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Abstract A general framework is constructed for efficiently and stably evaluating
the Hadamard finite-part integrals by composite quadrature rules. Firstly, the inte-
grands are assumed to have the Puiseux expansions at the endpoints with arbitrary
algebraic and logarithmic singularities. Secondly, the Euler-Maclaurin expansion of
a general composite quadrature rule is obtained directly by using the asymptotic
expansions of the partial sums of the Hurwitz zeta function and the generalized
Stieltjes constant, which shows that the standard numerical integration formula is
not convergent for computing the Hadamard finite-part integrals. Thirdly, the stan-
dard quadrature formula is recast in two steps. In step one, the singular part of the
integrand is integrated analytically and in step two, the regular integral of the remain-
ing part is evaluated using the standard composite quadrature rule. In this stage, a
threshold is introduced such that the function evaluations in the vicinity of the singu-
larity are intentionally excluded, where the threshold is determined by analyzing the
roundoff errors caused by the singular nature of the integrand. Fourthly, two prac-
tical algorithms are designed for evaluating the Hadamard finite-part integrals by
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applying the Gauss-Legendre and Gauss-Kronrod rules to the proposed framework.
Practical error indicator and implementation involved in the Gauss-Legendre rule are
addressed. Finally, some typical examples are provided to show that the algorithms
can be used to effectively evaluate the Hadamard finite-part integrals over finite or
infinite intervals.

Keywords Hadamard finite-part integral · Algebraic and logarithmic singularity ·
Puiseux series · Error asymptotic expansion · Roundoff error analysis · Composite
Gauss-Legendre rule · Gauss-Kronrod rule
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1 Introduction

Hadamard [18] introduced the concept of hypersingular integral, which was defined
to be the finite part of a divergent integral by dropping some divergent terms. This
form of integral is later identified as the Hadamard finite-part (HFP) integral, usually
denoted by =∫ b

a
f (x)dx for a given integrand f (x). A general HFP integral is typically

expressed as

H [ω, g, a, b, t, γ ] := =
∫ b

a

ω(x)g(x)

|x − t |γ dx, a ≤ t ≤ b, γ > 1, (1.1)

where ω(x) is a weakly singular weight function involving algebraic and logarithmic
endpoint singularities and g(x) is a sufficiently smooth function. A typical ω(x)
reads

ω(x) = (x − a)α(b − x)β(log(x − a))μ(log(b − x))ν, α, β > −1(real), μ, ν ≥ 0(integer).

The HFP integral (1.1) can be derived by expanding g(x) in a Taylor’s series [12].
For instance, if α − γ < −1 is not an integer and denote the integer part of γ − α by
m, then

H [(x − a)α, g, a, b, a, γ ] = =∫ b

a
(x − a)α−γ g(x)dx

= ∫ b

a
(x − a)α−γ

[

g(x) −
m−1∑

k=0

g(k)(a)
k! (x − a)k

]

dx +
m−1∑

k=0

g(k)(a)(b−a)α−γ+k+1

k!(α−γ+k+1) .

(1.2)
In addition, if α − γ ≤ −1 is an integer and denote its absolute value by m, then

H [(x − a)α, g, a, b, a, γ ] = ∫ b

a
(x − a)α−γ

[

g(x) −
m−1∑

k=0

g(k)(a)
k! (x − a)k

]

dx

+
m−2∑

k=0

g(k)(a)(b−a)α−γ+k+1

k!(α−γ+k+1) + g(m−1)(a)
(m−1)! log(b − a).

(1.3)
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The HFP integrals share some of the usual properties of regular integrals. For
instance, they are additive on the interval of integration, changes of variable are
allowed, but they do not behave well with respect to inequalities [12]. Many appli-
cations of the HFP integrals have been found in the boundary integral equations in
mechanics, electrodynamics, aerodynamics, and acoustics, which were illustrated by
Monegato [35] in a concise description. Zozulya [64] also considered the regulariza-
tion of some type divergent integrals in boundary integral equations and boundary
element methods based on the theory of distributions.

The highly efficient and highly accurate evaluations of the HFP integrals are very
important for practical applications. In the past decades, numerous work has been
devoted to the study of quadrature rules for these integrals. Here we mention two
main classes of the numerical methods. The first one is based on formula (1.2) or
(1.3). Since the integral on the right-hand side of Eq. 1.2 or Eq. 1.3 is a regular one,
we can evaluate it by the standard numerical integration methods such as the Gaussian
quadratures [10, 22, 40] and the composite Newton-Cotes type rules [13, 21, 49, 50].
The second one is the interpolation formula constructed by replacing g(x) in Eq.
1.1 by its (piecewise) Lagrange or Lagrange-Hermite interpolation polynomial based
on a set of distinct nodes [11, 16, 20, 28, 52, 56]. Monegato [32] examined some
numerical approaches for the two kinds of the methods and showed that the first
one is more accurate than the second one. Linz [28] also proved that the piecewise
linear interpolation formula (also called composite trapezoidal rule) has only first
order accuracy for γ = 2 in Eq. 1.1. But Wu and Sun [59] found this formula has
superconvergence phenomenon when the singular point coincides with some a priori
known points. Since then the superconvergence of the interpolation formulas has
been investigated intensively by some authors [52, 60, 63]. In addition, there are some
special methods which can evaluate the hypersingular integrals, see for example, the
optimal methods in the sense of accuracy [2, 3] and the numerical quadrature of
undetermined coefficient in boundary element calculation [6].

The HFP integrals can be interpreted as taking the analytic continuation of weakly
singular integrals. Actually, the first integral on the right-hand side of Eq. 1.2 is a
weakly singular integral. Hence, we can unify the treatment of the HFP integrals and
the weakly singular integrals. For the weakly singular integral involving algebraic
or logarithmic singularities at one or both endpoints, for example, H [ω, g, a, b, t, 0]
in Eq. 1.1, where ω(x) = (x − a)α or ω(x) = (x − a)α log(x − a) and α > −1
(note that here the integral is degenerated to a regular one), Navot [36, 37] gave an
extension of the Euler-Maclaurin formula when the integral is computed by gener-
alized trapezoidal rule. The results were also obtained by Lyness and Ninham [30]
via the Fourier expansion and some generalized functions. Ninham [38] also showed
that Navot’s expansions are valid for the HFP integral H [(x −a)α, g, a, b, t, 0] when
α takes any value other than a negative integer. The remaining case in which α is
a negative integer was completed by Lyness [31]. Monegato and Lyness [33] also
discussed the various Euler-Maclaurin expansions of the HFP integrals by using the
Mellin transform. Based on Navot’s results, Sidi [45, 47, 48] derived some general
Euler-Maclaurin expansions of offset trapezoidal rule approximations for weakly
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singular integrals or the HFP integrals by assuming that the integrands have asymp-
totic expansions at the endpoints. Sidi’s assumptions about f (x) can be expressed
as

f (x) =
u0∑

j=0

c
(1)
0,j

(log(x − a))μ0,j

x − a
+

u∑

i=1

ui∑

j=0

c
(1)
i,j (x − a)αi (log(x − a))μi,j + ra(x)

:= fa(x) + ra(x), x > a, (1.4)

f (x) =
v0∑

j=0

c
(2)
0,j

(log(b − x))ν0,j

b − x
+

v∑

i=1

vi∑

j=0

c
(2)
i,j (b − x)βi (log(b − x))νi,j + rb(x)

:= fb(x) + rb(x), x < b, (1.5)

where the exponents αi and βi (i = 1, 2, . . .) are all real numbers except −1 satis-
fying α1 < α2 < · · · and β1 < β2 < · · · . Here parts of αi or βi may be less than
−1. It is pointed out that the μi,j and νi,j in Eqs. 1.4 and 1.5 are all nonnegative
integers and the remainders ra(x) and rb(x) can be sufficiently smooth over [a, b] by
choosing u and v suitably large. We note that αi and βi are all complex numbers in
Sidi’s work [45, 47, 48], but here we restrict them to real numbers. If c

(1)
0,j = c

(2)
0,j = 0

and both α1, β1 > −1 in Eqs. 1.4 and 1.5, then the integral of f (x) over [a, b] is a
weakly singular integral, otherwise, it exists in the sense of HFP. Sidi considered the
case in which c

(1)
0,j = c

(2)
0,j = 0 and αi , βi are different from −1, −2, . . . in [45]. He

also considered the cases that the integrands possess arbitrary algebraic singularities
and more general algebraic-logarithmic singularities at one or both endpoints in [47]
and [48], respectively. In Sidi’s work, the trapezoidal rule was considered. We further
designed practical Gauss type rules for weakly singular integrals based on Eqs. 1.4
and 1.5 in [58].

Equations 1.4 and 1.5 have also been used by some authors to derive the asymp-
totic expansions of a class of integrals [43] and the asymptotic solution to a class of
nonlinear Volterra integral equations [19]. In [43], Sellier called the function f (x)

possessing Eq. 1.4 or Eq. 1.5 is of the first kind on the right at x = a or on the left at
x = b. Furthermore, Sellier considered the asymptotic expansion of f (x) at x = ∞

f (x) =
w0∑

j=0
c
(3)
0,j

(log x)
ρ0,j

x
+

w∑

i=1

wi∑

j=0
c
(3)
i,j x−δi (log x)ρi,j + r∞(x)

:= f∞(x) + r∞(x), x → ∞,

(1.6)

where δ1 < δ2 < · · · < δw < 1. Based on Eq. 1.6, Sellier also defined the HFP
integral over a semi-infinite interval. Monegato and Lyness [33] derived the Euler-
Maclaurin expansion of the infinite range HFP integral =∫∞

0 xαg(x)dx provided that
g(x) decays faster than any inverse power of x at infinity. Wang, Zhang and Huy-
brechs [55] derived the asymptotic expansions of oscillatory Hilbert transforms in
both the senses of Cauchy principal value and HFP.

