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Abstract In this paper, we focus on a linearized backward Euler scheme with a
Galerkin finite element approximation for the time-dependent nonlinear Schrödinger
equation. By splitting an error estimate into two parts, one from the spatial discretiza-
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error estimates of the fully-discrete backward Euler method for a generalized nonlin-
ear Schrödinger equation. Numerical results are provided to support our theoretical
analysis and efficiency of this method.

Keywords Unconditional convergence · Optimal error estimate · Backward Euler
method · Galerkin finite element method · Time-dependent Schrödinger equation

Mathematics Subject Classification (2010) 65N30

Communicated by: Raymond H. Chan

� Zhangxin Chen
zhachen@ucalgary.ca

1 Center for Computational Geosciences, School of Mathematics and Statistics,
Xi’an Jiaotong University, No. 28, Xianning West Road, Xi’an, Shaanxi 710049, People’s
Republic of China

2 Department of Mathematics, Baoji University of Arts and Sciences, Baoji 721013,
People’s Republic of China

3 Department of Chemical and Petroleum Engineering, Schulich School of Engineer,
University of Calgary, Calgary, AB T2N 1N4, Canada

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10444-016-9463-2-x&domain=pdf
mailto:zhachen@ucalgary.ca


1312 Wentao Cai et al.

1 Introduction

Nonlinear Schrödinger equation is a classical partial differential equation that has
been applied in modelling the evolution of a wave packet in a nonlinear and dispersive
medium. It has been derived in many fields; i.e., nonlinear optics [23, 25], plasma
physics [12] and water wave [1, 12, 23, 25]. Moreover, this equation can be used
in pattern formulation, where it can model many non-equilibrium pattern forming
systems. For example, it can be developed for the optics field as a model for optical
pulse propagation in nonlinear fibers [4].

In the past several decades, numerous effort has been devoted to mathematical
study of nonlinear Schrödinger equation. There are two main branches of mathe-
matical research for nonlinear Schrödinger equation. One is construction of exact
solution, which includes the trial function method [5], Jacobi elliptic function expan-
sion method [8, 30], and G’/G-expansion method [19]. Another important branch is
numerical approximation method, including the finite element method, finite differ-
ence method and spectral method. Many authors have studied a considerable number
of numerical methods for nonlinear Schrödinger equation. For example, Delfour [6],
Bao et al. [3] and Reichel [26] on the finite difference method, Akrivis [2], Tourigny
[28], Sanz-Serna [27], and Zouraris [31] on the finite element method and Feit [10] on
the spectral method. In [6], Delfour presented a finite difference method to approxi-
mate a Schrödinger equation. The main feature of this method given by Delfour is that
it satisfies a discrete analogue of an important conservation law of this equations. In
[28], Tourigny obtained optimal H 1 estimates for the fully-implicit backward Euler
scheme and Crank-Nicolson scheme for a nonlinear Schrödinger equation by apply-
ing a nonlinear stability theory. But these optimal H 1 error estimates required the

time step conditions �t = o(h
d
2 ) and �t = o(h

d
4 ) for the two schemes, respectively,

where d represents the dimension of space.
Several time-discrete methods have been widely used to time-dependent nonlinear

partial differential equations (PDEs), for example, fully-implicit, semi-implicit, and
explicit. The fully-implicit time-discrete Euler method for PDEs must solve nonlinear
equations at every time step and needs inner iterations. Compared to the fully-implicit
method, the explicit and semi-implicit time-discrete methods have been widely used
because they just need to solve a linear system at each time step. However, in order to
obtain error estimates of the explicit and semi-implicit methods for PDEs, one usu-
ally needs the boundedness of their fully-discrete solution in the L∞ norm. For this
purpose, many authors employ the mathematical induction with an inverse inequality
to obtain

∥
∥Un

h − Rhu
n
∥
∥

L∞ ≤ Ch−d/2
∥
∥Un

h − Rhu
n
∥
∥

L2 ≤ Ch−d/2(�t + hr+1),

whereUn
h is a numerical solution, un is the exact solution,Rh is a projection operator,

r is the degree of the fully discrete Galerkin finite element method, �t is a time step,
and h is a spatial step. However, the above inequality results in a restriction on �t

and h; see [3, 13, 16, 17, 24]. That is, optimal error estimates are obtained under a
time-step condition. This condition may result in the use of small time steps. Thus
the computational complexity is increased extremely in practice. Recently, a new
analytic method is presented in [11, 20–22]. The main approach of these papers is to
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split an error estimate into a time-discrete error estimate and a spatial-discrete error
estimate. The spatial-discrete error is obtained by discretizing the temporal discrete
equation, independent of time-step �t .

