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Abstract In this paper we propose and analyze fractional spectral methods for a
class of integro-differential equations and fractional differential equations. The pro-
posed methods make new use of the classical fractional polynomials, also known
as Müntz polynomials. We first develop a kind of fractional Jacobi polynomials as
the approximating space, and derive basic approximation results for some weighted
projection operators defined in suitable weighted Sobolev spaces. We then construct
efficient fractional spectral methods for some integro-differential equations which
can achieve spectral accuracy for solutions with limited regularity. The main nov-
elty of the proposed methods is that the exponential convergence can be attained for
any solution u(x) with u(x1/λ) being smooth, where λ is a real number between 0
and 1 and it is supposed that the problem is defined in the interval (0, 1). This cov-
ers a large number of problems, including integro-differential equations with weakly
singular kernels, fractional differential equations, and so on. A detailed convergence
analysis is carried out, and several error estimates are established. Finally a series of
numerical examples are provided to verify the efficiency of the methods.
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1 Introduction

Spectral methods are essentially discretization methods for approximating solution
of partial-differential equations. The most attractive property of spectral methods
may be that when the solution of the problem is infinitely smooth, the convergence
of the spectral method is exponential. Due to this advantage, spectral methods have
achieved great success and become popular in the scientific computing community.
On the other side, classical spectral methods meet also some limits, such as loss
of global accuracy when facing problems with non-smooth/singular solution. Such
problems can be found, for example, in integro-differential equations with singular
kernels, fractional partial differential equations, traditional equations with singular
data, and so on.

Integro-differential equations arise in mathematical models of many disciplines
such as electromagnetic scattering, biological, and etc. They have been subject of
many theoretical and numerical investigations; see, e.g., [8, 10–12, 14, 15, 37, 42–
45, 47–49]. Some of these work address spectral-like methods, such as polynomial
spline collocation methods for Volterra integro-differential equations [10, 12, 37, 45],
spectral methods for Volterra integral equations [14, 15, 44], Sinc functions for lin-
ear Volterra integro-differential equations [49], and Legendre spectral methods for
second order Volterra integro-differential equations [47, 48]. Very few works have
touched spectral approximations to integro-differential equations with weakly sin-
gular kernels [10, 12, 14, 48]. It is known that the solutions of the weakly singular
integro-differential equations have limited regularity at the end points, and so far
there are no spectral methods constructed for such problems with spectral accuracy
for non-smooth solutions.

Singular solutions appear also in fractional partial differential equations (FPDEs),
which are generalizations of the integer-order models, based on fractional calculus.
They are becoming increasingly popular as a flexible modeling tool for diffusive pro-
cesses associated with the so-called anomalous diffusion. FPDEs have been applied
to diverse fields, including control theory, biology, electrochemical processes, porous
media, viscoelastic materials, polymer, finance, and etc; see, e.g., [1, 2, 4–6, 20,
23, 27, 28, 33, 35, 36] and the references therein. The main feature/difficulty of
FPDEs lies in three facts: 1) the solutions of the associated problems have limited
regularity at the end points; 2) fractional derivative is non-local operator; 3) the ker-
nel function in fractional derivative is singular. Not mention advances in theoretical
aspects and other numerical methods (mostly finite differences and finite elements),
there exist limited but promising efforts in developing spectral methods for FPDEs;
see, e.g., [13, 29–31, 40, 50, 51]. In particular, Zayernouri and Karniadakis [50, 51]
introduced the so-called polyfractonomials, which are eigenfunctions of a fractional
Sturm-Liouville problem, and proposed to use these functions as approximation to
the solution. Applications to some model equations showed the efficiency of this
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new approximation, but there is no theoretical analysis available for the approx-
imation error. More recently, Chen et al. [13] considered a class of generalized
Jacobi functions related to fractional calculus, and proposed to use these functions
to approximate the solutions of a class of fractional boundary value problems. The
proposed scheme was based on Petrov-Galerkin methods, and leads to sparse linear
systems using suitable orthogonal basis functions. Error estimates with convergence
rate only depending on the smoothness of data were derived therein. The limitation
of their approach is that it requires an anticipated knowledge of the solution form,
i.e., the exact solution must behave like (1 − x)αg(x) in [−1, 1], where g(x) is a
smooth function. More precisely, in order to get exponential convergence, the frac-
tional power α must be exactly known in advance, which is needed in the construction
of approximation spaces.

This paper aims at providing a fractional spectral method that is capable to handle
a family of the aforementioned problems in a more efficient way. We will develop
a kind of fractional Jacobi polynomials as the approximating space, which achieve
spectral convergence for the solution with limited regularity at the end points. More
precisely, we will consider at this first phase applications of the proposed method to
the following three types of equations:

1) integro-differential equation ut = a1u(t) + a2 0I
μ
t u(t) + f (t), μ > 0;

2) fractional differential equation bu(x) − D
ρ
x u(x) = f (x), 1 < ρ < 2;

3) classical elliptic equation with singular forcing −∂2xu(x) = f (x).

The advantage of our approach is that the exponential convergence can be guaran-
teed for any solution u(x) with u(x1/λ) being smooth enough, where 0 < λ ≤ 1
is a parameter related to the approximating space. We are going to see that by suit-
ably choosing λ, our method can solve a large number of problems with mixed
singularities of distinct types. The proposed fractional spectral method makes use of
the fractional polynomials, also known as Müntz polynomials, that have originally
appeared in approximation theory [9, 32, 34]. A particular class of Müntz polynomi-
als, i.e., fractional Jacobi polynomials, has been used in a few work. In [3, 19, 26]
the authors used a fractional Jacobi polynomial spectral Tau method for fractional
differential equations and constructed operational matrix for fractional derivatives.
However, there is neither numerical analysis available for the approximation quality
of the proposed schemes therein, nor discussion about the significant advantages of
the fractional Jacobi polynomial based methods. Very recently, Shen and Wang [39]
considered a kind of Müntz functions to construct a Galerkin method to solve the
Poisson equation and obtained optimal error estimates.

The purpose of this paper is to set up a framework for solving a kind of integro-
differential equations and some related problems using the fractional polynomials.
The main ingredients of the paper are:

– In the first part, we derive necessary error estimates for approximation in suit-
ably weighted spaces using fractional polynomials. In particular, we introduce
some weighted projection operators in the fractional Jacobi polynomial spaces,
and establish approximation results in related norms. Some complementary
properties of the fractional Jacobi polynomials are also provided.
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– In the second part, we construct efficient fractional spectral methods for a class
of integro-differential equations with singular kernels and fractional differential
equations. Error estimates for the proposed approaches are derived by employing
the results obtained in the first part for the fractional polynomial approximations.
The obtained estimates show that spectral accuracy can be achieved for a large
number of integro-differential equations with singular kernels.

– Finally, a series of numerical experiments are carried out to verify the theoretical
claims. Moreover, we numerically demonstrate that the proposed fractional spec-
tral method can equally treat non smooth solutions for some classical (integer
order) equations with spectral accuracy.

The paper is organized as follows: In the next section, we give minimum preparatory
materials of fractional polynomials, and present necessary properties of fractional
Jacobi polynomials. In Section 3, we establish the approximation results for several
projection operators defined in fractional Jacobi polynomial spaces. In Section 4,
we construct fractional spectral methods for a class of integro-differential equations,
fractional differential equations, as well as classical elliptical equations. Error analy-
sis are conducted for integro-differential equations. Some implementation details are
presented in Section 5. The numerical examples are given in Section 6. Finally we
give some concluding remarks in Section 7.

2 Notations and fractional polynomials

The well-knownWeierstrass theorem states that every continuous function on a com-
pact interval can be uniformly approximated by algebraic polynomials. This result
was generalized by Müntz, who proved that the Müntz polynomials of the form
n∑

k=0
akx

λk with real coefficients are dense in L2[0, 1] if and only if
∞∑

k=0
λ−1

k = +∞,

where {λ0, λ1, λ2, . . . } is a sequence of distinct positive numbers such that 0 ≤ λ0 <

λ1 < ... → ∞. This generalization is usually called Müntz-Szász theorem [18, 34].
If the constant function 1 belongs to the system, that is if λ0 = 0, the same result
holds for C[0, 1] with the uniform norm.

2.1 Fractional integrals and derivatives

Firstly, we review some basic definitions of fractional calculus [17, 35].
Left and right Riemann-Liouville fractional integrals of order μ ∈ (0, ∞),

denoted by aI
μ
x and xI

μ
b for a < x < b respectively, are defined by

aI
μ
x v(x) = 1

�(μ)

∫ x

a

(x − s)μ−1v(s)ds,

xI
μ
b v(x) = 1

�(μ)

∫ b

x

(s − x)μ−1v(s)ds, (2.1)

where �(·) is the Gamma function.
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Left and right Riemann-Liouville fractional derivatives of order μ ∈ (0, ∞),
denoted by RL

aD
μ
x and RL

xD
μ
b respectively, are defined as

RL
aD

μ
x v(x) = 1

�(n − μ)

dn

dxn

∫ x

a

(x − s)n−μ−1v(s)ds, (2.2)

RL
xD

μ
b v(x) = (−1)n

�(n − μ)

dn

dxn

∫ b

x

(s − x)n−μ−1v(s)ds, (2.3)

where n is the integer number such that n − 1 ≤ μ < n.
Left and right Caputo fractional derivatives of order μ ∈ (0, ∞), denoted by

C
aD

μ
x and C

xD
μ
b respectively, are defined as

C
aD

μ
x v(x) = 1

�(n − u)

∫ x

a

(x − s)n−μ−1v(n)(s)ds, (2.4)

C
xD

μ
b v(x) = (−1)n

�(n − μ)

∫ b

x

(s − x)n−μ−1vn(s)ds, (2.5)

where n is the integer number such that n − 1 ≤ μ < n.
Riemann-Liouville fractional derivatives are not equal to Caputo derivatives,

however they are linked by the following relationship

C
aD

μ
x v(x) = RL

aD
μ
x v(x) −

n−1∑

k=0

v(k)(a)

�(k + 1 − μ)
xk−μ. (2.6)

2.2 Recurrence of orthogonal polynomials

Let ω = ω(x) be a weight function on the interval (a, b), which is a non-negative
integrable function defined in (a, b). Define the inner product:

(u, v)ω =
∫ b

a

u(x)v(x)ω(x)dx. (2.7)

The numbers

Mr :=
∫ b

a

xrω(x)dx, r = 0, 1, 2, ..., (2.8)

are called the moments related to the weight function ω(x). For any positive weight
function ω ∈ L1(a, b), there exist uniquely determined monic polynomials pk of
degree k, which are orthogonal to each other with respect to the weighted inner
product (2.7). These polynomials satisfy a three-term recurrence relation

pk+1(x) = (t − αk)pk(x) − βkpk−1(x), k = 0, 1, 2, . . .

with p−1 = 0, p0 = 1, and the coefficients

αk = (tpk, pk)ω

(pk, pk)ω
, k = 0, 1, 2, . . . ,

βk = (pk, pk)ω

(pk−1, pk−1)ω
, k = 1, 2, . . . .
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The above three-term recurrence relation gives a convenient way to numerically cal-
culate the orthogonal polynomials. For the classical orthogonal polynomials, e.g.
Jacobi, Laguerre, and Hermite polynomials, formulae for the coefficients αk and βk

are known in closed form [22, 41]. For the nonclassical weight functions, their recur-
rence coefficients are not explicitly known. In this case, numerical techniques such
as Stieltjes procedure or Chebyshev algorithm are used to evaluate the coefficients
[21]. In this paper, we use the Chebyshev algorithm to calculate the desired coef-
ficients from the moments of the underlying weight function ω(x). For the readers
convenience, the Chebyshev algorithm is presented below [22].

