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Abstract In this article, we apply the newly introduced numerical method which is
a combination of Sumudu transforms and Homotopy analysis method for the solu-
tion of time fractional third order dispersive type PDE equations. It is also discussed
generalized algorithm, absolute convergence and analytic result of the finite number
of independent variables including time variable.
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Homotopy analysis Sumudu transform method · Linear and nonlinear partial
differential equation
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1 Introduction

The Fractional calculus is as old as classical calculus because importance of this the-
ory was marked as soon as the ideas of the classical calculus were born from the
discussion of half derivative in epistle of Leibniz and L‘Hpital in the year 1695. Fur-
ther, many mathematicians contributed on this theory and strengthened the notion
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of generalized order differential and integrals viz. Liouville, Euler, Fourier, Abel,
Riemann, Weyl. Liouville took initial steps for the fractional order integration and
published the series of papers (1832–1837). The Riemann–Liouville operator was
the most popular among mathematicians who solved fractional order integration
problems [1]. Evidently, up to 300 years mentioned theory was the asset of only
pure mathematicians due to unavailability of geometrical and physical interpretation
of fractional order differential and integral operators. Caputo [2] described useful
formula for generalized order derivatives. Oldham and Spanier [1] discussed the ini-
tial framework of application in diffusion problem, classical calculus with proper
explanation. Ross [3] presented the chronological development of this theory after
completing his PhD in fractional calculus and also published a monograph [4]. In
the consequence, Podlubny [5], Kilbas et al. [6], Anatoly et al. [7], Diethelm [8],
Caponetto et al. [9], Samko et al. [10] introduced the generalized differential and
integral operators in more precise form with existence and uniqueness of results in
application. Now a days, enormous model and physical phenomena like anomalous
diffusion equation theory [11], mechanics of non-Hamiltonian systems [12], theory
of long range interaction [13], astrophysics [14], optics [15], mechanics of frac-
tal media [16], plasma physics [17, 18], physical kinetics [19], quantum mechanics
[20], chaotic dynamics [21], which cannot meaningfully describe without means of
fractional operators. Because in dynamical systems, integer order derivatives only
evaluate a fixed number of derivatives wherein fractional derivatives can evaluate
the value for any arbitrary order of derivative correspond to real numbers. Payable
to its incredible scope and relevance in many branches of science and engineering,
an extensive attention has been shown to find the solution of differential and inte-
gral equations involving the fractional derivatives. Except the modelling approach of
mentioned differential equations and its solution procedure, including efficiency of
convergence, divergence or junctions solutions of the model are uniformly impor-
tant in numerical evaluation analysis. In order to achieve more convenient and highly
adorable results, numerous numerical methods have been proposed to solve the
differential equations of fractional order. Some of semi-analytic/analytic methods
or numerical methods are differential transform method [22–24], Variational iter-
ation method (VIM) [25, 26], fractional variational iteration method (FVIM)[27],
Wavelet Operational matrix method [28], generalized differential transform method
[29], Fractional sub equation method [30], Homotopy perturbation method [31–
34], Homotopy analysis method [35–38], Homotopy analysis transform method
[39–43], Fractional differential transform and Modified Fractional differential trans-
form method [44, 45], Homotopy analysis fractional Sumudu transform method
(HAFSTM) [46].