In this paper, we apply this approach to study a generalized nonlinear Schrödinger
equation by r-order FEMs (finite element methods, r ≥ 1) and the backward Euler
time-discrete method. As the regularity of the time-discrete solution Un of this
Schrödinger equation is obtained, an error estimate of the fully-discrete solution is
established without any time step restriction by using the mathematical induction and
an inverse inequality:

∥
∥Un

h − RhU
n
∥
∥

L∞ ≤ Ch−d/2
∥
∥Un

h − RhU
n
∥
∥

L2 ≤ Chr+1−d/2,

where Un is the numerical solution of the time-discrete Schrödinger equation and
Rh is a Ritz operator. Due to the above boundedness of Un

h in the L∞ norm, we can
obtain the L2 norm optimal error estimate without any restriction on �t and h in the
traditional way [28]:

∥
∥um − Um

h

∥
∥

L2 ≤ C∗∗(�t + hr+1).

The outline of this paper is as follows: In Section 2, a function setting of the
Schrödinger equation is introduced, together with some basic assumptions. More-
over, we present a backward Euler FEM for a generalized nonlinear Schrödinger
equation. In Section 3, the regularity of a time-discrete numerical solution is
obtained. Meanwhile, the boundedness of the time-discrete numerical solution in the
L∞ norm is established. In Section 4, the unconditionally optimal L2 norm error
estimate of the fully-discrete FEM is obtained. In Section 5, we give two numeri-
cal experiments to validate our theoretical analysis. Finally, conclusions are drawn in
Section 6.

2 Preliminaries

In this section, we focus on a nonlinear Schrödinger equation defined by

⎧

⎪⎪⎨

⎪⎪⎩

iut + �u + f (|u|2)u = 0, x ∈ �, 0 < t ≤ T ,

u(x, 0) = u0(x), x ∈ �,

u = 0, x ∈ ∂�,

(2.1)

where u is a complex-valued function defined in �×[0, T ] and � ⊂ R2 is a bounded
domain with boundary ∂�. Meanwhile, we assume that f : R �→ R is a given
function belonging to C2(R).

Let �h be a regular partition of � into triangles Tj , j = 1, 2, ...,M , in R2, and
h = max

1≤j≤M
{diamTj } be the mesh size. If a triangle Tj is on the boundary, we define

T̃j as the triangle with one curved side. If Tj is an interior element, we set T̃j=Tj .
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From the above definition, for a given division�h, we define the finite element spaces

Vh = {vh ∈ C(�) : vh|Tj
is a polynomial of degree r and vh = 0 on ∂�},

Sh = {vh ∈ C(�) : vh|T̃j
is a polynomial of degree r},

where ∂� is defined by T̃j\Tj .
From the above definitions, we can find that Vh is a subspace of H 1

0 (�h) and Sh

is a subspace of H 1(�h). We define £:={£v: £v = 0 on ∂�; £v = v on Tj ∀v ∈ Sh}.
Moreover, we set � : C(�) −→ Sh to be the Lagrangian operator and define �h :=
£�. Obviously, �h is a projection operator from C(�) −→ Vh.

For u, v ∈ L2(�), we define the L2 inner product as follows:

(u, v) =
∫

�

u(x)v(x)dx,

where v is the conjugate of v. By an interpolation theory, we obtain

‖�hv − v‖L2 + h ‖�(�hv − v)‖L2 ≤ Chr+1 ‖v‖Hr+1 , (2.2)

where C > 0 is a constant. Subsequently, for simplicity, C (with or without a sub-
script) will denote a positive constant depending only on �, which may stand for a
different value at its different occurrence.

Assume that Rh: H 1
0 (�) → Vh is a Ritz projection operator defined by

(�(v − Rhv),�w) = 0 ∀w ∈ Vh. (2.3)

By the classical finite element theory [7, 29], it holds that

‖v − Rhv‖L2 + h ‖�(v − Rhv)‖L2 ≤ Chs ‖v‖Hs , 1 ≤ s ≤ r + 1, v ∈ H 1
0 (�)

(2.4)
and the inverse inequality holds:

‖v‖L∞ ≤ Ch− d
2 ‖v‖L2 , d = 2, 3, v ∈ Vh. (2.5)

Let �t > 0 be the time step and tn = n�t, n = 0, 1, ..., N , where tN = T . We
denote un = u(x, tn). For a sequence {zn}Nn=0, we define

Dtz
n = zn − zn−1

�t
, n = 1, 2..., N.

With an explicit treatment of the nonlinear term, an Euler semi-implicit scheme is to
find Un

h ∈ Vh such that

i(DtU
n
h , v) − (∇Un

h , ∇v) + (f (|Un−1
h |2)Un

h , v) = 0, n = 1, 2, ...N, (2.6)

for any v ∈ Vh, where U0
h = �hu0.