Chebyshev Algorithm

1. Initialization:

α0 = M1

M0
, β0 = M0,

σ−1,l = 0, l = 1, 2, . . . , 2n − 2,

σ0,l = Ml, l = 0, 1, . . . , 2n − 1.

2. Loop for n > 1: for k = 1, 2, . . . , n − 1, do

σk,l = σk−1,l+1 − αk−1σk−1,l − βk−1σk−2,l , l = k, k + 1, . . . , 2n − k − 1,

αk = σk,k+1

σk,k

− σk−1,k

σk−1,k−1
,

βk = σk,k

σk−1,k−1
.

The complexity of the algorithm is O(n2).

2.3 Jacobi polynomials

The well-known Jacobi polynomials
{
J

α,β
k (x)

}∞
k=0

are orthogonal with respect to the

weight function ωα,β(x) := (1 − x)α(1 + x)β with α, β > −1 over 
 := (−1, 1):
∫ 1

−1
ωα,β(x)J α,β

n (x)J α,β
m (x)dx = γ α,β

n δm,n, (2.9)

where

γ α,β
n = 2α+β+1�(n + α + 1)�(n + β + 1)

(2n + α + β + 1)n!�(n + α + β + 1)
.

The special case α = β = 0 corresponds to the Legendre polynomials, denoted
by {Ln(x)}∞n=0 hereafter, and α = β = − 1

2 yields Chebyshev polynomials up to a
constant depending on n.

A very useful property of the Jacobi polynomials is the following Sturm-Liouville
equation:

(ωα,β(x))−1 d

dx

{

(1 − x2)ωα,β(x)
d

dx
Jα,β

n (x)

}

= −n(n + α + β + 1)J α,β
n (x).

(2.10)
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From (2.9) and (2.10), we have
∫ 1

−1
ωα+1,β+1(x)(J α,β

n (x))′(J α,β
m (x))′dx = σα.β

n γ α,β
n δm,n, (2.11)

where

σα,β
n = n(n + α + β + 1). (2.12)

We define the operator A by

Aφ = −(ωα,β(x))−1 d

dx

{

(1 − x2)ωα,β(x)
d

dx
φ

}

. (2.13)

By using integration by parts it is seen that A is a self-adjoint operator, i.e.,

(Aφ, ϕ)ωα,β (x) = (φ, Aϕ)ωα,β (x), ∀φ, ϕ ∈ {v : v,Av ∈ L2
ωα,β(x)

(
)}, (2.14)

and it satisfies the following stability inequality:

‖Aφ‖0,ωα,β (x) ≤ c‖φ‖2,ωα,β (x), ∀φ ∈ H 2
ωα,β(x)

(
). (2.15)

In practice, one can compute the Jacobi polynomials using the following three-term
recurrence relation:

J
α,β

0 (x) = 1, J
α,β

1 (x) = 1

2
(α + β + 2)x + 1

2
(α − β),

J
α,β

n+1(x) = (aα,β
n x − bα,β

n )J α,β
n (x) − cα,β

n J
α,β

n−1(x), (2.16)

where

aα,β
n = (2n + α + β + 1)(2n + α + β + 2)

2(n + 1)(n + α + β + 1)
,

bα,β
n = (β2 − α2)(2n + α + β + 1)

2(n + 1)(n + α + β + 1)(2n + α + β)
,

cα,β
n = (n + α)(n + β)(2n + α + β + 2)

(n + 1)(n + α + β + 1)(2n + α + β)
.

We list below some more properties to be used in what follows.

Lemma 2.1 (see [41] p62-67)

Jα,β
n (x) = (−1)nJ β,α

n (−x);
Jα,β

n (1) = �(n + α + 1)

�(α + 1)�(n + 1)
;

Jα,β
n (−1) = (−1)n

�(n + β + 1)

�(β + 1)�(n + 1)
. (2.17)

Lemma 2.2 (see [38] Theorem 3.19) The Jacobi polynomials satisfy

(1 − x)J α+1,β
n (x) = 2

2n + α + β + 2

[
(n + α + 1)J α,β

n (x) − (n + 1)J α,β

n+1(x)
]
,

(1 + x)J α,β+1
n (x) = 2

2n + α + β + 2

[
(n + β + 1)J α,β

n (x) + (n + 1)J α,β

n+1(x)
]
.
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Lemma 2.3 ([51] Lemma 3.2 and [13] Lemma 2.4) Let μ > 0, x ∈ 
 and n be
nonnegative integer number.
(i) For α ∈ R, β > −1, it holds

−1I
μ
x {(1 + x)βJ α,β

n (x)} = �(n + β + 1)

�(n + β + μ + 1)
(1 + x)β+μJα−μ,β+μ

n (x). (2.18)

(ii) For α > −1, β ∈ R, it holds

xI
μ
1 {(1 − x)αJ α,β

n (x)} = �(n + α + 1)

�(n + α + μ + 1)
(1 − x)α+μJα+μ,β−μ

n (x). (2.19)

2.4 Fractional Jacobi polynomials

Definition 2.1 The fractional Jacobi polynomials of degree n are defined on I :=
[0, 1] as

Jα,β,λ
n (x) = Jα,β

n (2xλ − 1), ∀x ∈ I, (2.20)

where J
α,β
n (x) denotes Jacobi polynomial of degree n, and α, β > −1, 0 < λ ≤ 1.

When λ = 1, the polynomials {J α,β,1
n (x)}∞n=0 are called shifted Jacobi polynomi-

als, which are orthogonal polynomials with the weight (1 − x)αxβ.

From Lemma 2.1, we have

Jα,β,λ
n (0) = Jα,β

n (−1) = (−1)n
�(n + β + 1)

�(β + 1)�(n + 1)
,

J α,β,λ
n (1) = Jα,β

n (1) = �(n + α + 1)

�(α + 1)�(n + 1)
. (2.21)

Let’s denote

ωα,β,λ(x) := λ(1 − xλ)αx(β+1)λ−1. (2.22)

Lemma 2.4 The fractional Jacobi polynomials J
α,β,λ
n (x) are orthogonal with

respect to the weight function ωα,β,λ(x), α, β > −1, 0 < λ ≤ 1 over I , i.e.,

∫ 1

0
ωα,β,λ(x)J α,β,λ

n (x)J α,β,λ
m (x)dx = γ̂ α,β

n δm,n, (2.23)

where

γ̂ α,β
n = �(n + α + 1)�(n + β + 1)

(2n + α + β + 1)n!�(n + α + β + 1)
.

The special case α = 0, β = 1
λ
−1 yields the Müntz Legendre polynomials, which

have been defined in a different way in [32] and [9].
In virtue of (2.10) and (2.20), we have the following lemma.
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Lemma 2.5 The fractional Jacobi polynomials
{
J

α,β,λ
n

}∞
n=0

satisfy the following

Sturm-Liouville problem:

(ωα,β,λ(x))−1 d

dx

{

λ−1(1 − xλ)α+1xβλ+1 d

dx
Jα,β,λ

n (x)

}

= −σα,β
n J α,β,λ

n (x),

(2.24)
where σ

α,β
n = n(n + α + β + 1).

Proof It can be directly verified by using (2.10) and (2.20).

Lemma 2.6 The derivative of fractional Jacobi polynomials are orthogonal frac-
tional polynomials with respect to the weight ω̂α,β,λ(x) = λ−1(1 − xλ)α+1xβλ+1,
i.e.,

∫ 1

0
ω̂α,β,λ(x)(J α,β,λ

n (x))′(J α,β,λ
m (x))′dx = σα.β

n γ̂ α,β
n δm,n. (2.25)

Proof It is a direct consequence of using (2.23), (2.24), and integration by parts.

3 Some projectors and error estimates

In this section, we will introduce some projection operators in different weighted
Sobolev spaces and derive error estimates for these operators. These results play key
role in the error estimation for fractional spectral methods to be constructed hereafter
for integro-differential equations with weakly singular kernels.

Firstly, we introduce the following differential operators:

D0
λ := Id, Dλ := d

dxλ
:= d

λxλ−1dx
, D2

λ := DλDλ, · · · ,

Dk
λ :=

k
︷ ︸︸ ︷
DλDλ · · · Dλ, k = 0, 1, · · · ,

and define the non-uniform fractional Jacobi-weighted Sobolev spaces:

Bm
ωα,β,λ(I ) :=

{
v : Dk

λv ∈ L2
ωα+k,β+k,λ(I ), 0 ≤ k ≤ m

}
, m = 0, 1, 2, · · · , (3.1)

equipped with the inner product, norm and semi-norm respectively as follows:

(u, v)Bm

ωα,β,λ
=

m∑

k=0
(Dk

λu, Dk
λ)ωα+k,β+k,λ ,

‖v‖m,ωα,β,λ = (v, v)
1/2
Bm

ωα,β,λ
, |v|m,ωα,β,λ = ‖Dm

λ v‖0,ωα+m,β+m,λ .