Sellier [43] pointed out that Eq. 1.4 or Eq. 1.5 or Eq. 1.6 is unique. The expan-
sions (1.4)-(1.6) are formally called the Puiseux expansions in Mathematica, Matlab
and Maple and some literature [1, 42], which are obviously a generalization of
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Taylor’s expansions. Nowadays, the Puiseux series of a function at a point can be
easily obtained by symbolic computation, for instance, by the Series command of
Mathematica. Here we list two examples.

For the function f1(x) = arcsin x/x10, the Puiseux series at x = 0 and x = 1 are
given respectively by

f1(x) ∼ 1

x9
+ 1

6x7 + 3

40x5
+ 5

112x3
+ 35

1152x
+ 63x

2816
+ 231x3

13312
+ · · · , x → 0+, (1.7)

f1(x) ∼ π

2
− √

2
√
1 − x + 5π(1 − x) − 121

6
√
2
(1 − x)3/2 + 55

2
π(1 − x)2 + · · · , x → 1−. (1.8)

For the function f2(x) = x
3√x−3 log(1−x), the Puiseux series at x = 0 and x = 1

are given respectively by

f2(x) ∼ − 1

x2
− log x

x5/3
− (log x)2

2x4/3
− 3 + (log x)3

6x
− 12 log x + (log x)4

24x2/3

− 30(log x)2 + (log x)5

120 3
√

x
− 1

720

(
240 + 60(log x)3 + (log x)6

)
(1.9)

−
3
√

x
(
1680 log x + 105(log x)4 + (log x)7

)

5040
+ · · · , x → 0+,

f2(x) ∼
[

1 + 2(1 − x) + 10

3
(1 − x)2 + 89

18
(1 − x)3 + · · ·

]

log(1 − x), x → 1−. (1.10)

Obviously, x = 0 is a strongly singular point for both f1(x) (algebraic singularity)
and f2(x) (algebraic and logarithmic singularity) and x = 1 is also a singular point
for both f1(x) (singularity of the derivative) and f2(x) (logarithmic singularity). Here
we mention that Conceicão et al [9] developed analytical algorithms to evaluate some
classes of Cauchy type singular integrals on the unit circle by using the symbolic
computing capability of Mathematica.

One of the best methods for non-adaptive numerical integration of arbitrary
functions is the Gauss-Legendre formula [41, 53]. An attractive property of the
Gauss-Legendre rule is that all the function points are inside the range of integration
and do not include the endpoints, which means that the singularities at one or both
endpoints are unlikely to cause the formula to fail. However, the error estimates [29,
61] showed that the convergence rate is very slow when the integrands have inte-
grable singularities inside, or at one or both endpoints of the interval. More precisely,
Verlinden [54] proved an error asymptotic expansion of the Gauss-Legendre formula
for the integrand with an endpoint singularity. Sidi [46] extended the result to func-
tions that have arbitrary algebraic-logarithmic singularities at one or both endpoints.
Usually, the Gauss-Legendre rule is not progressive, so the nodes must be recom-
puted whenever additional degrees of accuracy are desired. An alternative is to use
the Gauss-Kronrod rule [5, 27, 34]. The Gauss-Kronrod rule is a variant of Gaussian
quadrature, in which the evaluation points are chosen so that an accurate approxima-
tion can be computed by reusing the information produced by the computation of a
less accurate approximation. The difference between a Gaussian quadrature rule and
its Kronrod extension is often used as an estimate of the approximation error.
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Recently, Wang et al [57] interpreted Eq. 1.4 or Eq. 1.5 without logarithms as a
general fractional Taylor’s expansion by defining high-order local fractional deriva-
tives [25, 26], from which the error asymptotic expansion of trapezoidal rule was
derived to approximate the integrals with algebraic singularities at some points by
using the formula of sums of non-integral powers. In our more recent paper [58],
we directly derived the error asymptotic expansion of a general composite quadra-
ture rule for weakly singular integrals based on the assumption that the integrands
possess Eqs. 1.4 and 1.5 with the case that c

(1)
0,j = c

(2)
0,j = 0 and both α1, β1 > −1.

By applying the error asymptotic expansion to the composite Gauss type rules and
by simplifying the evaluations of the derivatives of the Hurwitz zeta function, prac-
tical composite Gauss-Legendre and Gauss-Kronrod rules and their error estimates
are also obtained in that paper.

Following the discretizing ideas in [58], we consider the high accuracy compu-
tation of the general HFP integrals in this paper. We aim to construct a general
framework for deriving the error asymptotic expansions of a general composite
quadrature rule for the HFP integrals and then design efficient and stable algorithms
to evaluate these integrals. Firstly, we assume that the integrand possesses Eq. 1.4,
Eq. 1.5 or Eq. 1.6 at the endpoints x = a, x = b or x = ∞. Secondly, we deduce
the Euler-Maclaurin expansion of a standard composite quadrature rule by using the
asymptotic expansion of

∑n−1
k=0 (k + θ)α (log(k + θ))m, where α is an arbitrary real

number. This Euler-Maclaurin expansion formula is very general, which reveals the
essence of each composite quadrature rule. It tells us that the standard quadrature
formula is not suitable for evaluating the HFP integrals since the leading error term
involves a factor h1+α1 , which tends to infinity as h → 0 for α1 < −1. Thirdly,
we recast the standard quadrature formula so that it can evaluate the HFP integrals.
As indicated before, the HFP integral itself is a divergent one, but endowed a finite
value by discarding some divergent terms. We say a good method should reflect this
feature of the integrals. We do this in two steps. In step one, we integrate the singu-
lar part analytically since the Puiseux expansion of the integrand at its singularity is
known. In step two, we compute the regular integral of the remaining part using the
above composite quadrature rule. In this stage, we introduce a threshold such that the
function evaluations in the vicinity of the singularity are intentionally excluded and
the threshold is determined by analyzing the roundoff errors caused by the singular
nature of the integrand. Fourthly, the average sum of the derivatives of the Hurwitz
zeta function is approximately evaluated by elementary operations with high accu-
racy, such that the deduced algorithms have very high efficiency. After all these steps,
the general framework for accurately and stably evaluating the HFP integrals is for-
mulated. Finally, we obtain two practical algorithms for evaluating the HFP integrals
over finite or infinite intervals by applying the Gauss-Legendre and Gauss-Kronrod
rules to this framework.

The remainder of the paper is organized as follows. In Section 2, a collection
of the preliminaries are provided, including the definitions and properties of the
Bernoulli polynomials, the Riemann zeta function, the Hurwitz zeta function, the
generalized Stieltjes constants and the HFP integrals. In Section 3, we first derive
the error asymptotic expansion of a general composite rule for the HFP integrals
possessing algebraic or logarithmic endpoint singularities in a rather intuitive way
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and then design numerically stable formulas to evaluate these integrals. In Section
4, we consider two practical Gauss type formulas for evaluating the HFP integrals
over finite or infinite intervals, which are the composite Gauss-Legendre and Gauss-
Kronrod rules. We also provide a computable error indicator for these methods. In
Section 5, some typical numerical examples are provided to show the stability and
accuracy of these methods. We end with a brief conclusion in Section 6.

2 Preliminaries

In this section, we collect the preliminary knowledge about the Bernoulli polynomi-
als, the Riemann zeta function, the Hurwitz zeta function and the Stieltjes constants.
We state some fundamental lemmas about the asymptotic expansions of the Hurwitz
zeta function and its higher derivatives, as well as the generalized Stieltjes constants.
We also introduce the precise definition of the HFP integrals and summarize their
useful properties.

Definition 1 (Bernoulli polynomials [39]) The Bernoulli polynomials Bk(x) (k =
0, 1, 2, . . .) are defined as the coefficients of the following series

zexz

ez − 1
=

∞∑

k=0

Bk(x)

k! zk, |z| < 2π.

Furthermore, for a positive integer k the periodic Bernoulli function with period 1 is
defined by

B̃k(x) = Bk (x − [x]) ,

where [x] is the greatest integer less than or equal to x.

Definition 2 (Riemann zeta function and Hurwitz zeta function [7, 23, 24]) The
Riemann zeta function is defined by the setting

ζ(s) =
∞∑

k=1

1

ks

for Re(s) > 1 and by analytic continuation to other s �= 1.
The Hurwitz zeta function ζ(s, a) is a generalization of the Riemann zeta function.

It is classically defined by the formula

ζ(s, a) =
∞∑

k=0

1

(k + a)s

for Re(s) > 1 and by analytic continuation to other s �= 1, where any term with
k + a = 0 is excluded.

Obviously, the two zeta functions have some relations, for example, ζ(s, a) =
ζ(s, a + 1) + a−s and ζ(s, 1) = ζ(s). The Bernoulli polynomials and the Hurwitz
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zeta function have many useful properties, which are summarized in [58]. Here we
state some asymptotic expansions about the Riemann and Hurwitz zeta functions.

Lemma 1 (Some expansions of the Riemann zeta and Hurwitz zeta functions)

(1) ζ(s) and ζ(s, a) hold the Laurent expansions

ζ(s) = 1

s−1
+

∞∑

k=0

(−1)k

k
γk(s−1)k, ζ(s, a) = 1

s−1
+

∞∑

k=0

(−1)k

k
γk(a)(s−1)k,

where γk and γk(a) are the Stieltjes constants and the generalized Stieltjes
constants, respectively.

(2) For s �= −1 and 0 < a ≤ 1, the asymptotic expansion

ζ(−s, a) = as− 1

s + 1

q∑

l=0

(
s + 1

l

)

Bl(a)+(−1)q−1
(

s

q

)∫ ∞

1
B̃q(x−a)xs−qdx

holds true on condition that q > s + 1 [36].

In the following, we state some useful properties of the Stieltjes constants defined
in the Laurent expansions of zeta functions (see Lemma 1).