In order to convert the complex linear and nonlinear form of fractional order par-
tial differential equations into simpler algebraic form many type of fractional integral
and differential transforms have been applied to gain the exact and approximate solu-
tions of FPDE‘s [47, 48]. Kumar and his co–workers successfully applied homotopy
analysis transform method which is cumulation of Laplace transform and homotopy
analysis method for the solution of fractional Fornberg–Whitham equation arising in
wave breaking [39], volterra integral equation [40], fractional wave equations [41],
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coupled Boussinesq–Burger‘s equations arise in propagation of shallow water waves
[42], unidirectional propagation of long waves in dispersive media [43]. Watugala
[49] introduced the Sumudu transform and some properties discussed by Weerakoon
[50, 51]. Further, Belgacem [52–59] provide precise definition of Sumudu trans-
form and also discussed better implementations for the solution of FDE‘s, FPDE‘s
using many results, properties and relations, which enhances the literature of this
transform. It can easily convert many fractional order linear and nonlinear partial
differential equations in time domain without loss of generality for different type of
included fractional operator viz. Caputo, Riemann–Liouville, Ritzs space, etc. Multi-
stage HAM is introduce in [60] for Solving non-linear Riccati Differential Equations.
Since the homotopy analysis method applied to solve in wide variety of linear and
nonlinear partial differential equations such as some fractional order smoking model
[61], Lorenz system [62], a class of partial differential equations [63], space– and
time-fractional kdv equation [64], Foam Drainage Equation with Space– and Time–
Fractional Derivatives [65] and so on.The disadvantage of perturbation method is to
solve each iteration and convergence region is very less. ADM, VIM, provide week
convergent and not necessarily accurate always to exact solutions. DTM and FDTM,
MFDTM require additional information and basic formula to evaluate the results.
While HASTM is easily evaluate the nonlinear term with high accuracy due to inde-
pendence of physical parameters and absolute convergence of series towards the exact
solutions.

In this article we have applied Homotopy analysis Sumudu transform method to
solve third- order fractional dispersive partial differential equations [66–71] included
fractional derivative in caputo sense. The HASTM obtains semi analytic solutions
in the form of series solutions. It is different from other transforms and semi ana-
lytic method, which does not require additional information except some initial and
boundary conditions. It easily changes the original problem to lucid manner and then
one can evaluate the result with high convergence and accuracy.

The article taxonomy is arranged as follows: In Section 2 rudimental definitions of
fractional calculus and properties are discussed. The rudimental concept of HASTM
is explained in Section 3. To demonstrate the method and advantages, three examples
of fractional order dispersive partial differential equations are solved with discus-
sion of convergence in Section 4. At the end concluding remark is presented in
Section 5.

2 Basic definitions

Definition 2.1 A real function f (t) , t > 0, is said to be in the space Cμ, μ ∈ R

if there exists a real number p (> μ) , such that f (t) = tpf1 (t) , where f1 (t) ∈
C [0, ∞) , and it is said to be in the space Cm

μ iff f (m) ∈ Cμ, m ∈ N .

Definition 2.2 The Riemann–Liouville Fractional integral operator of order α ≥ 0,
of a function f (t) ∈ Cμ, and μ ≥ −1 is defined as [72, 73]

Jαf (t) = 1
�(α)

∫ t

0 (t − τ)α−1 f (τ) dτ, α > 0, x > 0 and J 0f (t) = f (t).
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For the Riemann–Liouville fractional integral, we have

Jαty = � (y + 1)

� (y + α + 1)
tα+y.

Definition 2.3 The fractional derivative of f (t) in the Caputo sense is defined as [1]

Dα
t f (t) =

{
Jm−αDnf (t) ,

1
�(n−α)

∫ t

0 (t − τ)m−α−1 f (m) (τ ) dτ,

where m − 1 < α ≤ m, m ∈ N, t > 0.

Definition 2.4 The Sumudu transform is defined over the set of functions [52–54]

A =
{

f (t)

∣
∣
∣
∣ ∃ M, τ1, τ2 > 0, |f (t)| < Me

|t |
τj , if t ∈ (−1)j × [0, ∞)

}

,

by the following formula

f̄ (u) = S [f (t)] =
∫ ∞

0
f (ut) e−t dt, u ∈ (−τ1, τ2) .

Definition 2.5 The Sumudu transform of f (t) = tα is defined as [53]

S
[
tα

] =
∫ ∞

0
e−t tα dt = � (α + 1) uα, R (α) > 0.

Definition 2.6 The Sumudu transform S [f (t)] of the Riemann - -Liouville frac-
tional integral is defined as [53]

S
[
Jαf (t)

] = u−αF (u) .