Meanwhile, we define Un to be the solution of the following time-discrete system:

iDtU
n + �Un + f (|Un−1|2)Un = 0, n = 1, 2, ...N, (2.7)

with the boundary and initial conditions
{

Un(x) = 0 ∀x ∈ ∂�, n = 1, 2, ..., N,

U0(x) = u0(x) ∀x ∈ �.
(2.8)
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The key to our proof in this paper is the following error splitting [11, 20–22]:
∥
∥Un

h − un
∥
∥ ≤ ∥

∥en
∥
∥ + ∥

∥en
h

∥
∥ + ∥

∥Un − RhU
n
∥
∥

for any norm ‖·‖, where
en = Un − un, en

h = RhU
n − Un

h .

Below en and en
h are always defined by the above forms.

Lemma 2.1 (Discrete Gronwall’s inequality [14, 15, 18]) Let �t , B, ak , bk , ck and
γk , for integers k ≥ 0, be non-negative numbers such that

an + �t

n
∑

k=0

bk ≤ �t

n
∑

k=0

γkak + �t

n
∑

k=0

ck + B, n ≥ 0. (2.9)

Suppose that �tγk < 1, and set σk = (1 − �tγk)
−1. Then

an + �t

n
∑

k=0

bk ≤ exp(�t

n
∑

k=0

γkσk)(�t

n
∑

k=0

ck + B), n ≥ 0. (2.10)

Throughout this paper we make the following assumption on the prescribed data
for problem (2.1), which specifies the regularity of the sultion for our main results.

Assumption (A1): The solution to the initial/boundary value problem (2.1) exists
and satisfies

‖u0‖Hr+1 + ‖u‖L∞((0,T );Hr+1) + ‖ut‖L∞((0,T );Hr+1) + ‖utt‖L2((0,T );L2) ≤ C,

where C is a positive constant, which depends only on �.

3 Temporal error estimates

In this section, we establish an error bound for ‖un − Un‖L2 and the boundedness of
the time discrete numerical solution in the L∞ norm.

We assume that u is the solution of system (2.1). Then we see that

iDtu
n + �un + f (|un−1|2)un = iDtu

n − iun
t + f (|un−1|2)un − f (|un|2)un. (3.1)

Let P n = iDtu
n − iun

t + f (|un−1|2)un − f (|un|2)un and K = max
0≤n≤N

‖un‖L∞ + 1.

Due to the regularity assumption Assumption(A1), it is easy to see that

(

N
∑

n=1

�t
∥
∥P n

∥
∥2

L2)
1
2 + �t

∥
∥P n

∥
∥

L2 ≤ C�t ∀v ∈ Vh, (3.2)

where we applying
|f (|un|2)| + |f ′(ξ)| ≤ CL (3.3)

for |ξ | ≤ ‖un‖2L∞ + ‖un−1‖2L∞ ≤ 2K2.
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Theorem 3.1 Suppose that (2.1) has a unique solution u satisfyingAssumption (A1).
Then there exists a positive constant τ such that when �t < τ0, the time-discrete
system defined in Eq. 2.7 has a unique solution Un, n=1,...,N, such that

∥
∥Un

∥
∥

H 2 ≤ C0, (3.4)

∥
∥en

∥
∥

L2 + ∥
∥en

∥
∥

H 1 + (�t)
1
2
∥
∥en

∥
∥

H 2 ≤ C0�t. (3.5)

Proof System (2.6) is a linear elliptic equation. Following the classical theory of
PDEs, we can find that the solution of system (2.6) exists and is unique. From Eqs. 3.1
and 2.7, we see that

i
e1

�t
+ �e1 + f (|u0|2)e1 = P 1. (3.6)

Multiplying Eq. 3.6 by e1 and integrating the result over �, we have

i

∥
∥e1

∥
∥
2
L2

�t
−

∥
∥
∥∇e1

∥
∥
∥

2

L2
+ (f (|u0|2)e1, e1) = (P 1, e1). (3.7)

Taking the imaginary parts of the above equation and applying (3.2), we obtain
∥
∥
∥e1

∥
∥
∥

L2
≤ �t

∥
∥
∥P 1

∥
∥
∥

L2
≤ C�t. (3.8)

Meanwhile, multiplying Eq. 3.6 by �e1 and integrating it over �, we get

− i

∥
∥∇e1

∥
∥
2
L2

�t
+

∥
∥
∥�e1

∥
∥
∥

2

L2
+ (f (|u0|2)e1, �e1) = (P 1, �e1), (3.9)

which implies
∥
∥∇e1

∥
∥
2
L2

�t
≤ 1

4
‖�e‖2

L2 + 2
∥
∥
∥P 1

∥
∥
∥

2

L2
+ 2

∥
∥
∥f (|u0|2)e1

∥
∥
∥

2

L2
(3.10)

and
∥
∥
∥�e1

∥
∥
∥

2

L2
≤ 1

4

∥
∥
∥�e1

∥
∥
∥

2

L2
+ 2

∥
∥
∥P 1

∥
∥
∥

2

L2
+ 2

∥
∥
∥f (|u0|2)e1

∥
∥
∥

2

L2
. (3.11)