Lemma 2 (Properties of the Stieltjes constants)

(1) γk = γk(1), γ0 = γ , where γ is the Euler’s constant.
(2) γk(a + 1) = γk(a) − (log a)k/a for a > 0.
(3) For 0 < a ≤ 1 and m, n = 0, 1, 2, . . ., there holds [62]

γm(a) =
n∑

k=0

(log(k + a))m

k + a
− (log(n + a))m+1

m + 1
− (log(n + a))m

2(n + a)
+
∫ ∞

n

B̃1(x)g′
m(x)dx,

where gm(x) = (log(x + a))m/(x + a).

Define ηα,m(x) = xα(log x)m, which will be used in the remaining part of this
paper. For this function, we have the following lemma.

Lemma 3 For ∀α ∈ R and m = 0, 1, 2, . . ., the lth order derivative of ηα,m(x) reads

η(l)
α,m(x) = xα−l

min(l,m)∑

k=0

(
m

k

)

(log x)m−k
l−k∑

ρ=0

(ρ + 1)ks(l, k + ρ)αρ, (2.1)

where (ρ + 1)k is the standard Pochhammer symbol and s(l, k) denote the Stirling
numbers of the first kind. For ∀α, the Pochhammer symbol is defined by (α)0 = 1,
(α)k = α(α+1) · · · (α+k−1). In addition, the Stirling numbers of the first kind are
defined by the recurrence relation [39] s(l, k) = s(l − 1, k − 1) − (l − 1)s(l − 1, k)

with initial values s(0, 0) = 1, s(l, 0) = s(0, k) = 0 for l, k > 0.
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Proof For the function xα , we have

∂lxα

∂xl
= (−1)l(−α)lx

α−l .

Then, since ηα,m(x) = ∂mxα/∂αm, we obtain

η(l)
α,m(x) = ∂l

∂xl

∂mxα

∂αm
= (−1)l

m∑

k=0

(
m

k

)
dk(−α)l

dαk
xα−l(log x)m−k. (2.2)

Using a formula [8, 17]

(α)
(k)
l = (−1)l−k

l−k∑

ρ=0

(−1)ρ(ρ + 1)ks(l, k + ρ)αρ, (2.3)

and noting that (α)
(k)
l = 0 for k > l, we know Eq. 2.1 holds.

Lemma 4 (The asymptotic expansion of the generalized Stieltjes constants) For 0 <

θ ≤ 1, m = 0, 1, 2 . . . and any q ∈ N, there holds

γm(θ) = (log θ)m

θ
−

q∑

l=1

Bl(θ)

l! η
(l−1)
−1,m(1) + (−1)q−1

q!
∫ ∞

1
B̃q(x − θ)η

(q)

−1,m(x)dx.

(2.4)

Proof Taking n = 0 and replacing a by θ in the formula of Lemma 2(3) (here gm(x)

is substituted by η−1,m(x + θ)) gives

γm(θ) = (log θ)m

2θ
− (log θ)m+1

m + 1
+
∫ ∞

0
B̃1(x)η′−1,m(x + θ)dx

= (log θ)m

2θ
− (log θ)m+1

m + 1
+
∫ 1−θ

0
B1(x)η′−1,m(x + θ)dx +

∫ ∞

1−θ

B̃1(x)η′−1,m(x + θ)dx.

(2.5)

Noting that B1(x) = x − 1
2 , integrating by parts implies

∫ 1−θ

0
B1(x)η′−1,m(x + θ)dx = (log θ)m

2θ
− B1(θ)η−1,m(1) + (log θ)m+1

m + 1
.

Substituting this formula into Eq. 2.5 and taking t = x + θ for the last integral in
Eq. 2.5, we have

γm(θ) = (log θ)m

θ
− B1(θ)η−1,m(1) +

∫ ∞

1
B̃1(t − θ)η′−1,m(t)dt.

Performing integration by parts q − 1 times for the integral in the above formula,
noticing that η

(l)
−1,m(∞) = 0 for ∀l ∈ N (see Eq. 2.1) and the properties of the

Bernoulli polynomials (B ′
k(x) = kBk−1(x) and Bk(1 − x) = (−1)kBk(x) for k ≥ 1

[58]), we can obtain (2.4). The lemma is proved.
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Lemma 5 (Euler-Maclaurin expansion for sums [44, 48, 51]) Let J be an integer
and θ ∈ [0, 1]. Suppose that f (x) ∈ Cq [J, ∞), then for any integer n > J ,

n−1∑

k=J

f (k+θ) =
∫ n

J

f (x)dx+
q∑

l=1

Bl(θ)

l!
[
f (l−1)(n) − f (l−1)(J )

]
+Rq(n, θ), (2.6)

where the remainder Rq(n, θ) reads

Rq(n, θ) = − 1

q!
∫ n

J

B̃q(θ − x)f (q)(x)dx = (−1)q−1

q!
∫ n

J

B̃q(x − θ)f (q)(x)dx.

Lemma 6 For α �= −1, 0 < θ ≤ 1, and any n,m ∈ N, q > α + 1, there holds [58]

n−1∑

k=0
(k + θ)α (log(k + θ))m = (−1)mζ

(m)
α (−α, θ) + n1+α

m∑

k=0

(−1)km!
(m−k)!

(log n)m−k

(1+α)k+1

+
q∑

l=1

Bl(θ)
l! η

(l−1)
α,m (n) + Rq(n, m, α, θ),

(2.7)
where ζ

(m)
α (−α, θ) implies ∂mζ (−α, θ) /∂(−α)m and the remainder Rq(n, m, α, θ)

reads

Rq(n, m, α, θ) = (−1)q

q!
∫ ∞

n

B̃q(x − θ)η
(q)
α,m(x)dx. (2.8)

Lemma 7 For 0 < θ ≤ 1, and any n ∈ N, there holds

n−1∑

k=0

(log(k + θ))m

k + θ
= γm (θ) + (log n)m+1

m + 1
+

q∑

l=1

Bl(θ)

l! η
(l−1)
−1,m(n) + R̃q(n, m, θ),

(2.9)
where the remainder R̃q(n, m, θ) reads

R̃q(n, m, θ) = (−1)q

q!
∫ ∞

n

B̃q(x − θ)η
(q)

−1,m(x)dx. (2.10)

This lemma has been proved by Sidi [48]. Here we provide a modified version of
the proof.

Proof Let f (x) = η−1,m(x) and J = 1 in Eq. 2.6, we have

n−1∑

k=0

(log(k + θ))m

k + θ
= (log θ)m

θ
+ (log n)m+1

m + 1
+

q∑

l=1

Bl(θ)

l!
[
η

(l−1)
−1,m(n) − η

(l−1)
−1,m(1)

]
+ Rq(n, θ).

Noticing (2.4), we can obtain Eqs. 2.9 and 2.10. The proof is complete.

As we have indicated in Section 1, the HFP integral is a regularizing one of diver-
gent integral by dropping some divergent terms and keeping the finite part. Here we
provide a general definition for the integral.
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Definition 3 (The Hadamard finite-part)[43] For h > 0, there exist a family of non-
negative integers (Mi), (Ki), two real families (βi), (gij ) and a function G such
that

g(ε) =
N∑

i=0

Mi∑

j=Ki

gij ε
βi (log ε)j + G(ε), ∀ε ∈ (0, h), (2.11)

where βN < βN−1 < · · · < β1 < β0 = 0 and g00 = 0 if β0 = 0. If C =
limε→0 G(ε) exists, then C is called the finite part in the Hadamard sense of the
quantity g(ε).

Applying Definition 3 to integral, we know if

g(ε) =
∫ b

ε

f (x)dx or g(ε) =
∫ 1/ε

a

f (x)dx,

then [33]

=
∫ b

0
f (x)dx = lim

ε→0
G(ε) or =

∫ ∞

a

f (x)dx = lim
ε→0

G(ε).

For some special cases, we have for b > 0 [12, 32, 35, 43]

=
∫ b

0
xα(log x)mdx =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b1+α
m∑

k=0

(−1)km!(log b)m−k

(m − k)!(1 + α)k+1
, α �= −1,

(log b)m+1

m + 1
, α = −1,

(2.12)

and for a > 0 [43]

=
∫ ∞

a

xα(log x)mdx =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−a1+α

m∑

k=0

(−1)km!(log a)m−k

(m − k)!(1 + α)k+1
, α �= −1,

− (log a)m+1

m + 1
, α = −1.

(2.13)

We note that the first equality of Eq. 2.12 is exactly the regular one for α > −1 and
the first equality of Eq. 2.13 is also the regular one for α < −1.

Lemma 8 (Properties of the HFP integral [12, 32, 35, 43])

(1) The HFP integral is additive with respect to the union of integration intervals,
that is

=
∫ b

a

f (x)

|x − t |α dx = =
∫ t

a

f (x)

(t − x)α
dx + =

∫ b

t

f (x)

(x − t)α
dx for t ∈ (a, b) and ∀α ∈ R.

(2) If f (x) = g(x) + C0(log(x − a))m/(x − a), where g(x) may involve the term
(x − a)α(log(x − a))m, but α �= −1, then a variable transformation x =
a + (b − a)t yields [43]

=
∫ b

a

f (x)dx = (b − a)=
∫ 1

0
f (a + (b − a)t)dt + C0

(log(b − a))m+1

m + 1
.
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Lemma 9 (The infinite range HFP integral [43]) If f (x) possesses the Puiseux
expansion (1.6) at x = ∞, then

=∫∞
a

f (x)dx = =∫ b

a
f (x)dx −

w0∑

j=0
c
(3)
0,j

(log b)1+ρ0,j

1 + ρ0,j

−
w∑

i=1

wi∑

j=0
c
(3)
i,j b1−δi

ρi,j∑

k=0

(−1)kρi,j !(log b)
ρi,j −k

(ρi,j −k)!(1−δi )
k+1 + ∫∞

b
r∞(x)dx,

(2.14)

where b ≥ a is an arbitrary positive number such that f (x) has only one singularity
at x = ∞ over the interval [b, ∞).

For α > −1, we know
∫ 1
0 ζ (−α, θ) dθ = 0 [4]. Generally, we have the following

lemma.

