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Abstract The main purpose of this paper is to investigate the piecewise spectral col-
location method for system of Volterra integral equations. The provided convergence
analysis shows that the presented method performs better than global spectral collo-
cation method and piecewise polynomial collocation method. Numerical experiments
are carried out to confirm these theoretical results.
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1 Introduction

Spectral methods are important numerical methods for differential equations. They
are famous for their high accuracy. The monographs by Canuto et al. [4, 5], Shen et
al. [25, 26] contain a lot of useful information on spectral methods. Guo and Wang
[13, 14] established results on orthogonal projections and interpolations theory for
the Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. These
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results serves as an important tool in the analysis of the numerical error estimate for
the spectral method.

Spectral collocation methods, spectral Galerkin methods, and the corresponding
error analysis have been provided recently for Volterra type integral equations. Tang
et al. [31] proposed a Legendre spectral-collocation method to solve VIEs (Volterra
integral equations) of the second kind whose kernel and solutions are sufficiently
smooth. Chen and her coworkers [7–12, 33–38] done a series of work on Volterra
type integral equations. Xie et al. [39] provided spectral and pseudo-spectral Jacobi-
Galerkin approaches for the second kind VIEs. Li et al. [17] proposed a parallel in
time method to solve VIEs. Sheng et al. [27] proposed a multi-step spectral method
to solve nonlinear VIEs.

The SVIEs (system of Volterra integral equations) appear in scientific applications
in engineering, physics, chemistry and populations growth models. For examples,
Volterra [32] refined “predator-prey” model as a system of nonlinear Volterra integro-
differential equations which can be changed to be a SVIEs. Many high order Volterra
integro-differential equations can be changed to be SVIEs. Studies of systems of inte-
gral equations have attracted much concern in applied sciences. The general ideas and
the essential features of these systems are of wide applicability. So numerically solu-
tion of SVIEs is very meaningful. There exist many numerical methods for SVIEs.
Capobianco et al. [6] proposed fast implicit and explicit Runge-Kutta methods for
SVIEs of Hammerstein type. Sorkun and Yalcinbas [28] solved SVIEs by transform-
ing the integral system into the matrix equation with the help of Taylor series. Using
the Bessel polynomials and the collocation points, Sahin et al. [23] solved SVIEs
by transforming the system of linear Volterra integral equations into a matrix equa-
tion. Taghvafard and Erjaee [29] solved SVIEs by using the fractional differential
transform method. Samadi and Tohidi [24] extended the spectral collocation method
in [31] to solve SVIEs. Mirzaee and Bimesl [20] investigated a new Euler matrix
method for SVIEs. References [2, 3, 15, 16, 18, 19, 22, 30, 40] also provide numerical
method for SVIEs.

In this paper, we provide a hp-version spectral collocation method to solove SVIEs
of the following form

y(t) = g(t) +
∫ t

0
K(t, s)y(s)ds, t ∈ [0, T ], (1)

where the unknown function is

y(t) := [y0(t), y1(t), · · · , yQ(t)]′.
We assume that the functions describing the above equation all possess continuous

derivatives of at least order m ≥ 1 on their respective domains, i.e.,

g(t) := [g0(t), g1(t), · · · , gQ(t)]′, gq(t) ∈ Cm([0, T ]), q = 0, 1, · · · , Q,

K(t, s) :=
[
Kij (t, s)

]
(Q+1)×(Q+1)

, Kij (t, s) ∈ Cm(�),� := {(t, s) : 0 ≤ s ≤ t ≤ T }.
(2)

where Cm([a, b]) is the space of functions possessing continuous derivatives of at
least order m ≥ 1 on their domain [a, b]. From Theorem 2.1.7 in [1] we know that
the unique solution y(t) of Eq. 1 with the data functions (2) lies in Cm([0, T ]).
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In the present method, we change (1) to be a new equation defined on [−1, 1],
then divide [−1, 1] into M + 1 subintervals [ημ, ημ+1], μ = 0, 1, · · · , M, η0 =
−1, ηM+1 = 1. In each subinterval [ημ, ημ+1] we set collocation points as N + 1
Legendre Gauss-Lobatto points. We provide convergence analysis to show that the
numerical errors decay in the rate hm−1/2N1/2−m and hmN−m in spaces L∞(−1, 1)
and L2(−1, 1) respectively, where h := max{(ημ+1 − ημ)/2 : μ = 0, 1, · · · , M}.
These theoretical results imply that the convergence behavior of errors relates to h, N

andm. Therefore, refining mesh (h becomes smaller), adding more collocation points
(N becomes bigger) and given functions possessing better regularity (m becomes
bigger) will improve the accuracy of the numerical solution. We provide numerical
examples to confirm these theoretical results.

In order to compare the piecewise spectral collocation method (PSC) with piece-
wise polynomial collocation method (PPC) (see [1]) and global spectral collocation
(GSC) (see [24]), we introduce PPC method and GSC method briefly. For the PPC
method, the interval [0, T ] is divided into subintervals [ξμ, ξμ+1], μ = 0, 1, · · · , M .
The convergence analysis result (see [1], page 95 ) showed that no matter how many
collocation points is employed in the subinterval [ξμ, ξμ+1], the decay of errors will
not exceed the rate h̃m, where h̃ := max{̃hμ : h̃μ = ξμ+1 − ξμ, μ = 0, 1, · · · , M}.
For the GSC method (see [31]), the interval [0, T ] is transformed to [−1, 1]. N + 1
Gusss type points are chosen as collocation points on the global interval [−1, 1]. The
errors decay at the rate N−m. Comparing hm−1/2N1/2−m (PSC) with h̃m (PPC) and
N−m (GSC), we conclude that PSC method is sharper than PPC method and GSC
method.

This paper is organized as follows. In Section 2, we deduce the numerical scheme
of hp-version spectral collocation method for SVIEs (1). The lemmas for conver-
gence analysis are provided in Section 3. The convergence analysis for the proposed
method is presented in Section 4. Numerical examples are given in Section 5. Finally,
in Section 6, we end with the conclusion and remark.

2 Numerical scheme

For ease of analysis we change the interval [0, T ] to the standard interval [−1, 1].
Precisely we use the variable transformation

t (x) = T
2 (x + 1), x ∈ [−1, 1],

s(z) = T
2 (z + 1), z ∈ [−1, x]. (3)

Then Eq. 1 can be written as

u(x) = f(x) +
∫ x

−1
R(x, z)u(z)dz, x ∈ [−1, 1], (4)

where

u(x) := y(t (x)), f(x) = g(t (x)),

R(x, z) := T
2K(t (x), s(z)).

(5)
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We divide the interval [−1, 1] into M + 1 subintervals σμ := (ημ, ημ+1], hμ :=
ημ+1 − ημ, μ = 0, 1, · · · , M. Set the collocation points as the follows

XN :=
N−1⋃
μ=0

Xμ, Xμ := {xμ
n : ημ = x

μ
0 < x

μ
1 < · · · < x

μ
N = ημ+1},

where

x
μ
i := hμxi + ημ+1 + ημ

2
, (6)

here hμ := ημ+1−ημ

2 ; xi, i = 0, 1, · · · , N are the Legendre Gauss-Lobatto points
in the standard interval [−1, 1]. Then Eq. 4 holds at x

μ
i , i = 0, 1, · · · , N, μ =

0, 1, · · · , M ,

u(x
μ
i ) = f(xμ

i ) +
∫ x

μ
i

−1
R(x

μ
i , z)u(z)dz, (7)

which can be written as follows,

u(x
μ
i ) = f(xμ

i ) +
μ−1∑
r=0

∫ ηr+1

ηr

R(x
μ
i , z)u|σr (z)dz +

∫ x
μ
i

ημ

R(x
μ
i , z)u|σμ(z)dz, (8)

where
u|σr (x) := [u0|σr (x), u1|σr (x), · · · , uQ|σr (x)]′,

and uq |σr (x) is the restriction of uq(x) to the subinterval [ηr, ηr+1], i.e.,
uq |σr (x) := uq(x), x ∈ σr, r = 0, 1, · · · , M.