Definition 2.7 The Sumudu transform S [f (t)] of the Caputo fractional derivative
is defined as [53]

S
[
Dα

t f (t)
] = u−α

S [f (t)] −
m−1∑

k=0

u−α+kf (k)
(
0+)

, where m − 1 < α ≤ m.

3 Solution by Homotopy analysis Sumudu transform method

To illustrate the rudimental conception of the HASTM for the fractional partial dif-
ferential equation, we consider the linear third order dispersive partial differential
equations in following manner:

Dnα
t ξ (x1, x2, ..., xn, t) +

n∑

i=1

li
∂3ξ (x1, x2, ..., xn, t)

∂x3
i

= G (x1, x2, ..., xn, t) ; (1)

∀li , t > 0, ∀xi ∈ R, n − 1 < α ≤ n, and the G (x1, x2, ..., xn, t) is the source
function.
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For simplicity, we ignore all initial and boundary conditions, which can be treated
in a homogeneous way. Now the methodology consists of applying the Sumudu
transform first on both sides of the Eq. 1, we get

S
[
Dnα

t ξ (x1, x2, ..., xn, t)
]+ S

[
n∑

i=1

li
∂3ξ (x1, x2, ..., xn, t)

∂x3
i

]

=S[G (x1, x2, ...,xn,t)] ;
(2)

Using the definition (2.7) differentiation property of the Sumudu transform

u−α
S [ξ (x1, x2, ..., xn, t)] −

n−1∑

k=0

ξ (k) (0)

u(α−k)
+ S

[
n∑

i=1

li
∂3ξ (x1, x2, ..., xn, t)

∂x3
i

]

= S [G (x1, x2, ..., xn, t)] ;
which gives

S [ξ (x1, x2, ..., xn, t)] −
n−1∑

k=0

ξ (k) (0)

u−k
+ uα

S

[
n∑

i=1

li
∂3ξ (x1, x2, ..., xn, t)

∂x3
i

−G (x1, x2, ..., xn, t)] = 0;
(3)

we define nonlinear operator as

N [φ (x1, x2, ..., xn, t; p)] = S [φ (x1, x2, ..., xn, t; p)]− ∑n−1
k=0

φ(k)(0)
u−k

+ uα
S

[
∑n

i=1 li
∂3φ(x1,x2,...,xn,t;p)

∂x3i
− G (x1, x2, ..., xn, t; p)

]

,

(4)
where p ∈ [0, 1] be an embedding parameter and φ (x1, x2, ..., xn, t; p) is a real
function of x1, x2, ..., xn, t and p.

We construct a homotopy as follow:

(1 − p) S [φ (x1, x2, ..., xn, t; p) − ξ0 (x1, x2, ..., xn, t)]

= p�H (x1, x2, ..., xn, t)N [φ (x1, x2, ..., xn, t; p)] ; (5)

where � is a nonzero auxiliary parameter and H (x1, x2, ..., xn, t) �= 0. An aux-
iliary function ξ0 (x1, x2, ..., xn, t) is an initial guess of ξ (x1, x2, ..., xn, t) and
φ (x1, x2, ..., xn, t; p) is an unknown function.
It is important that one has great freedom to choose auxiliary parameter in HASTM.
Obviously, when p = 0 and p = 1 it holds

φ(x1,x2, ...,xn,t;0)=ξ0 (x1,x2, ...,xn,t) , φ(x1, x2, ...,xn,t;1)= ξ(x1,x2,..., xn,t).

(6)
Thus, as p increases from 0 to 1, the solution varies from initial

guess ξ0 (x1, x2, ..., xn, t) to the solutionξ (x1, x2, ..., xn, t). Now, expanding
φ (x1, x2, ..., xn, t; p) on Taylor‘s series with respect to q, we get

φ (x1, x2, ..., xn, t; p) = ξ0 (x1, x2, ..., xn, t) +
∞∑

m=1

pmξm (x1, x2, ..., xn, t) , (7)
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where

ξm (x1, x2, ..., xn, t) = 1

� (m + 1)

∂mφ (x1, x2, ..., xn, t; p)

∂pm

∣
∣
∣
∣
p=0

. (8)

