we
refer to [26, Chapter 3.3] and the recent works [14, 28].

In order to formulate the a-posteriori error estimates, we write (7) as a single
equation; compare with [24, Section 4]. For any parameter μ ∈ D let us define the
linear parameter-dependent bilinear form

K(z, z̃; μ) = A(x, x̃; μ) + B(x̃, p; μ) + B(x, p̃; μ) ∀z = (x, p), z̃ = (x̃, p̃) ∈ Z

(5)
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and the parameter-dependent linear functional

R(z; μ) = F(x; μ) + G(p; μ) ∀z = (x, p) ∈ Z.

Then, Eq. 5 is equivalent with

K(z̄N (μ), zN ; μ) = R(zN ; μ) ∀zN = (xN , pN ) ∈ ZN , (6)

where z̄N (μ) = (x̄N (μ), p̄N (μ)) ∈ ZN .

Proposition 4.2 Let all hypotheses of Lemma 3.5 hold. Then, Eq. 6 has a unique
solution z̄N (μ) for any parameter μ ∈ D.

Proof We introduce the Babuška HF inf-sup constant β̂N (μ) [1] associated with
Eq. 6 by

β̂N (μ) = inf
z̃N ∈ZN

sup
zN ∈ZN

K(zN , z̃N ; μ)

‖zN ‖Z‖z̃N ‖Z

.

Since A(· , · ; μ) and B(· , · ; μ) satisfy the hypotheses of the Brezzi theorem, the
compound form K(· , · ; μ) is bounded and β̂N (μ) > 0 holds for all μ ∈ D.
Therefore, Eq. 6 has a uique solution.

We assume that we can bound the Babuška HF inf-sup constant from below by a
μ-dependent positive constant β̂N

lb (μ). Moreover, let β̂0 be a μ- and N -independent
lower bound for β̂lb(μ) (for stability reasons) so that we have

β̂N (μ) ≥ β̂N
lb (μ) ≥ β̂0 > 0 for all μ ∈ D.

Remark 4.3 (Estimation of β̂lb(μ)) An effective computation of a lower bound
β̂N

lb (μ) for the constant β̂N (μ) plays an important role for a rigorous error estima-
tion. It can be computed by the Natural Norm Successive Constraint Method, that
represent an improvement of the SCM, see [17]. However, since this approximation
of the lower bound can be very time consuming, we adopt an alternative strategy
recently proposed and compared with the previous one in [24]. It consists in defining
a surrogate βN

s (μ) obtained by computing the expensive β̂N (μ) for a small set of
parameter values equally distributed in D and by using these computations to define,
by interpolation, the surrogate β̂N

s (μ) for all μ ∈ D. Despite this surrogate interpo-
lation can not be seen as a rigorous lower bound, it represents a sharp approximation
and, at a much lower computational cost, it provides a suitable and efficient error
estimate.

Suppose that we have determined an RB solution (x̄N (μ), p̄N (μ)) to Eq. 1. Let
us define the residuals rN

du(· ; μ) ∈ (XN )′ and rN
pr (· ; μ) ∈ (VN )′ by

rN
du(x

N ; μ) = F(xN ; μ) − A(x̄N (μ), xN ; μ) − B(xN , p̄N (μ);μ) ∀xN ∈ XN ,

rN
pr (p

N ; μ) = G(pN ; μ) − B(x̄N (μ), pN ; μ) ∀pN ∈ VN .
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Then, we obtain the following a-posteriori error estimates (see, e.g., [19])

�N(μ) = 1

β̂N
lb (μ)

(

‖rN
du(· ; μ)‖2

(XN )′ + ‖rN
pr (· ; μ)‖2

(VN )′
)1/2

,

�J
N(μ) = 1

2β̂N
lb (μ)

(

‖rN
du(· ; μ)‖2

(XN )′ + ‖rN
pr (· ; μ)‖2

(VN )′
) (7)

for μ ∈ D, where

‖rN
du(· ; μ)‖(XN )′ = sup

x∈XN

rN
du(x; μ)

‖x‖X

, ‖rN
pr (· ; μ)‖

(VN )′ = sup
p∈VN

rN
pr (p; μ)

‖p‖V

.