We use u
μ
qi to approximate uq(x

μ
i ), i = 0, 1, · · · , N, μ = 0, 1, · · · , M , and use

Uμ
q (x) :=

N∑
j=0

u
μ
qjF

μ
j (x), x ∈ (ημ, ημ+1]

to approximate uq |σμ(x), where F
μ
j (x) is the j -th Lagrange interpolation basic

function associated with the collocation points x
μ
i , i = 0, 1, · · · , N in the inter-

val [ημ, ημ+1]. U
μ
q (x) is of the polynomial function whose definition domain is

(ημ, ημ+1]. Eventually uq(x) can be approximated by

Uq(x) := Uμ
q (x), if x ∈ (ημ, ημ+1], μ = 0, 1, · · · , M. (9)

Uq(x) is a continuous function defined on [−1, 1], and its restriction to the subinter-
val (ημ, ημ+1] is U

μ
q (x). Consequently u(x) can be approximated by

U(x) := [U0(x), U1(x), · · · , UQ(x)]′. (10)

Then Eq. 8 can be approximated by

Uμ
i ≈ f(xμ

i ) +
μ−1∑
r=0

∫ ηr+1

ηr

R(x
μ
i , z)Ur (z)dz +

∫ x
μ
i

ημ

R(x
μ
i , z)Uμ(z)dz. (11)

where

Uμ
i := [uμ

0i , u
μ
1i , · · · , u

μ
Qi]′, i = 0, 1, · · · , N, μ = 0, 1, · · · , M,
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Uμ(z) := [Uμ
0 (z), U

μ
1 (z), · · · , U

μ
Q(z)]′, μ = 0, 1, · · · , M.

For simplicity, we denote

zr(v) := ηr+1 − ηr

2
v + ηr+1 + ηr

2
, v ∈ [−1, 1],

ζi(v) := xi + 1

2
v + xi − 1

2
, v ∈ [−1, 1].

Then Eq. 11 can be written as follows

Uμ
i ≈ f(xμ

i ) +
μ−1∑
r=0

hr

∫ 1

−1
R
(
x

μ
i , zr (v)

)
Ur

(
zr(v)

)
dv

+hμ
xi+1
2

∫ 1

−1
R
(
x

μ
i , zμ(ζi(v))

)
Uμ

(
zμ(ζi(v))

)
dv.

(12)

Using the Gauss quadrature formula for the integral term we can approximate (12)
as follows

Uμ
i = f(xμ

i ) + S(x
μ
i ), (13)

where

S(x
μ
i ) :=

μ−1∑
r=0

hrSr + hμ

xi + 1

2
Sμ, (14)

Sr := [Sr
0, S

r
1, · · · , Sr

Q]′, Sr
p :=

Q∑
q=0

N∑
j=0

ur
qjRpq(x

μ
i , zr (vj ))ωj ,

Sμ := [Sμ
0 , S

μ
1 , · · · , S

μ
Q]′, Sμ

p :=
Q∑

q=0

N∑
j=0

u
μ
qj

N∑
k=0

Rpq(x
μ
i , zμ(ζi(vk)))Fj (ζi(vk))ωk,

here vk, k = 0, 1, · · · , N are the Legendre Gauss-Lobatto points in the standard
interval [-1,1], corresponding to the weights ωk, k = 0, 1, · · · , N . Our goal is to find
Uμ

i such that

Uμ
i = f(xμ

i ) +
μ−1∑
r=0

hrSr + hμ

xi + 1

2
Sμ,

i = 0, 1, · · · , N, μ = 0, 1, · · · , M.

(15)

The approximation to y(t) is U( 2
T

t −1). An efficient computation of Fj (s) can be
found in [4] or [31].

In order to solve the discrete system (13) easily by computer, we write it into
matrix form. Let

U
μ
q := [uμ

q0, u
μ
q1, · · · , u

μ
qN ], μ = 0, 1, · · · , M,

U
μ := [Uμ

0 ,U
μ
1 , · · · ,U

μ
Q]′, μ = 0, 1, · · · , M,

F
μ
q := [fq(x

μ
0 ), fq(x

μ
1 ), · · · , fq(x

μ
N)], μ = 0, 1, · · · , M,

F
μ := [Fμ

0 ,F
μ
1 , · · · ,F

μ
Q]′, μ = 0, 1, · · · , M.



390 Z. Gu

Then Eq. 13 can be written as

U
μ = F

μ +
μ−1∑
r=0

hrArU
r + hμAμU

μ, (16)

where
Ar := [Aqp](Q+1)×(Q+1), r = 0, 1, · · · , μ.

Aqp := [aij ](N+1)×(N+1),

aij := Rqp(x
μ
i , zr (vj ))wj , if r = 0, 1, · · · , μ − 1,

aij := xi + 1

2

N∑
k=0

Rqp(x
μ
i , zμ(ζi(vk)))Fj (ζi(vk))wk, if r = μ.

Since f(t),R(x, z), Fj (z) are continuous on their definition domain, the elements
of matrix F

μ, Ar and Aμ, μ = 0, 1, · · · , M are all bounded. The Neumann Lemma
( see [21], page 26, or [1], page 87) then shows that the inverse of the matrix

B(μ) := I − hμAμ

exists whenever
hμ‖Aμ‖ < 1

for some matrix norm. This clearly holds whenever hμ is sufficiently small. This
ensures (16) possesses an unique solution.

3 Some useful lemmas

In this section, we will provide some elementary lemmas, which are important for
the derivation of error estimate in Section 4. In order to give the subsequent lemmas
conveniently, we first introduce some spaces. For simplicity, we denote by ∂k

xu(x)

the k-th derivative of u, i.e., ∂k
xu(x) := dku

dxk (x).

Let (a, b) be a bounded interval of the real line. We denote by L2(a, b) the space
of the measurable functions u : (a, b) → R such that

∫ b

a
|u(x)|2dx < +∞. It is a

Hilbert space for the inner product

(u, v) :=
∫ b

a

u(x)v(x)dx,

which induces the norm

‖v‖L2(a,b) :=
(∫ b

a

|v(x)|2dx
)1/2

.

Let m ≥ 1 be an integer. We define Hm(a, b) to be the vector space of the
functions v ∈ L2(a, b) such that all the distribution of v of order up to m can be
represented by functions in L2(a, b). In short,

Hm(a, b) := {v ∈ L2(a, b) : for 0 ≤ k ≤ m, ∂k
xv(x) ∈ L2(a, b)}.
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Hm(a, b) is endowed with the inner product

(u, v)m =
m∑

k=0

∫ b

a

∂k
xu(x)∂k

x v(x)dx

for which Hm(a, b) is a Hilbert space. The associated norm is

‖v‖Hm(a,b) :=
(
(v, v)m

) 1
2
.

In bounding from the above approximation error, only some of the L2-norms
appearing on the right-hand side of the above norm enter into play. Thus, for a
nonnegative integer N , it is convenient to introduce the semi-norm

|v|Hm;N(a,b) :=
( m∑

k=min(m,N+1)

‖∂k
x v(x)‖2

L2(a,b)

) 1
2
,

which implies that if N > m − 1 then |v|Hm;N(a,b) = ‖∂m
x v‖L2(a,b).

The space L∞(a, b) is the Banach space of the measurable functions u that are
bounded outside a set of measure zero, equipped the norm

‖u‖L∞(a,b) := ess sup
x∈(a,b)

|u(x)|.

We denote by C([a, b]) the space of continuous functions on the interval [a, b].
We define an interpolation operator IN associated with the collocation points XN

as follows: for any continuous functions u ∈ C([−1, 1]),
INu(x) := I

μ
N(u|σμ)(x), if x ∈ (ημ, ημ+1], 0 ≤ μ ≤ M, (17)

where u|σμ(x) is the restriction of u(x) to the subinterval [ημ, ημ+1], and I
μ
N is the

interpolation operator associated with the collocation points Xμ in the subinterval
[ημ, ημ+1], i.e.,

I
μ
N(u|σμ)(x) :=

N∑
j=0

u|σμ(x
μ
j )F

μ
j (x), x ∈ [ημ, ημ+1].