The convergence of the series solution (7) is controlled by �. If the auxiliary linear
operator, the initial guess, the auxiliary parameter � and the auxiliary function are
properly chosen, the series (7) converges at p = 1. Hence we obtain

ξ (x1, x2, ..., xn, t) = ξ0 (x1, x2, ..., xn, t) +
∞∑

m=1

ξm (x1, x2, ..., xn, t) , (9)

which must be one of the solutions of original nonlinear equations. The above expres-
sion provides us with a relationship between the initial guess ξ0 (x1, x2, ..., xn, t)

and the exact solution ξ (x1, x2, ..., xn, t) by means of the terms ξm (x1, x2, ..., xn, t)

(m = 1, 2, 3, ...) , which are still to be determined.
Define the vectors

−→
ξ ={ξ0 (x1,x2,...,xn,t), ξ1(x1,x2,...,xn,t), ξ2(x1,x2,...,xn,t),..., ξm(x1,x2,...,xn,t)}.

(10)
Differentiating the zero order deformation Eq. 5 m times with respect to embed-

ding parameter p and then setting p = 0, and finally dividing them by � (m + 1) we
obtain the mth order deformation equation as follows:

S
[
ξm (x1, x2, ..., xn, t) − χmξm−1 (x1, x2, ..., xn, t)

]

= �H (x1, x2, ..., xn, t) Rm

(−→
ξ m−1, x1, x2, ..., xn, t

)
.

(11)

Operating the inverse Sumudu transform of both sides, we get

ξm (x1, x2, ..., xn, t) = χmξm−1 (x1, x2, ..., xn, t)

+S
−1

[
�H (x1, x2, ..., xn, t) Rm

(−→
ξ m−1, x1, x2, ..., xn, t

)]
,

(12)

where

Rm

(−→
ξ m−1, x1, x2, ..., xn, t

)
= 1

� (m)

∂m−1ϕ (x1, x2, ..., xn, t; p)

∂pm−1

∣
∣
∣
∣
p=0

, (13)

and

χm =
{
0, m ≤ 1,
1 m > 1.

(14)

In our case

Rm

(−→
ξ m−1,x1, x2, ...,xn, t

)
= Dnα

t ξm−1(x1,x2, ...,xn,t)+∑n
i=1 li

∂3ξm−1(x1,x2,...,xn,t)

∂x3i− (1 − χm) G (x1, x2, ..., xn, t) .

(15)
In this way, it is easy to obtain ξm (x1, x2, ..., xn, t) for m ≥ 1, at Mth order, we

have

ξ (x1, x2, ..., xn, t) =
M∑

m=0

ξm (x1, x2, ..., xn, t) , (16)

where M → ∞, we obtain an accurate approximation of the original equation (1).
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Theorem 3.1 (Convergence Theorem) If the series (16) is converging for M → ∞,

where ξm (x1, x2, ..., xn, t) is obtained by Eq. 12 and using the conditions (14) and
(15). Then, it must be the exact solution of original discussed partial differential
equation (1).

Proof Let the series (16) be the convergent series then

∞∑

m=0

ξm(x1,x2,...,xn,t)=ξ0(x1,x2,...,xn,t)+
∞∑

m=1

ξm(x1,x2,...,xn,t)=K(x1,x2,...,xn,t).

(17)
Now we have lim

M→∞ ξm (x1, x2, ..., xn, t) = 0. Using definition of Eq. 11 we

obtained

lim
M→∞

[

�H (x1, x2, ..., xn, t)

M∑

m=1

Rm

(−→
ξ m−1, x1, x2, ..., xn, t

)
]

= lim
M→∞

(
M∑

m=1

S
[
ξm (x1, x2, ..., xn, t) − χmξm−1 (x1, x2, ..., xn, t)

]
)

= lim
M→∞

(
M∑

m=1

S
[
ξm (x1, x2, ..., xn, t) − χmξm−1 (x1, x2, ..., xn, t)

]
)

= S

(

lim
M→∞

M∑

m=1

[
ξm (x1, x2, ..., xn, t) − χmξm−1 (x1, x2, ..., xn, t)

]
)

= S

(

lim
M→∞ ξM (x1, x2, ..., xn, t)

)

= 0.

