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Abstract In this paper, we construct a second order algorithm based on the spec-
tral deferred correction method for the time-dependent magnetohydrodynamics flows
at a low magnetic Reynolds number. We present a complete theoretical analysis to
prove that this algorithm is unconditionally stable, consistent and second order accu-
racy. Finally, two numerical examples are given to illustrate the convergence and
effectiveness of our algorithm.
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1 Introduction

Magnetohydrodynamics (MHD) is the study of the interaction of electromagnetic
fields and conducting fluids. The MHD systems describe the behavior of the elec-
trically conducting fluids in the presence of an external magnetic field. The field of
MHD is initiated by Alfvén [1] and widely develop to other science fields includ-
ing astrophysics, geophysics and engineering, such as liquid metal cooling of nuclear
reactors, controlled thermonuclear fusion and sea water propulsion, see [2—4]. Both
in mathematical theory and practical applications, the study of MHD is very impor-
tant and significant. In general, most terrestrial applications, such as liquid metals,
involve small magnetic Reynolds number. In these cases, the magnetic field induced
by the electrically conducting fluid motion can usually be negligible compared with
the external magnetic field. Neglecting the induced magnetic field can reduce the
general MHD flows to the simplified MHD flows, which are studied in this paper.

The MHD modeling consists of a coupling between the Navier-Stokes equations
of fluid dynamics and the Maxwell equations of electromangetism. One can find
the theoretical analysis and mathematical modeling of the MHD equations in [5].
Gunzburger, Meir, and Peterson [7] proved the existence and uniqueness of weak
solutions of stationary incompressible MHD equations. An optimal convergence esti-
mate of a finite element discretization of the equilibrium MHD equations is given
by Meir and Schmidt in [9]. Other study of stationary MHD equations can be found
in [10-12]. For unsteady MHD equations, a formulation for evolutionary MHD was
presented by Schmidt in [13], where they established the existence of global-in-time
weak solutions through the Galerkin method. Yuksel and Ingram [8] gave a com-
prehensive error analysis for both the semi-discrete and a fully-discrete approximate
of time dependent MHD flow at small magnetic Reynolds number. Layton, Tran
and Trenchea [14] introduced two partitioned methods to solve evolutionary MHD
at low magnetic Reynold numbers and gave a complete stability and error analysis.
Yuksel and Isik [15] provided a stability and convergence analysis of an finite element
discretization for time-dependent MHD flows with Backward-Euler discretization at
low magnetic Reynold numbers.

In this paper, we aim to construct a second order algorithm for the time-dependent
MHD flows at a low magnetic Reynolds number. To that end, we employ the spectral
deferred correction (SDC) method. The SDC method was proposed for stiff ordi-
nary differential equations (ODEs) by Dutt, Greengrad, and Rokhlin in [16] and
further developed by Minion et al., see [17, 18] and the references therein. The SDC
methods allow one to automatically increase the accuracy of a stable low order time-
stepping method through using spectral integration on Gaussian quadrature nodes and
constructing the corrections. This can avoid instabilities and conditioning problems
associated with repeated differentiations, such as the backward differentiation for-
mulas (BDF) based high order methods. Wilson, Labovsky, and Trenchea proposed a
second order scheme based on SDC method for the evolutionary full MHD equations
at high magnetic Reynolds number in [19]. To construct a second order algorithm,
the SDC method is employed in this paper and performs as follows. First, we have
an unconditionally stable first order time-stepping method based on Backward-Euler
time discretization, whose stability and error estimate were completely proved in [15].
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A second order algorithm for simplified MHD 825

Then we introduce the SDC method to this first order time-stepping method to
improve its accuracy and obtain a second order time-stepping method without los-
ing stability. Using this second order time-stepping method, we need to compute
two first order accurate approximations instead of a single second order accurate
approximation, which is thought to be less costly.

The simplified MHD flows at a low magnetic Reynolds number considered in this
paper are the following, see, e.g. [8, 14, 15]: Given body force f, magnetic B, and
time 7 > 0, find fluid velocityu : Q x [0, T] — R, pressure p : Q2 x[0,T] - R
and electric potential ¢ : Q2 x [0, T] — R such that:

1 1
N(ut—ku-Vu)—WAu+Vp=f+BxV¢+(uxB)xB,

V.u=0, 1)
Ap =V - -(uxB),

subject to the homogeneous Dirichlet boundary conditions and the initial condition

u=20 on 082 x [0, T,
¢=0 on a2 x [0, T], 2)
u(x,0) =up(x) Vxe Q.

Here, the domain @ C R?(d = 2or3) is a convex polygon or polyhedra, N is
interaction parameter and M is Hartmann number. Further, ug(x) € HO1 (Q)d and
V- Uy = 0.

This paper is organized as follows. In Section 2, we introduce some necessary
notations and preliminaries. In Section 3, we present the first order Backward-Euler
method. A complete theoretical analysis of stability, consistency and error estimate
is also shown in Section 3. In Section 4, the second order method based on the SDC
method and its stability, consistency and error estimate are offered. Two numerical
examples are given in Section 5. One is to compute the rate of convergence of our
second order method to testify the correctness of our theoretical analysis. The other
one compares the effectiveness of our second order method with Crank-Nicolson
method and shows that our method performs better in this example.

2 Notations and preliminaries

Throughout this paper, we denote the L?(2) inner products and corresponding norms
by (-, ) and|| - ||, respectively. The L?(£2) norms are denoted by || - | .». The Sobolev
spaces W}g (2), £ > 0, see [6], are equipped the norms with || - ||W11§ and the cor-

responding semi-norms | - |W£. We write HX(Q) := Wé‘(Q), and denote || - || as
the norms in H*(£2). The spaces H —k(€2) denote the dual spaces of Hé‘ (). Cisa
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826 Y. Rong et al.

positive constant which is different in different places but independent of mesh size
and time step. In addition, we define the following function spaces:
LP(0,T; L*(2)) :={v € LP(0, T; L*(Q)) : (/OTIIU(-J)Ilfsdt); < 00},
L®(0, T; L*(R)) := {v € L®(0, T; L*(Q)) : EssSuppo,rllv(-, )+ < oo},
LP(0, T; Wh(R)) :=={v € LP(0, T; W) (Q)) : (/OTnv(-, r>||€vqkdr>% < o0},

L0, T3 Wy () := {v € L0, T: W () : EssSuppo.ri|v(, Dllws < oo},

Here,1 < p < 00,1 <s < 00,1 < ¢q < oo. Furthermore, we have the following
denotations.