Remark 4.4 (Evaluation of dual norms) The computation of the dual norms of the
residuals is based on the Riesz representation of the residuals and on the affine
decomposition of the parametric operators. See, e.g., [29] for the offline-online
efficient procedure adopted for the computational decomposition of the residuals
norms.

5 Computation of Pareto optimal points by sensitivity analysis

We recall that the parameter μ = (μo, μc) ∈ D is given by two components: μo,
which can be chosen in the weighted sum defining the objective, and μc that stands
for physical and/or geometrical parameters involved in the state equation. In this
section we present a criterium that can be used for the weighted sum method, in order
to reduce significantly the number of computations required for identifying a relevant
set of Pareto solutions that is sufficient to interpolate the complete set. To reduce
the number of optimization parameter variations μo ∈ Do, we apply a sensitivity
analysis for the reduced cost functional with respect to the optimization parameter
μo. For that purpose we utilize the notation Ĵμo

for the partial derivative of the cost

Ĵ with respest to the parameter μo.
Suppose that we have computed the RB solution z̄N = z̄N (μ0) to Eq. 1 for an

initial parameter μ0 = (μ0
o, μ

0
c). By ȳN = ȳN (μ0) we denote the associated optimal

state and by p̄N = p̄N (μ0) the associated Lagrange multiplier. We are interested in
choosing only the optimization parameters μo ∈ Do leading to significant changes
in the cost functional that can provide a relevant optimal solution of the problem. For
that reason we introduce the Taylor expansion of the reduced objective with respect
to changes in μo:

Ĵ(u; μ+) = Ĵ(ūN ; μ0) + Ĵμo
(ūN ; μ0)(μ+

o − μ0
o) + O

(|μ+
o − μ0

o|2
)

, (1)
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where μ+ = (μ+
o , μ0

c), i.e., μ+ and μ0 only differ in the first k components. Hence,
we have to compute Ĵ(ūN ; μ0) as well as the partial derivative of Ĵμo

in order to get

the requested information. Utilizing μo,k = 1 − ∑k−1
i=1 μo,i we have

Ĵ(ū;N μ0) = 1

2

( k−1
∑

i=1

μ0
o,i ‖Ci ȳ

N − wi‖2
Wi

+ μ0
o,kγ ‖ūN‖2

U

)

= 1

2

( k−1
∑

i=1

μ0
o,i ‖Ci ȳ

N − wi‖2
Wi

+
(

1 −
k−1
∑

i=1

μ0
o,i

)

γ ‖ū‖2
U

)

.

Now we compute the derivatives of the cost functional with respect to μo,j for j =
1, . . . , k − 1:

Ĵμo,j
(ūN ; μ0) = 1

2
‖Cj ȳ

N − wj‖2
Wj

+
k−1
∑

i=1

μ0
o,i 〈Ci ȳ

N − wi, Ci ȳ
N
μo,j

〉
Wi

−γ

2
‖ūN‖2

U + μ0
o,kγ 〈ūN , ūN

μo,j
〉
U

,

where the k − 1 sensitivities z̄N
μo,j

= (x̄N
μo,j

, p̄N
μo,j

) ∈ ZN with x̄N
μo,j

= (ȳN
μo,j

, ūN
μo,j

)

are computed as follows, see, e.g., [13]. Utilizing the parametrized bilinear form
K(· ; · ; μ) introduced in Eq. 5, the first-order optimality conditions (1) can be
expressed as

K(z̄N ; zN ; μ̄) = R(zN ; μ̄) for all zN ∈ ZN. (2)

We differentiate (2) with respect to the optimization parameter μo,j for j =
1, . . . , k − 1:

K(z̄N
μo,j

, zN ; μ0) = Rμo,j
(zN ; μ0) − Kμo,j

(z̄N , zN ; μ0) ∀zN ∈ ZN, (3)

where

Kμo,j
(z̄N , zN ; μ0) = 〈Cj ȳ

N , Cj y
N 〉

Wj
− γ 〈ūN , uN 〉U ,

Rμo,j
(zN ; μ0) = 〈wj , Cj y

N 〉
Wj

for j = 1, . . . , k − 1 and for zN = (xN, pN) ∈ ZN with xN = (yN , uN). Now, we
can rapidly compute the sensitivities z̄N