Lemma 10 There hold

=
∫ 1

0
ζ (m)
α (−α, θ) dθ = 0 for α �= −1; =

∫ 1

0
γm (θ) dθ = 0, m = 0, 1, 2, . . . . (2.15)

Proof Taking n = 1 in Eq. 2.7, noting that η
(l−1)
α,m (1) = 0 for l ≤ m, we obtain for

q > m

(−1)mζ (m)
α (−α, θ) = θα (log θ)m − (−1)mm!

(1 + α)m+1
−

q∑

l=m+1

Bl(θ)

l! η(l−1)
α,m (1) − Rq(1,m, α, θ).

(2.16)
Noticing (2.12) (b = 1) and

∫ 1
0 Bl(x)dx = 0 for l ≥ 1, we conclude that the first

integral of Eq. 2.15 vanishes. Analogously, from Eq. 2.4, using the formula (2.12)
(b = 1) for the case α = −1, we know the second integral of Eq. 2.15 also vanishes.
The lemma is proved.

In the last of this section, we emphatically point out that the N in Eq. 2.11 can not
be extended to infinity. For example, for the function f (x) = x1/x , we have

f (x) = exp

(
log x

x

)

= 1 + log x

x
+

∞∑

m=2

(log x)m

m!xm
, x > 0.

Then for 0 < ε < 1

∫ 1/ε

1
f (x)dx = 1

ε
+ (log ε)2

2
+

∞∑

m=2

1

(m − 1)m+1
− 1 +

∞∑

m=2

m∑

k=0

(−1)mεm−1(log ε)m−k

(m − k)!(1 − m)k+1
,

∫ 1

ε

f (x)dx = − (log ε)2

2
−

∞∑

m=2

m∑

k=0

(−1)kε1−m(log ε)m−k

(m − k)!(1 − m)k+1
+ 1 −

∞∑

m=2

1

(m − 1)m+1
− ε. (2.17)
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Obviously, we have by Definition 3

=
∫ ∞

1
f (x)dx =

∞∑

m=2

1

(m − 1)m+1
− 1 = 0.06687278808178032 · · · . (2.18)

Noting that N = ∞ in Eq. 2.17, we can not obtain

=
∫ 1

0
f (x)dx = 1 −

∞∑

m=2

1

(m − 1)m+1

since
∫ 1

0
f (x)dx = 0.35349680070488065 · · · (2.19)

is a regular integral.

3 The general framework for evaluating the HFP integrals

Let f (x) be sufficiently smooth in (a, b) with Eqs. 1.4 and 1.5 at the two endpoints
x = a, b. In this section, we assume that αi �= −1, βi �= −1 and α1 < −1 or
β1 < −1, then the integral of f (x) over [a, b] only exists in the sense of Hadamard
finite-part. Since

=
∫ b

a

f (x)dx = =
∫ −a

−b

f (−t)dt, (3.1)

the singularity x = b of f (x) can be treated similarly as for the singularity x = a. In
this and next sections, we only consider the case that f (x) has only one singularity
x = a, at which the Puiseux expansion (1.4) holds. Denote by

I [f ; a, b] = =
∫ b

a

f (x)dx = =
∫ b

a

fa(x)dx +
∫ b

a

ra(x)dx, (3.2)

where fa(x), ra(x) are defined by (1.4) and =∫ b

a
fa(x)dx can be evaluated by Eq. 2.12.

Firstly, for a function g(t) ∈ C(0, 1), we define a general p-point numerical
quadrature formula

=
∫ 1

0
g(t)dt ≈

p∑

λ=1

σλg(θλ), (3.3)

where σλ > 0 and θλ ∈ (0, 1) (λ = 1, 2, . . . , p) are the weights and abscissas,
respectively. They have different values for different formulas, see for example, [41,
53] for the Gauss-Legendre rule and [5, 27, 34] for the Gauss-Kronrod rule.
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Secondly, divide [a, b] into n equal subintervals with step length h = (b − a)/n

and the nodes are denoted by xi = a + ih, where i = 0, 1, . . . , n. Then by Eqs. 1.4
and 3.3, noticing Lemma 8 (2), we have

I [f ; a, b] = =∫ x1
x0

f (x)dx +
n−1∑

k=1

∫ xk+1
xk

f (x)dx

= h
n−1∑

k=0
=∫ 1
0 f (a + (k + t)h) dt +

u0∑

j=0
c
(1)
0,j

(logh)
μ0,j +1

μ0,j +1

≈ h
p∑

λ=1
σλ

n−1∑

k=0
f (a + (k + θλ)h) +

u0∑

j=0
c
(1)
0,j

(logh)
μ0,j +1

μ0,j +1

:= Qn[f ; a, b],

(3.4)

where Qn[f ; a, b] can be regarded as a general composite numerical quadrature
formula for the HFP integral (3.2). The remainder of the formula is denoted by

En,Q[f ; a, b] = I [f ; a, b] − Qn[f ; a, b]. (3.5)

Next we shall derive the asymptotic expansion of En,Q[f ; a, b] based on Lemmas 6
and 7.

In this section, we still use the symbol ηα,m(x) = xα (log x)m. For the functions
ηα,μ(x − a) and ηα,μ(b − x), where α is an arbitrary real and μ ≥ 0 is an integer, we
have the following theorem.

Theorem 1 The error asymptotic expansions of the general composite numerical
quadrature formulas Qn[ηα,μ(· − a); a, b] and Qn[ηα,μ(b − ·); a, b] in Eq. 3.4 are
expressed as follows.

(i) For α �= −1 and q > α + 1, there holds

En,Q[ηα,μ(· − a); a, b] = En,Q[ηα,μ(b − ·); a, b]
= −h1+α

μ∑

m=0

(
μ
m

)
(−1)m (logh)μ−m

p∑

λ=1
σλζ

(m)
α (−α, θλ)

−
q∑

l=1

hl

l! η
(l−1)
α,μ (b − a)

p∑

λ=1
σλBl(θλ) + hq

q! max
0≤x≤1

∣
∣
∣
∣

p∑

λ=1
σλB̃q(x − θλ)

∣
∣
∣
∣O (1) .

(3.6)
(ii) For α = −1 and q > 0, there holds

En,Q[η−1,μ(· − a); a, b] = En,Q[η−1,μ(b − ·); a, b]
= −

μ∑

m=0

(
μ
m

)
(logh)μ−m

p∑

λ=1
σλγm (θλ)

−
q∑

l=1

hl

l! η
(l−1)
−1,μ(b − a)

p∑

λ=1
σλBl(θλ) + hq

q! max
0≤x≤1

∣
∣
∣
∣

p∑

λ=1
σλB̃q(x − θλ)

∣
∣
∣
∣O (1) .

(3.7)

Proof The case α �= −1 corresponding to Eq. 3.6 can be proved from Lemma 6, see
for example [58], where the result was obtained for α > −1, but the arguments also
hold true for α < −1. The case α = −1 for offset trapezoidal rule was proved by Sidi
[48]. Here we provide a concise version of the proof for this general quadrature rule.
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Firstly, a straightforward computation shows En,Q[η−1,μ(· − a); a, b] =
En,Q[η−1,μ(b − ·); a, b]. Secondly, taking η−1,μ(x − a) as an example, we prove
(3.7). Noting that

∑p

λ=1 σλ = 1, we have from Eq. 2.12, Eq. 3.4 and Lemma 7

En,Q[η−1,μ(· − a); a, b] = (log(b−a))μ+1

μ+1 − (logh)μ+1

μ+1

−
μ∑

m=0

(
μ
m

)
(logh)μ−m

p∑

λ=1
σλ

n−1∑

k=0

(log(k+θλ))m

k+θλ

:= T1 + T2 + T3 + T4,

(3.8)

where

T1 = −
μ∑

m=0

(
μ

m

)

(logh)μ−m

p∑

λ=1

σλγm (θλ) ,

T2 = (log(b − a))μ+1

μ + 1
− (logh)μ+1

μ + 1
−

μ∑

m=0

(
μ

m

)

(logh)μ−m (log n)m+1

m + 1
,

T3 = −
μ∑

m=0

(
μ

m

)

(logh)μ−m

p∑

λ=1

σλ

q∑

l=1

Bl(θλ)

l! η
(l−1)
−1,m(n),

T4 = −
μ∑

m=0

(
μ

m

)

(logh)μ−m

p∑

λ=1

σλR̃q (n,m, θλ) .

For η−1,m(x) = (log x)m/x, we have [48]

μ∑

m=0

(
μ

m

)

(logh)μ−m η
(l−1)
−1,m(x) = hlη

(l−1)
−1,μ(hx). (3.9)

For T2, noting that (log n)m+1/(m+1) = ∫ n

1 η−1,m(x)dx and Eq. 3.9 (l = 1), we can
deduce it vanishes. Analogously, we can deduce that

T3 = −
q∑

l=1

hl

l! η
(l−1)
−1,μ(b − a)

p∑

λ=1

σλBl(θλ).

For the remainder T4, noting (2.10) and Eq. 3.9, we have

T4 = (−1)q+1 hq

q!
∫ ∞

n

p∑

λ=1

σλB̃q(x − θλ)η
(q)

−1,μ(hx)hdx.

Noting that B̃q(x − θλ) is a periodic Bernoulli polynomial with period 1, we can
obtain

|T4| ≤ hq

q! max
0≤x≤1

∣
∣
∣
∣
∣

p∑

λ=1

σλB̃q(x − θλ)

∣
∣
∣
∣
∣

∫ ∞

b−a

∣
∣
∣η

(q)

−1,μ(x)

∣
∣
∣ dx.

From Eq. 2.1 (with α = −1), we know the integral on the right-hand side of the
above inequality exists. Substituting the expressions of Ti (i = 1, 2, 3, 4) into Eq. 3.8,
we know Eq. 3.7 holds.
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For the function f (x) ∈ C(a, b] possessing the Puiseux expansion (1.4) at x = a,
we have

En,Q[f ; a, b] =
u0∑

j=0

c
(1)
0,jEn,Q[(· − a)−1 (log(· − a))μ0,j ; a, b]

+
u∑

i=1

ui∑

j=0

c
(1)
i,j En,Q[(· − a)αi (log(· − a))μi,j ; a, b] + En,Q[ra; a, b].