T
vl p.x = (/0 v (-, t)llfdt)% forveLPO,T; H(Q)),

Ivlloo = EssSuppo.rillvC.Olle  for ve L0, T; H ().
The velocity, pressure, and electric potentials spaces are denoted as follows.

X = H} () ={ve H'(Q)? : v]sqg = 0},
Q:=L3Q) ={q e L*N): /Qq =0},

S:=Hy(Q) ={y € H'(Q): ¥ls = 0}.
The divergence free space V is given by
Vi={veX:(V.-v,q) =0 Vq e 0)}.
Then, a weak formulation of Eq. 1 with Eq. 2 is: Findu : [0,T] — X, p : [0, T] —
Qand ¢ : [0, T] — S fort € (0, T] satisfying
%(u,, v) + %(u -Vu,v) + #(Vu, Vv) —(p,V-v)
4+ (—V¢p+umxB),vxB)=({f,v) VvelX,
(V-u,q)=0 VqeQ,
(—Vé+uxB), ~Vy) =0 Vy €5,
u(x,0) =up(x) a.e. x €.

3

We define the trilinear form as usual.
1 1
b(u,v,w) := z(u -Vv,w) — E(u -Vw, v).

The following lemmas are basic and widely used in the study of Navier-Stokes
equations and MHD equations, i.e., Yuksel [15].

Lemma 1l Ifu,v,w e X, then
b(u, v, w) < C(Q)|IVull[[VV[[[IVw],

1 1
b(u,v,w) < C(Q)[ull2[[Vall2[Vv[[[|Vw].
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A second order algorithm for simplified MHD 827

Lemma 2 (The discrete Gronwall’s lemma) Suppose that n and N are nonnegative
integers, n < N. The real numbers a,, by, c,, kn, At, C are nonnegative and satisfy
that

N N N

ay + At an < At anan + At ch +C.
n=0 n=0 n=0

Then,

aN—i—Ath < exp (Atzl—Atxn) <AIZCH+C>

n=0
provided that Atk, <1 for each n.

Let ITj, be a set of triangulations of € with Q= U K, which is assumed to be
uniformly regular as s — 0. Here h = sup di am(I? ;n\};\/e choose the finite element
spaces X, C X,0p, C Q,8, C S, alr(lfinzfssume that Xj; x Qy, satisfies the usual
discrete inf-sup condition, q1€n(“2fh sup ”VvH”Vq)” > C > 0. Besides, we also assume
that X5, Op, and Sy, satisfy approx1mat10n properties of piecewise polynomials on

quasi-uniform meshes of local degrees k, k — 1, k respectively. That is to say

inf lu—v|| <ChA " ulgr1 we HYLQ),
veXy

inf flu—vl; < Ch*luflg4 ue H (@),
veXy

inf l¢ — vl < ChY|o ks ¢ € H*1(Q),
2SN

inf |p —ql < Ch¥|Iplix p e H Q).
qe0p

Define the subspace Vj, of X, as follows.
={veX,:(V-v,q)=0 Vg€ 0n}.

Lett" = nAt forn = 0,1,2,---,m. We denote u" = u(¢") and similarly for
other variables. Then, define the following discrete norms.

m

1

Vlllook == max [V"[lx,  [I¥ll[px = (A2 [IV'[IE)7.
0<n<m —

Further, define the Galerkin projection operator Py, : (V, Q) — (Vi,, Qn), Pr(u,
p) = (Pyu, Py p) satisfying

1
m(v(u — Ppw), Vvp) — (p— Pyp,V-v) =0 Vv, € Xp, 4

or

1
W(V(u_ Pyw), Vvp) —(p — Ap, V-vp) =0 Vv, € Vi, Yap € Q. (5)
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828 Y. Rong et al.

Then, the approximation property holds, see [20],

lu—Ppull+ -7 IIV(U — Prw)|l+hllp = Prpll < Chk+1( 5 [l 1+ Pl
(6)

M2|

fork=0,1.
Lastly, in order to show the consistency of our method, we define the consistency
error as follows. Given a weak formulation

Lu,v)=({f,v), VvelX, @)

where the operator L : X x X — R, and a full-discrete finite element approximation
of Eq. 7

Latn(ug,vy) = (£ vp), Vv, € Xy, (8)

where the operator La;p : Xp X X — R. We say that the finite approximation
method (8) is consistent with Eq.7 if the consistency error

[Lasn(a, v) — (£, v)]
veXx, vl

—0 as At,h— 0. 9)

3 First order unconditionally stable Backward-Euler method

In this section, we introduce the first order Backward-Euler method ,see [15]. We
firstly present the stability and then provide consistency, convergence and their proof.
Besides, we estimate the time difference of the error, which is useful to the error
analysis of the second order method based on the SDC method in the next section.
Finally, a corollary about the estimate of the time difference of errors’ time difference
is given, which is useful to the consistency analysis in next section.

The full-discrete approximation via Backward-Euler time-stepping of Eq. 3 (see
[15]) is : Given ug € V, find (u’l‘*}'l1 p’l”};l ¢"+1) € X, x Qp x Sy, for each n =

0,1,2,---m—1(m= %), satisfying

1o -, 1
N(T’, Vi) + Nb(u’f,;l u’f';] Vi) + —2(Vu’l’ , Vvy)

— PV v + =V u T X B vy x B = (v Y, € X,
(V-uitl g =0 Vg € Q.
(VeI +ul3 ! x B, —Vyy) =0 Yy € 5.
(10)

First, we present the unconditional stability of the method (10). Theorem 1 was
introduced and proved in [15]. The proof of Theorem 1 is omitted here and the reader
can refer to [15].
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A second order algorithm for simplified MHD 829

Theorem 1 Let u'{’zl e Xy, p'f;l € Oy, ¢’11,J{ll € Sy, satisfying (10) for each n =
0,1,2,--- ,m — 1. Then,

[ e nel o2, Af — n+l,2 =
S+ 2 D = P+ 5 D Ve Ay
n=0 n=0 n=0
Lo 2 2 g +12
< I, 7+ M2Ar Y e, (11)
n=0

Remark I The electric current density J is an important electromagnetic quantity in
MHD flows, see [21], which is defined by J = o (—V¢ +u x B). Here, the electrical

conductivity o is a constant. Obviously, the stability of J is directly related to the
m—1

term At ZO I — Vet +uft! x B|? in Eq. 11.
n=

Next, we show the consistency of the method (10) through Theorem 2.