Since � �= 0, H (x1, x2, ..., xn, t) �= 0, therefore
∑∞

m=1 Rm

(−→
ξ m−1, x1, x2, ..., xn, t

)
= 0.

From (15)

∞∑

m=1

Rm

(−→
ξ m−1, x1, x2, ..., xn, t

)
=

∞∑

m=1

(
Dnα

t ξm−1 (x1, x2, ..., xn, t)

+
n∑

i=1

li
∂3ξm−1 (x1, x2, ..., xn, t)

∂x3
i

− (1 − χm) G (x1, x2, ..., xn, t)

)

∞∑

m=1

Rm

(−→
ξ m−1, x1, x2, ..., xn, t

)
=

∞∑

m=1

Dnα
t ξm−1 (x1, x2, ..., xn, t)

+
∞∑

m=1

n∑

i=1

li
∂3ξm−1 (x1, x2, ..., xn, t)

∂x3
i

−
∞∑

m=1

(1 − χm) G (x1, x2, ..., xn, t)
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∞∑

m=1

Rm

(−→
ξ m−1, x1, x2, ..., xn, t

)
= Dnα

t

∞∑

m=0

ξm (x1, x2, ..., xn, t)

+
n∑

i=1

li

∂3
∞∑

m=0
ξm (x1, x2, ..., xn, t)

∂x3
i

− G (x1, x2, ..., xn, t)

Dnα
t K (x1, x2, ..., xn, t) +

n∑

i=1

li
∂3K (x1, x2, ..., xn, t)

∂x3
i

− G (x1, x2, ..., xn, t) = 0.

(18)
Above equation (18) shows that, K (x1, x2, ..., xn, t) satisfies the original problem

(1).

4 Numerical illustrations

In this section we consider the time fractional dispersive partial differential equations
to authenticate the method discussed in the previous section.

Example 4.1 We consider the linear time fractional KDV [71]

ξα
t (x, t) + 2

∂ξ (x, t)

∂x
+ ∂3ξ (x, t)

∂x3
= 0, t > 0, 0 < α ≤ 1, (19)

subject to the initial condition

ξ (x, 0) = Sin x. (20)

The exact solution at α = 1 is given by

ξ (x, t) = Sin (x − t) . (21)

Applying the Sumudu transform of both sides in Eq. (19) and after using the
definition (2.7) of Sumudu transform for fractional derivative, we get

S [ξ (x, t)] + uα
S

[

2
∂ξ (x, t)

∂x
+ ∂3ξ (x, t)

∂x3

]

= 0, t > 0. (22)

The nonlinear operator is

N[φ (x, t;p)]=S[φ (x, t;p)]+uα
S

[

2
∂φ(x, t;p)

∂x
+ ∂3φ(x, t;p)

∂x3

]

=0, t >0, 0≤p≤1,

(23)
and thus

Rm

(−→
ξ m−1, x, t

)
=S

[
ξm−1(x, t)

] + uα
S

[

2
∂ξm−1 (x, t)

∂x
+ ∂3ξm−1 (x, t)

∂x3

]

=0, t >0.

(24)
The mth− order deformation equation is given by

S
[
ξm (x, t) − χmξm−1 (x, t)

] = �H (x, t) Rm

(−→
ξ m−1, x, t

)
.
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Applying the inverse Sumudu transform, we have

ξm (x, t) = χmξm−1 (x, t) + S
−1

[
�H (x, t) Rm

(−→
ξ m−1, x, t

)]
. (25)

On solving above equation form = 1, 2, ...,. For simplicity, we chooseH (x, t) =
1,

ξ1 (x, t) = tα�Cos x

� (1 + α)
,

ξ2 (x, t) = tα�Cos x

� (1 + α)
+ t2α−1α�2 Cos x� (α)