Summing Eqs. 3.10 and 3.11, we obtain
∥
∥∇e1

∥
∥
2
L2

�t
+ 1

2

∥
∥
∥�e1

∥
∥
∥

2

L2
≤ 4

∥
∥
∥f (|u0|2)e1

∥
∥
∥

2

L2
+ 4

∥
∥
∥P 1

∥
∥
∥

2

L2
. (3.12)

Thus, applying Eqs. 3.2, 3.3 and 3.8, we see that
∥
∥
∥∇e1

∥
∥
∥

2

L2
+ �t

∥
∥
∥�e1

∥
∥
∥

2

L2
≤ C1�t2. (3.13)

Thanks to the Dirichlet boundary condition, we have

(�t)
1
2

∥
∥
∥e1

∥
∥
∥

H 2
≤ C2�t. (3.14)



Unconditional Convergence and Optimal Error Estimates... 1317

Using Assumption(A1) and Eq. 3.14, we see that
∥
∥
∥U1

∥
∥
∥

L∞ ≤
∥
∥
∥u1

∥
∥
∥

L∞ +
∥
∥
∥u1 − U1

∥
∥
∥

L∞ ≤
∥
∥
∥u1

∥
∥
∥

L∞ + C

∥
∥
∥e1

∥
∥
∥

H 2
≤ K, (3.15)

‖U1‖H 2 ≤ ‖u1‖H 2 + ‖e1‖H 2 ≤ C3, (3.16)

when �t ≤ τ1 = 1
C2C2

2
. Thus, Eqs. 3.4–3.5 hold for m=1.

We assume that Eqs. 3.4 and 3.5 hold for m ≤ n − 1. Then
∥
∥Um

∥
∥

L∞ ≤ ∥
∥um

∥
∥

L∞ + C
∥
∥em

∥
∥

H 2 ≤ K, (3.17)

when �t ≤ τ2 = 1
C2C2

0
.

Subtracting Eq. 2.7 from Eq. 3.1 results in the error equation

iDte
n + �en + Rn = P n, (3.18)

where
Rn = [(f (|un−1|2) − f (|Un−1|2))un] + [f (|Un−1|2)en].

By the mathematical induction and Assumption (A1), we obtain
∥
∥Rn

∥
∥

L2 ≤ ‖f ′(ξ1)en−1(|un−1| + |Un−1|)un‖L2 + ‖f (|Un−1|2)en‖L2

≤ C(

∥
∥
∥en−1

∥
∥
∥

L2
+ ∥

∥en
∥
∥

L2), (3.19)

where we apply |f ′(ξ1)|+|f (|Un−1|2)| ≤ CL1 for |ξ1| ≤ ‖un−1‖2L∞ +‖Un−1‖2L∞ ≤
2K2.

Multiplying Eq. 3.18 by en and integrating it over � lead to

i

2�t
(
∥
∥en

∥
∥2

L2 −
∥
∥
∥en−1

∥
∥
∥

2

L2
+

∥
∥
∥en − en−1

∥
∥
∥

2

L2
) − ∥

∥∇en
∥
∥2

L2 = (P n, en) − (Rn, en).

(3.20)
Taking the imaginary parts of the above equation and applying the Young inequality,
we obtain

1

�t
(
∥
∥en

∥
∥2

L2 −
∥
∥
∥en−1

∥
∥
∥

2

L2
) ≤ 1

2

∥
∥P n

∥
∥2

L2 + 1

2

∥
∥Rn

∥
∥2

L2 + ∥
∥en

∥
∥2

L2 . (3.21)

Summing inequalities (3.21) up and using Eqs. 3.19, 3.2, and the Young inequality,
there exists τ3 > 0 such that

∥
∥en

∥
∥

L2 ≤ C4�t, (3.22)

when �t ≤ τ3. Moreover, multiplying Eq. 3.18 by Dte
n and integrating it over �

lead to
i
∥
∥Dte

n
∥
∥2

L2 − (∇en, Dt∇en) + (Rn, Dte
n) = (P n, Dte

n). (3.23)

Taking the real parts, we obtain

1

2�t
(
∥
∥∇en

∥
∥2

L2 −
∥
∥
∥∇en−1

∥
∥
∥

2

L2
) ≤ |Re(Rn, Dte

n)| + |Re(P n, Dte
n)|. (3.24)