Theorem 2 The first order Backward-Euler method (10) is consistent and the
consistency error is O (At).

Proof Attime t"*!, the true solution (u, p, ¢) satisfies

1wt —u” L 1 nt1 n+1
N A YW @ ) 4 s (VUL V) = (p7TL V)

n+1 n

1 _
+ (—Ve 4wl X B vy, x B)= (" v+ N(%— w ) v Y, € X,

(V-u g =0 Vg, e Qn,

(=V" T 40" x B, —Vy) =0 Yy, € S
(12)

Since the last two equations in Eq. 10 are obviously consistent with those in Eq. 12,
we analyze the consistency of the first equation in Eq. 10. Based on our definition of
consistency error, see Eq. 9, we have the following estimate of consistency error Ej.

n+l__..n
(", vl 1wt

1 u"™™ —u"
E; = sup v < —Ii(

— —u (Y. (13)
X Al N At '

Taking the Taylor expansion of u at time #"*!, we obtain

v =ut = Aru, (T + %Aﬂ w, "t — oard). (14)

This gives us
E| < %u - %At u (") + 0(AP)|| = CAL + 0 (AP), (15)
which completes the proof. O
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Moreover, we analysis the convergence of method (10). To establish the optimal
error estimate, we definej = —V¢+uxB andjl h = —V¢ﬁ;l +u "+1 x B. Denote

n—H _ i+l n+1 _n+l n+1 n+1 n+1 __ s+l sn+1
the errors by e, = u —up e =9 — ¢y}, and & =] — -

Obviously, e ’.”1 Ve’”rl + e”“ x B.

Theorem 3 Suppose that (u’f";l p'ﬁl ¢"+1) is given by method (10). Assume that

the true solution (u, p, ¢) sansﬁes the followmg regularity

u e L2, T; (H' (@) () L™, T; (W) @)D,
w € L0, T; (HH(@)9), € L20, T; (L*(2))%), (16)
é e L*0, T; H*'(Q)).

Then, we have

- m—1 m—1

N n+1 n+] n+1 2 2k
lleg I +M—Arz IVent! +NAt2(:)||e I +NAzX(:)||Ve I2< c(ar® +r%*), (17)
n n

provided that At is sufficiently small.

Proof At time t"T!, the true solution (u, p, ¢) satisfies (12). We decompose the
errors as follows.

+1__ ..n+l n+l +1 n+1 +1 . +1 ~n+1 n+1 ~n+1 n+1
e, =u'T —uw ="+ U, "= w, Ut =t

n+1 n+1 n+l _ n+l n+1 n+l . n+1 n+l n+l . Tn+l n+1
€y = ¢ ¢ + th > G =¢ - ¢h s (D ¢ ¢ .
;11+1_jn Jr11+1 — n+l+Jz+1’Xn+l —_V n+l+nn+l xB, Jn+1 Vq>n+l+Un+1

Here, W)™ = Pyu"t!, ¢! are the interpolation of ¢"*! in Sj.
Subtract Eq. 12 from Eq. 10 and set v, = UZH, Yy = QJZ‘H to obtain

1
AU = UG + 105 = UG + S IVU P+ 3 U < B)

2N At
1 77n+1 —n" 1 1 1 1 1 1 1 1 1
= upth — Nb(n” Ut — Nb(U’ﬁ RTLEEN V)

1 1
_ Nb(u’],lzl nn+1’ UZ+1) _ W(VU’H_]» VUZ+1) + (pn+1 _ )‘Z+1v V. UZ+1)

n+1 n+1 un+l_ " n+1 n+1

= LU OB+ (e —w (), U,
(18)
"+t —vaerth = o, (19)
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A second order algorithm for simplified MHD 831

for VA"H € Q. Using Eq. 5, we can obtain

1
vy U P = UG+ U = UG + S S IO + 33 U < B)
- +1 1 1 1 +1 ! +1 1 +1
= _N(T’UZ ) — Nb(ﬂ”-’_ 't ,UZ ) — Nb(UZ Ju't :UZ )

1 n+l ndl yp+l n+1 o+l 1wt —u" n+1 n+1
= PO — LU X B) 4 (e —w >,U,,(23.)
Adding Eq. 20 to Eq. 19, we have
1
N At(||Un+] I = UG + 105 = UG + S IVUE I+ 151
ntl 1 1 1 1 1 1 1 1 1
= _N(T’ U - ﬁb(n“ JuttupTh — ﬁbwﬁ NTCAN 1/
_ ib(un-'rl nn-‘rl Un+l) _ (Xn-l—l Jn+1) + i(un+1 _u” —u (trH-l) Un-H)
N 1,h > > “h ] N At 1 ’ h(zl)
Note that Eq. 19 can be written
IVOItH2 = (4" + Ul H! x B, voIt!), (22)
Add Eq. 22 to Eq. 21 to obtain
vy (U 2= UG P+ = U+ AU ENE ST LR L2V

n+1
—n +1 1 1 1 ym+l 1 +1 1 g+l
= _N(A—s UZ ) - Nb(nn-’— 9 un+ 9 UZ ) - Nb(UZ ) un+ 5 UZ )

1
_ Nb(u}il-;l nn+1’ UZ+1) _ (Xn+1’ JZ+1) + (Xn+1 + UZ-‘,—I % B, Vq)2+l)

0,

1 u't! — g
+1 +1
+ o  —wh, Up,
(23)
We now bound each term in the right hand side of Eq. 23. For arbitrary ¢, €1, &2 >
1 nn+1 nn n _ 77
- U = an—n2 +eVUHIE 24

For the three nonlinear terms, we bound them as follows.

—ﬁbm"“, utLurth < vt ver tvort 05)
< CllullZ, IV 1P + e VU2,
1
- bWt < vy 2Oz v vt
< C||Vlln+l ||4||UZ+1 ”2 4 8”VUZ+1 ”2 (26)

12 +12
< Cllullg, IG5 + el VU2,
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832 Y. Rong et al.