If A(t) = (aij (t))m×n is a matrix function of t ∈ (a, b), we define

|A(t)| :=
m∑

i=1

n∑
j=1

|aij (t)|,

it is a non-negative real function with respect to t . We define this function’s norms in
L∞(a, b) and L2(a, b) as the follows respectively,

‖A‖L∞(a,b) := ess sup
t∈(a,b)

|A(t)|,

‖A‖L2(a,b) :=
∫ b

a

|A(t)|2dt.

Hereafter, C denotes a generic positive constant that is independent of N .
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Lemma 1 Assume that u ∈ Hm(−1, 1), m ≥ 1, v(x) is a bounded function. Then
there exists a constant C independent of u and v such that for N > m − 1,

‖u − JNu‖L2(−1,1) ≤ CN−m‖∂m
x u‖L2(−1,1), (18)

‖ u − JNu ‖L∞(−1,1)≤ CN1/2−m‖∂m
x u‖L2(−1,1), (19)

sup
N

‖ JNv ‖L2(−1,1)≤ C‖v‖L∞(−1,1), (20)

‖JNv‖L∞(−1,1) ≤ CN1/2‖v‖L∞(−1,1), (21)
where JN is the interpolation operator associated with the N + 1-point Legendre
Gauss-Lobatto points in the interval [−1, 1].

Proof The interpolation error estimate in L2-norm (see [4] page315), i.e.,

‖uq − JNuq‖L2(−1,1) ≤ CN−m‖∂m
x uq‖L2(−1,1)

helps to deduce the inequality (*) in the following derivation.

‖(I − JN)u‖L2(−1,1) =
∥∥∥∥∥∥

Q∑
q=0

|(I − JN)uq |
∥∥∥∥∥∥

L2(−1,1)

=
⎛
⎜⎝
∫ 1

−1

⎛
⎝ Q∑

q=0

|(I − JN)uq |
⎞
⎠

2

dx

⎞
⎟⎠

1/2

≤
⎛
⎜⎝
∫ 1

−1

⎛
⎜⎝
⎛
⎝ Q∑

q=0

|(I − JN)uq |2
⎞
⎠

1/2⎛
⎝ Q∑

q=0

1

⎞
⎠

1/2
⎞
⎟⎠

2

dx

⎞
⎟⎠

1/2

≤ C

⎛
⎝ Q∑

q=0

‖(I − JN)uq‖2
L2(−1,1)

⎞
⎠

1/2

(∗)≤ CN−m

⎛
⎝ Q∑

q=0

‖∂m
x uq‖2

L2(−1,1)

⎞
⎠

1/2

= CN−m

⎛
⎝ Q∑

q=0

∫ 1

−1
(∂m

x uq(x))2dx

⎞
⎠

1/2

= CN−m

⎛
⎝
∫ 1

−1

Q∑
q=0

(∂m
x uq(x))2dx

⎞
⎠

1/2

≤ CN−m

(∫ 1

−1
(|∂m

x u|(x))2dx

)1/2

= CN−m‖∂m
x u‖L2(−1,1). (22)
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In short

‖(I − JN)u‖L2(−1,1) ≤ CN−m‖∂m
x u‖L2(−1,1). (23)

This is Eq. 18.
For uq , using the Sobolev inequality ([4], page 490), we have

‖(I − JN)uq‖L∞(−1,1) ≤ C‖(I − JN)uq‖1/2
L2(−1,1)

‖(I − JN)uq‖1/2
H 1(−1,1)

.

Applying the result (18) to ‖(I − JN)uq‖1/2
L2(−1,1)

makes the above inequality
become

‖(I − JN)uq‖L∞(−1,1) ≤ CN−m/2‖∂m
x uq‖1/2

L2(−1,1)
‖(I − JN)uq‖1/2

H 1(−1,1)
, (24)

which leads to Eq. 19 because ‖(I − JN)uq‖1/2
H 1(−1,1)

can be estimated as follows
([4], page 289),

‖(I − JN)uq‖1/2
H 1(−1,1)

≤ CN(1−m)/2‖∂m
x uq‖1/2

L2(−1,1)
.

Then

‖(I − JN)u‖L∞(−1,1) =
∥∥∥∥∥∥

Q∑
q=0

|(I − JN)uq |
∥∥∥∥∥∥

L∞(−1,1)

≤
Q∑

q=0

‖(I − JN)uq‖L∞(−1,1)

≤ CN1/2−m

Q∑
q=0

‖∂m
x uq‖L∞(−1,1)

≤ CN1/2−m(Q + 1)‖∂m
x u‖L∞(−1,1)

= CN1/2−m‖∂m
x u‖L∞(−1,1). (25)

This gives (19).
The following result will give (20),

sup
N

‖JNv‖L2(−1,1) ≤ sup
N

‖(JN − I )v‖L2(−1,1) + ‖v‖L2(−1,1)

(∗∗)≤ C‖v‖L∞(−1,1) + ‖v‖L∞(−1,1)

≤ C‖v‖L∞(−1,1), (26)

where the inequality (**) is derived by Eq. 18 with m = 0.
The following results give (21),

‖JNv‖L∞(−1,1) = ‖(JN − I )v‖L∞(−1,1) + ‖v‖L∞(−1,1)

(∗∗∗)≤ CN1/2‖v‖L∞(−1,1) + ‖v‖L∞(−1,1)

≤ CN1/2‖v‖L∞(−1,1) (27)
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where the inequality (***) is derived by Eq. 19 with m = 0.

The above lemma will help us to deduce the following lemma.

Lemma 2 Let u(x) be the exact solution to Eq. 4 with the data functions possess-
ing continuous derivatives of order m. INu(x) is the interpolation function defined
in Eq. 17 where N + 1 means the number of collocation points in the intervals
[ημ, ημ+1], μ = 0, 1, · · · , N − 1. Then the following estimates hold for N > m − 1,

‖(I − IN)u‖L2(−1,1) ≤ ChmN−m‖∂m
x u‖L2(−1,1), (28)

‖(I − IN)u‖L∞(−1,1) ≤ Chm− 1
2 N

1
2−m‖∂m

x u‖L2(−1,1), (29)

sup
N

‖ INu ‖L2(−1,1)≤ C‖u‖L∞(−1,1), (30)

‖INu‖L∞(−1,1) ≤ CN1/2‖u‖L∞(−1,1). (31)

Proof The estimate (18) helps to deduce the inequality (****) in the following
derivation.

‖(I − IN)u‖2
L2(−1,1) =

M∑
μ=0

∫ ημ+1

ημ

|(I − I
μ
N)(u|σμ)(z)|2dz

=
M∑

μ=0

hμ

∫ 1

−1
|(I − I

μ
N)(u|σμ)(zμ(v))|2dv

=
M∑

μ=0

hμ‖(I − I
μ
N)(u|σμ)(zμ(·))‖2

L2(−1,1)

=
M∑

μ=0

hμ‖(I − JN)(u|σμ)(zμ(·))‖2
L2(−1,1)

(∗∗∗∗)≤ CN−2m
M∑

μ=0

hμ

∥∥∥∂m
v

(
(u|σμ)(zμ(·))

)∥∥∥2
L2(−1,1)

≤ CN−2m
M∑

μ=0

h2m+1
μ

∥∥∥
(
∂m
z (u|σμ)

)
(zμ(·))

∥∥∥2
L2(−1,1)

≤ Ch2mN−2m
M∑

μ=0

∥∥∂m
z (u|σμ)

∥∥2
L2(σμ)

= Ch2mN−2m
∥∥∂m

z u
∥∥2

L2(−1,1) . (32)



Piecewise spectral collocation method for system of VIEs 395

By the definition of I
μ
N we know that the (I

μ
N(u|σμ))(x) is a function defined on

the subinterval [ημ, ημ+1]. The variable transformation x = xμ(z) changes it to be a
function valued on the standard interval [−1, 1], i.e.,

(I
μ
N(u|σμ))(xμ(z)) =

N∑
j=0

u|σμ(x
μ
j )F

μ
j (xμ(z)) =

N∑
j=0

u|σμ(x
μ
j )Fj (z), z ∈ [−1, 1].