Combining with Eqs. 3.6 and 3.7, we can prove the following theorem.

Theorem 2 Suppose that f (x) ∈ C(a, b] is sufficiently smooth except at x = a,
where at this endpoint, f (x) has arbitrary algebraic-logarithmic singularity and can
be expanded as the Puiseux series (1.4). When the HFP integral (3.2) is approximated
by the general composite numerical quadrature formula Qn[f ; a, b] defined by
Eq. 3.4, the error asymptotic expansion reads

En,Q[f ; a, b] = −
u0∑

j=0
c
(1)
0,j

μ0,j∑

m=0

(
μ0,j
m

)
(logh)μ0,j −m

p∑

λ=1
σλγm (θλ)

−
u∑

i=1

ui∑

j=0
c
(1)
i,j h1+αi

μi,j∑

m=0

(
μi,j

m

)
(−1)m (logh)μi,j −m

p∑

λ=1
σλζ

(m)
αi (−αi, θλ)

−
q∑

l=1

hl

l! f
(l−1)
a (b)

p∑

λ=1
σλBl(θλ) + hq

q! max
0≤x≤1

∣
∣
∣
∣

p∑

λ=1
σλB̃q(x − θλ)

∣
∣
∣
∣O (1) + En,Q[ra; a, b].

(3.10)

Theorem 2 provides an Euler-Maclaurin type error asymptotic expansion of the
general composite numerical quadrature formula for the HFP integral possessing an
algebraic and logarithmic singularity at the lower endpoint. It tells us that the standard
numerical integration formulas are not convergent for computing the HFP integral
since limh→0 h1+α1 = ∞ for α1 < −1. Furthermore, a numerical instability problem
could arise for these quadrature rules when θλ → 0+ because limx→a+ f (x) = ∞.
On the other hand, Theorem 2 also motivates us to modify the standard rules to
evaluate the HFP integrals effectively. A key point is the consideration of stability.
From Definition 3, we know the HFP integral is defined by discarding the divergent
terms. For its numerical evaluation, we should avoid computing the integrand directly
in the nearest vicinity of its each singularity.

By choosing u∗ ≤ u such that αu∗ < 0 but αu∗+1 ≥ 0, we can split the functions
fa(x) defined in (1.4) as

fa(x) = fa,1(x) + fa,2(x),

where

fa,1(x) =
u0∑

j=0
c
(1)
0,j

(log(x−a))
μ0,j

x−a
+

u∗∑

i=1

ui∑

j=0
c
(1)
i,j (x − a)αi (log(x − a))μi,j ,

fa,2(x) =
u∑

i=u∗+1

ui∑

j=0
c
(1)
i,j (x − a)αi (log(x − a))μi,j .

(3.11)
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Since αi < 0 for i = 1, 2, . . . , u∗, the function fa,1(x) is strongly or weakly singular
at x = a. Meanwhile, the function fa,2(x) is not singular but its derivative or higher
derivatives may be singular at x = a due to the positive real values of αi for i =
u∗ + 1, u∗ + 2 . . . , u.

Using Eq. 2.12, Eqs. 3.2 and 2.16, we obtain a modified version of Theorem 2.

Theorem 3 Under the conditions of Theorem 2, the HFP integral (3.2) has the
following asymptotic expansion

I [f ; a, b] = =
∫ b

a

fa,1(x)dx +
∫ b

a

(f (x) − fa,1(x))dx

=
u∗
∑

i=1

ui∑

j=0

c
(1)
i,j (b − a)1+αi

μi,j∑

m=0

(
μi,j

m

)

(log(b − a))μi,j −m (−1)mm!
(1 + αi)m+1

+
u0∑

j=0

c
(1)
0,j

(log(b − a))μ0,j +1

μ0,j + 1
+ Qn[f − fa,1; a, b] (3.12)

−
u∑

i=u∗+1

ui∑

j=0

c
(1)
i,j h1+αi

μi,j∑

m=0

(
μi,j

m

)

(logh)μi,j −m

[
p∑

λ=1

σλθ
αi

λ (log θλ)
m − (−1)mm!

(1 + αi)m+1

]

+
u∑

i=u∗+1

ui∑

j=0

c
(1)
i,j h1+αi

μi,j∑

m=0

(
μi,j

m

)

(logh)μi,j −m

q∑

l=m+1

1

l!η
(l−1)
αi ,m

(1)
p∑

λ=1

σλBl(θλ)

+
u∑

i=u∗+1

ui∑

j=0

c
(1)
i,j h1+αi

μi,j∑

m=0

(
μi,j

m

)

(logh)μi,j −m 1

q! max
0≤x≤1

∣
∣
∣
∣
∣

p∑

λ=1

σλB̃q(x − θλ)

∣
∣
∣
∣
∣
O (1)

−
q∑

l=1

hl

l! f
(l−1)
a,2 (b)

p∑

λ=1

σλBl(θλ) + hq

q! max
0≤x≤1

∣
∣
∣
∣
∣

p∑

λ=1

σλB̃q(x − θλ)

∣
∣
∣
∣
∣
O (1) + En,Q[ra; a, b].

Further by choosing λ∗
1 ≤ p, the term

T ∗
1 := Qn[f − fa,1; a, b] −

u∑

i=u∗+1

ui∑

j=0

c
(1)
i,j h1+αi

μi,j∑

m=0

(
μi,j

m

)

(logh)μi,j −m

p∑

λ=1

σλθ
αi

λ (log θλ)
m

can be approximated by

T ∗
1 ≈ h

p∑

λ=1

σλ

n−1∑

k=1

⎡

⎣f (a + (k + θλ)h) −
u0∑

j=0

c
(1)
0,j

(log((k + θλ)h))μ0,j

(k + θλ)h

−
u∗
∑

i=1

ui∑

j=0

c
(1)
i,j ((k + θλ)h)αi (log((k + θλ)h))μi,j

⎤

⎦

+h

p∑

λ=λ∗
1

σλ

⎡

⎣f (a + θλh) −
u0∑

j=0

c
(1)
0,j

(log(θλh))μ0,j

θλh
−

u∑

i=1

ui∑

j=0

c
(1)
i,j (θλh)αi (log(θλh))μi,j

⎤

⎦

(3.13)
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We note that λ∗
1 is the minimal number of λ such that

εround(θλ) ≤ εrem(θλ), (3.14)

where

εround(θλ) = εmac(θλh)α1−1

∣
∣
∣
∣
∣

u1∑

j=0
c
(1)
1,j

[
α1 + μ1,j (log(θλh))−1] (log(θλh))μ1,j

∣
∣
∣
∣
∣
,

εrem(θλ) = (θλh)αu

∣
∣
∣
∣
∣

uu∑

j=0
c
(1)
u,j (log(θλh))μu,j

∣
∣
∣
∣
∣
,

(3.15)
and εmac = 2.22045 × 10−16 is the machine precision number.

Proof (3.12) is a straightforward corollary of Eq. 3.10 combining with Eq. 2.12,
Eqs. 2.16 and 3.11. As for Eq. 3.13, noting that

hαi

μi,j∑

m=0

(
μi,j

m

)

(logh)μi,j −m

p∑

λ=1

σλθ
αi

λ (log θλ)
m =

p∑

λ=1

σλ(θλh)αi (log(θλh))μi,j .

we have by Eq. 3.4

T ∗
1 = h

p∑

λ=1
σλ

n−1∑

k=1

[
f (a + (k + θλ)h) − fa,1 (a + (k + θλ)h)

]

+h
p∑

λ=1
σλ

[
f (a + θλh) − fa,1 (a + θλh) − fa,2 (a + θλh)

]
.

(3.16)

For the evaluation of the second term on the right-hand side of Eq. 3.16, we should
consider two problems, one is the severe cancellation when calculating the difference
between f (a + θλh) and fa,1 (a + θλh) + fa,2 (a + θλh) for small θλ and the other
is the roundoff errors when calculating (θλh)αi for negative αi and small θλ. For
the first problem, we can discard very small values by computing εrem(θλ) defined
by Eq. 3.15. For the second problem, we need to evaluate the roundoff error for
ηαi,μ(x) = xαi (log x)μ. Given a perturbation ε for x, we have

ηαi,μ(x + ε) − ηαi,μ(x)

=
(
xαi + αiεx

αi−1 + · · ·
) (

(log x)μ + με

x
(log x)μ−1 + · · ·

)
− xαi (log x)μ

= εxαi−1
(

αi + μ

log x

)

(log x)μ + O(ε2).

Hence, for the function (x − a)α1
∑u1

j=0 c
(1)
1,j (log(x − a))μ1,j , we can obtain its

roundoff error εround(θλ) defined by Eq. 3.15 assuming that x − a = θλh has a per-
turbation εmac. Since α1 is the smallest value of all αi , we can say εround(θλ) is the
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leading roundoff error for the function fa,1(x). From Eq. 3.15, we know εround(θλ)

varies from large to small as θλ increases for α1 < 0, but εrem(θλ) varies from small
to large as θλ increases for αu > 0, see the logarithmic plots of them in Fig. 1
for the function f (x) = arcsin x/x10. Hence, the best choice of λ∗

1 is such that
εround(θλ) ≈ εrem(θλ), or Eq. 3.14 holds for practical purpose. The proof is complete.