1 1
__b(ull+l n+l’ Uz+l) — _ ﬁb(un+l’ nn+1’ UZ+1) 4 ﬁb(rl"—'—la r’n+1’ UZ+1)

1
+ N”(UZH’ LU,

27)
and
— L@ LU < Clg IV T + e VO, (28)
1
Nb(n"“, 7" TL UM < vt + e VU2, (29)
1 n+1 _n+1 ym+l /INES [N T A 1 n+1 n+1
SO U < v o v ol
< CIVH U2 4 g VU2 (30)
< Cllullf 102 + e VU2
From Egs. 27-30, we can obtain
1
——b{ LU <ClallZ 1Vt + c vt
N 31)
+ Cllulld, 102 + 3e | VU2
The remaining terms are bounded as follows.
( n+1 Jn+1) < C”Xn-‘rl” 4 81||Jn+1 ” . (32)

K" AU B VR < Cllx™ + U < B + e[ VO
< Cllx" ™2+ CIBIE TP + a2 VO T2,

(33)
1 un-H_un . | un+1_ n . -
N WD U = Ol —w I + VU
(34)
Setting £ = MIW’ & = % and & = %, and applying Eqs. 24-34 to Eq. 23, we
have
1
vy U P =032 + 10— U2 )+2M2 IO P+ < ||J"+1||2+ SIvert?
n+1
< CUBIE + uld, pIvp 12 + ¢ 2 < ||2 + ClulZ, IVt
114 1,2 'ty 12
+ CIV" I+ Cll™ P + Cl = — —w ("D,

(35)
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A second order algorithm for simplified MHD 833

Letx = C(||B||%OO + ||u||go’1). Summing from n = 0 to n = m — 1 and applying
Lemma 2 give

m—1 m—1

.
N
A LA Vi v AtZMVU"“n +NAIZHJ"“II +NArY Vet
n=0
m—1
< exp((m+1)— I} +cm2n LA} 1+ ClluliZ, ALY V™2
n=0 n=0
m—1 m—1 S
CAt v/ n+1,4 CAt n+1y2 CAt - = tn+1 2 ,
+ nZo” 7t + nZo”X 1>+ nZOn < w ("tH %)

(36)
provided that Atk < 1.
The right hand side of Eq. 36 is bounded as follows.

oy ? < 2fu’ — u‘f,hn2 + 20007 < 210 —ud 12 + ChE Pl - BT)

— t"'H
At Z e < Z / Inel*de < CR* 2wy |54,y (38)
m—1 m—1
hallZ, At > UV 2 < Car Y R = Ch By, (39)
n=0 n=0
m—1
ALY NV < CR¥ il - (40)
n=0
m—1 m—1 m—1
ArY TP = Ay = VR Ay ™t < B
= = n=0
m—1 m—1 (41)
S CA[ Z h2k||¢n+1”]%+l + CAt Z h2k+2”un+1”]%+l
n=0 n=0
< Ch2k|||¢>|||% it + CHP 23
m—1 n+1 tn+l
ALYl —w ("I < AP Z / s Pdr = A w13
n=0
(42)
Then, combining Eqs. 37—42 with Eq. 36 to obtain
m—1 N m—1 m—1 m—1
IR+ N0 = UG P+ =5 Ay IVUPEN A Y TP+ N A Vet
n=0 n=0 n=0 n=0

2k+2 2k+2 2 2k 2 4k 4
= C(||ll _u1h|| + ht |||u|||oo k+1+h + ||ut||2,k+1+h |||u|||2,k+1+h |||u|||4,k+1
2k 2k+2 2 2
+h |||¢”|2,k+l + ht |||u|||2,k+1 + At”|luy ||2,0)

< C(Ar? + B,
(43)

Finally, using the triangle inequality completes the proof. O
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834 Y. Rong et al.

Remark 2 In the proof of Theorem 3, we mainly use Lemmas 1, 2, the approxima-
tion properties assumption of (Xp, Qp, Sp), the Holder inequality and the Young’s
inequality to bound the terms, which are similarly used in the later proof.

n+1__on

. . . e . . .
Next, we estimate the time difference —L AT %L which will be used in the error

. en+1_ n e"‘H —e
analysis of the second order method. Denote Sﬁl“ = %, S;I‘H = % and
et _en
SJ”IJrl -L—L. The main result is shown in Theorem 4.
Theorem 4 Suppose that (u’l”zl, "H qb"“) is given by method (10). Let the
assumption of Theorem 3 be satisfi ed Assume also that the true solution u satisfies
the following regularity

Vu, € L0, T; (L)), wy € L*0, T; (L*(2)%),

(44)
pi € L*(0, T; HY(Q)).
Then, we have
N m—1 m—1
m 2 n+12 n+12 2 2k
IS0 12+ 5 A0 Y IVSEEI2 4+ NAr YIS = a1, @3)
= n=0
provided that At is sufficiently small.
Proof Attime 1", we have
1 e:l]-}—l en
N(i‘ < Vi) +— b(e"+‘, v+ —b(uﬁ,l, it vh)+—(Ve"+‘ Vvi)
_ ntl n+1 ) n+1 B) — i UVH-] —u" B 1
P =piy Vv (e v X B) = N(iAt w ("), Vi) Vg € Xp,
(Ve g =0 Vg € Qn
€ VY =0 Yy € S
(46)

Consider Eq. 46 at the previous time 7 to get new equations. Setting v, =
SI’}I“, Yy = S;'IH and subtracting Eq. 46 from the new equations, we can obtain

1
+1 2 +1 +12 n+12
ﬁ(ns" I = 11Sg 117 + lsptt = sp 1% + 2||VS"1 I+ Arll S5l
At Ar uiht -t
+1 +1 +1 1,h 1,h +1
_Wb(sﬁl Jut Sy )_W (T €y, Su, )
At wtl—yr (P =1 — (p — A1) |
— b, S + A o RARAD)
1 un+1 _ lln un _ un—l
—(————— _u tn+1 —(—————— —1u t” ’Sl’l"rl ,
+ N(( A (@) —( A (1), Su,) )
forV Ap € Q.
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A second order algorithm for simplified MHD 835

We now bound each term in the right hand side of Eq. 47 as follows. For V ¢ > 0,

At 1 1
— P L SEED < CAnV SR IS I Ve T v S s

< CAtluld,  ISE 12 + eA| Vi,

At un+1 _—

S TRAGHE L Sathy < At Vel IV E YV SEH |

At - ! w 49)
< CAt|Vu E"TH Vel I + e At VSEH 1%,

where £"11 e (¢, 1711,

n+l n
_ ﬁb(ulh — Uy, S”“)
N At €
At u'tl — g At
=P Sal D+ b s (50)