� (1 + α) � (2α)
− t2α�2 Sin x

� (1 + 2α)
,

ξ3 (x, t) = tα�Cos x

� (1 + α)
+ 2t2α−1α�2 Cos x � (α)

� (2α)� (1 + α)
− t3α−2α�3 Cos x � (α) � (2α − 1)

� (2α)� (1 + α) � (3α − 1)

+2t3α−2α2
�
3 Cos x � (α) � (2α − 1)

� (2α) � (1 + α)� (3α − 1)
− 3tα�3 Cos x

� (1 + α)
− t3α−1α �

3 � (α) Sin x

� (1 + α)� (3α)

−2t2α�2 Sin x

� (1 + 2α)
− 2t3α−1α �

3� (2α) Sin x

� (1 + 2α) � (3α)
,

.

.

.

and so on.

Here, we consider the results upto m = 10 and rest of the components can be
evaluated by iteration formula (24).

Therefore the solution of Eq. 19 is given by

ξ (x, t) = ξ0 (x, t) +
∞∑

m=1

ξm (x, t) . (26)

At � = −1 we obtained the following approximation:

ξ (x, t) = −3 tα Cos x

� (1 + α)
+ 3 t2α−1α Cos x � (α)

� (2α) � (1 + α)
+ t3α−2α Cos x � (α) � (2α − 1)

� (2α) � (1 + α) � (3α − 1)

− 2t3α−2α2 Cos x � (α) � (2α − 1)

� (2α) � (1 + α)� (3α − 1)
+ t3α Cos x

� (1 + 3α)
+ Sin x + t3α−1α� (α) Sin x

� (3α) � (1 + α)

− 3 t2α Sin x

� (1 + 2α)
+ 2t3α−1α � (2α) Sin x

� (3α) � (1 + 2α)
+ ...,

(27)

when α = 1 Eq. 27 shows the similar results as [70] which is the exact solution of
Eq. 19

ξ (x, t) = Sin x − 1

2
t2 Sin x − t Cos x + 1

6
t3Cos x + ....

After simplification we get Eq. 21.
Figures 1, 2, 3 and 4 show that the nature of fractional derivative and fluctuation

changes from α = 0.9, 95, 1 and exact solution at α = 1.
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Fig. 1 Plot of ξ (x, t) w.r.t x
and t at α = 0.9

Example 4.2 Consider the linear time fractional KDV equation in one dimensional
space

ξα
t (x, t) + 3

∂3ξ (x, t)

∂x3
= 0, t > 0, 0 < x < 1, 0 < α ≤ 1, (28)

subject to the initial condition

ξ (x, 0) = Cos x, 0 ≤ x ≤ 1. (29)

Fig. 2 Plot of ξ (x, t) w.r.t x
and t at α = 0.95
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Fig. 3 Plot of ξ (x, t) w.r.t x
and t at α = 1

The exact solution at α = 1 is given by

ξ (x, t) = Cos (x + 3t) . (30)

Applying the Sumudu transform of both sides in Eq. 28 and after using the
definition (2.7) of Sumudu transform for fractional derivative, we get

S [ξ (x, t)] + uα
S

[

3
∂3ξ (x, t)

∂x3

]

= 0, t > 0. (31)

Fig. 4 Plot of Exact Solution of
ξ (x, t) w.r.t x and t
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The nonlinear operator is

N [φ (x, t; p)] = S [φ (x, t; p)] + 3uα
S

[
∂3φ (x, t; p)

∂x3

]

= 0, t > 0, 0 ≤ p ≤ 1,

(32)
and thus

Rm

(−→
ξ m−1, x, t

)
= S

[
ξm−1 (x, t)

] + 3uα
S

[
∂3ξm−1 (x, t)

∂x3

]

= 0, t > 0. (33)

The mth− order deformation equation is given by

S
[
ξm (x, t) − χmξm−1 (x, t)

] = �H (x, t) Rm

(−→
ξ m−1 (x, t)

)
.