Theorem 3 is somewhat lengthy, but its idea is rather simple. Firstly, the HFP inte-
gral can be decomposed as I [f ; a, b] = I [fa,1; a, b] + I [fa,2; a, b] + I [ra; a, b].
Since ra(x) is not small when x is far away from the lower endpoint a, the remaining
integral I [ra; a, b] can not be neglected. Hence, we split the integral as I [f ; a, b] =
I [fa,1; a, b] + I [f − fa,1; a, b]. Secondly, the HFP integral I [fa,1; a, b] is evalu-
ated analytically, see the first and second terms on the right-hand side of Eq. 3.12.
Thirdly, the regular integral I [f − fa,1; a, b] is approximated by quadrature for-
mula Qn[f −fa,1; a, b] with error terms involving the evaluations of ζ

(m)
αi (−αi, θλ),

which is heavy in computation. Hence, ζ
(m)
αi (−αi, θλ) is substituted by Eq. 3.16,

which yields the fourth to sixth terms on the right-hand side of Eq. 3.12. Finally,
since limx→a+ f (x) = ∞, as well as limx→a+ fa,1(x) = ∞, the direct evaluation of
f (x) − fa,1(x) will cause large roundoff error when x tends to a. The best treatment
for this difficulty is avoiding such function evaluations. Observing Eq. 3.12 carefully,
we find that the term T ∗

1 defined by Eq. 3.16 is the only one needing to treat spe-
cially. By computing εround(θλ) (perturbation error of ηα,μ(x)) and εrem(θλ) (the last
term of fa,2(x)) defined by Eq. 3.15, we can solve this problem perfectly.

Since the function evaluations at the points near the singularity are intentionally
excluded in Eq. 3.13 and the choice of λ∗

1 is nearly optimal, the algorithm based on
Eq. 3.12 is numerically stable and highly efficient.
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Fig. 1 The logarithmic graphs of εround(θλ) and εrem(θλ)
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The Puiseux expansion of a function at its singularity is needed in Eq. 3.12. This
is not hard since it can be easily proceeded by symbolic computation. Hence, we
can use Eq. 3.12 combining with Eq. 3.13 to evaluate the HFP integrals. Noting that
the last five terms on the right-hand side of Eq. 3.12 are not easy to evaluate, the
quadrature formulas with high degree of accuracy are preferable. In next section, we
present two practical composite Gaussian type rules to effectively compute the HFP
integrals.

4 Practical composite Gaussian type rules

In this section, we shall design practical Gauss-Legendre and Gauss-Kronrod quadra-
ture rules based on Theorem 3 to efficiently evaluate the HFP integrals.

4.1 Composite Gauss-Legendre algorithm

The p-point Gauss-Legendre quadrature rule has degree of accuracy as high as 2p−1.
Hence, for the Bernoulli polynomial Bl(x), we have [58]

p∑

λ=1

σλBl(θλ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, l = 1, 2, . . . , 2p − 1,

− (p!)4
(2p + 1)[(2p)!]2 , l = 2p,

0, l > 2p is odd,

− (p!)4l!
(2p + 1)[(2p)!]3(l − 2p)!Bl−2p(ξ), 0 < ξ < 1, l > 2p is even,

(4.1)

where θλ, σλ are the abscissas and weights of p-point Gauss-Legendre quadrature
formula over [0, 1], respectively. For B̃q(x − θ), it can be easily proved that [58]

max
0≤x≤1

∣
∣
∣
∣
∣

p∑

λ=1

σλB̃q(x − θλ)

∣
∣
∣
∣
∣
= (2p + 2)(p!)4

12[(2p)!]2 for q = 2p + 2. (4.2)

From (1.4), we can choose u such that αu < 2p and ra(x) ∈ C2p[a, b].
Hence, the error of the composite p-point Gauss-Legendre rule for ra(x), denoted by
En,GL[ra; a, b], reads [58]

En,GL[ra; a, b] = h2p(p!)4(b−a)

(2p+1)[(2p)!]3 r
(2p)
a (ξa), a < ξa < b. (4.3)

Taking q = 2p+2 in Eq. 3.12 and noticing (3.13), then by substituting (4.1)-(4.2)
into Eq. 3.12, we can prove the following theorem.

Theorem 4 Suppose that f (x) ∈ C(a, b] has an algebraic-logarithmic singular-
ity at x = a with the Puiseux expansion (1.4), then the HFP integral (3.2) can be
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evaluated by a modified version of p-point composite Gauss-Legendre quadrature
rule. The formula and the error read, respectively

MGLn[f ; a, b] :=
u∗
∑

i=1

ui∑

j=0

c
(1)
i,j (b − a)1+αi

μi,j∑

m=0

(
μi,j

m

)

(log(b − a))μi,j −m (−1)mm!
(1 + αi)m+1

+
u0∑

j=0

c
(1)
0,j

(log(b − a))μ0,j +1

μ0,j + 1
+ h

p∑

λ=1

σλ

n−1∑

k=1

⎡

⎣ f (a + (k + θλ)h) (4.4)

−
u0∑

j=0

c
(1)
0,j

(log((k + θλ)h))μ0,j

(k + θλ)h
−

u∗
∑

i=1

ui∑

j=0

c
(1)
i,j ((k + θλ)h)αi (log((k + θλ)h))μi,j

⎤

⎦

+h

p∑

λ=λ∗
1

σλ

⎡

⎣f (a + θλh) −
u0∑

j=0

c
(1)
0,j

(log(θλh))μ0,j

θλh
−

u∑

i=1

ui∑

j=0

c
(1)
i,j (θλh)αi (log(θλh))μi,j

⎤

⎦

+
u∑

i=u∗+1

ui∑

j=0

c
(1)
i,j h1+αi

μi,j∑

m=0

(
μi,j

m

)

(logh)μi,j −m (−1)mm!
(1 + αi)m+1

,

EGLn[f ; a, b] :=

h

λ∗
1−1∑

λ=1

σλ

⎡

⎣f (a + θλh) −
u0∑

j=0

c
(1)
0,j

(log(θλh))μ0,j

θλh
−

u∑

i=1

ui∑

j=0

c
(1)
i,j (θλh)αi (log(θλh))μi,j

⎤

⎦

− (p!)4
(2p + 1)[(2p)!]3

u∑

i=u∗+1

ui∑

j=0

c
(1)
i,j h1+αi

μi,j∑

m=0

(
μi,j

m

)

(logh)μi,j −m
[
η

(2p−1)
αi ,m (1) + O (1)

]
(4.5)

+ h2p(p!)4
(2p + 1)[(2p)!]3

[
f

(2p−1)
a,2 (b) + O(h2)

]
+ h2p+2(p!)4

12(2p + 1)[(2p)!]3 O (1)

+ h2p(p!)4(b − a)

(2p + 1)[(2p)!]3 r
(2p)
a (ξa),

where u∗ is defined such that αu∗ < 0, but αu∗+1 ≥ 0 and λ∗
1 is defined by Eq.

3.14-3.15.

Theorem 4 shows that the Gauss-Legendre rule can be used to accurately and
stably evaluate the HFP integrals. In practical computation, some issues need to be
addressed.

Firstly, we should know in prior the power exponents αi , μi,j and the cor-

responding coefficients c
(1)
i,j in the Puiseux expansion (1.4), which can be easily

obtained by symbolic computation. For instance, by using the Series command of
Mathematica, we have the Puiseux series

s=Normal[Series[f [x], {x, a, 8},Assumptions → a < x < b]]
s=s/.{x − a → t, x → t + a}

From the series expansion s we can obtain the power exponents and their coeffi-
cients. For the HFP integral, the power exponents αi may be any real numbers or
even complex ones.



340 T. Wang et al.

Secondly, the first error term in Eq. 4.5 can be approximated by

e
(0)
a := h

λ∗
1−1∑

λ=1
σλ

uu∑

j=0
c
(1)
u,j (θλh)αu(log(θλh))μu,j

≈ h

λ∗
1−1∑

λ=1
σλ

[

f (a + θλh) −
u0∑

j=0
c
(1)
0,j

(log(θλh))
μ0,j

θλh
−

u∑

i=1

ui∑

j=0
c
(1)
i,j (θλh)αi (log(θλh))μi,j

]

.

(4.6)

For the second error term in Eq. 4.5, we should choose p moderately large such that
this term has precision 10−16 in most cases. For example, for the term

εp = (p!)4
(2p + 1)[(2p)!]3 η

(2p−1)
α,m (1) = (p!)4

(2p + 1)[(2p)!]3
2p−m−1∑

ρ=0

(ρ + 1)ms(2p − 1,m + ρ)αρ,

when p = 13, we list some absolute values of εp for typical values of α and m in
Table 1 (note: 4.31E−20 = 4.31 × 10−20).

Table 1 shows that |εp| decays as α increases, but |εp| increases as m increases.
It also tells us that p ≥ 13 can guarantee the approximation of the second error
term in Eq. 4.5 does not affect the total accuracy if we set double precision as our
computational goal. In most cases, we can set p = 13. If m is large, for example,
m ≥ 10, we can also set p = 15. As for the last three terms in Eq. 4.5, because all of
them involve a factor h2p (h < 1), they are much smaller than the second error term.

Thirdly, the assumption αu ≈ 2p in the derivation of Eqs. 4.4 and 4.5 are needed.
But in practical computation, we usually set αu ≈ 8. This results in another error
term in Eq. 4.4. For example, the leading error term in Eq. 4.4 reads

e(1)
a = −h

p∑

λ=λ∗
1

σλ

uu∑

j=0

c
(1)
u,j (θλh)αu (log(θλh))μu,j

+
uu∑

j=0

c
(1)
u,j h

1+αu

μu,j∑

m=0

(
μu,j

m

)

(logh)μu,j −m (−1)mm!
(1 + αu)m+1

(4.7)

= e(0)
a −

uu∑

j=0

c
(1)
u,j h

1+αu

μu,j∑

m=0

(
μu,j

m

)

(logh)μu,j −m

[
p∑

λ=1

σλθ
αu

λ (log θλ)
m − (−1)mm!

(1 + αu)m+1

]

.