The special case λ = 1 gives the classical non-uniform Jacobi-weighted Sobolev
spaces:

Bm
ωα,β,1(I ) :=

{
v : ∂k

x v ∈ L2
ωα+k,β+k,1(I ), 0 ≤ k ≤ m

}
, m = 0, 1, 2, · · · . (3.2)
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We then generalize the definition of the fractional Jacobi polynomials defined in
(2.20) to α = −1 or/and β = −1:

J
α,−1,λ
i+1 (x) := i + α + 1

i + 1
xλJ

α,1,λ
i (x), i = 0, 1, 2, · · · , (3.3)

J
−1,β,λ

i+1 (x) := i + β + 1

i + 1
(1 − xλ)J

1,β,λ
i (x), i = 0, 1, 2, · · · , (3.4)

J
−1,−1,λ
i+2 (x) := (1 − xλ)xλJ

1,1,λ
i (x), i = 0, 1, 2, · · · , (3.5)

where α, β > −1. Define the fractional polynomial spaces for α, β ≥ −1:

S
α,β
N,λ(I ) := span

{
J

α,β,λ
i+l (x), i = 0, 1, 2, · · ·, N

}
(3.6)

with

l =
⎧
⎨

⎩

0, α, β > −1,
1, α = −1, β > −1 or α > −1, β = −1,
2, α = β = −1.

3.1 L2
ωα,−1,λ(I ) and L2

ω−1,β,λ(I )-orthogonal projectors with α, β > −1

In this subsection, we will discuss the properties of {Jα,−1,λ
i+1 (x)}∞i=0 and

{J−1,β,λ

j+1 (x)}∞j=0 and related L2
ωα,−1,λ- and L2

ω−1,β,λ-projection operators. We will only

present the results for the L2
ωα,−1,λ-projector, since L2

ω−1,β,λ-projector can be analyzed
in a similar way.

Lemma 3.1 The fractional polynomials {Jα,−1,λ
i+1 (x)}∞i=0 defined in (3.3) have the

following orthogonality
∫ 1

0
ωα,−1,λ(x)J

α,−1,λ
i+1 (x)J

α,−1,λ
j+1 (x)dx = γ̂

α,−1
i+1 δij , (3.7)

where ωα,−1,λ(x) = λ(1 − xλ)αx−1, and γ̂
α,−1
i+1 = i + α + 1

(i + 1)(2i + α + 2)
; see also

(2.23). Furthermore, it holds:

− (ωα,−1,λ(x))−1∂x

{
λ−1(1 − xλ)α+1x1−λ∂xJ

α,−1,λ
i+1 (x)

}
= σ

α,−1
i+1 J

α,−1,λ
i+1 (x),

(3.8)
where σ

α,−1
i+1 = (i + 1)(i + α + 1); see also (2.24).

Proof We derive from a direct calculation using (3.3) and (2.23)
∫ 1

0
ωα,−1,λ(x)J

α,−1,λ
i+1 (x)J

α,−1,λ
j+1 (x)dx

= (i + α + 1)(j + α + 1)

(i + 1)(j + 1)

∫ 1

0
ωα,1,λ(x)J

α,1,λ
i (x)J

α,1,λ
j (x)dx

= i + α + 1

(i + 1)(2i + α + 2)
δij .
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This proves (3.7). Using Lemma 2.3, we have

(1 + x)J
α,1
i (x) = (i + 1)

∫ x

−1
J

α+1,0
i (s)ds,

(1 − x)α+1J
α+1,0
i (x) = (i + α + 1)

∫ 1

x

(1 − s)αJ
α,1
i (s)ds.

By change of variable x → 2xλ − 1, we obtain

xλJ
α,1,λ
i (x) = λ(i + 1)

∫ x

0
sλ−1J

α+1,0,λ
i (s)ds,

(1 − xλ)α+1J
α+1,0,λ
i (x) = λ(i + α + 1)

∫ 1

x

(1 − sλ)αsλ−1J
α,1,λ
i (s)ds. (3.9)

Thus

−(ωα,−1,λ(x))−1∂x

{
λ−1(1 − xλ)α+1x1−λ∂xJ

α,−1,λ
i+1 (x)

}

= −λ−1(1 − xλ)−αx∂x

{

(1 − xλ)α+1x1−λ∂x

[
i + α + 1

i + 1
xλJ

α,1,λ
i (x)

]}

= −λ−1(1 − xλ)−αx∂x

{
(i + 1)(1 − xλ)α+1J

α+1,0,λ
i (x)

}

= (i + α + 1)2xλJ
α,1,λ
i (x) = (i + 1)(i + α + 1)J α,−1,λ

i+1 (x).

The proof is completed.
Now we define the L2

ωα,−1,λ (I ) → S
α,β
N,λ(I ) orthogonal projector πN,ωα,−1,λ : for all

v ∈ L2
ωα,−1,λ (I ), πN,ωα,−1,λv ∈ S

α,−1
N,λ (I ) such that

(v − πN,ωα,−1,λv, vN)ωα,−1,λ = 0, ∀vN ∈ S
α,−1
N,λ (I ). (3.10)

Then define the dual fractional polynomial space of S
α,−1
N,λ (I ) as follows:

V
−α−1,0
N,λ (I ) := span

{
(1 − xλ)α+1J

α+1,0,λ
j (x), j = 0, 1, 2, · · ·, N

}

Remark 3.1 It is observed from (3.9) that (1 − xλ)−αx∂xvN ∈ S
α,−1
N,λ (I ) if vN ∈

V
−α−1,0
N,λ (I ).

Lemma 3.2 The projector πN,ωα,−1,λ satisfies the following property:

(∂x(v − πN,ωα,−1,λv), vN) = 0, ∀v ∈ B1
ωα,−1,λ (I ), ∀vN ∈ V

−α−1,0
N,λ (I ).

Proof Using the fact that (v−πN,ωα,−1,λv)(x)vN(x)|x=0,1 = 0 for all v ∈ B1
ωα,−1,λ (I )

and all vN ∈ V
−α−1,0
N,λ (I ), we have

(∂x(v − πN,ωα,−1,λv), vN) = −(v − πN,ωα,−1,λv, ∂xvN)

= −1

λ
(v − πN,ωα,−1,λv, (1 − xλ)−αx∂xvN)ωα,−1,λ .
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From the definition (3.10), the right hand side term vanishes since, according to
Remark 3.1, (1 − xλ)−αx∂xvN ∈ S

α,−1
N,λ (I ). This concludes the lemma.

Theorem 3.1 (see Theorem 2.2 in [24] for case λ = 1) The following approximation
result holds for the projector πN,ωα,−1,1:

‖∂l
x(v − πN,ωα,−1,1v)‖0,ωl+α,l−1,1 ≤ cNl−m‖∂m

x v‖0,ωm+α,m−1,1 ,

0 ≤ l ≤ m, ∀v ∈ Bm
ωα,−1,1(I ).

Theorem 3.2 (case 0 < λ ≤ 1) For any v(x) such that v(x
1
λ ) ∈ Bm

ωα,−1,1(I ), m ≥ 1,
its orthogonal projection πN,ωα,−1,λv admits the following error estimates:

‖v − πN,ωα,−1,λv‖0,ωα,−1,λ ≤ cN−m‖∂m
x v(x

1
λ )‖0,ωm+α,m−1,1, (3.11)

‖∂x(v − πN,ωα,−1,λv)‖0,ωα+1,2/λ−2,λ ≤ cN1−m‖∂m
x v(x

1
λ )‖0,ωm+α,m−1,1 . (3.12)

Proof Any L2
ωα,−1,λ (I ) function v can be expressed as

v(x) =
∞∑

i=0

v̂iJ
α,−1,λ
i+1 (x), with v̂i =

(
v(x), J

α,−1,λ
i+1 (x)

)

ωα,−1,λ

‖Jα,−1,λ
i+1 (x)‖2

0,ωα,−1,λ

.

By making variable change y = xλ, we have
(
v(x), J

α,−1,λ
i+1 (x)

)

ωα,−1,λ
= i + α + 1

i + 1

∫ 1

0
λ(1 − xλ)αxλ−1v(x)J

α,1
i (2xλ − 1)dx

= i + α + 1

i + 1

∫ 1

0
(1 − y)αv(y

1
λ )J

α,1
i (2y − 1)dy

= (v(x
1
λ ), J

α,−1,1
i+1 (x))ωα,−1,1 .

Furthermore, it follows from Lemma 3.1

‖Jα,−1,λ
i+1 (x)‖20,ωα,−1,λ = ‖Jα,−1,1

i+1 (x)‖20,ωα,−1,1 .

Therefore, we obtain

v̂i =
(
v(x

1
λ ), J

α,−1,1
i+1 (x)

)

ωα,−1,1

‖Jα,−1,1
i+1 (x)‖2

0,ωα,−1,1

. (3.13)

Consequently,

‖v − πN,ωα,−1,λv‖20,ωα,−1,λ =
∞∑

i=N+1

v̂2i ‖Jα,−1,λ
i+1 (x)‖20,ω0,−1,λ

=
∞∑

i=N+1

(
v(x

1
λ ), J

α,−1,1
i+1 (x)

)2

ωα,−1,1

‖Jα,−1,1
i+1 (x)‖2

0,ωα,−1,1

= ‖v(x
1
λ ) − πN,ωα,−1,1v(x

1
λ )‖20,ωα,−1,1 .
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Finally, using the approximation results already established in Theorem 3.1, we
obtain

‖v − πN,ωα,−1,λv‖0,ωα,−1,λ ≤ cN−m‖∂m
x v(x

1
λ )‖0,ωm+α,m−1,1 .

This proves (3.11). Next, we shall prove (3.12). Noticing

‖v(x)‖20,ωα,−1,λ =
∫ 1

0
λ(1 − xλ)αx−1v2(x)dx =

∫ 1

0
(1 − t)αt−1v2(t1/λ)dt

= ‖v(x1/λ)‖20,ωα,−1,1 ,

we see v(x) ∈ L2
ωα,−1,λ (I ) if and only if v(x1/λ) ∈ L2

ωα,−1,1(I ). Thus for any v(x) ∈
L2

ωα,−1,λ (I ), we have

v(x
1
λ ) =

∞∑

i=0

v̂iJ
α,−1,1
i+1 (x), πN,ωα,−1,1v(x

1
λ ) =

N∑

i=0

ṽiJ
α,−1,1
i+1 (x),

where

v̂i =
(
v(x

1
λ ), J

α,−1,1
i+1 (x)

)

ωα,−1,1

‖Jα,−1,1
i+1 (x)‖2

0,ωα,−1,1

.