Applying the inverse Sumudu transform, we have

ξm (x, t) = χmξm−1 (x, t) + S
−1

[
�H (x, t) Rm

(−→
ξ m−1 (x, t)

)]
. (34)

On solving above equation form = 1, 2, ...,. For simplicity, we chooseH (x, t) =
1

ξ1 (x, t) = 3tα� Sin x

� (1 + α)
,

ξ2 (x, t) = −9t2α�2 Cos x

� (1 + 2α)
+ 3tα� Sin x

� (1 + α)
+ 3t2α−1α�2 Sin x � (α)

� (1 + α) � (2α)
,

ξ3 (x, t) = −9t3α−1α �
3 Cos x� (α)

� (1 + α) � (3α)
− 18t2α �2 Cos x

� (1 + 2α)

−18 t3α−1α �
3 Cos x� (2α)

� (1 + 2α)� (3α)
+ 3tα� Sin x

� (1 + α)

+6t2α−1α�2 Sin x � (α)

� (1 + α)� (2α)
− 3t3α−2α�3 Sin x � (α) � (2α − 1)

� (2α) � (1 + α) � (3α − 1)

+6t3α−2α2
�
3 Sin x � (α) � (2α − 1)

� (2α)� (1 + α)� (3α − 1)
− 27t3α�3 Sin x

� (3α + 1)
,

.

.

.

and so on.

Here, we consider the results uptom = 10 and rest of the components can evaluate
by iteration formula (34).

Therefore the solution of Eq. 28 is given by

ξ (x, t) = ξ0 (x, t) +
∞∑

m=1

ξm (x, t) . (35)



HASTM for time fractional 3rd order dispersive PDE 377

At � = −1 we obtained the following approximation:

ξ (x, t) = −3 tα Cos x

� (1 + α)
+ 3 t2α−1α Cos x � (α)

� (2α) � (1 + α)
+ t3α−2α Cos x � (α) � (2α − 1)

� (2α) � (1 + α) � (3α − 1)

− 2t3α−2α2 Cos x � (α) � (2α − 1)

� (2α) � (1 + α)� (3α − 1)
+ t3α Cos x

� (1 + 3α)
+ Sin x + t3α−1α� (α) Sin x

� (3α) � (1 + α)

− 3 t2α Sin x

� (1 + 2α)
+ 2t3α−1α � (2α) Sin x

� (3α) � (1 + 2α)
+ ....

(36)

when α = 1 Eq. 36 shows the similar results as [70] which is the exact solution of
Eq. 28.

ξ (x, t) = Sin x − 1

2
t2 Sin x − t Cos x + 1

6
t3Cos x + ...

After simplification we can get Eq. 30.
As dicussed in previous example Figs. 5, 6, 7 and 8 show that the nature of frac-

tional derivative and fluctuation changes for α = 0.9, 95, 1 and exact solution at
α = 1.

Example 4.3 Now, we consider the linear time fractional KDV equation in two
dimensional space [71]

ξα
t (x, y, t) + 2

∂3ξ (x, y, t)

∂x3
+ ∂3ξ (x, y, t)

∂y3
= 0, t > 0, 0 < α ≤ 1, (37)

subject to the initial condition

ξ (x, y, 0) = Cos (x + y) . (38)

Fig. 5 Plot of ξ (x, t) w.r.t x
and t at α = 0.9
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Fig. 6 Plot of ξ (x, t) w.r.t x
and t at α = 0.95

The exact solution at α = 1 is given by

ξ (x, y, t) = Sin (x + y + 2t) . (39)

Applying the Sumudu transform of both sides in Eq. 37 and after using the
definition (2.7) of Sumudu transform for fractional derivative, we get

S [ξ (x, y, t)] + uα
S

[

2
∂3ξ (x, y, t)

∂x3
+ ∂3ξ (x, y, t)

∂y3

]

= 0, t > 0. (40)

Fig. 7 Plot of ξ (x, t) w.r.t x
and t at α = 1
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Fig. 8 Plot of Exact Solution of
ξ (x, t) w.r.t x and t