IA

1 1
CALIVu €D Ve VL I+CAVSE IR ISEE IR Vel VSt
< CAt|Vu E"THIVeL 117 + CAt|Vey [*1SEH 1P 4+ 2e AtV SpH 1%,

n+1 A,"+l) (P _)Ln

(p
For the term Af( , V- Sﬁfl),
1 +1
At((pn+ _)\42 )_(pn_)\,;l,) V-SnJrl)
At ’ n (51)
(pn+1 _ )\.n+l) _ (pn _ )\‘n)
< CA1| h ~ BRI+ e At VSEHR
For the last term,
1 un+1 — ul — un—l
C(—— _u tn+1 —— w (" ,SnJr]
N(( A7 (")) = ( AL 1), Sy, ) )

1
= AP O, SED < CAC "D + e A VS,

where 6"+ ¢ (+"~1, ¢"*1). Combining Egs. 48-52 with Eq. 47, and setting ¢ =

W, we have

N
ISE > = 1 sp 17 + — Arnvs”*‘n%rNmnsj"ﬁ‘n2
< CAt(Julld 1+||Veu1 INISEEN? + CALIVu ETH2IVeEL 17 (53)

(P =y — (pt =
At

In order to use Lemma 2, we need Atz||Ve] ||4 < C uniformly for all n. It can be
easily deduced from Theorem 3 that

+ CA1] 12 4+ C AL Juy; (0",

(At[|Vey 117

3 4k h* (54)
< C(At’ + Ath —).
At ( + + At)

At||Ve) ||I* =
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836 Y. Rong et al.

On the other hand, using the inverse inequality and Theorem 3, we have
AP
At||Vel I* < Cath™ el ||* < Clog + AR 4 Aty (55)

Thus, if #*f < Atr, we use Eq. 54 to bound At ||Ve{‘ll ||4, otherwise use Eq. 55. In any
o €

case, we have At||Ve” |* < C. Furthermore, since Sl’l’1 = —x;— is not defined for
n = 0, we can only sum Eq. 53 fromn = 1 ton = m — 1, which impels us to bound
the terms ||S,£1 12, At||VSll11 | and At||Sj1l |2. We bound these terms as follows.

At time ¢!, substracting Eq. 12 from Eq. 10 to obtain

1 0
1 ey — ey, Lo Lo 1 1
N(T’ Vi) + Nb(em s, vy) + ﬁb(ul,h’ €y, Vi) + W(Veuw Vvp)

— (P = plp Vi) + €~V + vy x B)

1 (u —w @' va)) Vvi e Xn Vi €S (56)
= — —u(t,v A , .
N A t h h h h h
Setulh_ug_u0 wehavee _On =0, U2_O Settmgvh_eul,lph—
e(})l in Eq. 56, it follows
1 ell,l [ ul—u® R
N(E u])—i— b(eul u! eu])+M2(VUh Veu])—l—(e )_N(T_ut(l ), ey,)-

(57)
Multiplying Eq. 57 by N At, we can obtain

N 1 .1 N 1 1
+WAt||Ve I2 4+ NAt|e! ul ey) o5 ANV, Vey,)

i || = — At b(e]

ley, II” up’

ul —
+ Atz(

— W (t )v ]_||)
(58)
We bound the three terms of the right hand side in Eq. 58 as follows. For V& > 0,
1 1
u U ey) < CAr[Vey (|2 ley, 12 Vu' [[[|Vey, || (59)
< CAtlley |I* + e At Vey, 1%

—At b(e

im(v L vel ) < CAr| V' + eAt| Vel |I?
A A1V Vey) < nl”+e w

vl —vp? (60)
_ 3 2 1 2
= CAP| | + e[| Vey |

< CAtthk +eAt||Vey |I*.

1 0 — 1
—u —Ut(f )
—u(t'), ey) = At <A’T

1
ce) = CAf e 17
(61)

u
At(
Setting ¢ = # and combining Eqs. 59-61 with Eq. 58, we have

N 1
+ ——At|Ve

(— — CAD e}, II? e o 7+ NAte] I < CAP (A + 1%, (62)
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A second order algorithm for simplified MHD 837

Since At is sufficiently small, we can easily obtain

N
CHE + 5 SAL|[Vey |* + NAtle [|> < CAP (AP + h%y. (63)

ul||
Hence
N

192 192 1,2

[l Sy, I +—M2AtIIVS.,1II + NAz|S;,

N
S AL Vel |7 + Natllel %) 64)

_ -2 1 2
= Ay, I+

< C(Ar* + h?h).
We sum Eq. 53 fromn = 1 ton = m — 1 and use Lemma 2 to obtain

Wl + 25 ZArHVS"“n +NArZ||S"I+‘||2

m—1 n+1 _ )‘Z+1) —(p" - )‘Z)

< C(ALY [ Vu D2 Vel | +AtZ|I w v

n=1

1% (65)

m—1
N
+ AL g O Y+ 1Sy, 1P + mAtHVSllll I+ NAz|S] 1.
n=1

Using Theorem 3, the terms in the right side hand of Eq. 65 are bounded as follows.

m—1 m—1
ALY IV EY Ve 17 < CAt Y (Ve 1P < C(a + %), (66)
n=1 n=1
m=1 . nil _ antl m—1
At Z s A)t W12 < A S Gp — 26"
n=0
m—1 67)
< CR* Y Atllp (8" H 117
n=0
< Ch*,
where 8"t e (17, 1+,
m—1
AP Y g (0" < CAL (68)
n=1
Combining Egs. 64 and 6668 with Eq. 65 completes the proof. O

Corollary 1 Suppose that At is sufficiently small, we have the following estimate.

m—1
1Kz, Ar Z IVEGTZ + N A Y IKEH? < Car + 1), (69)
n=1
Sn-H_Sn
where KJ ! = —l—L.
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838 Y. Rong et al.

Remark 3 The proof of Corollary 1 is similar to that of Theorem 4, thus we omit the
proof.

4 Second order unconditionally stable method based on SDC method

In this section, we present the second order method based on the SDC method. We
first prove the unconditionally stability of the second order method. Then we give a
complete theoretical analysis of its consistency and error estimate, which shows that
this method is second accurate.