Multiplying Eq. 3.18 by Rn, we can get

i(Dte
n, Rn) − (∇en, ∇Rn) + ∥

∥Rn
∥
∥2

L2 = (P n, Rn). (3.25)
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Thanks to the above equation, Eqs. 3.19, 3.22 and the Young inequality, we get

|Re(Dte
n, Rn)| ≤ |Im(P n, Rn)| + |Im(∇Rn, ∇en)|

≤ 1

2

∥
∥∇Rn

∥
∥2

L2 + 1

2

∥
∥∇en

∥
∥2

L2 + 1

2

∥
∥P n

∥
∥2

L2 + 1

2

∥
∥Rn

∥
∥2

L2

≤ C(
∥
∥∇en

∥
∥2

L2 +
∥
∥
∥∇en−1

∥
∥
∥

2

L2
) + 1

2

∥
∥P n

∥
∥2

L2 + C�t2. (3.26)

Meanwhile, the second term on the right-hand side of inequality (3.24) can be
rewritten as

|Re(P n, Dte
n)| = |Re(iDtu

n − iun
t + f (|un−1|2)un − f (|un|2)un, Dte

n)|
≤ |(Dtu

n − un
t , Dte

n)| + |(f (|un−1|2)un − f (|un|2)un, Dte
n)|.

(3.27)

Multiplying Eq. 3.18 by Dtu
n − un

t and integrating it over � lead to

i(Dtu
n −un

t , Dte
n)− (∇en, ∇(Dtu

n −un
t ))+ (Rn, Dtu

n −un
t ) = (P n, Dtu

n −un
t ).

(3.28)
Thanks to the above equation, Eqs. 3.19, 3.22 and the Young inequality, we can get

|(Dtu
n − un

t , Dte
n)| ≤ 1

2

∥
∥∇en

∥
∥2

L2 + 1

2

∥
∥∇(Dtu

n − un
t )

∥
∥
2
L2 + 1

2

∥
∥Rn

∥
∥2

L2

+1

2

∥
∥P n

∥
∥2

L2 + ∥
∥(Dtu

n − un
t )

∥
∥
2
L2

≤ 1

2

∥
∥∇en

∥
∥2

L2 + 1

2

∥
∥∇(Dtu

n − un
t )

∥
∥2

L2 + 1

2

∥
∥P n

∥
∥2

L2 + C�t2.

(3.29)

Multiplying Eq. 3.18 by f (|un−1|2)un −f (|un|2)un and integrating it over � lead to

i(Dte
n, f (|un−1|2)un − f (|un|2)un) + (�en, f (|un−1|2)un − f (|un|2)un)

+(Rn, f (|un−1|2)un − f (|un|2)un) = (P n, f (|un−1|2)un − f (|un|2)un).

Thanks to the above equation, Eqs. 3.19, 3.22, Assumption(A1), Eq. 3.3, and the
Young inequality, we can get the following inequality:

|(Dte
n, f (|un−1|2)un − f (|un|2)un)|

≤ 1

2

∥
∥∇en

∥
∥2

L2 + 1

2

∥
∥
∥f (|un−1|2)un − f (|un|2)un

∥
∥
∥

2

H 1
+ 1

2

∥
∥Rn

∥
∥2

L2

+1

2

∥
∥P n

∥
∥2

L2 +
∥
∥
∥f (|un−1|2)un − f (|un|2)un

∥
∥
∥

2

L2

= 1

2

∥
∥∇en

∥
∥2

L2 + 1

2
‖f ′(ξ)(un−1 − un)(|un−1| + |un|)un‖2

H 1 + 1

2

∥
∥Rn

∥
∥2

L2

+1

2

∥
∥P n

∥
∥2

L2 + ‖f ′(ξ)(un−1 − un)(|un−1| + |un|)un‖2
L2

≤ 1

2

∥
∥∇en

∥
∥2

L2 + 1

2

∥
∥P n

∥
∥2

L2 + C�t2. (3.30)
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From Eqs. 3.24, 3.26, 3.27, 3.29, and 3.30, we can obtain the following result:
∥
∥∇en

∥
∥2

L2 −
∥
∥
∥∇en−1

∥
∥
∥

2

L2
≤ C�t(

∥
∥∇en

∥
∥2

L2 +
∥
∥
∥∇en−1

∥
∥
∥

2

L2
) + 3�t

∥
∥P n

∥
∥2

L2

+C�t3 + �t
∥
∥Dtu

n − un
t

∥
∥2

H 1 .

Summing the above inequalities up and using the Gronwall inequality, Eq. 3.2, there
exists τ4 > 0 such that

∥
∥∇en

∥
∥

L2 ≤ C5�t, (3.31)

when �t ≤ τ4. Multiplying Eq. 3.18 by �en and integrating it over � lead to

−i
‖∇en‖2

L2

�t
+ i

(∇en−1, ∇en)

�t
+ ∥

∥�en
∥
∥2

L2 + (Rn, �en) = (P n, �en).