It then follows from (3.3) and (3.9),

∥
∥∂x(v(x

1
λ ) − πN,ωα,−1,1v(x

1
λ ))
∥
∥2
0,ωα+1,0,1 =

∞∑

i=N+1

v̂2i

∥
∥∂xJ

α,−1,1
i+1 (x)

∥
∥2
0,ωα+1,0,1

=
∞∑

i=N+1

(i + α + 1)2v̂2i
∥
∥Jα+1,0,1

i (x)
∥
∥2
0,ωα+1,0,1 ,

∥
∥∂x(v − πN,ωα,−1,λ v)

∥
∥2
0,ωα+1,2/λ−2,λ =

∞∑

i=N+1

v̂2i

∥
∥∂xJ

α,−1,λ
i+1 (x)

∥
∥2
0,ωα+1,2/λ−2,λ

=
∞∑

i=N+1

λ2(i + α + 1)2v̂2i
∥
∥xλ−1J

α+1,0
i (2xλ − 1)

∥
∥2
0,ωα+1,2/λ−2,λ

=
∞∑

i=N+1

λ2(i + α + 1)2v̂2i
∥
∥Jα+1,0,λ

i (x)
∥
∥2
0,ωα+1,0,λ .

Furthermore, using Lemma 2.4 gives
∥
∥Jα+1,0,1

i (x)
∥
∥
0,ωα+1,0,1 = ∥∥Jα+1,0,λ

i (x)
∥
∥
0,ωα+1,0,λ .

Therefore,
∥
∥∂x(v − πN,ωα,−1,λv)

∥
∥
0,ωα+1,2/λ−2,λ = λ

∥
∥∂x(v(x

1
λ ) − πN,ωα,−1,1v(x

1
λ ))
∥
∥
0,ωα+1,0,1

≤ cλN1−m
∥
∥∂m

x v(x
1
λ )
∥
∥
0,ωm+α,m−1,1 .

The proof is completed.

Remark 3.2 It is seen from the proof of Theorem 3.2 that
∥
∥v(x) − πN,ωα,−1,λv(x)

∥
∥
0,ωα,−1,λ = ∥∥v(x

1
λ ) − πN,ωα,−1,1v(x

1
λ )
∥
∥
0,ωα,−1,1,

∥
∥∂x(v(x)−πN,ωα,−1,λv(x))

∥
∥
0,ωα+1,2/λ−2,λ = λ

∥
∥∂x(v(x

1
λ )−πN,ωα,−1,1v(x

1
λ ))
∥
∥
0,ωα+1,0,1.
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This means that the approximation error of the fractional polynomial projector
πN,ωα,−1,λ of a given function v(x) is related to the classical polynomial projection
πN,ωα,−1,1 of v(x1/λ).

3.2 L2
ω−1,−1,λ(I )-orthogonal projection

In this subsection, we will investigate the properties of {J−1,−1,λ
i+2 (x)}∞i=0 and the

related L2
ω−1,−1,λ-projection operator.

Lemma 3.3 The fractional polynomials
{
J

−1,−1,λ
i+2 (x)

}∞
i=0

defined in (3.5) satisfy

the following equality:

J
−1,−1,λ
i+2 (x) = −λ(i + 1)

∫ x

0
sλ−1Li+1(2s

λ − 1)ds, (3.14)

where Li+1(x) is Legendre polynomial of degree i + 1.

Proof According to Lemma 2.1 with α = β = −1 in [24], we have

∂xJ
−1,−1,1
i+2 (x) = −(i + 1)Li+1(2x − 1).

Then we obtain

∂xJ
−1,−1,λ
i+2 (x) = ∂xJ

−1,−1,1
i+2 (xλ) = −λ(i + 1)xλ−1Li+1(2x

λ − 1).

This gives the desired result using the fact that J−1,−1,λ
i+2 (0) = 0.

Similar to Lemma 3.1, we can prove the following properties for the fractional

polynomials
{
J

−1,−1,λ
i+2 (x)

}∞
i=0

.

Lemma 3.4 The fractional polynomials
{
J

−1,−1,λ
i+2 (x)

}∞
i=0

defined in (3.5) satisfy

the following orthogonality

∫ 1

0
ω−1,−1,λ(x)J

−1,−1,λ
i+2 (x)J

−1,−1,λ
j+2 (x)dx = γ̂

−1,−1
i+2 δij ,

where ω−1,−1,λ(x) = λ(1 − xλ)−1x−1, γ̂
−1,−1
i+2 = i + 1

(2i + 3)(i + 2)
. Furthermore,

{
J

−1,−1,λ
i+2 (x)

}∞
i=0

satisfy the Sturm-Liouville equation as follows:

−(ω−1,−1,λ(x))−1∂x

{
λ−1x1−λ∂xJ

−1,−1,λ
i+2 (x)

}
= σ

−1,−1
i+2 J

−1,−1,λ
i+2 (x),

where σ
−1,−1
i+2 = (i + 1)(i + 2).
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Now, let πN,ω−1,−1,λ : L2
ω−1,−1,λ (I ) → S

−1,−1
N,λ (I ) be the L2

ω−1,−1,λ (I )-orthogonal

projector: for all v ∈ L2
ω−1,−1,λ (I ), πN,ω−1,−1,λv ∈ S

−1,−1
N,1 (I ) such that

(v − πN,ω−1,−1,λv, vN)ω−1,−1,λ = 0, ∀vN ∈ S
−1,−1
N,λ (I ). (3.15)

Theorem 3.3 For any v(x
1
λ ) ∈ Bm

ω−1,−1,1(I ), m ≥ 1, the projection operator
πN,ω−1,−1,λ admits the following error estimate:

‖v − πN,ω−1,−1,λv‖0,ω−1,−1,λ ≤ cN−m‖∂m
x v(x

1
λ )‖0,ωm−1,m−1,1 , (3.16)

‖∂x(v − πN,ω−1,−1,λv)‖0,ω0,2/λ−2,λ ≤ cN1−m‖∂m
x v(x

1
λ )‖0,ωm−1,m−1,1 . (3.17)

Proof First we state a known result in the special case λ = 1, which was given in [7,
38, 46] for the πN,ω−1,−1,1 orthogonal projector

‖∂l
x(v − πN,ω−1,−1,1v)‖0,ωl−1,l−1,1 ≤ cNl−m‖∂m

x v‖0,ωm−1,m−1,1 ,

∀v ∈ Bm
ω−1,−1,1(I ), l = 0, 1. (3.18)

Similar to the proof of Theorem 3.2, we can obtain
∥
∥v − πN,ω−1,−1,λv

∥
∥
0,ω−1,−1,λ = ∥

∥v(x
1
λ ) − πN,ω−1,−1,1v(x

1
λ )
∥
∥
0,ω−1,−1,1,

‖∂x(v − πN,ω−1,−1,λv)‖0,ω0,2/λ−2,λ = λ‖∂x(v(x
1
λ ) − πN,ω−1,−1,1v(x

1
λ ))‖0,ω0,0,1 .

(3.19)

Putting (3.18) and (3.19) together completes the proof.

4 Fractional spectral methods

This section is devoted to developing efficient fractional spectral methods for several
kinds of problems with weakly singular solutions, and derive error estimates using
the approximation results established in the previous sections.

4.1 A integro-differential equation

Firstly, we consider the integro-differential problem:
{

ut = a1u(t) + a2 0I
μ
t u(t) + f (t), t ∈ I,

u(0) = 0,
(4.1)

where a1 and a2 are real bounded constants, and μ > 0.
This equation or its variants have been investigated in a number of papers; see,

e.g., [10, 43] and the references therein. We consider the following Petrov-Galerkin
based fractional spectral method: Find uN ∈ S

0,−1
N,λ (I ), such that

(u′
N, vN) = a1(uN, vN) + a2(0I

μ
t uN, vN) + (f, vN), ∀vN ∈ V

−1,0
N,λ (I ). (4.2)
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Notice that for any vN ∈ S
0,−1
N,λ (I ) we have ω1, 1

λ
−2,λvN = λt−λ(1 − tλ)vN ∈

V
−1,0
N,λ (I ). Thus the problem (4.2) is equivalent to the weighted Galerkin form as

follows: Find uN ∈ S
0,−1
N,λ (I ), such that

(u′
N, vN)

ω
1, 1

λ
−2,λ = a1(uN, vN)

ω
1, 1

λ
−2,λ + a2(0I

μ
t uN , vN)

ω
1, 1

λ
−2,λ + (f, vN)

ω
1, 1

λ
−2,λ ,

∀vN ∈ S
0,−1
N,λ (I ).

(4.3)

The error estimation of the numerical solution will make use of a series of lemmas,
which are stated below.

Lemma 4.1 ([25] Theorem 329) If p > 1, r > 0, and g ∈ Lp(0, +∞), then it holds
∫ ∞

0
(t−r

0I
r
t g(t))pdt <

{
�(1 − 1/p)

�(r + 1 − 1/p)

}p ∫ ∞

0
gp(t)dt,

unless g ≡ 0.

A direct extension of this lemma for the case that g is only defined a bounded
interval is given in the next lemma.

Lemma 4.2 If r > 0, and g ∈ L2(I ), then we have
∫ 1

0
(t−r

0I
r
t g(t))2dt <

{
�(1/2)

�(r + 1/2)

}2 ∫ 1

0
g2(t)dt,

unless g ≡ 0.

Proof It can be readily derived from the zero extension of g outside (0, 1).

Lemma 4.3 If 0 < λ < 1, γ > 0. Then it holds

(1 − tλ)tγ <
λ

γ e
, (1 − tλ)t1−λ < λ, ∀t ∈ I,

where e is the nature number.

Proof Let h(t) = (1 − tλ)tγ , 0 < t < 1. Then

h′(t) = tγ−1(γ − (λ + γ )tλ).