Based on the method (10), we now present the second order method, using the
SDC method. Given (u} ;.. pi . ¢} ) and (u}!, pi 3!, ¢} 71y of the method (10),

find (i3, p5 it @51 € (Xn. Qn. Sp) satisfying

1 n+l1 n

w, —u, 1 1
N W Nb(u’éj;l, ujtl v + W(Vugj}, Vi) = (P55 Vv
1 1
+ (—Vdé'f + u;f,’ll x B, v, xB) = ﬁb(u'l’f,;l, u’f}“ll, V) — ﬁb(u'f’h, uy ;. Vi)
1

1 1
+ W(Vu’]’j,l, Vvy) — W(Vu’f,h, Vvi) — 5(1)721 =P Vi)

1 1
+ 5(—V¢’f}:1 + u'fjll x B, vy xB) — 5(—V¢’f’h + u’l’,h x B, v, x B)

4 !
+ (T, vy) Vv € Xy,
V-ugtl g =0 Vau € Oy,
(—Vy it +us ! x B, —Vyy) =0 Vi € Sp.
(70)

Remark 4 The time step At and mesh size 4 in Eq. 70 are the same as in Eq. 10.

We now present the unconditional stability of the method (70).

Theorem 5 Let the assumptions of Theorems 3 and 4 be satisfied. Let u'zl';l €

X, pgil € Oy, ¢§";1 € Sy, satisfying (70) for eachn = 0,1,2,--- ,m — 1. Then,

1 1 m—1 At m—1 m—1
ISP D s = w17 s S DIV P+ A - Vs ust B
n=0 n=0 n=0 (71)

m

< C(d 17+ 10d 17 + 1Vl 12 + 15,07 + A Y 12 ).
n=0
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A second order algorithm for simplified MHD 839

Proof Setting v;, = 3}, toagn = u"Jrl and ¥y, = ¢”+1

by 2At¢, we have

in Eq. 70 and multiplying it

—<||u"+1||2 1P+l — w112 422t e ||Vu”+1|| +2A1] -V +uy ! < B
- W(b(u'ﬁl,u'l'zl,ugf)—b(ulh,ulh,ugzl))—k (Vu”+1 v, vustlh  (72)

f +fn+l n+1)

+ AL = s X B) + 240 ( 5

We bound each terms in the right hand side of Eq. 72 as follows. For an arbitrary
e >0,

At 1 1 1 1
— (bt uh = baf )

(73)

t
_ n+1 n+1 __n+l n n+1 n+1
= ﬁ(b( T W u ) by ut —uy un ).

For the term b(u’l’*};1 —uj,, u'lH;ll , u’ﬁl]) using the result of Theorem 4, we have

by = il = bt —ut wp L wh — Arbesg i w
< C||Vurt! — Vu”||||Vu”+1||||Vu"+1||
+C AL VSEH| ||Vu”+‘ I ||Vu"+1 I
< C(IVu 2 4 v ||2)||Vu"“||2
+CAZ|VSEH 2 V2 + 2||Vu”“||2
< Clu|?, 1||Vu"+‘|| +CAR VS 2 Vul 2
+5 Va2
< C||Vu"+‘ ||2 + CAR|VSE Va2
v n+l||2

(74)

+5(Vu
<C||Vu"+1||2 SIvus 2.

Similar to bound b(u’l’ B u'lH}'ll u1 B ug*}'ll) we can obtain

—(b( D — b el ugh)
lh lh 1,h 1,h (75)
< CAt(IVu I + V] 117 + e At Vs B2

The remaining terms are bound as follows.

7 (Vu"'H—Vul e VuEh <CAr(IVU P+ VU 1P +eAr | Va2 (76)

1 :n 1 1 1
ArGYL =1 e u < BY < CArIT =3I Ves B e

sn+1 n+1 77)
= CAr(liy ), I* + 1137, W2 )+ eAt||Vuy I>.
£ fn+1 o fn+l
2Ar(+T uyih < cmn%u,l +eAt|Vuy % (78)
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840 Y. Rong et al.

Set ¢ = ﬁ. Combining Eqgs. 75 to 78 with Eq. 72 and summing Eq. 72 from

n=0ton =m — 1, we have

m—1

Ar
fll Z e D B ALl R Z‘ I
n=0

v(pn-!-l n+1 % B|| (79)
m—1 +
< —||u2 all>+ cmZ(HVu”“ 1P+ 17 4 17 1 1P 415 1+ ——— || D-
n=0
Finally, using the result of Theorem 1 completes the proof. O

Next, we analyze the consistency and convergence of the method (70) and show
that the method (70) is second accurate. Similar to the previous denotations, we

denote Jn+1 _ —V¢"+l n+1 x B, en—&—l _ un—i—l uizl-l}—ll’ n+1 ¢n+l ¢n+1
and e"Jrl =jrtl — J”Zl It is also obvious that e”“ Ve"+1 + e'”rl x B.
In addltlon, we define the function F := Nu, = u Vu +2 Au Vp+f+

B x V¢ + (u x B) x B. Then the first continuous momentum equatlon can be written
as

1 1 1 t"‘H
Ll oy =L f Fdr. (80)
N At At Jin
Using the trapezoid rule that
1 l”+1 F" + F”+l
~ Fdr=———+ CA?Fy (@™,
where o1 € (¢", "*1), we can obtain
(D PR 1 IR 1 1
JEn— — — .V n+ _VnJrl AU+ ——A n+1
N A wh =y Vo o A T A
1 1 1 1
—Vpt—_Vv n+1 _f 7fn+]
P R L

1 1 (81)
+§B x Vo' + (" x B)x B + EB x V" + "' x Byx B

+ CAPFy ("),
V.u=0, A¢ =V - (u x B).
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A second order algorithm for simplified MHD 841

Then, at time "1, we have the following weak formulation.

1wt —u” 1 ntl ontl 1 n+1 n+l1
S @ v (VL V) — ("L V)
1 1
+ (=V¢"T 4 u"t! x B, v, x B) = ﬁbm”“, vy, — T b i)
1

1 1
+ W(V“"H’ Vi) = oo (VUL V) 5<p"“ —p" V)

1 1
+ 5(—Vqs"“ +u"! x B, v, x B) — 5(—Vqs" +u" x B, v, x B)

1 4 ot
+(—5— W+ CAP (Fy (@YY, vi) Vv € Xp,
(V-u"t g)=0 Vg € O,
(=V" T 4+ u" X B, —Vy) =0  Vyy € Sp.