(33)

The second equality above holds because we note that F
μ
j (xμ(z)) = Fj (z), z ∈

[−1, 1]. In another hand, we note that u|σμ(xμ(z)) is a function defined on the inter-
val [−1, 1]. Its interpolation polynomial associated with Legendre Gauss-Lobatto
points zj , j = 0, 1, · · · , N in the interval [−1, 1] is

JN

(
u|σμ(xμ(z))

)
=

N∑
j=0

u|σμ(xμ(zj ))Fj (z), z ∈ [−1, 1]. (34)

Note that xμ(zj ) = x
μ
j , j = 0, 1, · · · , N. Plugging this into the right hand side of

Eq. 34 yields

JN

(
u|σμ(xμ(z))

)
=

N∑
j=0

u|σμ(x
μ
j )Fj (z), z ∈ [−1, 1]. (35)

Combining Eq. 33 with Eq. 35 yields

(
I

μ
N(u|σμ)

)
(xμ(z)) = JN

(
u|σμ(xμ(z))

)
, z ∈ [−1, 1]. (36)

Now we begin to prove (29). Using Eqs. 19 and 36, we have

∥∥∥(I − IN)u
∥∥∥

L∞(−1,1)
≤ max

0≤μ≤M

{∥∥∥(I − I
μ
N)(u|σμ)

∥∥∥
L∞(σμ)

}

= max
0≤μ≤M

{∥∥∥(I − JN)(u|σμ(zμ(·)))
∥∥∥

L∞(−1,1)

}

≤ CN
1
2−m max

0≤μ≤M

{∥∥∥∂m
v u|σμ(zμ(·)))

∥∥∥
L2(−1,1)

}

≤ CN
1
2−m max

0≤μ≤M

{
hm

μ

∥∥∥∂m
z (u|σμ)(zμ(·))

∥∥∥
L2(−1,1)

}

≤ Chm−1/2N
1
2−m max

0≤μ≤M

{∥∥∥∂m
z (u|σμ)

∥∥∥
L2(σμ)

}

≤ Chm−1/2N
1
2−m

∥∥∥∂m
z u

∥∥∥
L2(−1,1)

. (37)
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Now we begin to prove (30). The result (20) is used in the following derivation,

sup
N

‖INu‖2
L2(−1,1) = sup

N

∫ 1

−1
|INu(z)|2dz = sup

N

M∑
μ=0

∫ ημ+1

ημ

∣∣Iμ
Nu|σμ(z)

∣∣2 dz

= sup
N

M∑
μ=0

hμ

∫ 1

−1

∣∣∣JN(u|σμ(zμ(v)))

∣∣∣2dv

≤
M∑

μ=0

hμ sup
N

∥∥∥JN(u|σμ(zμ(·)))
∥∥∥2

L2(−1,1)

≤ C

M∑
μ=0

hμ‖u|σμ(zμ(·))‖2L∞(−1,1)

= C

M∑
μ=0

hμ‖u|σμ‖2L∞(σμ) ≤ C

M∑
μ=0

hμ‖u‖2L∞(−1,1)

= C‖u‖2L∞(−1,1), (38)

which lead to the desired result (30).
Now we begin to prove (31). It is clear that

∥∥∥INu(x)

∥∥∥
L∞(−1,1)

≤ max
0≤μ≤M

{∥∥∥I
μ
N(u|σμ)

∥∥∥
L∞(σμ)

}
. (39)

We use Eq. 21 to estimate ‖Iμ
N(u|σμ)‖L∞(σμ) as follows,

∥∥∥I
μ
N(u|σμ)

∥∥∥
L∞(σμ)

=
∥∥∥(I

μ
N(u|σμ))(zμ(·))

∥∥∥
L∞(−1,1)

=
∥∥∥JN(u|σμ(zμ(·)))

∥∥∥
L∞(−1,1)

≤ CN1/2‖u|σμ(zμ(·))‖L∞(−1,1) = CN1/2‖u‖L∞(σμ)

≤ CN1/2‖u‖L∞(−1,1), (40)

which together with Eq. 39 leads to the desired result (31).

Lemma 3 [4, 25] Assume that v ∈ Hm(−1, 1) for some m ≥ 1 and ϕ ∈ PN , which
denotes the space of all polynomials of degree not exceeding N > m − 1. Then there
exists a constant C independent of N such that

∣∣∣
∫ 1

−1
v(x)ϕ(x)dx −

N∑
j=0

v(xj )ϕ(xj )ωj

∣∣∣
≤ CN−m‖∂m

x v‖L2(−1,1) ‖ ϕ ‖L2(−1,1),

where xj , j = 0, 1, · · · , N are the Legendre Gauss-Lobatto points in the interval
[−1, 1], corresponding weights ωj , j = 0, 1, · · · , N .
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Lemma 4 Assume that R(x, z) ,U(z) and S(x) are defined in Eqs. 5, 10 and 13
respectively. Then for sufficiently large N > m − 1 there exists a constant C

independent of N such that
∣∣∣
∫ x

−1
R(x, z)U(z)dz − S(x)

∣∣∣ ≤ hmN−m‖∂m
z R(x, ·)‖L2(−1,x)‖U(·)‖L2(−1,x). (41)

Proof Note that

∣∣∣
∫ x

−1
R(x, z)U(z)dz − S(x)

∣∣∣ ≤
μ−1∑
r=0

∣∣∣
( ∫ ηr+1

ηr

R(x, z)Ur (z)dz − hrSr (x)
)∣∣∣

+
∣∣∣ ∫ x

ημ
R(x, z)Uμ(z)dz − hμ

x̃+1
2 Sμ(x)

∣∣∣, x ∈ σμ,

(42)
where x̃ := 2

ημ+1−ημ
(x − ημ+1+ημ

2 ). By Lemma 3,

∣∣∣
∫ ηr+1

ηr

R(x, z)Ur (z)dz − hrSr (x)

∣∣∣

=
Q∑

p=0

∣∣∣∣∣∣
Q∑

q=0

hr

(∫ 1

−1
Rpq(x, zr(v))Ur

q (zr (v))dv − Sr
p(x)

)∣∣∣∣∣∣
≤ C

Q∑
p=0

∣∣∣
Q∑

q=0

hrN
−m‖∂m

v (Rpq(x, zr(·)))‖L2(−1,1)‖Ur
q (zr (v))‖L2(−1,1)

∣∣∣

≤ C

Q∑
p=0

∣∣∣
Q∑

q=0

hm+1
r N−m‖(∂m

z Rpq)(x, zr (·))‖L2(−1,1)‖Ur
q (zr (v))‖L2(−1,1)

∣∣∣

≤ C

Q∑
p=0

∣∣∣
Q∑

q=0

hm
r N−m‖(∂m

z Rpq)(x, ·)‖L2(σr )
‖Ur

q (·)‖L2(σr )

∣∣∣

≤ Chm
r N−m

Q∑
p=0

∣∣∣
⎛
⎝ Q∑

q=0

‖(∂m
z Rpq)(x, ·)‖2

L2(σr )

⎞
⎠

1/2 ⎛
⎝ Q∑

q=0

‖Ur
q (·)‖2

L2(σr )

⎞
⎠

1/2 ∣∣∣

≤ Chm
r N−m‖Ur (·)‖L2(σr )

Q∑
p=0

⎛
⎝ Q∑

q=0

‖(∂m
z Rpq)(x, ·)‖2

L2(σr )

⎞
⎠

1/2

≤ Chm
r N−m‖Ur (·)‖L2(σr )

‖∂m
z R(x, ·)‖L2(σr )

.

(43)
Similarly

∣∣∣
∫ x

ημ

R(x, z)Uμ(z)dz − hμ

x̃ + 1

2
Sμ(x)

∣∣∣ ≤ Chm
μN−m‖Uμ(·)‖L2(ημ,x)‖∂m

z R(x, ·)‖L2(ημ,x).