Note that h(0) = h(1) = 0, h(t) > 0 for all 0 < t < 1, and h′
((

γ
λ+γ

)1/λ
)

= 0, we

have

h(t) ≤ h

((
γ

λ + γ

)1/λ
)

= λ

λ + γ

(
γ

λ + γ

) γ
λ = λ

γ

1
(

λ
γ

+ 1
)γ /λ+1

. (4.4)

Furthermore, using the fact (x + 1)
1
x
+1 > e for all x > 0, we obtain h(t) < λ

γ e
for

all t ∈ I . This proves the first inequality.
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Substituting γ = 1 − λ into the both sides of (4.4) yields

(1 − tλ)t1−λ ≤ h

((
γ

λ + γ

)1/λ
)

= λ(1 − λ)
1
λ
−1.

Finally noticing 1
e

< (1 − x)
1
x
−1 < 1 for all 0 < x < 1, we get

(1 − tλ)t1−λ < λ.

This proves the second inequality.

Lemma 4.4 For all u ∈ L2(I ), v ∈ L2
ω0,−2,λ (I ), r > 0, we have

(0I
r
t u, v)ω1,1/λ−2,λ ≤ λ�(1/2)√

2re�(r + 1/2)

(∫ 1

0
λu2dt

)1/2

‖v‖0,ω0,−2,λ .

Proof By using Cauchy-Schwarz inequality, Lemma 4.2, and Lemma 4.3, we obtain

(0I
r
t u, v)ω1,1/λ−2,λ

≤ λ

(∫ 1

0
(1 − tλ)(0I

r
t u(t))2dt

)1/2 (∫ 1

0
(1 − tλ)t−2λv2(t)dt

)1/2

= λ

(∫ 1

0
(1 − tλ)t2r (t−r

0I
r
t u(t))2dt

)1/2 (∫ 1

0
(1 − tλ)t1−λt−λ−1v2(t)dt

)1/2

≤ λ√
2re

(∫ 1

0
λ(t−r

0I
r
t u(t))2dt

)1/2 (∫ 1

0
λt−λ−1v2(t)dt

)1/2

≤ λ�(1/2)√
2re�(r + 1/2)

(∫ 1

0
λu2(t)dt

)1/2

‖v‖0,ω0,−2,λ .

The proof is completed.

Theorem 4.1 If the coefficients a1 and a2 satisfy

a1 ≤ 0, |a2| <

√
2μe�(μ + 1/2)

2�(1/2)
, (4.5)

or

a1 > 0,
a1

e
+ |a2|�(1/2)√

2μe�(μ + 1/2)
<

1

2
. (4.6)

Then the fractional spectral discrete problem (4.2) admits a unique solution. Further-

more, if the exact solution of (4.1) u(t
1
λ ) ∈ Bm

ω0,−1,1(I ), the following error estimate
holds:

‖u − uN‖0,ω0,−1,λ ≤ cN−m‖∂m
t u(t

1
λ )‖0,ωm,m−1,1 . (4.7)
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Proof In order to prove that the problem (4.2) admits a unique solution, it suffices to
prove that the problem (4.2) with f = 0 admits only the trivial solution uN = 0. To
this end, by taking vN = uN in (4.3) and letting f = 0, we obtain

(∂tuN , uN)
ω
1, 1

λ
−2,λ = a1(uN, uN)

ω
1, 1

λ
−2,λ + a2(0I

μ
t uN, uN)

ω
1, 1

λ
−2,λ . (4.8)

Now we estimate the above equation term by term. For the term in the left hand side,
we have

(∂tuN , uN)
ω
1, 1

λ
−2,λ = λ

2

∫ 1

0
(1 − tλ)t−λ∂tu

2
Ndt = −λ

2

∫ 1

0
((1 − tλ)t−λ)′u2Ndt

= λ2

2

∫ 1

0
t−λ−1u2Ndt = λ

2
‖uN‖20,ω0,−2,λ . (4.9)

For the second term in the right hand side, applying Lemma 4.4 yields

(0I
μ
t uN, uN)

ω
1, 1

λ
−2,λ ≤ λ�(1/2)√

2μe�(μ + 1/2)

(∫ 1

0
λu2Ndx

)1/2

‖uN‖0,ω0,−2,λ

≤ λ�(1/2)√
2μe�(μ + 1/2)

‖uN‖20,ω0,−2,λ . (4.10)

Combining (4.8), (4.9) and (4.10) gives

λ

2
‖uN‖20,ω0,−2,λ ≤ a1(uN, uN)

ω
1, 1

λ
−2,λ + |a2|λ�(1/2)√

2μe�(μ + 1/2)
‖uN‖20,ω0,−2,λ . (4.11)

In the case a1 ≤ 0, it follows from (4.11)

‖uN‖20,ω0,−2,λ ≤ 2|a2|�(1/2)√
2μe�(μ + 1/2)

‖uN‖20,ω0,−2,λ .

If furthermore |a2| <
√
2μe�(μ+1/2)
2�(1/2) , then necessarily uN ≡ 0.

In the case a1 > 0, by using Lemma 4.3, we have

(uN, uN)
ω
1, 1

λ
−2,λ =

∫ 1

0
λ(1 − tλ)t · t−λ−1(uN(t))2dt ≤ λ

e
‖uN‖20,ω0,−2,λ .

Combining this estimate with (4.11) leads to

‖uN‖20,ω0,−2,λ ≤ 2

(
a1

e
+ |a2|�(1/2)√

2μe�(μ + 1/2)

)

‖uN‖20,ω0,−2,λ .

Thus, if 2
(

a1
e

+ |a2|�(1/2)√
2μe�(μ+1/2)

)
< 1, then uN ≡ 0. This proves the well-posedness

of the problem (4.2) under condition (4.5) or (4.6).
Next we derive the error estimate (4.7). Let êN = πN,ω0,−1,λu−uN and eN = u−uN .
On one side, we deduce from (4.1) and (4.3)

(∂t eN , vN)
ω
1, 1

λ
−2,λ = a1(eN , vN)

ω
1, 1

λ
−2,λ+a2(0I

μ
t eN , vN)

ω
1, 1

λ
−2,λ , ∀vN ∈ S

0,−1
N,λ (I ).
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On the other side, in virtue of Lemma 3.2 and the fact that ω1, 1
λ
−2,λvN ∈ V

−α−1,0
N,λ (I )

if vN ∈ S
0,−1
N,λ (I ), we have

(∂t eN , vN)
ω
1, 1

λ
−2,λ = (∂t (u − πN,ω0,−1,λu), vN)

ω
1, 1

λ
−2,λ + (∂t êN , vN)

ω
1, 1

λ
−2,λ

= (∂t êN , vN)
ω
1, 1

λ
−2,λ , ∀vN ∈ S

0,−1
N,λ (I ).

Hence, we obtain

(∂t êN , vN)
ω
1, 1

λ
−2,λ = a1(eN , vN)

ω
1, 1

λ
−2,λ+a2(0I

μ
t eN , vN)

ω
1, 1

λ
−2,λ , ∀vN ∈ S

0,−1
N,λ (I ).

Taking vN = êN ∈ S
0,−1
N,λ (I ) in the above equation gives

(∂t êN , êN )
ω
1, 1

λ
−2,λ

= a1(eN , êN )
ω
1, 1

λ
−2,λ + a2(0I

μ
t eN , êN )

ω
1, 1

λ
−2,λ

= a1(u − πN,ω0,−1,λu + êN , êN )
ω
1, 1

λ
−2,λ + a2(0I

μ
t (u − πN,ω0,−1,λu + êN ), êN )

ω
1, 1

λ
−2,λ

= a1(êN , êN )
ω
1, 1

λ
−2,λ + a2(0I

μ
t êN , êN )

ω
1, 1

λ
−2,λ + a1(u − πN,ω0,−1,λu, êN )

ω
1, 1

λ
−2,λ

+ a2(0I
μ
t (u − πN,ω0,−1,λu), êN )

ω
1, 1

λ
−2,λ .

Thus,

(∂t êN , êN )
ω
1, 1

λ
−2,λ = a1(êN , êN )

ω
1, 1

λ
−2,λ + a2(0I

μ
t êN , êN )

ω
1, 1

λ
−2,λ

+ a1(u − πN,ω0,−1,λu, êN )
ω
1, 1

λ
−2,λ

+ a2(0I
μ
t (u − πN,ω0,−1,λu), êN )

ω
1, 1

λ
−2,λ .

(4.12)

Estimations of the left hand side term and the first two terms in the right hand side are
similar to (4.9)–(4.11). For the remaining terms in (4.12), we first use the Cauchy-
Schwarz inequality and Lemma 4.3 to get

a1(u − πN,ω0,−1,λu, êN )
ω
1, 1

λ
−2,λ

≤ |a1|‖u − πN,ω0,−1,λu‖
0,ω1, 1

λ
−2,λ‖êN‖

0,ω1, 1
λ

−2,λ

= |a1|
(∫ 1

0
λ(1 − tλ)t1−λt−1(u − πN,ω0,−1,λu)2dt

)1/2

×
(∫ 1

0
λ(1 − tλ)t · t−λ−1ê2N(t)dt

)1/2

≤ |a1|λ√
e

‖u − πN,ω0,−1,λu‖0,ω0,−1,λ‖êN‖0,ω0,−2,λ , (4.13)
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then apply Lemma 4.4 to obtain

a2(0I
μ
t (u − πN,ω0,−1,λu), êN )

ω
1, 1

λ
−2,λ ≤ λ|a2|�(1/2)√

2μe�(μ + 1/2)

×
(∫ 1

0
λ(u − πN,ω0,−1,λu)2(t)dt

)1/2

‖êN‖0,ω0,−2,λ

≤ λ|a2|�(1/2)√
2μe�(μ + 1/2)

× ‖u − πN,ω0,−1,λu‖0,ω0,−1,λ‖êN‖0,ω0,−2,λ . (4.14)

Similar to the proof of the well-posedness, we know that, under the conditions (4.5)
or (4.6) on a1 and a2, the first two terms in the right hand side of (4.12) can be
controlled by the left hand side term of the same equation. This fact, together with
the above estimates, leads to

‖êN‖20,ω0,−2,λ ≤ c

( |a1|√
e

+ |a2|�(1/2)√
2μe�(μ + 1/2)

)

‖u−πN,ω0,−1,λu‖ω0,−1,λ‖êN‖0,ω0,−2,λ .