Taking the real parts and applying the Young inequality, we obtain
∥
∥�en

∥
∥2

L2 ≤ 1

2�t
(

∥
∥
∥∇en−1

∥
∥
∥

2

L2
+ ∥

∥∇en
∥
∥2

L2) + ∥
∥P n

∥
∥2

L2 + ∥
∥Rn

∥
∥2

L2 + 1

2

∥
∥�en

∥
∥2

L2 .

(3.32)
By Eqs. 3.2, 3.18, 3.21, and 3.30, we obtain

(�t)
1
2
∥
∥en

∥
∥

H 2 ≤ C6�t. (3.33)

Using Eq. 3.32 and Assumption(A1), we see that
∥
∥Un

∥
∥

L∞ ≤ ∥
∥un

∥
∥

L∞ + C
∥
∥en

∥
∥

H 2 ≤ K, (3.34)

‖Un‖H 2 ≤ ‖un‖H 2 + ‖en‖H 2 ≤ C7, (3.35)

when �t ≤ τ5 = 1
C2C2

6
. With τ0 = min{τ1, τ2, τ3, τ4, τ5} and C0 = C + ∑7

i=1 Ci

the proof of Theorem 3.1 can be completed.

4 The fully-discrete finite element solution

In this section, we study the error
∥
∥Un − Un

h

∥
∥

L2 of the Galerkin finite element for
the time-discrete system (2.7)–(2.8).

Lemma 4.1 Suppose that the time-discrete system (2.7)–(2.8) has a unique solution
Un. Then

∥
∥RhU

n
∥
∥

L∞ ≤ M. (4.1)

Proof Thanks to Eqs. 2.4, 2.5, 3.4, and 3.34, we can obtain the following result:
∥
∥RhU

n
∥
∥

L∞ = ∥
∥Un − RhU

n
∥
∥

L∞ + ∥
∥Un

∥
∥

L∞

≤ K + Ch− d
2
∥
∥Un − RhU

n
∥
∥

L2

≤ Ch− d
2 h2

∥
∥Un

∥
∥

H 2 + K

≤ M.

The proof of Lemma 4.1 is complete.
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The variational form of the time-discrete system (2.7) can be defined by

i(DtU
n, v) − (∇Un, ∇v) + (f (|Un−1|2)Un, v) = 0 ∀v ∈ H 1

0 . (4.2)

Subtracting Eq. 2.6 from Eq. 4.2, we can obtain the following equation:

i(Dt (U
n −Un

h ), v)−(∇Un −∇Un
h , ∇v)+(f (|Un−1|2)Un −f (|Un−1

h |2)Un
h , v) = 0

(4.3)
for any v ∈ Vh.

Thanks to Eq. 2.3, the above formulation can be rewritten as

i(Dte
n
h, v) − (∇en

h, ∇v) + (f (|Un−1|2)Un

− f (|Un−1
h |2)Un

h , v) = −i(Dt (U
n − RhU

n), v). (4.4)

Theorem 4.1 Assume that the unique solution u of Eq. 2.1 satisfies Assumption(A1).
Then the fully discrete system (2.6) has a unique solution Um

h , m=1,2,...,N, and there
exists τ ′ > 0 such that, when �t ≤ τ ′, h ≤ h′

∥
∥en

h

∣
∣
L2 ≤ C∗h2, (4.5)

∥
∥en

h

∥
∥

H 1 ≤ C∗h. (4.6)

Proof As in [28], the existence and uniqueness of a solution to the fully-discrete sys-
tem (2.6) can be shown. Next, we prove the error estimates Eqs. 4.5 and 4.6 by using
the mathematical induction. Assuming U0

h = �hu0 and using (2.2) and Assumption
(A1), it is easy to see that

‖u0 − �hu0‖L2 ≤ Ch2 ‖u0‖H 2 ≤ Ch2.

With above inequality, Eq. 2.4, and Assumption(A1), we obtain
∥
∥
∥e0h

∥
∥
∥

L2
=

∥
∥
∥RhU

0 − U0
h

∥
∥
∥

L2
= ‖Rhu0 − u0 + u0 − �hu0‖L2

≤ ‖Rhu0 − u0‖L2 + ‖u0 − �hu0‖L2 ≤ Ch2 ‖u0‖H 2 ≤ Ch2. (4.7)