(82)
The followed theorem shows the consistency of method (70).

Theorem 6 The method (70) is consistent and the consistency error is O(Ar? +
At hF).

Proof 1t is obvious that the last two equations in Eq. 70 are consistent with those in
Eq. 82. We only need to analyze the consistency of the first equation in Eq. 70. Based
on our definition of consistency error, see Eq. 9, then from Eqgs. 70 and 82, we have
the following estimate of the consistency error E».

1
E> = sup ——|Ez + Ex — Ensl, (83)
viexy, IVall

where E>1, E2» and E33 are given as follows.

Ey1 = CAP(Fy ("), vp). (84)
FEry = 1 b n+1 . n+l 1 b n+1 _ n+l
2 =5 b W i) — S b Wy Vi)
1

t oo (VUL V) = s (VL V)

1 1
—~ E(p”“, Vv + E(p’fj;l, V- vi)

1 1
+ z(—qu”“ +u"! x B, v, x B) — 5(—v¢;’j,;1 +ut! x B, v, x B).

(85)
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842 Y. Rong et al.

1 1
Ea3 :ﬁb(u”, u”, vy) — ﬁb(u?,h’ uy s Va)

1

+ W(Vun, Vvp) — W(VU?W V)

| | (86)
=5 P" YV Vi) + (P V- V)

l n n B B 1 n n B B
+ 5(—V¢ +u" xB,v; xB) — E(_V(PL;, +u1,h x B, v, x B).

We need to bound the above three terms. For the term E»j,
|Exi] < CALvll. (87)

In order to bound E»; and E»3, we subtract the first equation of Eq. 12 from that
of Eq. 10, then rearrange the terms on both sides of the equation to obtain

o +1 +1
n n
Ex = S l(—— — @), v) = (S5 vl (88)
Similarly, we also have
1 ut — un—l
Ey = m[(T —u, ("), vp) — (Sl’:l , Vi) l. (89)

From Egs. 88 and 89, we obtain

1 lln+1 ]

|Ex = Ens| =| oo l(———— —w ("), vi) = (S vl
1 u’ — un—l
= ol W, v = (Sa vl
1 un+] _— ] ul — n—1 ,
<oy I W) = (= w Il (g
1
o IS = Sa il

<L A2 g llo.ollvall + iAtnK"“ IHivall
2N ’ 2N "

<CAL2|vy|l + CAL(AL + ES|val,

where we use the result of Corollary 1.
Combining Egs. 90, 87 and 83, we have

|E21| + |E2 — En3]

E) < sup < CAf> + CAt b, 1)
vieXy ”Vh ”
which completes the proof. O

Finally, we give the convergence result of method (70).
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A second order algorithm for simplified MHD 843

Theorem 7 Let the assumptions of Theorems 3 and 4 be satisfied.
(ug";l pgzl ¢"+1) is given by method (70). Then, we have

m—1
leg, 12+ 75 AzZ Iveptt)? +NAzZ|| CHPEN ALY IVeRT P < cart+h), 92)
n=0 n=0 n=0

provided that At is sufficiently small.

Proof Attime "+, the true solution (u, p, ¢>) satisfies (82). Subtracting Eq. 82 from
Eq. 70 and then setting v, = e”“ Yy = e} & *+1 we can obtain

12 1 1 +1 12
(e 17— lles, 17+ et — e, 1%) +— Ve |17+ e} P+ 1vel st

M2|

ZNAI
b(en-i-l’ el 4 (et xB, Ven+1)_|_ (en+1 e el x B)
2M2 —— (Ve — vell  velth) + 21\7 (ept! —el u" epth
+—b(eul, 1y, n+1)+ b(“ﬁll_ulhv et ety
b(u”” et el n+l)+( Pt )\H]*‘)‘ Vet

u 2 2
+ CAt 2(F, (@™, i),

(93)
for VA, € Q.
Next, we bound each term in the right hand side of Eq. 93. For Ve, ¢ > 0,
b(e"“, ety < Vet z et vt v
< Cllulld, e 12 + el Vel )2 O

1,2 1,2
< Cler P + el Vet

n+1 n+1
For the term (el12 x B, Ve¢2 ),

(eﬁ;—l X B V€n+l) < C”B”Loo ||en+1 ” ||V€n+l ”
< CIBIIZlleg 17 + &1 Vel (95)

< Cllegt 1P + el Vel

1ian+1 _ an e+l
For the term 5 (e;, €. ey, xB),

1
§<e3’1+1 — ¢, e F x B) < CAIBI < lleg 1Sl
< CAPIB| 7S] 2 + e Vet 2 (90

< CAP|SIHP + el Ve |,
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844 Y. Rong et al.

For the term W(Ve’”rl Vey, Ve:’ljl),

— (Ve — Vel veit!) < CAZ|VSETI + el Vel 2. 97)

2M2

For the nonlinear terms,

1
1 1 1 1 1 1
Tnbe —en L uT e = CANVSETINIVETT Ve

< CAt ||v5"+1||2 + s||Ve"+1||2.
1
o D€ u =t e < CAHVe Vw8 D1 Vey)
< CAP |2 Vel 12 + el vert )2 O
< CAP||Ve, 1> + & Veit |2,
where "1 e (¢, 1"*1). Since
1 n+1 n+1 n+1 un+1 —u" n+1 n+1 n+1 n+1 n+1
TN —uf . et )_ Sy va A b(S €y ),

At

and

At ut— 1 1 1 1 1
P ) = CAVu BT Ve Ve
< CAP %, l||Ve”+1|| + e[ vept?