Thus,
‖êN‖0,ω0,−2,λ ≤ c‖u − πN,ω0,−1,λu‖ω0,−1,λ ,

where c is a constant depending on |a1| and |a2|. Furthermore, noticing ω0,−1,λ(t) =
λt−1 < λt−λ−1 = ω0,−2,λ(t), we have

‖êN‖0,ω0,−1,λ ≤ ‖êN‖0,ω0,−2,λ ≤ c‖u − πN,ω0,−1,λu‖ω0,−1,λ .

Finally by using the triangle inequality and the approximation result established in
Theorem 3.2 with α = 0, we obtain

‖eN‖0,ω0,−1,λ ≤ ‖u−πN,ω0,−1,λu‖ω0,−1,λ+‖êN‖0,ω0,−1,λ ≤ cN−m‖∂m
x u(t

1
λ )‖0,ωm,m−1,1 .

The proof is completed.

4.2 A fractional differential equation

Next, we consider the fractional differential equation with Caputo derivative:
{

bu(x) − C
0D

ρ
x u(x) = f (x), x ∈ I, 1 < ρ < 2,

u(0) = 0, ux(0) = u1,
(4.15)

where b and u1 are real bounded constants. Some theoretical results concerning exis-
tence and regularity of the solution of this kind problems have been given in [16]. In
particular, it has been proved that smooth solution can’t be expected even if the data
is smooth. In fact, if we take f ≡ −�(5/2), then it can be verified that the func-
tion u(x) = x3/2 is the unique solution of the problem (4.15) with b = u1 = 0 and
ρ = 3/2. This simple example shows that even for f ∈ C∞(Ī ) it may happen that
u /∈ C2(Ī ). Although precise structure of the solution to the fractional differential
equation like (4.15) is unknown, the boundary singularity is believed to be one of the
main features of boundary value problems associated to fractional differential equa-
tions. We are going to see below that the fractional spectral method proposed here is
well adapted to such problems, and the exponential convergence can be reached in
all our numerical examples by suitably choosing the parameter λ.
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Applying Riemann-Liouville integral of order ρ − 1 to the both sides of (4.15),
and noticing that

0I
ρ−1
x

C
0D

ρ
x u(x) = 0I

ρ−1
x 0I

2−ρ
x uxx = 0I

1
x uxx = ux − ux(0) = ux − u1, (4.16)

we get the following equivalent integro-differential equation:
{

ux = b 0I
ρ−1
x u(x) − 0I

ρ−1
x f (x) + c0, x ∈ I, 1 < ρ < 2,

u(0) = 0.
(4.17)

Therefore the fractional spectral method constructed in Section 4.1 for the integro-
differential equation can be directly applied. It is worthwhile to emphasize that the
above method is also applicable to fractional differential equations based on the
Riemann-Liouville definition, using the relationship between Riemann-Liouville and
Caputo derivatives given in (2.6). The efficiency of the proposed method will be
demonstrated by mean of the numerical experiments presented in the next section.

4.3 Classical elliptic problems

In this subsection, we aim at demonstrating that the fractional spectral method can be
equally constructed for traditional integer order differential equations. The main ben-
efit of such method is its capability to produce numerical solutions with exponential
accuracy for problems whose solutions have limited regularity at the boundaries.

Let’s consider the classical elliptic problem with homogeneous Dirichlet boundary
condition:

{
−∂2xu(x) = f (x), x ∈ I,

u(0) = u(1) = 0.
(4.18)

The method to be proposed is based on the following weak form: For f ∈
L2

ω1,4/λ−3,λ (I ), find u ∈ B1
ω−1,−1,λ (I ), such that

A(u, v) = F(v), ∀v ∈ B1
ω−1,−1,λ (I ), (4.19)

where the bilinear form A(·, ·) is defined by

A(u, v) =
(
∂xu(x), ∂x{ω0,2/λ−2,λ(x)v(x)}

)
,

and the functional F(·) is given by
F(v) = (f (x), v(x))ω0,2/λ−2,λ .

Then the fractional spectral method to (4.19) reads: Find uN ∈ B1
ω−1,−1,λ (I ) ∩

S
−1,−1
N,λ (I ), such that

A(uN, vN) = F(vN), ∀vN ∈ B1
ω−1,−1,λ (I ) ∩ S

−1,−1
N,λ (I ). (4.20)

The proof of the well-posedness of the problems (4.19) and (4.20) will make use
of the following Hardy inequality (see, e.g., [38] p428).
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Lemma 4.5 Let a < b be two real numbers and γ < 1. Then for any φ ∈ L2
ω(a, b)

with ω = (x − a)γ , it holds:

∫ b

a

(
1

x − a

∫ x

a

φ(y)dy

)2
(x − a)γ dx ≤ 4

1 − γ

∫ b

a

φ2(x)(x − a)γ dx. (4.21)

Similarly, for any φ ∈ L2
ω(a, b) with ω = (b − x)γ , we have

∫ b

a

(
1

b − x

∫ b

x

φ(y)dy

)2

(b − x)γ dx ≤ 4

1 − γ

∫ b

a

φ2(x)(b − x)γ dx. (4.22)

We introduce a non-uniformly shifted Jacobi-weighted Sobolev space:

B1
0,ωα,β,1(I ) =

{
u : ∂k

xu ∈ L2
ωα+k,β+k,1(I ), u(0) = u(1) = 0, k = 0, 1

}
,

equipped with the inner product, norm and semi-norm:

(u, v)B1
0,ωα,β,1

= (u, v)ωα,β,1 + (∂xu, ∂xv)ωα+1,β+1,1 ,

‖v‖1,ωα,β,1 := (v, v)
1/2
B1
0,ωα,β,1

, |v|1,ωα,β,1 := ‖∂xv‖0,ωα+1,β+1,1

:= (∂xv, ∂xv)
1/2
ωα+1,β+1,1 .

In the special case α = β = −1, we have B1
0,ω−1,−1,1(I ) = B1

ω−1,−1,1(I ), where the
latter was defined in (3.2).

Lemma 4.6 If α < 0, β < 0, we have

‖v‖0,ωα−1,β−1,1 ≤ c‖∂xv‖0,ωα+1,β+1 , ∀v ∈ B1
0,ωα,β,1(I ),

which implies the Poincaré-like inequality in B1
0,ωα,β,1(I ):

‖v‖0,ωα,β,1 ≤ c‖∂xv‖0,ωα+1,β+1,1, ∀v ∈ B1
0,ωα,β,1(I ).

Proof For any given v ∈ B1
0,ωα,β,1(I ), applying Lemma 4.5 to ∂xv with a = 1

2
, b =

1, γ = α + 1 gives
∫ 1

1/2
v2(x)(1 − x)α−1dx ≤ 4

−α

∫ 1

1/2
(∂xv(x))2(1 − x)α+1dx, α < 0.

Using the inequalities: for all x ∈ [ 12 , 1],
1 ≤ xβ−1 ≤ 21−β, ∀β < 0; 1 ≤ xβ+1 ≤ 2−β−1,

∀β < −1; 2−β−1 ≤ xβ+1 ≤ 1, ∀β ∈ (−1, 0),
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we obtain for α < 0, β < 0,
∫ 1

1/2
v2(x)(1 − x)α−1xβ−1dx ≤ 21−β

∫ 1

1/2
v2(x)(1 − x)α−1dx

≤ 23−β

−α

∫ 1

1/2
(∂xv(x))2(1 − x)α+1dx ≤ c

∫ 1

1/2
(∂xv(x))2(1 − x)α+1xβ+1dx.

(4.23)

Similarly, for α < 0, β < 0 it follows from (4.21)
∫ 1/2

0
v2(x)(1 − x)α−1xβ−1dx ≤ c

∫ 1/2

0
(∂xv(x))2(1 − x)α+1xβ+1dx. (4.24)

Putting (4.23) and (4.24) together completes the proof.

We will also need a Poincaré inequality in the weighted space B1
ω−1,−1,λ (I ), which

is given in the following lemma.

Lemma 4.7 For all λ ∈ (0, 1], it holds
‖v‖0,ω−1,−1,λ ≤ c‖∂xv‖0,ω0,2/λ−2,λ , ∀v ∈ B1

ω−1,−1,λ (I ).

Proof For all v ∈ B1
ω−1,−1,λ (I ), we have

‖v‖20,ω−1,−1,λ =
∫ 1

0
λ(1 − xλ)−1x−1v2(x)dx =

∫ 1

0
(1 − s)−1s−1v2(s1/λ)ds

= ‖v(x1/λ)‖20,ω−1,−1,1 , ‖∂xv‖20,ω0,2/λ−2,λ =
∫ 1

0
λx1−λ(∂xv(x))2dx

=
∫ 1

0
λ2(∂sv(s1/λ))2ds = λ‖∂xv(x1/λ)‖20,ω0,0,1 .

This means v(x) ∈ B1
ω−1,−1,λ (I ) if and only if v(x1/λ) ∈ B1

ω−1,−1,1(I ). Moreover,
using Lemma 4.6 with α = β = −1 gives

‖v(x1/λ)‖0,ω−1,−1,1 ≤ c‖∂xv(x1/λ)‖0,ω0,0,1 .

Thus
‖v‖0,ω−1,−1,λ ≤ c‖∂xv‖0,ω0,2/λ−2,λ .

This proves the desired result.

We are now in a position to establish the well-posedness of the weak problem and
its fractional spectral approximation, and derive error estimates for the numerical
solution.

Theorem 4.2 For all f ∈ L2
ω1,4/λ−3,λ (I ), the problem (4.19) is well-posed. Further-

more, if u is the solution of (4.19), it holds

‖u‖1,ω−1,−1,λ ≤ c‖f ‖0,ω1,4/λ−3,λ . (4.25)
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Proof We employ the Lax-Milgram lemma to prove the well-posedness of problem
(4.19). First, we prove the continuity and coercivity of the bilinear formA(·, ·) in the
space B1

ω−1,−1,λ (I ). Applying the Hardy inequality (4.21) to ∂xu with a = 0, b =
1, γ = 1 − λ, we get

∫ 1

0
x−1−λu2(x)dx ≤ 4

λ

∫ 1

0
x1−λ(∂xu)2dx. (4.26)

Then using the Cauchy-Schwarz inequality yields

A(u, v) = (∂xu(x), ∂x{ω0,2/λ−2,λ(x)v(x)})
= (∂xu(x), λ(1 − λ)x−λv(x)) + (∂xu(x), λx1−λ∂xv(x))

=
(
x

1−λ
2 ∂xu(x), λ(1 − λ)x

−1−λ
2 v(x)

)
+ (∂xu(x), λx1−λ∂xv(x))

≤ (1 − λ)|u|1,ω−1,−1,λ

(∫ 1

0
λx−1−λv2(x)dx

)1/2

+ |u|1,ω−1,−1,λ |v|1,ω−1,−1,λ

≤ (2(1 − λ) + 1)|u|1,ω−1,−1,λ |v|1,ω−1,−1,λ

≤ (3 − λ)‖u‖1,ω−1,−1,λ‖v‖1,ω−1,−1,λ .