(44)

Then by the Cauchy inequality

μ∑
r=0

arbr ≤
( μ∑

r=0

a2r

)1/2( μ∑
r=0

b2r

)1/2
,
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where we let

ar = ‖∂m
z R(x, ·)‖L2(σr )

, br = ‖Ur (·)‖L2(σr )
, r = 0, 1, · · · , μ − 1,

aμ = ‖∂m
z R(x, ·)‖L2(ημ,x), bμ = ‖Uμ(·)‖L2(ημ,x),

we obtain that

∣∣∣∣
∫ x

−1
R(x, z)U(z)dz − S(x)

∣∣∣∣ ≤ ChmN−m

(
μ∑

r=0

a2r

)1/2 ( μ∑
r=0

b2r

)1/2

≤ ChmN−m‖∂m
z R(x, ·)‖L2(−1,x)‖U(·)‖L2(−1,x).

(45)
This is Eq. 41.

Lemma 5 If an integrable matrix function e(x) satisfies

e(x) = v(x) +
∫ x

−1
R(x, z)e(z)dz, x ∈ [−1, 1], (46)

where v(x) is also a nonnegative integrable matrix function and R(x, z) is a
continuous matrix function. Then

‖e(x)‖Lp(−1,1) ≤ C‖v(x)‖Lp(−1,1), p = 2, ∞.

Proof From Eq. 46 we have

|e(x)| ≤ |v(x)| + |
∫ x

−1
R(x, z)e(z)dz|

≤ |v(x)| +
∫ x

−1
|R(x, z)||e(z)|dz

≤ |v(x)| + C

∫ x

−1
|e(z)|dz,

(47)

where C is a constant dependent on R(x, z). By Gronwall inequality (see [31]) we
obtain the conclusion of this lemma.

4 Convergence analysis

This section is devoted to provide a convergence analysis for the numerical scheme.
The goal is to show that the rate of convergence is exponential, i.e., the spectral
accuracy can be obtained for the proposed approximations. Firstly, we will carry out
convergence analysis in L∞(−1, 1) space.

Theorem 1 Let u(x) be the exact solution to Eq. 4 with the data functions possess-
ing continuous derivatives of order m. U(x) is the approximate solution obtained by
using the spectral collocation schemes (13), where N +1 means the number of collo-



Piecewise spectral collocation method for system of VIEs 399

cation points in the intervals [ημ, ημ+1], μ = 0, 1, · · · , N − 1. Then for sufficiently
large N ≥ m − 1 ,

‖u(x) − U(x)‖L∞(−1,1) ≤ Chm−1/2N1/2−m
(
R̃‖u‖L∞(−1,1) + ‖∂m

x u‖L2(−1,1)

)
,

(48)
where

R̃ := max
x∈[−1,1]

∥∥∥∂m
z R(x, ·)

∥∥∥
L2(−1,x)

.

From Eq. 48 we can see that the convergence rate of the numerical errors decay
in the rate hm−1/2N1/2−m which relates to N, h and m. This implies that if the data
functions have better regularity, i.e., m is larger, the errors decay faster. If we employ
more collocation points, i.e., N is larger, we can obtained higher accuracy. If we
refining the mesh, i.e., h is smaller, the accuracy will become higher. It is worth
mentioning that N, h and m is independent of each other.

Proof Subtracting Eq. 13 from Eq. 7 yields

u(x
μ
i ) − Uμ

i =
∫ x

μ
i

−1
R(x

μ
i , z)e(z)dz + E(x

μ
i ), (49)

where
e(x) := u(x) − U(x), x ∈ [−1, 1],

E(x) :=
∫ x

−1
R(x, z)U(z)dz − S(x), x ∈ [−1, 1].

Multiplying F
μ
i (x) to both side of Eq. 49 and summing from i = 0 to N

I
μ
N(u|σμ)(x) − Uμ(x) = I

μ
N(

∫ x

−1R(x, z)e(z)dz) + I
μ
N(E|σμ)(x), x ∈ σμ. (50)

By the definition of IN we obtain that

INu(x) − U(x) = IN(
∫ x

−1R(x, z)e(z)dz) + INE(x), x ∈ [−1, 1]. (51)

Then

e(x) = (I − IN)u(x) + (IN − I )b(x) + INE(x) + b(x), x ∈ [−1, 1], (52)

where

b(x) :=
∫ x

−1
R(x, z)e(z)dz, x ∈ [−1, 1].

By Lemma 5,

‖e‖L∞(−1,1) ≤ C
(
‖(I −IN)u‖L∞(−1,1) + ‖(IN −I )b‖L∞(−1,1) + ‖INE‖L∞(−1,1)

)
.

(53)
We estimate each term of the right hand side of the above inequality one by one.
Applying (29) to u(x), we have

‖(I − IN)u‖L∞(−1,1) < Chm−1/2N1/2−m‖∂m
x u‖L2(−1,1). (54)

Now we begin to estimate ‖(IN − I )b‖L∞(−1,1). Applying (29) with m = 1 to b
yields

‖(IN − I )b‖L∞(−1,1) ≤ Ch1/2N−1/2‖∂1xb‖L2(−1,1). (55)
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Note that

|∂1xb| =
∣∣∣∣R(x, x)e(x) +

∫ x

−1

∂R
∂x

(x, z)e(z)dz

∣∣∣∣
≤ |R(x, x)||e(x)| +

∫ x

−1
|∂R
∂x

(x, z)||e(z)|dz

≤ C‖e‖L∞(−1,1).

(56)

Combining Eq. 55 with Eq. 56 yields

‖(IN − I )b‖L∞(−1,1) ≤ Ch1/2N−1/2‖e‖L∞(−1,1). (57)

Now we begin to estimate ‖INE‖L∞(−1,1). By Eq. 31 we have

‖INE‖L∞(−1,1) ≤ CN1/2‖E‖L∞(−1,1). (58)

By Eq. 41, we have

|E(x)| ≤ ChmN−m‖∂m
z R(x, ·)‖L2(−1,x)‖U‖L2(−1,x)

≤ ChmN−m‖∂m
z R(x, ·)‖L2(−1,x)

(
‖u‖L∞(−1,x) + ‖e‖L∞(−1,x)

)
.

(59)

Then

‖E‖L∞(−1,1) ≤ ChmN−mR̃
(
‖u‖L∞(−1,1) + ‖e‖L∞(−1,1)

)
, (60)

where

R̃ := sup
x∈[−1,1]

‖∂m
z R(x, ·)‖L2(−1,x).

Combining Eq. 58 with Eq. 59 we have

‖INE‖L∞(−1,1) ≤ ChmN1/2−mR̃
(
‖u‖L∞(−1,1) + ‖e‖L∞(−1,1)

)
, (61)

which together with Eqs. 53, 54, 57 and 61 yield the desired result (48).

Next, we will give the error estimate in L2(−1, 1) space.

Theorem 2 Let u(x) be the exact solution to Eq. 4 with the data functions possess-
ing continuous derivatives of order m. U(x) is the approximate solution obtained by
using the spectral collocation schemes (13), where N +1 means the number of collo-
cation points in the intervals [ημ, ημ+1], μ = 0, 1, · · · , N − 1. Then for sufficiently
large N ≥ m − 1,

‖u − U‖L2(−1,1) ≤ ChmN−m(R̃ + 1)2
(
‖u‖L∞(−1,1) + ‖∂m

x u‖L2(−1,1)

)
.

Proof By Lemma 5, it follows from Eq. 52 that

‖e‖L2(−1,1) ≤ C
(
‖(I − IN)u‖L2(−1,1) + ‖(I − IN)b‖L2(−1,1) + ‖INE‖L2(−1,1)

)
.

(62)
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Now we begin to estimate each term of the right hand side one by one. Applying
Lemma 2 to u(x), we have

‖(I − IN)u‖L2(−1,1) ≤ ChmN−m‖∂m
x u‖L2(−1,1). (63)

As the same analysis in Eqs. 55, 56 and 57, using Eq. 28 in Lemma 2 with m = 1
for b(x), we obtain

‖(I − IN)b‖L2(−1,1) ≤ ChN−1‖e‖L∞(−1,1). (64)

By Theorem 1, we get

‖(I − IN)b(x)‖L2(−1,1) ≤ Chm+1/2N−m−1/2
(
R̃‖u‖L∞(−1,1) + ‖∂m

x u‖L2(−1,1)

)
.