< CAP|Vertt|? + ||Ve"“||2,

[ 1 71 ’112

At
_ﬁb(sn"rl I’l"rl l’l+1) < CAt”VSnIi-l”“ven-'rl””Ven-'rl”

< CAP| Ve 2| VSEH? + ||Ve”+‘|| :
we can obtain

1
ﬁb(u’;;‘—ulh,eﬁjl el < CAR| Ve 12 +C AR | Ve IV SET IR e Vel 2.
(100)
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A second order algorithm for simplified MHD 845

Since
n+1 " n+1 " n+1 n+1 At "+1 n+1
2Nb(111hs €u, > €u, )__N (U7 Su” ey )_ﬁb( e Sar” €, )
and
ﬁb( ", SaH ety < carva IV SEH Vet
< CAP ul%  IVSEH2 + -IIVeﬁ;H 1?
< CAP|VSEFY? + IIVe"“H ;
__b(em,sn“ ent!) < Car| Vel VS Ives ™|
2 2 2 4 1
< CAP||Ves [PIVSE ) + ||Ve"+ I?,
we have

Sbl € = € ) = CARIVST P CAIVe, IPIV ST P+ el Ve

u up’
(101)
For the remaining terms,
n+1 n+1 n n+1 n n+1
+ A + A + A +k
(102)

CAP(Fu (@™, et < CAf | Fy @I + e Ve |17 (103)

Combining Eqgs. 94-103 with Eq. 93 and setting ¢ = e = %, we have

1
18M2°

+1 +1_
2NT(” et 1P = llel, 17+ llel ! — e, 17 )+2M2

< Cleg M IP + CAPISIH P + CAPI VST P + CAr ||Veul|| +CAr ||Ve{;1+‘||
+ CAP Ve P IVSEH? + ca|vel 171V sat!)?

IVert'|? + || e ||V Al b

pn+1 + p" - )‘Z_H +)“Z
2 2

+C| I2 + CAL*| ("2

(104)

@ Springer



846 Y. Rong et al.

Multiplying Eq. 104 by 2N A¢, summing from n = 0 to n = m — 1 and using
Lemma 2, we can deduce

m—1 m—1
e I +Z(lle”“ el +5 AanVe”“n +NAY [ PN ALY Vet
n=0 n=0
m—1 m—1
< Cllleg, I + A Y " At SITH2 + ar? Z AL|VSEHHZ + A2 Y At Ve, |12
n=0 n=0 n=0
m—1 m—1
+A122At||Ve”+l|| +AtZAt||Ve”+l|| At VSEE|?
n=0 n=0

m—1

m— n+1 n n+l
+p M
+ A0 Y Ar Vel IPAvspt i+ 3 a2 h2

n=0 2 2
m—1
+ A At Fy @),
" (105)
Finally, using the results of Theorems 3 and 4 completes the proof. U

5 Numerical experiment

In this section, we provide two numerical experiments to testify the convergence
and effectiveness of the second order method based on the SDC method (BE-SDC)
presented in Section 4. In the first example, we computed the rate of convergence of
BE-SDC method to testify the correctness of our theoretical analysis of convergence.
Then, in the second example, we compared BE-SDC method with Crank-Nicolson
(CN) method, see [8], and showed that BE-SDC converged but CN did not converge
in this example, which illustrates that BE-SDC was more effective in this example.
The experiment results were obtained by using the software package Free FEM ++,
see [22].

Table 1 Errors and convergence rate of BE-SDC

Ar Mz, —ulllec,0 Rate NV u2,r —wll20 Rate NV (@2, — P)ll20 Rate
1/16 1.269e-4 1.607e-1 1.808e-2

124 4.397e-5 2.61 7.599e-2 1.85 8.565¢e-3 1.84
1/32 2.191e-5 2.42 4.406e-2 1.90 4.967e-3 1.89
1/48 8.663e-6 2.29 2.017e-2 1.93 2.275e-3 1.93
1/64 4.607e-6 2.20 1.151e-2 1.95 1.298e-3 1.95
1/96 1.939e-6 2.13 5.193e-3 1.99 5.856e-4 1.96
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A second order algorithm for simplified MHD 847

Table 2 Effectiveness of

BE-SDC method for Experiment T=1 T=2 T=5

2
[[(up, —w)(T)| 2.5343¢-1 2.1529¢-1 1.3461e-1
1(pr — (DI 4.8600e-1 5.6450e-1 2.6013e-1
[ — D)D)l 1.2549¢-2 7.6146e-3 1.1702e-2

5.1 Experiment 1

Let the domain Q = [0, 1]x[0,1],T =1,Re=1,N=1,M =1and B = (0,0, 1).
Consider the true solution (u, p, ¢) given as follows.

u(x, y,t) = 2w cos(2mx) sin(2ry), —2m sin(2w x) cos(2mwy), O)e_Sl,

plx,y, 1) =0,
d(x, y, 1) = (cos(2mx) cos(2my) + x> — y2)e .

The f, boundary condition and initial condition are determined by the true solution.
We utilize the P2-P1 Taylor-Hood mixed finite elements for fluid velocity and
pressure and P2 finite element for electric potential. Besides, we set the time step
equal to the mesh size, At = h, to testify the theoretical convergence result
of BE-SDC. We choose the step sizes At = %, 2]—4, 3]—2, %, 6]—4, 9% to compute
a2, —ullloc,0, [IIV(uzn —wll2,0 and [[V($2,n — @) l]2,0. Table 1 shows the con-
vergence accuracy of BE-SDC. It is clear that BE-SDC is second accurate. Hence,

the numerical experiment result is consistent with the theoretical analysis.
5.2 Experiment 2

Let the domain 2 = [0, 1] x [0, 1] and B = (0, 0, 1). Similar to the example studied

in [15], select Re = 6766, M = 20 and then N = A,;I—ez = 0.059. Set At = ﬁ, h =
% and choose T = 1, 2, 5. Consider the same true solution (u, p, ¢) and f as given in
the above experiment. We use BE-SDC method and CN method to compute ||(u, —
w) (D), I(pn — p)(T)| and ||(¢r, — @)(T)|. Tables 2 and 3 present the computing
results of BE-SDC method and CN method, respectively. We can see that BE-SDC
method converges but CN method does not converge, which shows that our second

method performs better in this experiment.

Table 3 Effectiveness of CN

method for Experiment 2 T=1 T=2 T=5
[[(up, —w)(T)| 5.6775¢-1 3.8484e+3 1.3134e+3
1(pr — p)(D) 4.1328 1.0715¢+8 5.2221e+9
I — D)D) 2.4490e-2 8.6007e+1 3.7110e+1
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848 Y. Rong et al.

6 Conclusion

In this paper, we introduce a second order algorithm based on the SDC method to
solve the simplified MHD flows at a low magnetic Reynolds number. We give a
complete theoretical analysis about the stability, consistency and error estimate of
our algorithm. We prove that our algorithm is unconditionally stable, consistent and
second accurate. The numerical experiments testify the rightness of our theoreti-
cal analysis. For further research, we plan to study high accuracy stable decoupled
algorithm for MHD flows.
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