On the other side, in virtue of Lemma 4.7, we have

A(u, u) = (∂xu(x), λ(1 − λ)x−λu(x)) + (∂xu(x), λx1−λ∂xu(x))

= λ(1 − λ)

2

∫ 1

0
x−λ(u2(x))′dx + ‖∂xu‖20,ω0,2/λ−2,λ

= λ2(1 − λ)

2

∫ 1

0
x−λ−1u2(x)dx + ‖∂xu‖20,ω0,2/λ−2,λ

≥ ‖∂xu‖20,ω0,2/λ−2,λ ≥ c‖u‖21,ω−1,−1,λ . (4.27)

Then, the inequality

|F(v)| = |(f, v)ω0,2/λ−2,λ | ≤ c‖f ‖0,ω1,4/λ−3,λ‖v‖1,ω−1,−1,λ (4.28)

means F(·) is a continuous functional in the space B1
ω−1,−1,λ (I ). Thus the well-

posedness of problem (4.19) is guaranteed by the Lax-Milgram lemma. The stability
inequality (4.25) is a direct consequence of (4.27) and (4.28).

Theorem 4.3 For all f ∈ L2
ω1,4/λ−3,λ (I ), the fractional spectral approximation

problem (4.20) admits a unique solution uN , which satisfies

‖uN‖1,ω−1,−1,λ ≤ c‖f ‖0,ω1,4/λ−3,λ . (4.29)

Furthermore, if the solution of (4.19) satisfies u(x1/λ) ∈ Bm
ω−1,−1,1(I ), then we have

‖u − uN‖1,ω−1,−1,λ ≤ cN1−m‖∂m
x u(x1/λ)‖0,ωm−1,m−1,1 . (4.30)

Proof The well-posedness of the approximation problem (4.20), and the stability
inequality of its solution follow exactly the same lines as in Theorem 4.2. We now
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derive the error estimate. Using the standard error estimate for the Galerkin method
of elliptic problems gives immediately

‖u−uN‖1,ω0,2/λ−2,λ ≤ inf
vN∈S

−1,−1
N,λ (I )

‖u−uN‖1,ω0,2/λ−2,λ ≤ c‖u−πN,ω−1,−1,λu‖1,ω0,2/λ−2,λ .

Then the estimate (4.30) follows from the approximation result established in
Theorem 3.3 for the orthogonal projector πN,ω−1,−1,λ .

Remark 4.1 We have chosen this model elliptic problem for simplifying the analysis.
However the main result remains valid for a more general equation with the additional
term αu. In fact, in this case the corresponding bilinear form would be:

A(u, v) :=
(
∂xu(x), ∂x{ω0,2/λ−2,λ(x)v(x)}

)
+ α (u(x), v(x))ω0,2/λ−2,λ(x) .

It can be verified that using Lemma 4.7 the following control holds:

‖u‖0,ω0,2/λ−2,λ (x) ≤ ‖u‖0,ω−1,−1,λ ≤ c‖∂xu‖0,ω0,2/λ−2,λ .

Thus the well-posedness of the associated weak problem could be established by
accordingly modifying the proof given in Section 4.3.

5 Implementation of the fractional spectral methods

We give in this section some implementation details of the proposed method. We will
introduce suitable basis functions and numerical quadratures which allow efficient
evaluations of the integrals involved in the discrete problems.

5.1 Integro-differential equation

For the fractional spectral method of the integro-differential (4.2), we propose to
use the basis functions {J 0,−1,λ

j+1 }, and express the numerical solution by uN(t) =
N∑

j=0
uiJ

0,−1,λ
j+1 (t). Denote the unknown vector U = (u0, u1, . . . , uN)T and the

matrices associated to the different terms by

Ai,j =
(
∂tJ

0,−1,λ
j+1 , J

−1,0,λ
i+1

)
,

Bi,j =
(
J
0,−1,λ
j+1 , J

−1,0,λ
i+1

)
,

Ii,j =
(

0I
μ
t J

0,−1,λ
j+1 , J

−1,0,λ
i+1

)
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The entries of these matrices will be calculated in the following way:

Ai,j =
∫ 1

0
λ(j+1)(1−tλ)tλ−1J

1,0,λ
i (t)J

1,0,λ
j (t)dt = 1

2
δi,j ,

Bi,j =
∫ 1

0
(1−tλ)tλJ

1,0
i (2tλ−1)J 0,1

j (2tλ−1)dt = 1

λ

∫ 1

0
(1−s)s1/λJ

1,0
i (2s−1)J 0,1

j (2s−1)ds

= 1

λ

N∑

k=0

ρkJ
1,0
i (2ξk − 1)J 0,1

j (2ξk − 1),

Ii,j = λ(j + 1)
(

0I
1+μ
t

(
tλ−1J

1,0,λ
j (t)

)
, (1 − tλ)J

1,0,λ
i (t)

)

= λ(j + 1)

�(1 + μ)

∫ 1

0

∫ t

0
(t − s)μsλ−1J

1,0
j (2sλ − 1)ds(1 − tλ)J

1,0
i (2tλ − 1)dt

= j + 1

�(1 + μ)

∫ 1

0

∫ 1

0
tλ+μ(1 − σ

1
λ )μJ

1,0
j (2tλσ − 1)dσ (1 − tλ)J

1,0
i (2tλ − 1)dt

= j + 1

λ�(1 + μ)

∫ 1

0

∫ 1

0
(1 − σ

1
λ )μJ

1,0
j (2sσ − 1)dσs

μ+1
λ (1 − s)J

1,0
i (2s − 1)ds

= j + 1

λ�(1 + μ)

N∑

m=0

M∑

n=0

J
1,0
j (2ζmζ̂n − 1)ω̂nJ

1,0
i (2ζm − 1)ωm, with M =

⌈
N − 1

2

⌉

,

where the points sets {ξk}Nk=0 and {ζm}Nm=0 are zeros of the shifted Jacobi polyno-

mials J
1,1/λ
N+1 (2x − 1) and J

1, μ+1
λ

N+1 (2x − 1), respectively. {ρk}Nk=0 and {ωm}Nm=0 are

respectively the associated Gauss weights. {ζ̂n}Mn=0 and {ω̂n}Mn=0 are the zeros of the
orthogonal polynomial of degree M +1 and the Gauss weights associated to the non-

classical weight function (1− x
1
λ )μ. We present below a procedure to compute these

nonclassical Gauss quadrature nodes and weights. We first note that the moments Mr

defined in (2.8) corresponding to the weight function ω(x, λ) = (1 − x
1
λ )μ satisfies

Mr = λB(λ(r + 1), μ + 1),

where B(·, ·) is the Euler Beta function. In fact, by definition (2.8) we have

Mr =
∫ 1

0
xr(1 − x

1
λ )μdx.

Making the variable change x = tλ gives

Mr = λ

∫ 1

0
tλr+λ−1(1 − t)μdt = λB(λ(r + 1), μ + 1).

Then we can follow the three-step algorithm proposed in [19] to calculate {ζ̂n}Mn=0
and {ω̂n}Mn=0, and arrive at the linear system

(A + B + I )U = F,
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satisfied by the solution of (4.20), where F is the right hand side vector defined by

Fi =
(
f, J

−1,0,λ
i+1

)
, i = 0, 1, 2, . . . , N.

The evaluation of Fi can be either exact or approximative, depending on the f used
in the actual calculation.

Remark 5.1 As pointed in [19] the calculation of the moments Mr can be numeri-
cally problematic when the number of points is large: in order to obtain the double
precision entries of the matrices, one would have to perform with about 40 dig-
its operations. A way to deal with this problem is to avoid computing with the
non-conventional weight function. This can be done by the following reformulation:

Ii,j = λ(j + 1)
(

0I
1+μ
t

(
tλ−1J

1,0,λ
j (t)

)
, (1 − tλ)J

1,0,λ
i (t)

)

= j + 1

λ�(1 + μ)

∫ 1

0

∫ 1

0
(1 − σ

1
λ )μJ

1,0
j (2sσ − 1)dσs

μ+1
λ (1 − s)J

1,0
i (2s − 1)ds

= j + 1

λ�(1 + μ)

∫ 1

0

∫ 1

0
(1−σ)μ

(
1−σ

1
λ

1−σ

)μ

J
1,0
j (2sσ −1)dσs

μ+1
λ (1−s)J

1,0
i (2s−1)ds

= j + 1

λ�(1 + μ)

N∑

m=0

M∑

n=0

⎛

⎝1 − ζ̂
1
λ

n

1 − ζ̂n

⎞

⎠

μ

J
1,0
j (2ζmζ̂n − 1)ω̂nJ

1,0
i (2ζm − 1)ωm,

where the points sets {ζ̂n}Mn=0 and {ζm}Nm=0 are zeros of the shifted Jacobi polynomials

J
μ,0
M+1(2x − 1) and J

1, μ+1
λ

N+1 (2x − 1), respectively. {ω̂n}Mn=0 and {ωm}Nm=0 are respec-
tively the associated Gauss weights. For the special cases λ = 1/p, p = 1, 2, 3, · · · ,
we have 1−σ

1
λ

1−σ
=∑p−1

k=0 σk . This treatment is particularly efficient in these cases.