(65)
Now we begin to estimate ‖INE‖L2(−1,1). Applying (30) to E(x) yields

‖INE(x)‖L2(−1,1) ≤ C‖E(x)‖L∞(−1,1). (66)

By Eq. 60 and Theorem 1,

‖INE‖L2(−1,1) ≤ ChmN−m(R̃ + 1)
(
‖u‖L∞(−1,1) + ‖∂m

x u‖L2(−1,1)

)
. (67)

Combining Eq. 62 with Eqs. 65 and 67, we obtain the desired conclusion of this
theorem.

5 Numerical examples

In this section, we give numerical examples to confirm the theoretical results obtained
in the previous section.

Example 1 Consider the following system of Volterra integral equations,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y1(t) = g1(t) +
∫ t

0
et−sy1(s)ds +

∫ t

0
cos t sin sy2(s)ds +

∫ t

0
tsy3(s)ds,

y2(t) = g2(t) +
∫ t

0
e

t−s
2 y1(s)ds +

∫ t

0
ty2(s)ds +

∫ t

0
(t + s)y3(s)ds,

y3(t) = g3(t) +
∫ t

0
ty1(s)ds +

∫ t

0
ety2(s)ds +

∫ t

0
sin sy3(s)ds,

(68)

where

g1(t) = (1 − t)et + 1

2
cos t (cos 2t − 1) − 1

3
t4,

g2(t) = cos t − 2et/2(et/2 − 1) − t sin t − 5

6
t3,

g3(t) = t − t (et − 1) − et sin t + t cos t − sin t.

The corresponding exact solution is given by y1(t) = et , y2(t) = cos t, y3(t) =
t, t ∈ [0, 2].

Errors versus N and 1/h are given in Table 1 from which we can see that the
numerical results match well the theoretical results.
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Table 1 Example 1: The errors versus N and 1/h

N 2 4 6 8 10 12

L∞-error(1/h = 5) 5.45e-02 1.04e-08 5.15e-12 1.75e-12 8.19e-12 1.47e-13

1/h 5 10 20 30 40 50

L∞-error(N = 3) 3.08e-05 4.76e-07 7.41e-09 6.45e-10 1.10e-10 2.46e-11

The following example is provided to show that, in some case, multi interval
formulation is more effective than single interval formulation.

Example 2 Consider (1) with given functions

K11 = sin(30(t − s)), K12 = cos(30(t − s)), K13 = sin(30(t − s)),

K21 = sin(20(t − s)), K22 = cos(20(t − s)), K23 = sin(20(t − s)),

K31 = sin(10(t − s)), K32 = cos(10(t − s)), K33 = sin(10(t − s)),

g1(t) = 1 − 1

30
(2(1 − cos(30t)) + sin(30t)),

g1(t) = 1 − 1

20
(2(1 − cos(20t)) + sin(20t)),

g1(t) = 1 − 1

10
(2(1 − cos(30t)) + sin(10t)).

The corresponding exact solution is y1(t) = 1, y2(t) = 1, y3(t) = 1, t ∈ [0, 2].
In this example, given functions possess oscillation property. More accurately

approximating given functions or integral term needs employing more collocation
points. For the single interval formulation, employing more collocation points to
approximate given functions or integral term may result that matrix order of Eq. 16
increase. Computation time cost of solving this matrix equation will increase signif-
icantly if the matrix order increase. For the multi interval formulation, Eq. 16 is a
low-order matrix equation. Computation time cost for solving this matrix equation
is much less than the one for single interval formulation. Table 2 records numerical
errors versus computation time cost for both single interval formulation and multi
interval formulation. Numerical results show that, obtaining the same precision, com-
putation time cost for multi interval formulation is much less than the one for single
interval formulation.

Now we give an example to underline the role of m in the behavior of the error
convergence.
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Table 2 Example 2: The errors versus time cost (seconds) for single interval formulation and multi
interval formulation (N = 5)

N 8 12 16 20 24 28 32

L∞-error 2.55 1.91 5.70e-01 2.60e-03 1.22e-06 1.10e-10 5.00e-15

time cost 1.1031 4.8458 14.837 36.624 78.174 151.68 265.17

1/h 5 10 15 20 25 30 40

L∞-error 5.19e-05 5.62e-09 7.96e-11 4.24e-12 4.41e-13 7.07e-14 4.89e-15

time cost 2.6676 5.9327 9.7885 14.279 19.545 25.207 38.605

Example 3 Consider the following system of Volterra integral equations,
⎧⎨
⎩

y1(t)=g1(t) + ∫ t

0 tm+1/2y1(s)ds + ∫ t

0 tm+1/2sm+1/2y2(s)ds + ∫ t

0 sm+1/2y3(s)ds,

y2(t)=g2(t) + ∫ t

0 tm+1/2sm+1/2y1(s)ds + ∫ t

0 sm+1/2y2(s)ds + ∫ t

0 tm+1/2y3(s)ds,

y3(t)=g3(t) + ∫ t

0 sm+1/2y1(s)ds + ∫ t

0 tm+1/2y2(s)ds + ∫ t

0 tm+1/2sm+1/2y3(s)ds,

(69)
where

g1(t) = tm+1/2 − 10m + 11

(2m + 3)(2m + 2)
t2m+2 − 1

2m + 2
t3m+5/2 − 4

2m + 3
tm+3/2,

g2(t) = 1+ tm+1/2 − 1

2m + 2
t3m+5/2 − 4m + 8

2m + 3
tm+3/2 − 6m + 7

(2m + 3)(2m + 2)
t2m+2,

g3(t) = 2 + tm+1/2 − 14m + 15

(2m + 3)(2m + 2)
t2m+2 − 1

2m + 2
t3m+5/2,

The corresponding exact solution is given by y1(t) = tm+1/2, y2(t) = 1 +
tm+1/2, y3(t) = 2 + tm+1/2, t ∈ [0, 2].

It is worth noting that each integral kernel possesses continuous derivatives of m

order but the derivatives of m + 1 order is singular at the point t = 0. From Table 3
we can see that the bigger m may lead to higher accuracy for the numerical solution.
In other words, better regularity of the given functions may help to obtain higher
accuracy numerical solution. This confirms theoretical results.

Table 3 Example 3: The errors versus N (1/h = 1) and 1/h (N = 5)

N 10 12 14 16 18 20

L∞-error with m=0 5.58e-01 3.26e-01 2.07e-01 1.39e-01 9.83e-02 7.19e-02

L∞-error with m=1 8.81e-02 3.78e-02 1.80e-02 9.41e-03 5.30e-03 3.17e-03

1/h 5 10 20 30 40 50

L∞-error with m=0 2.62e-01 9.62e-02 3.45e-02 1.89e-02 1.23e-02 8.81e-03

L∞-error with m=1 2.06e-02 3.72e-03 6.64e-04 2.42e-04 1.18e-04 6.76e-05
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Consider the high order Volterra integral differential equation

y(Q)(t) = g(t) +
Q−1∑
q=0

aq(t)y(q)(t) +
∫ t

0

Q∑
q=0

Kq(t, s)y(q)(s)ds,

y(q)(0) = cq, q = 0, 1, · · · , Q − 1. (70)

It can be transformed to a system of Volterra integral equations if we let yq(t) :=
y(q)(t),

yq(t) = cq +
∫ t

0
yq+1(s)ds, q = 0, 1, · · · , Q − 1,

yQ(t) = g(t) +
Q−1∑
q=0

aq(t)

(
cq +

∫ t

0
yq+1(s)ds

)

+
∫ t

0

Q∑
q=0

Kq(t, s)yq(s)ds. (71)

Example 4 Consider (71) with Q = 2 and

a0(t) = cos t, a1(t) = et , c0 = 0, c1 = 1,

K0(t, s) = ts, K1(t, s) = sin t sin s,K2(t, s) = et/2+s ,

g(t) = − sin t − et cos t − cos t sin t − 1
2e

t/2[et (cos t − sin t) − 1]
+ 1

4 sin t[cos 2t − 1] + t2 cos t − t sin t.
(72)

The corresponding exact solution is given by y(t) = sin t, t ∈ [0, 2].
Errors versus N and 1/h are given in Table 4 from which we can see that our

method is suitable for high order Volterra integro-differential equations.