μo,j
, 1 ≤ j ≤ k − 1, from the linear system

(3), where the coefficient matrix has been already defined for the computation of z̄N .
The advantageous feature of the explained sensitivity theory is its efficient online-
offline computational decoupling coming from the RB precomputed structures. Note
that the partial derivative of the bilinear and linear forms are readily computable
thanks to the affine parameter decomposition (assuming the parameter-dependent
functions are easily differentiable). Thus, at a very small computational effort, we are
able to define a suitable parameter set that is useful for computing specific optimal
solutions relevant for identifing the entire Pareto optimal set. Starting by considering
the parametric saddle point formulation of the problem where the parameter vector
is defined by the parameters used in the weighted sum of the cost functionals and
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the ones involved in the state equation, in the following listed steps we describe the
entire strategy we adopt for defining the suitable Pareto points approximation.

1) The offline phase for the RB approximation is carried out as described in Section
4.1;

2) The online phase is used to compute a Pareto optimal point corresponding to an
initial optimization parameter μ0 ∈ D as explained in Section 4.2;

3) Thanks to the sensitivity analysis (see above) we rapidly compute a prediction
of the cost functional value corresponding to a suitably large set of parameter
values. Among this set, we select the ones that span the entire cost functional
value range. This apprach provides a suitable discrete parameter set �s ⊂ Do,
that leads to different and not close variations of the (reduced) cost functional;

4) The set of Pareto optimal solutions is computed by using the online step of the
RB method corresponding to the parameter set �s determined in step 3).

Remark 5.1 Step 3) allows us to drastically reduce the number of online RB compu-
tations needed to recover a suitable distribution of the Pareto optimal points. Let us
summarize the main computations required by the sensitivity analysis: (i) the compu-
tation of the cost value Ĵ(ū;N μ0) by utilizing the RB solution z̄N and (ii) the solution
of the reduced-order system (3) to determine the sensitivities z̄N

μo
.

6 Numerical examples

In this section we present numerical examples illustrating the efficiency of our pro-
posed strategy. Different control input spaces and different geometric parameters are
considered. We start with a non parametric PDE constraint focusing on the optimal
control solutions defined by varying the parameters representing the weights involved
in the cost functional. In the second example, we introduce a geometrical parameter
leading to a parameter in the PDE constraint. Moreover, as last numerical test, we
reduce the control space dimension in order to be able to show the feasible set of cost
functional values (by varying arbitrarily the control) and the effectiveness (together
with the sensitivity analysis) of the RB method for defining the Pareto optimal solu-
tions. The numerical computations are performed in MATLAB. For the HF Galerkin
approximation we utilized a finite element (FE) scheme with piecewise P1 elements.

Run 1 (μo ∈ R
3 and μc ≡ 0) In our first test we choose k = 3 optimization

parameters, but no parameters in the state equation, i.e., μo ∈ R
3 and μc ≡ 0.

We consider the domain �∈ R
2 given by a rectangle separated into two disjunct

subdomains �1= (0, 1) × (0, 1) and �2= (1, 4) × (0, 1) and represented in the left
plot of Fig. 1.

Let U = L2(�) be the space of admissible controls. We introduce the multiob-
jective optimization problem in which the vector-valued cost functional is defined as
follows:

J1(y) = 1

2
‖y − w1‖2

L2(�)
, J2(y) = 1

2
‖∇y‖2

L2(�)2 , J3(u) = 1

2
‖u‖2

L2(�)
,
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Fig. 1 Run 1: Domain � separated into the two subdomains �1, �2 (left) and lower estimate for the
Babuska (FE) inf-sup constant βN (μ) (right)

where w1 = 1 in �1 and w1 = 0.6 in �2. The state y ∈ V = H 1
0 (�) solves the

Poisson problem:

− �y = u in �, y = 1 on � = ∂�. (1)

In order to apply the weighed sum method for the computation of the Pareto optimal
points, we consider the weighted sum of the cost vector:

J (x(μo);μo) = μo,1J1(y(μo)) + μo,2J2(y(μo)) + (1 − μo,1 − μo,2)J3(u(μo))

for x(μo) = (y(μo), u(μo)) ∈ X and μo = (μo,1, μo,2, μo,3) ∈ Do. Thus, for any
μ ∈ Do the parametrized optimal control problem reads

min J (x(μo);μo) s.t. x(μo) = (y(μo), u(μo)) ∈ X solves (1).