Table 1 Gauss-Legendre rule(p = 13): values of |εp| for some values of α and m

m\α 1
7

4
5

3
2

7
3

13
4

13
3

13
2

0 4.31E−20 7.20E−21 1.93E−21 2.59E−22 3.76E−23 8.37E−24 7.58E−25

1 1.28E−19 5.18E−20 4.68E−21 6.18E−23 5.30E−23 3.24E−24 7.15E−25

5 1.77E−16 1.54E−17 8.72E−19 9.33E−20 2.56E−20 3.98E−21 2.45E−22

10 1.56E−14 4.57E−15 9.83E−16 8.42E−17 6.45E−18 6.08E−20 4.60E−20

15 8.90E−14 4.47E−14 2.00E−14 6.74E−15 1.60E−15 1.39E−16 1.74E−18
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Verlinden [54] proved for the p-point Gauss-Legendre quadrature rule

p∑

λ=1

σλθ
s
λ − 1

1 + s
=

∞∑

k=1

ck(s)

(

p + 1

2

)−2(s+k)

, s > −1, (4.8)

where the coefficients ck(s) are very difficult to evaluate. By differentiating (4.8) m

times with respect to s and denoting by ω = (p + 1/2)−2, Sidi [46] further obtained

p∑

λ=1

σλθ
s
λ (log θλ)

m − (−1)mm!
(1 + s)m+1

=
∞∑

k=1

ωs+k
m∑

j=0

(
m

j

)

c
(m−j)
k (s) (logω)j . (4.9)

Hence, we have

e(1)
a ≈ e(0)

a + O
(
h1+αu (logh)μu,uu ω1+αu (logω)μu,uu

)
. (4.10)

Since the error term e
(0)
a is a part of e

(1)
a , we output e

(1)
a as the leading error term,

from which we can adjust the input parameters to get satisfactory result.

Remark 1 For the case that f (x) ∈ C(a, b) possesses a singularity at x = b with
the Puiseux expansion (1.5), the transform (3.1) is enough to get the error asymp-
totic expansion for the HFP integral (3.2). If f (x) has two endpoint singularities,
we can also evaluate the integral by splitting I [f ; a, b] = I [f ; a, (a + b)/2] +
I [f ; (a + b)/2, b]. For interior singularity c ∈ (a, b), we further split the integral
as I [f ; a, b] = I [f ; a, c] + I [f ; c, b]. Hence, the algorithm in this section is valid
for all the algebraic and logarithmic singularities inside or at the endpoints of the
interval.

4.2 Composite Gauss-Kronrod algorithm

Gauss-Kronrod formulas are extensions of the Gauss quadrature rules generated by
adding r + 1 points to a r-point rule in such a way that the resulting rule is of order
3r + 1 at least (actually, the order is 3r + 2 for odd r). These extra points are the
zeros of the Stieltjes polynomials. This allows for computing higher order estimates
while reusing the function values of a lower order estimate. In Eq. 3.3, p = 2r + 1
is set and θλ, σλ are the nodes and weights of the p-point Gauss-Kronrod rule over
[0, 1], respectively, which can be computed by the algorithms in [5, 27]. Ehrich [14,
15] obtained the precise order of the remainder of the Gauss-Kronrod quadrature
formula, which satisfies

|Rp(g)| =
∣
∣
∣
∣
∣

∫ 1

0
g(t)dt −

p∑

λ=1

σλg(θλ)

∣
∣
∣
∣
∣
≤ c3r+2+κ

∥
∥
∥g(3r+2+κ)(t)

∥
∥
∥∞ , (4.11)

where

κ =
[
r + 1

2

]

−
[ r

2

]
and c3r+2+κ ∼ 2−6r−3−κr−5/2

(3r + 2 + κ)! . (4.12)
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Setting q = 3r + 4 + κ , we have

max
0≤x≤1

∣
∣
∣
∣
∣

p∑

λ=1

σλB̃q(x − θλ)

∣
∣
∣
∣
∣
∼ (3r + 3 + κ)(3r + 4 + κ)

12
2−6r−3−κr−5/2. (4.13)

The composite Gauss-Kronrod quadrature formula for the HFP integral can be
easily derived by simply replacing the abscissas and weights in Eq. 4.4 with the ones
of the p-point Gauss-Kronrod rule. But the remainder (4.5) should be modified by
using the formulas (4.11)-(4.13). On the other hand, the practical error indicator (4.7)
is still valid for the Gauss-Kronrod rule. We note that p ≥ 15 (corresponding to r =
7) should be chosen to guarantee the integral having double precision evaluations.

4.3 Extension to infinite range finite-part integrals

In this subsection, we show the modified composite Gauss-Legendre and Gauss-
Kronrod rules are capable of computing infinite range finite-part integrals.

Assume that f (x) is defined on the interval (a, ∞), which can yield the Puiseux
expansion (1.6) at the singularity x = ∞. Hence, there holds Eq. 2.14 for the HFP
integral =∫∞

a
f (x)dx, where in Eq. 2.14, we have indicated that b is a positive number

such that f (x) has only one singularity x = ∞ over the interval [b, ∞). Here, we
only need to show that the infinite range integral on the right-hand side of Eq. 2.14
can be effectively evaluated by the composite Gauss-Legendre and Gauss-Kronrod
rules. Actually, for the integrand r∞(x) defined over [b, ∞), the simple variable
transformation x = 1/t yields

∫ ∞

b

r∞(x)dx =
∫ 1/b

0
r∞
(
1

t

)
1

t2
dt :=

∫ 1/b

0
g0(t)dt. (4.14)

We note that Eq. 4.14 may be a weakly singular integral with singularity x = ∞ or
t = 0 and the Puiseux expansion of r∞(1/t) at t = 0 is exactly the same one of f (x)

at x = ∞ except the strongly singular terms. Hence, we can perform the Puiseux
expansion (1.6) only once by setting δw ≈ 8. Then the formula (4.4) with a minor
modification can be used to evaluate this integral efficiently. For example, for the
function f (x) = x5/2e1/x log x, its Puiseux expansion at x = ∞ reads

f (x) = f∞,1(x) + f∞,2(x) + r̃∞(x), (4.15)

where

f∞,1(x) =
(
x5/2 + x3/2 +

√
x
2 + x−1/2

6

)
log x,

f∞,2(x) =
(

x−3/2

24 + x−5/2

120 + x−7/2

720 + · · · + x−15/2

3628800

)
log x,

(4.16)

and r̃∞(x) is the remainder. From (4.15), we know

=
∫ ∞

1
f (x)dx = =

∫ ∞

1
f∞,1(x)dx +

∫ ∞

1

(
f (x) − f∞,1(x)

)
dx,
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where the strongly singular part =∫∞
1 f∞,1(x)dx is evaluated analytically and f∞,2(x)

is used to effectively evaluate the remaining regular integral, see Eq. 3.12 or Eq. 4.4
for detail.

Analogously, if the integrand f (x) is defined on (−∞, a), then the variable
transformation x = −y yields [12]

=
∫ a

−∞
f (x)dx = =

∫ ∞

−a

f (−y)dy,

from which we know the above method is also valid for this integral.
At the end of this section, we conclude that there are three ways to get highly

accurate evaluations for the HFP integrals, which are decreasing the step length of
the composite formula, increasing the order of the Puiseux expansion and increasing
the nodal points of the Gauss-Legendre or Gauss-Kronrod rule. In the following, we
summarize the selection of these parameters. Firstly, we note that the computational
goal is getting double precision evaluations. Secondly, since the second error term in
Eq. 4.5 does not count into the output error, we should select p suitably large such
that this term is small enough. From Table 1, we know the number of the nodal points
in the Gauss quadrature rules can reasonably set p = 13 for the Gauss-Legendre rule
and p = 15 for the Gauss-Kronrod rule. Thirdly, from Eq. 3.16, we need to evaluate
f (a + θλh) − fa,1 (a + θλh) − fa,2 (a + θλh) in the computation. Obviously, large
αu in the Puiseux expansion (1.4) will result in more computational burdens. On the
other hand, since f (x) is singular at x = a, we know limx→a+ f (x) = ∞ and
also limx→a+ fa,1(x) = ∞, which will result in the lost of numerical accuracy in
function evaluations. The selection of αu should avoid these computations when θλh

is very small, that is, we should guarantee εrem(θλ) in Eq. 4.15 is less than 10−16 for
some λ. Empirically, the setting αu ≈ 8 satisfies these demands. Analogously, we
set βv, δw ≈ 8 in Eqs. 1.5 and 1.6, respectively. Finally, we point out that the step
length h should not be too small, otherwise, the roundoff error will enlarge. In our
computation in next section, h = 0.5 is chosen.

5 Numerical examples

In this section, some typical examples are provided to illustrate the high efficiency of
the modified composite Gauss-Legendre and Gauss-Kronrod rules for evaluating the
HFP integrals. Since Mathematica can easily formulate the Puiseux expansions of a
function at some special points and can achieve arbitrary precision in numerical com-
putation, we write two Mathematica functions to implement the algorithms, which
are Hfpcgl[f,a,b,xfd] and Hfpcgk[f,a,b,xfd], corresponding to the
modified composite Gauss-Legendre rule and Gauss-Kronrod rule, respectively. In
the above Mathematica functions, bmay be an infinity and xfd is a one-dimensional
array indicating all the algebraic and logarithmic (weakly or strongly) singular points
inside or at the endpoints of the interval, which should be known in advance. If xfd is
an empty set, written as xfd= {} in Mathematica, then the algorithms automatically
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implement the standard composite Gauss-Legendre or Gauss-Kronrod quadrature
rule, which means that the integral is regular.

We point out that all the experiments are performed on the desktop computer
with Intel Core i5 CPU (2.80GHZ) and 4GB RAM by using Mathematica 8.0.
The abscissas and weights of the quadrature rule are obtained by the command
NIntegratèGaussBerntsenEspelidRuleData (the Gauss-Legendre rule)
or NIntegratèGaussKronrodRuleData (the Gauss-Kronrod rule).

Example 1 Compute the following HFP integrals over finite intervals using the
modified composite Gauss-Legendre (MGL) and Gauss-Kronrod (MGK) rules.