Consider a nonlinear case of Eq. 1

y(t) = g(t) +
∫ t

0
K(t, s, y0(s), · · · , yQ(s))ds, t ∈ [0, T ], (73)

where K(t, s, y0(s), · · · , yQ(s)) is of the form

K(t, s, y0(s), · · · , yQ(s)) := [K0(t, s, y0(s), · · · , yQ(s)), · · · , KQ(t, s, y0(s), · · · , yQ(s))]′.

Table 4 Example 4: The errors versus N (1/h = 5) and 1/h (N = 3)

N 2 3 4 6 8 10

L∞-error 81.4 1.17 5.98e-04 1.30e-07 1.59e-08 5.99e-11

1/h 5 10 20 40 60 80

L∞-error 1.167 1.51e-05 1.28e-06 1.36e-07 6.72e-08 4.47e-09
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Using a variable transformation it can be changed to be a new system

u(x) = f(x) +
∫ x

−1
R(x, z, u0(z), · · · , uQ(z))dz, x ∈ [−1, 1]. (74)

Similarly to Eq. 13, the numerical scheme for Eq. 74 is

Uμ
i = f(xμ

i ) +
μ−1∑
r=0

hrSr + hμ

xi + 1

2
Sμ,

i = 0, 1, · · · , N, μ = 0, 1, · · · , M,

(75)

Sr := [Sr
0, S

r
1, · · · , Sr

Q]′, Sr
p :=

N∑
j=0

Rp(x
μ
i , zr (vj ), u

r
0j , · · · , ur

Qj )ωj ,

Sμ := [Sμ
0 , S

μ
1 , · · · , S

μ
Q]′,

Sμ
p :=

N∑
k=0

Rp

⎛
⎝x

μ
i , zμ(ζi(vk)),

N∑
j=0

u
μ
0jFj (ζi(vk)), · · · ,

N∑
j=0

u
μ
QjFj (ζi(vk))

⎞
⎠ωk.

Discrete system (75) is a nonlinear system of equations with unknown elements
u

μ
qi, 0 ≤ q ≤ Q, 0 ≤ i ≤ N + 1, 0 ≤ μ ≤ M . In general, It can be solve by iterative

method. It is worthy noting that the above approach can be used for nonlinear prob-
lems just based on a numerical perspective. The corresponding convergence analysis
results need to be further studied and established.

Example 5 Consider (74) with Q = 2 and

K0(t, s, y0(s), y1(s), y2(s)) = y2
0(s) + y2

1(s) + y2
2(s),

K1(t, s, y0(s), y1(s), y2(s)) = y0(s)y1(s) + y0(s)y2(s) + y1(s)y2(s),

K2(t, s, y0(s), y1(s), y2(s)) = y0(s)y1(s)y2(s).

If we choose

g0(t) = et − [ 12 (e2t − 1) + 1
3 t

3 + 1
2 t − 1

4 sin 2t], (76)

g1(t) = t − [et t − et + 1 + 1

2
(et sin t − et cos t + 1) − t cos t + sin t],

g2(t) = sin t−1

2
{−tet cos t+tet sin t−1

2
(et sin t−et cos t+1)+et cos t−1+et sin t},

then the corresponding exact solution is y0(t) = et , y1(t) = t, y2(t) = sin t, t ∈
[0, 2].

Table 5 presents errors versus N and 1/h. From these data we can see that our
method is available for nonlinear SVIEs based on numerical perspective.

A more general nonlinear SVIEs is

yq(t) = Gq

(
t, y0(t), · · · , yQ(t),

∫ t

0
Kq(t, s, y0(s), · · · , yQ(s))ds

)
, t ∈ [0, T ],

q = 0, 1, · · · , Q.

(77)
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Table 5 Example 5: The errors versus N (1/h = 5) and 1/h (N = 3)

N 2 3 4 5 8 9

L∞-error 8.81 3.39e-01 7.61e-05 8.37e-09 5.89e-09 3.79e-10

1/h 5 15 30 40 60 70

L∞-error 3.39e-01 2.38e-04 3.66e-06 6.32e-07 2.86ee-08 1.96e-09

Using a variable transformation it can be changed to be

uq(x)=Hq

(
x, u0(x), · · · , uQ(x),

∫ x

−1 Rq(x, z, u0(z),· · ·, uQ(z))dz
)
, x ∈[−1, 1],

q = 0, 1, · · · , Q.

(78)
Its numerical scheme is

u
μ
qi = Hq

⎛
⎝x

μ
i , u

μ
0i , · · · , u

μ
Qi,

μ−1∑
r=0

hrS
r
q + hμ

xi + 1

2
Sμ

q

⎞
⎠ ,

i = 0, 1, · · · , N, μ = 0, 1, · · · , M, q = 0, 1, · · · , Q,

(79)

where

Sr
q :=

N∑
j=0

Rq(x
μ
i , zr (vj ), u

r
0j , · · · , ur

Qj )ωj ,

Sμ
q :=

N∑
k=0

Rq

⎛
⎝x

μ
i , zμ(ζi(vk)),

N∑
j=0

u
μ
0jFj (ζi(vk)), · · · ,

N∑
j=0

u
μ
QjFj (ζi(vk))

⎞
⎠ωk.

Nonlinear Volterra integral and integro-differential equation have been used
as mathematical models of population growth and related phenomena in biol-
ogy. Volterra [32] refined ”predator-prey” model as a system of nonlinear Volterra
integro-differential equations

N ′
1(t) = N1(t)

(
ε1 − γ1N2(t) −

∫ t

0
K1(t − τ)N1(τ )dτ

)
,

N ′
2(t) = N2(t)

(
−ε2 + γ2N1(t) +

∫ t

0
K2(t − τ)N2(τ )dτ

)
,

(80)

with εi > 0, γi ≥ 0 and continuous Ki(t) ≥ 0, where N1(t) and N2(t) represent
the size of two population (prey and predator) at time t ≥ 0. These equations can be
extended naturally to describe the dynamics of multi-species ecological systems.

In general case, it is very difficult to obtain the expression of the solution of Eq. 80.
In order to test the availability of our method to Eq. 80, we consider the following
case

N ′
1(t) = a1(t) + N1(t)

(
ε1 − γ1N2(t) −

∫ t

0
K1(t − s)N1(s)ds

)
,

N ′
2(t) = a2(t) + N2(t)

(
−ε2 + γ2N1(t) +

∫ t

0
K2(t − s)N2(s)ds

)
,

(81)
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Table 6 Example 6: The errors versus N (1/h = 5) and 1/h (N = 3)

N 2 3 4 5 7 9

L∞-error 4.04e-06 3.06e-08 1.98e-10 1.41e-12 3.22e-15 6.66e-16

1/h 5 15 30 40 50 65

L∞-error 3.06e-08 1.19e-10 3.66e-12 8.65e-13 2.83e-13 7.84e-14

which is equivalent to the SVIEs

N1(t) = N1(0) +
∫ t

0
N ′
1(s)ds,

N ′
1(t) = a1(t) + N1(t)

(
ε1 − γ1N2(t) −

∫ t

0
K1(t − s)N1(s)ds

)
,

N2(t) = N2(0) +
∫ t

0
N ′
2(s)ds,

N ′
2(t) = a2(t) + N2(t)

(
−ε2 + γ2N1(t) +

∫ t

0
K2(t − s)N2(s)ds

)
.

(82)

This is a nonlinear SVIEs of the form (77) where unknown functions are
N1(t), N

′
1(t), N2(t), N

′
2(t), t ∈ [0, T ].

Example 6 Consider (82) with

ε1 = ε2 = γ1 = γ2 = 1

2
,

N1(0) = 0, N2(0) = 1, K1(t − s) = K2(t − s) = t − s,

a1(t) = cos t − sin t

(
1

2
− 1

2
cos t + sin t − t

)
,

a2(t) = − sin t − cos t

(
1

2
+ 1

2
sin t − cos t

)
.