Defining K1 = max
0≤n≤N

‖RhU
n‖L∞ + 1 and using Eqs. 4.1, 2.5 and 4.7, we have the

following result:
∥
∥
∥U0

h

∥
∥
∥

L∞ ≤
∥
∥
∥RhU

0
∥
∥
∥

L∞ +
∥
∥
∥RhU

0 − U0
h

∥
∥
∥

L∞

≤ M + Ch− d
2

∥
∥
∥RhU

0 − U0
h

∥
∥
∥

L2

≤ C2h− d
2 h2 + M

≤ K1, (4.8)

when h ≤ h1 = C− 4
4−d .
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First, we study the error estimates at the initial time step. From Eq. 4.3, we can
obtain the following formulation:

i

�t
(e1h, v) − (∇e1h, ∇v) + (f (|U0|2)U1 − f (|U0

h |2)U1
h , v)

= i

�t
(U0 − U0

h , v) − i

�t
(U1 − RhU

1, v). (4.9)

Let v = e1h in Eq. 4.9, and then it follows that

i

�t

∥
∥
∥e1h

∥
∥
∥

2

L2
−

∥
∥
∥∇e1h

∥
∥
∥

2

L2
+ (f (|U0|2)U1 − f (|U0

h |2)U1
h , e1h)

= i

�t
(U0 − U0

h , e1h) − i

�t
(U1 − RhU

1, e1h). (4.10)

Taking the imaginary parts of the above equation and applying Eqs. 2.2, 2.4, 3.3 and
4.8, Assumption(A1), and the Young inequality, we can obtain

∥
∥
∥e1h

∥
∥
∥

2

L2
= −Im((f (|U0|2) − f (|U0

h |2))U1, e1h)�t

−Im(f (|U0
h |2)(U1 − RhU

1), e1h)�t

−Im(f (|U0
h |2)(RhU

1 − U1
h), e1h)�t + Re(U0 − U0

h , e1h)

−Re(U1 − RhU
1, e1h) ≤ 1

2

∥
∥
∥(f (|U0|2) − f (|U0

h |2))U1
∥
∥
∥

2

L2

+1

2

∥
∥
∥f (|U0

h |2)(U1 − RhU
1)

∥
∥
∥

2

L2
+ ‖f (|U0

h |2)e1h‖2L2�t

+
∥
∥
∥U0 − U0

h

∥
∥
∥

2

L2
+

∥
∥
∥U1 − RhU

1
∥
∥
∥

2

L2
+ (�t + 1

2
)

∥
∥
∥e1h

∥
∥
∥

2

L2

≤ 1

2
‖f ′(ξ3)(U0 − U0

h)(|U0| + |U0
h |)U1‖2

L2

+1

2
‖f (|U0

h |2)(U1 − RhU
1)‖2

L2 + ‖U0 − U0
h‖2

L2 + ‖U1 − RhU
1‖2

L2

+(
1

2
+ (1 + C2

k )�t)‖e1h‖2L2 ≤ ((1 + C2
L2)�t + 1

2
)

∥
∥
∥e1h

∥
∥
∥

2

L2
+ Ch4,

(4.11)

where we using f (|U0
h |2)+f ′(ξ2) ≤ CL2 for |ξ2| ≤ ‖U0‖2L∞ +‖U0

h‖2L∞ ≤ K2+K2
1 .

So, we can get

‖e1h‖L2 ≤ C7h
2, (4.12)

when �t ≤ τ6 = 1
2(1+C2

L3)
. Thus, Eq. 4.5 holds for n=1.

From Eqs. 4.1, 2.5, and 4.11, we can get the following result:
∥
∥
∥U1

h

∥
∥
∥

L∞ ≤
∥
∥
∥RhU

1
∥
∥
∥

L∞ +
∥
∥
∥e1h

∥
∥
∥

L∞ ≤ M + CC7h
− d

2 h2 ≤ K1, (4.13)

when h ≤ h1 = (CC7)
− 2

4−d .
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We assume that Eq. 4.5 holds for m ≤ n−1. Similar to the derivation of the above
inequality, we get

∥
∥Um

h

∥
∥

L∞ ≤ ‖RhU
m‖L∞ + ‖em

h ‖L∞ ≤ M + CC∗h− d
2 h2 ≤ K1, (4.14)

when h ≤ h2 = (CC∗)−
2

4−d .
Substituting v = en

h in Eq. 4.4, we derive at

i

2�t
(‖en

h‖2
L2 − ‖en−1

h ‖2
L2 + ‖en

h − en−1
h ‖2

L2) − ‖∇en
h‖2

L2 + (f (|Un−1|2)Un−

f (|Un−1
h |2)Un

h , en
h) = −i(Dt (U

n − RhU
n), en

h). (4.15)

Taking the imaginary parts of the above equation and using Eqs. 2.4, 3.4, 3.34, 3.35
and 4.14, and the Young inequality, we get