(1) =
∫ 1

0
f1(x)dx = 35 log 2

1152
− 1319

82944
− π

18
, f1(x) = arcsin x

x10
;

(2) =
∫ 1

−1
f2(x)dx = 0, f2(x) = 1

√(
1 − x2

)3 (
x − 1

2

)3 ;

(3) =
∫ π/2

−π/2
f3(x)dx = 3240 log 2 − 3409

180
√
2

, f3(x) = 1

(1 − sin x)3/2(1 − cos x)5/2
;

(4) =
∫ 1

0
f4(x)dx = 1

50

(
−63 + 5

√
3π + 45 log 3

)
, f4(x) = 1

x8/3
log

(
x

1 − x

)

;

(5) =
∫ 1

0
f5(x)dx, f5(x) = x

3√x−3 log(1 − x).

In this example, all the parameters are taken as the ones stated in the last of Section
4. The computational results are shown in Table 2, where C-value, O-error, T-error
and Time(s) represent the computational value, the absolute output error computed
by Eq. 4.7, the true error and the CPU time in second, respectively.

Table 2 The computational results in Example 1

C-value O-error T-error Time(s)

(1)(MGL) −0.16937606162779417 5.92272E−10 3.52654E−11 0.015

(1)(MGK) −0.16937606163507724 9.40976E−10 4.25485E−11 0.015

(2)(MGL) −7.60281E−13 2.04759E−11 7.60281E−13 0.031

(2)(MGK) 2.60059E−12 2.76051E−11 −2.60059E−12 0.047

(3)(MGL) −4.56949347023129 3.68268E−11 −2.36762E−11 0.047

(3)(MGK) −4.56949347021662 8.67494E−11 −3.83462E−11 0.047

(4)(MGL) 0.27289086907151305 9.43868E−13 5.09592E−14 0.031

(4)(MGK) 0.27289086907157634 4.25524E−14 −1.23235E−14 0.032

(5)(MGL) −199.59943991061854 3.01292E−16 — 0.063

(5)(MGK) −199.59943991061854 1.52752E−14 — 0.063
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For the results in Table 2, we give the following expositions.
(i) The exact values of the HFP integrals are obtained by analytic method, which

is illustrated by f1(x). Let I (ε) = ∫ 1
ε

f1(x)dx, then by Mathematica

I (ε) = arcsin ε

9ε9
+

√
1 − ε2

3456ε8

(
105ε6 + 70ε4 + 56ε2 + 48

)

− 35

1152
log ε + 35

1152
log
(√

1 − ε2 + 1
)

− π

18
.

Expanding I (ε) at ε = 0 yields

I (ε) = 1

8ε8
+ 1

36ε6
+ 3

160ε4
+ 5

224ε2
− 35 log ε

1152
+
(
35 log 2

1152
− 1319

82944
− π

18

)

− 63ε2

5632
+O

(
ε4
)

,

from which we can obtain by Definition 3

=
∫ 1

0
f1(x)dx = 35 log 2

1152
− 1319

82944
− π

18
.

We can also evaluate the integrals in this example using the method for calculating
the integral =∫∞

1 x1/xdx in Section 2. But there are some integrals that can not be
evaluated by analytic methods. In such cases, the exact value is not provided and the
T-error in Table 2 shows ”—”, see for example, the integral (5) in this example.

(ii) Table 2 shows all the evaluations are highly accurate and very fast, as well as
numerically stable. It also verifies that the error indicator (O-error) is a good one in
practical computation since the O-error is well matched with the T-error (true error).

(iii) A prerequisite to proceed the algorithms efficiently is to know all the algebraic
and logarithmic singular points over the interval, indicated by a one-dimensional
array xfd. Generally speaking, xfd is easy to be determined by observing and ana-
lyzing the integrand. For instance, for the function f1(x), x = 0 is obviously a strong
algebraic singularity. We also know arcsin x is insufficiently smooth at x = 1. Hence,
xfd={0, 1} for this function, see Eqs. 1.7 and 1.8, the Puiseux expansions of f1(x)

at x = 0 and x = 1, respectively. Analogously, it can be seen that xfd={−1, 1/2, 1}
for f2(x), xfd={0, π/2} for f3(x) and xfd={0, 1} for both f4(x) and f5(x). We
note that both f2(x) and f3(x) possess an interior strong singularity. For such cases,
the algorithms automatically decompose the interval into some subintervals that have
singularities at the endpoints. We also point out that f5(x) has Eqs. 1.9 and 1.10 at
x = 0 and x = 1, respectively.

(iv) In our algorithms, the parameters p (number of the nodal points), h (step
length) and αu, βv (orders of the Puiseux expansions) can be adjusted to increase the
accuracy. In Tables 3-5, we list the true errors for different parameters when applying

Table 3 The true errors of Example 1 (1) for different h

h 0.1 1/6 0.25 0.5

T-error −9.79532E−10 5.63579E−12 2.92513E−13 3.52654E−11
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Table 4 The true errors of Example 1 (1) for different p

p 11 13 15 17

T-error 1.43648E−9 3.52654E−11 8.08717E−12 5.85854E−11

the Gauss-Legendre rule to Example 1 (1), where the primary parameters are set p =
13, h = 0.5 and αu, βv ≈ 8. As is well known, the roundoff errors in the computation
of the standard quadrature formulas may tend to infinity as h → 0 or p → ∞
for strongly singular integrals. The results in Tables 3-5 verify that the technique to
control the roundoff error (see Eqs. 3.13–3.15) is successful. These results show that
moderately small h and large p, as well as moderately large αu, βv are preferred for
the practical computation of the HFP integrals.

(v) It can be seen from Table 2 that the Gauss-Legendre (MGL) and the Gauss-
Kronrod (MGK) rules have almost the same accuracy. Noting that p = 13 for the
MGL and p = 15 for the MGK, we can conclude that the Gauss-Legendre rule is
more powerful than the Gauss-Kronrod rule.

Example 2 Compute the following HFP integrals over infinite intervals using the
modified composite Gauss-Legendre and Gauss-Kronrod rules.

(6) =
∫ ∞

0
f6(x)dx = −0.52941084553842824707 · · · , f6(x) = e−x(log x)3

x3/2
;

(7) =
∫ ∞

1
f7(x)dx = 1.3011316543645956157 · · · , f7(x) = x5/2e1/x log x;

(8) =
∫ ∞

5
f8(x)dx = −144.66944956258316844 · · · , f8(x) = x7/2(log x)2 sin

(
1

x

)

;

(9) =
∫ ∞

0
f9(x)dx = 0.42036958878320229719 · · · , f9(x) = x1/x;

(10) =
∫ ∞

0
f10(x)dx, f10(x) = K0(x)

x7/2I0(x)
,

where in (9), the exact value can be obtained by Eqs. 2.18 and 2.19 and in (10), I0(x)

and K0(x) are the modified Bessel functions of the first kind and second kind of
order zero, respectively.

In this example, all the integrals are computed via Eq. 1.4 or Eq. 1.6, Eqs.
2.14 and 4.14 and the results are shown in Table 6. We point out that x = 0
is the only algebraic and logarithmic singularity for both f6(x) and f10(x) since

Table 5 The true errors of Example 1 (1) for different αu, βv

αu, βv 6 7 8 9

T-error 6.26913E−10 3.52441E−11 3.52654E−11 1.19667E−11
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Table 6 The computational results in Example 2

C-value O-error T-error Time(s)

(6)(MGL) −0.5294108455384139 2.40293E−14 −1.39888E−14 0.015

(6)(MGK) −0.5294108455384243 5.79474E−14 −3.55271E−15 0.016

(7)(MGL) 1.3011316543645832 5.77417E−13 1.24345E−14 0.016

(7)(MGK) 1.3011316543645914 8.05516E−13 4.21885E−15 0.016

(8)(MGL) −144.66944956258305 5.84902E−13 −1.13687E−13 0.016

(8)(MGK) −144.66944956258305 6.28433E−13 −1.13687E−13 0.016

(9)(MGL) 0.42036958878319247 3.95039E−16 9.82547E−15 0.015

(9)(MGK) 0.42036958878320335 2.18518E−13 −1.05471E−15 0.016

(10)(MGL) −0.34165816425517354 1.37281E−12 — 0.359

(10)(MGK) −0.34165816425518225 1.30499E−13 — 0.39

f10(x) = (− log x − γ + log 2)/x7/2 + · · · and e−x , K0(x)/I0(x) ∼ e−2x/π are
rapidly decaying functions when x → ∞. We further point out that x = ∞ is the
only algebraic and logarithmic singularity for all the functions f7(x) (see Eqs. 4.15
and 4.16 for its Puiseux expansion), f8(x) and f9(x). It can be seen from Table 6 that
all the five integrals get accurate numerical values with less CPU time.

From Examples 1-2, we conclude that the modified Gauss-Legendre and Gauss-
Kronrod rules in this paper can be used to effectively and stably evaluate the HFP
integrals over finite and infinite intervals.

6 Conclusions

In this paper, we construct a general framework to derive the error asymptotic expan-
sion of a general composite quadrature formula for approximating the HFP integrals,
where the integrands are assumed to have the Puiseux expansions at the endpoints
with arbitrary algebraic and logarithmic singularities. By applying the framework
to the Gauss-Legendre and Gauss-Kronrod rules, two practical composite Gauss
type rules and their error indicators are obtained. The proposed methods have the
following features.

(1) The algorithms need the Puiseux expansions of the integrand at its singularities,
which can be easily obtained by symbolic computation.

(2) The algorithms are numerically stable since the roundoff errors caused by the
singular nature of the integrand are considered.

(3) The algorithms are not only suitable for evaluating the HFP integrals over finite
intervals, but also valid for infinite range integrals with singularity at infinity.

(4) Since the canonical algorithms are the standard Gauss-Legendre and Gauss-
Kronrod rules, the abscissas and weights are easily obtained from numerical
books or algorithm libraries.
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(5) The algorithms treat some kinds of singularities (weak or strong, algebraic or
logarithmic) in a uniform way by defining a one-dimensional array.

(6) The algorithms can be used to numerically solve hypersingular integral equa-
tions by combining with collocation method, which will be studied in the near
future.
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