Then the exact solution is N1(t) = sin t, N2(t) = cos t, t ∈ [0, 2].

Errors versus N and 1/h are presented in Table 6 from which we can see that our
method can solve well Volterra’s population models.

6 Conclusion and remark

In this paper, a hp-version spectral collocation method is proposed for SVIEs.
The provided convergence analysis for the proposed method show that numerical
errors decay exponentially. Numerical experiments are carried out to confirm the-
oretical results. Further more, we test the availability of the proposed method for
high order Volterra integro-differential equations including the nonlinear case. Basic
errors estimate theories of piecewise spectral collocation for SVIEs are established in
this paper.



408 Z. Gu

References

1. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations.
Cambridge University Press, London (2004)

2. Biazar, J., Ebrahimi, H.: Chebyshev wavelets approach for nonlinear systems of Volterra integral
equations. Comput. Math. Appl. 608–616, 63 (2012)

3. Calio, F., Garralda-Guillem, A.I., Marchetti, E., Ruiz Galn, M.: Numerical approaches for systems of
VolterraCFredholm integral equations. Appl. Math. Comput. 225, 811–821 (2013)

4. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral method fundamentals in single
domains Spring-Verlag (2006)

5. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral method evolution to complex
geometries and application to fluid dynamics. Springer, Berlin (2007)

6. Capobianco, G., Conte, D., Del Prete, I., Russo, E.: Fast Runge-Kutta methods for nonlinear
convolution systems of Volterra integral euquations. BIT Numer. Math. 47, 259–275 (2007)

7. Chen, Y., Gu, Z.: Legendre spectral-collocation method for VIDEs with non-vanishing delay.
Commun. Appl. Math. Comput. Sci. 8, 67–98 (2013)

8. Chen, Y., Li, X., Tang, T.: A note on Jacobi spectral-collocation methods for weakly singular Volterra
integral equations with smooth solutions. J. Comput. Math. 31, 47–56 (2013)

9. Chen, Y., Tang, Y.: Spectral methods for weakly singular Volterra integral equations with smooth
solutions. J. Comput. Appl. Math. 233, 938–950 (2009)

10. Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectral-collocation methods for Volterra
integral equation with a weakly singular kernel. Math. Comput. 79, 147–167 (2010)

11. Gu, Z., Chen, Y.: Chebyshev spectral-collocation method for Volterra integral equations. Contemp.
Math. 586, 163–170 (2013)

12. Gu, Z., Chen, Y.: Legendre spectral collocation method for Volterra integral equations with non-
vanishing delay. Calcolo 51, 151–174 (2014)

13. Guo, B., Wang, L.: Jacobi interpolation approximations and their applications to singular differential
equations. Adv. Comput. Math. 14, 227–276 (2001)

14. Guo, B., Wang, L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J.
Approximation Theory 128, 1–41 (2004)

15. Jiang, W., Chen, Z.: Solving a system of linear Volterra integral equations using the new reproducing
kernel method. Appl. Math. Comput. 219, 10225–10230 (2013)

16. Katani, R., Shahmorad, S.: Block by block method for the systems of nonlinear Volterra integral
equations. Appl. Math. Model. 34, 400–406 (2010)

17. Li, X., Tang, T., Xu, C.: Parallel in time algorithm with spectral-subdomain enhancement for volterra
integral equations. SIAM J. Numer. Anal. 51, 1735–1756 (2013)

18. Maleknejad, K., Shamloo, A.S.: Numerical solution of singular Volterra integral equations system of
convolution type by using operational matrices. Appl. Math. Comput. 195, 500–505 (2008)

19. Mirzaee, F.: Numerical computational solution of the linear Volterra integral equations system via
rationalized Haar functions. J. King Saud Univ. (Science) 22, 265–268 (2010)

20. Mirzaee, F., Bimesl, S.: A new Euler matrix method for solving systems of linear Volterra
integral equations with variable coefficients. Journal of the Egyptian Mathematical Society.
doi:10.1016/j.joems.2013.06.016 (2013)

21. Ortega, J.M.: Numerical Analysis: a Second Course. Academic Press, New York (1972)
22. Rabbani, M., Maleknejad, K., Aghazadeh, N.: Numerical computational solution of the Volterra inte-

gral equations system of the second kind by using an expansion method. Appl. Math. Comput. 187,
1143–1146 (2007)

23. Sahin, N., Yuzbas, S., Gulsu, M.: A collocation approach for solving systems of linear Volterra integral
equations with variable coefficients. Comput. Math. Appl. 62, 755–769 (2011)

24. Samadi, O.R.N., Tohidi, E.: The spectral method for solving systems of Volterra integral equations. J.
Appl. Math. Comput. 40, 477–497 (2012)

25. Shen, J., Tang, T.: Spectral and High-Order Methods with Applications. Science Press, Beijing (2006)
26. Shen, J., Tang, T., Wang, L.: Spectral Method Algorithms, Analysis and Applications. Springer, Berlin

(2011)
27. Sheng, C.T., Wang, Z.Q., Guo, B.Y.: A multistep Legendre–Gauss spectral collocation method for

nonlinear volterra integral equations[J]. SIAM J. Numer. Anal. 52(4), 1953–1980 (2014)

http://dx.doi.org/10.1016/j.joems.2013.06.016


Piecewise spectral collocation method for system of VIEs 409

28. Sorkun, H.H., Yalcinbas, S.: Approximate solutions of linear Volterra integral equation systems with
variable coefficients. Appl. Math. Model. 34, 3451–3464 (2010)

29. Taghvafard, H., Erjaee, G.H.: On solving a system of singular Volterra integral equations of
convolution type. Commun. Nonlinear Sci. Numer. Simulat. 16, 3486–3492 (2011)

30. Tahmasbi, A., Fard, O.S.: Numerical solution of linear Volterra integral equations system of the second
kind. Appl. Math. Comput. 201, 547–552 (2008)

31. Tang, T., Xu, X., Cheng, J.: On Spectral methods for Volterra integral equation and the convergence
analysis. J. Comput. Math. 26, 825–837 (2008)

32. Volterra, V., Variazioni, E.: fluttuazioni del numero d’indinvidui in specie animali conviventi.
Memorie del R. Comitato talassografico italiano, Men. CXXXI (1927)

33. Wan, Z., Chen, Y., Huang, Y.: Legendre spectral Galerkin method for second-kind Volterra integral
equations. Front. Math. China 4, 181–193 (2009)

34. Wei, Y., Chen, Y.: Convergence analysis of the Legendre spectral collocation methods for second
order Volterra integro-differential equations. Numer. Math. Theory Methods Appl. 4, 419–438 (2011)

35. Wei, Y., Chen, Y.: Convergence analysis of the spectral methods for weakly singular Volterra integro-
differential equations with smooth solutions. Adv. Appl. Math. Mech. 4, 1–20 (2012)

36. Wei, Y., Chen, Y.: Legendre spectral collocation methods for pantograph volterra Delay-Integro-
Differential equations. J. Sci. Comput. 53, 672–688 (2012)

37. Wei, Y., Chen, Y.: A spectral method for neutral volterra Integro-Differential equation with weakly
singular kernel. Numer. Math. Theor. Meth. Appl. 6, 424–446 (2013)

38. Wei, Y., Chen, Y.: Legendrespectralcollocationmethodforneutralandhigh-ordervolterraintegro-
differentialequation. Appl. Numer. Math. 15-29, 81 (2014)

39. Xie, Z., Li, X., Tang, T.: Convergence analysis of spectral galerkin methods for volterra type integral
equations. J. Sci. Comput. 53, 414–434 (2012)

40. Yang, L., Shen, J., Wang, Y.: The reproducing kernel method for solving the system of the linear
Volterra integral equations with variable coefficients. J. Comput. Appl. Math. 236, 2398–2405 (2012)


	Piecewise spectral collocation method for system of VIEs
	Abstract
	Introduction
	Numerical scheme
	Some useful lemmas
	Convergence analysis
	Numerical examples
	Conclusion and remark
	References