The nonlinear operator is

N[φ(x, y, t;p)] = S [φ(x, y, t;p)] + uα
S

[

2
∂3φ (x, y, t; p)

∂x3
+ ∂3φ (x, y, t; p)

∂y3

]

=0,

t > 0, 0 ≤ p ≤ 1,
(41)

and thus

Rm

(−→
ξ m−1, x, y, t

)
=S

[
ξm−1(x, y, t)

]+uα
S

[

2
∂3ξm−1 (x, y, t)

∂3x
+ ∂3ξm−1(x, y, t)

∂y3

]

=0,

t > 0.
(42)

The mth− order deformation equation is given by

S
[
ξm (x, y, t) − χmξm−1 (x, y, t)

] = �H (x, y, t) Rm

(−→
ξ m−1 (x, y, t)

)
.

Applying the inverse Sumudu transform, we have

ξm (x, y, t) = χmξm−1 (x, y, t) + S
−1

[
�H (x, y, t) Rm

(−→
ξ m−1 (x, y, t)

)]
. (43)

On solving above equation form = 1, 2, ...,. For simplicity, we chooseH (x, t) =
1,

ξ1 (x, y, t) = 2tα� Sin (x + y)

� (1 + α)
,

ξ2 (x, y, t)=−4t2α�2 Cos (x+y)

� (1+ 2α)
+2tα� Sin (x+y)

� (1+ α)
+2t2α−1α�2�(α) Sin (x+y)

� (1+ 2α) � (1+ α)
,
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ξ3 (x, t) = −4t3α−1α �
3Cos (x + y) � (α)

� (1 + α)
− 8t2α�2 Cos (x + y)

� (1 + 2α)

−8t3α−1α�3 Cos (x + y) � (2α)

� (3α)� (1 + 2α)
+ 2tα� Sin (x + y)

� (1 + α)

+4t2α−1α�2� (α) Sin (x + y)

� (1 + α) � (2α)
− 2t3α−2α �

3 � (α) � (2α−1) Sin (x + y)

� (1 + α) � (3α) � (3α − 1)

+4t3α−2α �
3 � (α) � (2α − 1) Sin (x + y)

� (1 + α) � (2α) � (3α − 1)
− 8t3α�3 Sin (x + y)

� (1 + 3α)

.

.

.

and so on.

Here, we consider the results upto m = 10 and rest of the components can be
evaluated by iteration formula (43).

Therefore the solution of Eq. 19 is given by

ξ (x, y, t) = ξ0 (x, y, t) +
∞∑

m=1

ξm (x, y, t) . (44)

At � = −1 we obtain the following approximation:

ξ (x, y, t) = Cos (x + y) + 4 t3α−1α Cos (x + y) � (α)

� (3α) � (1 + α)
− 12 t2α Cos (x + y)

� (1 + 2α)

+ 8 t3α−1α Cos (x + y) � (2α)

� (3α) � (1 + 2α)
− 6 tα Sin (x + y)

� (1 + α)
+ 6t2α−1α � (α) Sin (x + y)

� (2α)� (1 + α)

+ 2 t3α−2α � (α) � (2α − 1) Sin (x + y)

� (2α) � (1 + α)� (3α − 1)
+ 4 t3α−2α2 � (α) � (2α − 1) Sin (x + y)

� (2α) � (1 + α) � (3α − 1)

+ 8 t3αSin (x + y)

� (3α + 1)
(45)

when α = 1 Eq. 45 shows the similar results as [70] which is the exact solution of
Eq. 37

ξ (x, y, t)= Cos (x+y)−2 t2Cos (x+y) −2 t Sin (x+y) + 4

3
t3Sin (x + y) +...

After simplification we can get Eq. 39.

5 Conclusion

Here, we have applied HASTM for solving fractional third order dispersive partial
differential equations. It is shown that HASTM is an effective alternate tool for the
evaluation of linear and nonlinear partial differential equations, which is not require
any physical perturbation quantity, lucid to understand. Thus, we can conclude that
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the transform method with HAM is very effective and highly accurate for any lower
and higher order fractional partial differential equations.
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