5.2 Elliptic equation

Next we describe implementation details for problem (4.20). we use the basis
functions {J−1,−1,λ

j+2 }Nj=0 to present the numerical solution, i.e., uN(x) =
N∑

j=0
ujJ

−1,−1,λ
j+2 (x). Bringing this expression into (4.20) results in a stiffness matrix

Â with matrix entries

Âi,j =
(
∂xJ

−1,−1,λ
j+2 (x), ∂x{λx1−λJ

−1,−1,λ
i+2 (x)}

)
, i, j = 0, 1, 2, . . . , N.
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A direct calculation gives

Âi,j =
(
∂xJ

−1,−1,λ
j+2 (x), λ(1−λ)x−λJ

−1,−1,λ
i+2 (x)

)
+
(
∂xJ

−1,−1,λ
j+2 (x), λx1−λ∂xJ

−1,−1,λ
i+2 (x)

)

= −λ2(1 − λ)(j + 1)
(
xλ−1Lj+1(2x

λ−1), (1−xλ)J
1,1
i (2xλ−1)

)

+ λ2(i + 1)(j + 1)
(
xλ−1Lj+1(2x

λ − 1), λLi+1(2x
λ − 1)

)

= −λ2(1−λ)(j+1)
∫ 1

0
(1−xλ)xλ−1Lj+1(2x

λ−1)J 1,1
i (2xλ−1)dx+ λ2(i+1)2

2i+3
δij

= −λ(1 − λ)(j + 1)
∫ 1

0
(1 − s)Lj+1(2s − 1)J 1,1

i (2s − 1)ds + λ2(i + 1)2

2i + 3
δij

= −λ(1−λ)(j+1)
∫ 1

0
(1−s)

[
j+2

2j+3
J
1,0
j+1(2s−1)− j+1

2j+3
J
1,0
j (2s−1)

]

J
1,1
i (2s−1)ds

+ λ2(i + 1)2

2i + 3
δij .

Clearly, Âi,j = 0 if i < j . For i ≥ j , we have

Âi,j = −λ(1 − λ)(j + 1)
N∑

k=0

Lj+1(2xk − 1)J 1,1
i (2xk − 1)ω̄k + λ2(i + 1)2

2i + 3
δij ,

where {xk}Nk=0 are the zeros of classical shifted Jacobi polynomials J
1,0
N+1(2x−1), and

{ω̄k}Nk=0 are the associated Gauss-Lobatto weights. Thus we obtain a lower triangular
system to solve:

ÂÛ = F̂ ,

where Û = (u0, u1, · · ·, uN)T and F̂i = (f, J
−1,−1,λ
i+2 )ω0,2/λ−2,λ .

6 Numerical results

In this section, we present some numerical examples to demonstrate the accuracy of
the proposed fractional spectral methods and to verify the error estimates derived in
the previous section. When solving problem (4.1) in the following numerical tests,
we fix the coefficients a1 and a2 to be 1.

Example 6.1 We start by considering the integro-differential problem (4.1) with μ =
1/2 and the source term f (t) = 1/2t−1/2 − �(3/2)t − t1/2.

It can be verified that the exact solution is u(t) = t1/2, which has limited reg-
ularity at the left end point. The results obtained by using the scheme (4.2), with
λ = 1/8, 1/10, and 1/12 respectively, are plotted in Fig. 1, showing exponential
decay of the errors with respect to N for all employed values of λ. This result is in a
good agreement with the theoretical prediction given in Theorem 4.1, stating that the
convergence of numerical solution is exponential if u(x1/λ) is smooth.
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Fig. 1 Error decays with respect to N for problem (4.1) with exact solution u(t) = t1/2 using fractional
spectral approximation spaces with a λ = 1

8 ; b λ = 1
10 ; c λ = 1

12

Example 6.2 Consider the (4.1) with f (t) = √
3t

√
3−1 − �(

√
3+1)

�(
√
3+1+μ)

t
√
3+μ − t

√
3

and μ = 0.1 or 0.9. Its exact solution is u(t) = t
√
3.

Notice that
√
3 is an irrational number, it is impossible to make u(t1/λ) smooth

with a rational λ. One can of course take λ = 1/
√
3 such that u(t1/λ) being smooth,

but what we want to demonstrate here is that by using reasonably small λ, one
can make u(t1/λ) smooth enough so that high accurate numerical solution can still
be achieved using corresponding fractional spectral approximation. The numerical
results shown in Fig. 2a–c for a number of parameters μ and λ confirm the above
claim.

Example 6.3 Still consider (4.1), now with artificially constructed source term

f (t) = 20.5t19.5+ 61
3 t58/3+ 1

2 t
−1/2+ 1

3 t
−2/3− �(21.5)

�(21.5+μ)
t20.5+μ− �( 643 )

�( 643 +μ)
t61/3+μ−

�( 32 )

�( 32+μ)
t1/2+μ − �( 43 )

�( 43+μ)
t1/3+μ − (t1/2 + t1/3)(t20 + 1) and μ = 0.9.

The corresponding exact solution is u(t) = (t1/2 + t1/3)(t20 + 1), which has
composite singularity in its first order derivative. The error decay history as a func-
tion of the fractional polynomial degree N is plotted in Fig. 3 for several values λ.
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3 with several values of μ and

fractional spaces parameter λ: a μ = 0.1, λ = 1
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50 ; c μ = 0.9, λ = 1
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Fig. 3 Error behavior for problem (4.1) with u(t) = (t1/2 + t1/3)(t20 + 1) for: a λ = 1
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2 and 1
4

The subfigures Fig. 3a and b show that the exponential convergence is achieved as
expected for u(x1/λ) is smooth for λ = 1/6 and 1/12. The values of λ used in the
subfigure Fig. 3c are 1/2 and 1/4. In this case u(x1/λ) is no longer smooth, and the
method based on the corresponding fractional polynomial space leads to only alge-
braic convergence, as shown in Fig. 3c. For ease of observation, the lines of slopes
N−4/3, N−1/3, N−8/3, and N−5/3 are also plotted in Fig. 3c, which clearly indicates
that the convergence rate is close to N−4/3 for λ = 1

2 and N−8/3 for λ = 1
4 in

the L2
ω0,−1,λ (I )−norm, and the convergence rate in the B1

ω0,−1,λ (I )−norm is approx-

imately N−1/3 for λ = 1
2 and N−5/3 for λ = 1

4 . This is in a quite good agreement
with the theoretical estimate in (4.7).

Example 6.4 In this example, we take an arbitrary smooth force function f (t) =
sin(4πt), for which the exact solution is unknown. In order to investigate the error
behavior of the numerical solution, we use a numerical solution obtained with a big
enough N , i.e., N = 100, as the “exact” solution. Fix μ = 0.1.

The error history as a function of N for a number of λ is presented in Fig. 4. It is
observed from Fig. 4a for λ = 1 that the convergence rate is close to N−2(3+μ) in the
L2

ω0,−1,λ (I )−norm and N−2(3+μ)+1 in the B1
ω0,−1,λ (I )−norm. The result for λ = 1/4

in Fig. 4b implies a convergence rate close to N−8(3+μ) in the L2
ω0,−1,λ (I )−norm and

N−8(3+μ)+1 in the B1
ω0,−1,λ (I )−norm. The error behavior for λ = 1/10 is plotted in

Fig. 4c in semi-log scale. It can be seen that the error variations are almost linear
versus the fractional polynomial degrees, which means that the convergence rate is
exponential. According to Theorem 4.1, the obtained result in these three figures con-
jectures that the transformation u(t1/λ) of the exact solution belongs to B

2(3+μ)/λ

ω0,−1,1 (I ),
and it becomes smooth for suitable λ. In fact, this conjecture can be proved by using
some existing results. For instance, using a result in [11], for smooth forcing function,
the solution of (4.1) can be expressed as

u(t) =
∑

j,k=0,1,...

γj,kt
j+kμ + us(t), t ∈ I, (6.1)
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4 ; c λ = 1

10

where γj,k are constants, and us(·) ∈ C∞(I ).
Furthermore, the (4.1) with f (t) = sin(4πt) implies u(0) = 0, ∂tu(0) = 0. Dif-
ferentiating the (4.1) one time yields ∂2t u(0) = 4π . Differentiating (4.1) twice gives
∂3t u(0) = 0. Repeating this operation one more time gives ∂4t u(0) ∼ tμ−1. Thus it
follows from (6.1):

u(t) = 2πt2 + γ3,1t
3+μ +

∑

j+kμ>3+μ

γj,kt
j+kμ + us(t). (6.2)

That is, u(t1/λ) ∈ B
2(3+μ)/λ−ε

ω0,−1,1 (I ) for any ε > 0.

Example 6.5 In this last example, we consider the elliptic problem (4.18) with two
source terms: (i) f (x) = π2 sin(πx); (ii) f (x) = 12

169x
−14/13. In the case (i) the

problem (4.18) admit a unique smooth solution u(x) = sin(πx). In the case (ii) the
exact solution is u(x) = x12/13 − x, which has a limited regularity at the left end
point.

Figure 5a and b show the errors versus N for the smooth solution (i) for λ = 1
and 1/2. As expected, the errors exhibit exponential convergence decay, since in this
case u(x1/λ) is smooth for both values of λ. In the case the exact solution u(x) has
limited regularity, using the classical spectral method based on classical polynomial
approximations, i.e., λ = 1, will result in poor convergence, as shown in Fig. 5c
where the errors versus the polynomial degree N for the nonsmooth solution (ii) for
λ = 1. It is observed from Fig. 5c that all the error curves are straight lines in the
log-log representation, which indicates that only algebraic accuracy is obtained. This
poor accuracy for the limited regular solution can be significantly improved by using
the fractional spectral method introduced in this paper. The errors of the numerical
solution using the fractional spectral method with λ = 1/13 are plotted in Fig. 5d.
Clearly, the errors decay exponentially, and the accurate solution is obtained with
N = 11.
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Fig. 5 (i) Errors versus N for the fractional spectral approximation to the exact solution u(x) = sin(πx)

of (4.18) for a λ = 1; b λ = 1
2 . (ii) Errors versus N in the case the exact solution u(x) = x12/13 − x for c

λ = 1; d λ = 1
13

7 Concluding remarks

We have developed and analyzed a fractional spectral method for a kind of integro-
differential equations. The proposed method makes use of the fractional polynomials,
also known as Müntz polynomials, constructed through a transformation of the tradi-
tional Jacobi polynomials. The most remarkable feature of the method is its capability
to achieve spectral convergence for the solution with limited regularity. We derived
useful error estimates for some weighted projection operators in the Müntz poly-
nomial spaces. Based on these approximation results, several efficient fractional
spectral methods for a class of integro-differential equations with singular kernels,
fractional differential equations, and the classical elliptic equation with singular
forcing function were constructed, together with some error estimates for the pro-
posed approaches. A series of numerical experiments were carried out to verify the
theoretical claims.
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