The numerical approximation of the RB functions (state, control and adjoint vari-
ables) is based on the FE discretization. The dimension of the FE space VN is
N1 = 11441 obtained by using a mesh of 22528 elements. For the control space we
choose UN = VN , so that we get N2 = N1 and N12 = 22882. Since the con-
dition μo,3 = 1 − μo,1 − μo,2 holds, we consider only the two parameters in our
numerical implementation. The two parameters are defined in the set μo,1 ∈ [0, 1]
and μo,2 ∈ [0, 1 − μo,1]. In order to illustrate the dependence of the optimal solu-
tion on the choice of the weighting parameters we consider three different parameter
values leading to different cost functionals and therefore to different optimal solu-
tions. In Fig. 2 we study a dominating first cost functional (μ1

o = (0.9, 0)), in Fig. 3 a
dominating second cost functional (μ2

o = (0.11, 0.83)) and in Fig. 4 we consider an
equally distributed dominance between the three cost functionals (μ3

o = (0.3, 0.3)).
Due to the smooth parameter dependence of the Babuska FE inf-sup constant, we
use a linear interpolant surrogate of μo �→ βN (μo) in our a-posteriori error compu-
tations. In the right plot of Fig. 1 we show the surrogate βN

s (μo) obtained by using
values of the parameter μo = (μo,1, μo,2) equally distributed in Do. The errors and
the a-posteriori error estimates, computed as described in Section 4.3, are presented
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Fig. 2 Run 1: Optimal FE state ȳN (top left), optimal FE control ūN (top right), FE partial derivative
ȳN
x1

(bottom left) and FE partial derivative ȳN
x2

(bottom right) for μ1
o = (0.9, 0)

in Fig. 5. In the left plot we consider a set of 100 randomly selected parameters val-
ues �test , we compute the average and the maximum of the errors between the FE
approximation of the solution and the RB solution, i.e.,

(

‖x̄N (μo) − x̄N (μo)‖2
X + ‖p̄N (μo) − p̄N (μo)‖2

V

)1/2
for μo ∈ �test ⊂ Do,

and we compare them with the a-posteriori error estimate �N(μo). In the right plot
of Fig. 5 we do the same comparison for the error estimate �J

N(μo) as well as the
associated difference between the FE and the RB cost, i.e.,

∣
∣J (x̄N (μo);μo) − J (x̄N (μo);μo)

∣
∣ for μo ∈ �test ⊂ Do.

Now let us comment on the computational effort. The offline phase lasts about 21
minutes. The online evaluation time by using N = 15 basis functions (in total: 2N for

Fig. 3 Run 1: Optimal FE state ȳN (top left), optimal FE control ūN (top right), FE partial derivative
ȳN
x1

(bottom left) and FE partial derivative ȳN
x2

(bottom right) for μ2
o = (0.11, 0.83)
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Fig. 4 Run 1: Optimal state ȳN (top left), optimal control ūN (top right), partial derivative ȳN
x1

(bottom

left) and partial derivative ȳN
x2

(bottom right) for μ3
o = (0.3, 0.3)

the state, N for the control and 2N for the adjoint) and including the evaluation of the
a-posteriori error estimate is 0.016 seconds; while the evaluation of the FE solution
requires about 1.26 seconds, by obtaining a speed-up equal to 88. We show in Fig. 6
the RB computational time and the speedup with respect to a FE computational time
by varying the number of basis functions. Even if for this specific problem the FE
computation is not particularly expensive, in order to define a suitable Pareto optimal
point set, we have to find the optimal solution of the parametric problem several times
(for many different parameter values) and the RB method permits, for instance, to
find 88 Pareto points at the time of only one possible FE one.

Remark 6.1 (Justification of the RB approach) Let us note that the RB online CPU
time is independent on the discretization mesh used, the size of the linear system
depends only on the number of basis functions used in the scheme, so in general
for finer FE scheme or larger computational domain, we could achieve even a larger
speed-up. The offline RB computations requires long times (specially compared with

Fig. 5 Run 1: Average errors, maximum errors and error estimates regarding the solution of the problem
(left) and the cost functional (right) between the FE and RB approximations
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Fig. 6 Run 1: Online evaluation time (in seconds) by varying the number N of basis functions and includ-
ing the evaluation of the a-posteriori error estimate (left) and speed-up between the FE computational time
required for a single parameter value and the RB computational time required for a single parameter value
by varying the number N of basis functions and including the evaluation of the a-posteriori error estimate
(right)

the a single FE solution), nevertheless this step is performed only once and allows
to provide fast numerical solutions for every parameters values. In a more general
framework, the number of parameters can be much larger and the number of FE basis
functions to cover all the parameters domain, as well as the offline computations
required, could be much more expensive than the RB offline time. In the following
test runs we consider a simpler PDE in order to show that the computational gain
can be even more effective if we exploit also the proposed sensitivity analysis, which
allows to further reduce the number of computations.

Run 2 (Control problem with geometrical parameter) Let us extend Run 1 by intro-
ducing a geometrical parameter μ3 ∈ [1, 3.5] that defines the length of the spatial
domain �μ3 still given by a rectangle separated in two subdomains �1 and �2 and

Fig. 7 Run 2: Domain representation of �μ3 (left) and the set of the possible values of the cost functionals
Ĵ1(u;μ3), Ĵ2(u;μ3), Ĵ3(u;μ3) by varying the control function u = (u1, u2) and the subset of the efficient
points (right)
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Fig. 8 Run 2: Optimal FE state ȳN , optimal FE control ūN , associated FE adjoint p̄N and the sum
ȳN
x1

+ ȳN
x2

for μ1 = (0.2, 0.7, 3)

represented in the left plot of Fig. 7. We consider the two-dimensional control space
U = R

2. Let us recall that the cost functional vector is defined as follows:

J1(y) = 1

2
‖y − w1‖2

L2(�μ3 )
, J2(y) = 1

2
‖∇y‖2

L2(�μ3 )
, J3(u) = 1

2
‖u‖2

R2 ,

where w1 = 1 in �1 and w1 = 0.6 in �2. Note that the parameter μ belongs to the
subset D ⊂ R

3 with μo = (μ1, μ2) and μc = μ3. The state function y ∈ V =
H 1

0 (�μ3) solves the following Laplace problem:

− �y = u1b1 + u2b2 in �μ3 , y = 1 on �D = ∂�μ3 , (2)

where u = (u1, u2) ∈ R
2 is the control function and b1, b2 ∈ L∞(�) are the

characteristic functions of �1, �2 respectively. As in Run 1, we apply the weighted
sum method to generate the Pareto optimal set. We introduce

J (x(μ);μ) = μ1J1(y(μ)) + μ2J2(y(μ)) + (1 − μ1 − μ2)J3(u(μ)),

and the parametrized optimal control problem:

min J (x(μ);μ) s.t.x(μ) = (y(μ), u(μ)) ∈ X solves(2). (3)

In Figs. 8 and 9 we show the RB solutions to Eq. 3 for μ1 = (0.2, 0.7, 3) and μ2 =
(0.2, 0.7, 1) respectively, the plots include the optimal FE state function, the optimal

Fig. 9 Run 2: Optimal FE state ȳN , optimal FE control ūN , associated FE adjoint p̄N and the sum
ȳN
x1

+ ȳN
x2

for μ2 = (0.2, 0.7, 1)
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Fig. 10 Run 2: Error (maximum, minimum and average) between the optimal RB and FE solution over
a set of 500 random samples by varying the number of basis functions (left) and the optimal controls
ūN = (u1, u2) by varying the parameter values (right)

FE control function, the FE adjoint function and the sum of the two components of
the gradient of the state function. In the left plot of Fig. 10 we show the error between
the RB and FE solution of the optimal control problem over a set of 500 random
samples by varying the number of basis functions.

Now we set μc = μ3 = 3 and we focus our attention on the variation of the
multiobjective parameters of the problem. In the right plot of Fig. 10 we show the
values of the coefficients u1, u2 corresponding to the optimal control of the problem
(3) by varying the parameters values μ1 and μ2.

We consider a subset of the possible control functions such that −30 ≤ ui ≤ 10.
In the left plot of Fig. 11 the set

S = {

(Ĵ1(u; μ3), Ĵ2(u; μ3))
∣
∣ u = (u1, u2) with − 30 ≤ ui ≤ 10, i = 1, 2

}

is presented. Then, we solve with the RB method the multiobjective optimal con-
trol problem by choosing randomly a large set of optimization parameters μo =
(μo,1, μo,2). In this way we obtain the Pareto optimal points and the corresponding

Fig. 11 Run 2: Set S of the possible values of the components Ĵ1(ū;μ3) and Ĵ2(ū;μ3) by varying the
function u and the subset of the efficient Pareto points
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efficient points of Eq. 3, i.e., the cost components J1 and J2 evaluated at the optimal
solutions. In the right plot of Fig. 11 we plot the set S and the set of efficient points.
We note that for J2 ≥ 245, the algorithm appears not working correctly, because for
some Pareto points, both J1 and J2 have not minimum values. For that reason, we
show in the right plot of Fig. 7 a similar plot, this time including the third cost func-
tional and the corresponding efficient points. We observe that all the Pareto optimal
points defined by the proposed RB strategy are correctly computed, since all the three
cost functionals are considered in the multiobjective problem.

Run 3 (Sensitivity analysis) In this test we apply the sensitivity analysis introduced
in Section 5 to the multiobjective control problem of Run 2. Our purpose is to show
how the sensitivity analysis improves significantly the efficiency of our RB approach.
Thanks to the inexpensive prediction of the cost functional value by varying the opti-
mization parameter μo, we are able to span the whole set of Pareto optimal points by
computing the optimal solution to a very small set of parameter values.

In Fig. 12 the interpolation of the Pareto optimal solutions obtained by varying
randomly the value of the parameter μo is presented. We note that even with 100
parameter values we are not able to cover the range of efficient points (see right
plot of Fig. 11 for a comparison). In Fig. 13 we show the interpolation of the Pareto
optimal solutions in correspondence of a smaller set of parameter values computed

Fig. 12 Run 3: Piecewise linear interpolation of M Pareto optimal points computed randomly
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Fig. 13 Run 3: Piecewise linear interpolation of M Pareto optimal points with the help of the sensitivity
analysis

by the sensitivity analysis. Note that by using only 20 values of the parameter μo,
efficiently selected with the sensitivity analysis, and consequently with only 20 RB
solutions of the problem we are able to define the whole range of Pareto optimal
solutions and a suitable prediction of the efficient points distribution. Regarding the
computational times, for this test case, the FE method requires about 1.1 seconds
to compute a single Pareto solution. The complete online computation of 20 Pareto
solutions, together with the error estimates and with the use of the sensitivity analysis,
requires only about 0.3 seconds. Note that a sensitivity analysis for the FE problem
requires to solve (3) in the high-dimensional FE spaces. In conclusion, we point out
that the RB solutions of the multiobjective problems are much faster than the FE ones,
but thanks to an inexpensive sensitivity analysis we are able to further drastically
reduce the number of the RB computations needed to define a suitable set of Pareto
optimal solution of the problem.

7 Conclusions

We consider multiobjective optimal problems governed by linear variational equa-
tions, which depend on geometrical and/or model parameter vector μc. The goal is to
propose a numerical strategy which allows to quickly determine a sufficiently accu-
rate approximation of the set of Pareto optimal points for an arbitrarily chosen μc. To
compute Pareto optimal points we apply the weighted sum method which requires to
solve a very large number of scalar-valued optimal control problems, where the cost
functional is built through an additional optimization parameter μo. These problems
can be solved very efficiently by the proposed RB strategy. By applying a sensitivity
analysis we are also able to reduce significantly the number of different values μo

that have to be chosen in the weighted sum method to identifying the Pareto optimal
solutions. To sum up, the use of the RB method – together with an useful and inex-
pensive sensitive analysis – allows to solve multiobjective problems, at a very low
computational times compared with other classical numerical techniques (e.g. finite
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elements). Moreover, a rigorous error bound analysis permits to ensure a certain level
of accuracy of the solution.
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32. Tröltzsch, F.: Optimal control of partial differential equations. Theory, Methods and applications,
vol. 112. American Math. Society, Providence (2010)
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