∥
∥en

h

∥
∥2

L2 −
∥
∥
∥en−1

h

∥
∥
∥

2

L2

2�t
≤ |(f (|Un−1|2)Un − f (|Un−1

h |2)Un
h , en

h)|
+|(Dt (U

n − RhU
n), en

h)|
= |(f ′(ξ4)(Un−1 − RhU

n−1

+RhU
n−1 − Un−1

h )(|Un−1| + |Un−1
h |)Un

+f (|Un−1
h |2)(Un − RhU

n + RhU
n − Un

h ), en
h)|

+|(Dt (U
n − RhU

n), en
h)| ≤ C(

∥
∥en

h

∥
∥2

L2 +
∥
∥
∥en−1

h

∥
∥
∥

2

L2
)

+Ch4 + |(Dt (U
n − RhU

n), en
h)|,

(4.16)

where we applying |f ′(ξ3)| + |f (|Un−1
h |2)| ≤ CL3 for |ξ3| ≤ ‖Un−1

h ‖2L∞ +
‖Un−1‖2L∞ ≤ K2

1 + K2.
With Eq. 2.4 and the Young inequality, we see that

n
∑

m=1

�t |(Dt (U
m − RhU

m), em
h )| ≤ Ch4

n
∑

m=1

�t‖DtU
m‖2

H 2 + 1

2

n
∑

m=1

�t‖em
h ‖2

L2 .

(4.17)
Multiplying Eq. 3.18 by �en and integrating it over � lead to

− i

2�t
(‖∇en‖2

L2 − ‖∇en−1‖2
L2 + ‖∇en − ∇en−1‖2

L2) + ‖�en‖2
L2 + (Rn, �en)

= (P n, �en) (4.18)

Taking real parts of above inequality and applying Gronwall inequality, we have

�t

2
‖�en‖2

L2 ≤ �t‖Rn‖2
L2 + �t‖P n‖2

L2 . (4.19)
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Summing inequalities (4.19) up and using Eqs. 3.19, 3.22, and 3.2 lead to
n

∑

m=1

�t‖�em‖2
L2 ≤ 2

n
∑

m=1

�t‖Rm‖2
L2 + 2

n
∑

m=1

�t‖P m‖2
L2

≤ C�t2. (4.20)

Thus, we have
n

∑

m=1

�t‖�Dte
m‖2

L2 ≤ C�t−2
n

∑

m=1

�t‖�em‖2
L2 ≤ C (4.21)

From above inequality and Assumption(A1), we can get
n

∑

m=1

�t‖DtU
m‖H 2 ≤

n
∑

m=1

�t‖Dtu
m‖2

H 2 +
n

∑

m=1

�t‖�Dte
m‖2

L2 ≤ C. (4.22)

Summing inequalities (4.16) up and using Eqs. 4.17, 4.22, and 4.7, we can obtain

∥
∥en

h

∥
∥2

L2 ≤ ‖e0h‖2L2 + C�t

n
∑

m=0

‖em
h ‖2

L2 +
n

∑

m=1

�t |(Dt (U
m − RhU

m), em
h )| + Ch4

≤ C�t

n
∑

m=0

‖em
h ‖2

L2 + Ch4. (4.23)

By Gronwall inequality, there exists τ7 > 0 such that

‖en
h‖L2 ≤ C8h

2, (4.24)

when �t ≤ τ7.
Due to the �t-independent property of estimate (4.5), we can obtain the H 1 error

estimate by using an inverse inequality:
∥
∥en

h

∥
∥

H 1 ≤ Ch−1
∥
∥en

h

∥
∥

L2 ≤ C9h. (4.25)

Thus, choosing τ ′ = min(τ0, τ6, τ7), h′ = min(h1, h2) and C∗ = C + ∑9
i=7 Ci , we

finish the proof of Eqs. 4.5–4.6.

Theorem 4.2 Assume that the unique solution u and the initial datum u0 of system
(2.1) satisfy Assumption(A1). Then the finite element system (2.6) has a unique solu-
tion Um

h , m = 1, 2, ..., N , and there exists τ ′′ > 0, h′ > 0, such that, when �t ≤ τ ′′,
h ≤ h′,

∥
∥um − Um

h

∥
∥

L2 ≤ C∗∗(�t + hr+1), (4.26)

where C∗∗ is a positive constant independent of �t and h.

Proof First, we study the optimal estimate as r=1. Thanks to Eqs. 2.4 and 3.35,
Theorem 3.1, and Theorem 4.1, we have

∥
∥um − Um

h

∥
∥

L2 ≤ C10(�t + h2),

when �t < τ ′, h ≤ h′.
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Next, we derive at the optimal L2 error estimates as r > 1.
By Eqs. 2.2, 2.4 and Assumption(A1), we can get

‖Rhu0 − U0
h‖L2 ≤ ‖Rhu0 − u0‖L2 + ‖u0 − U0

h‖L2

≤ Chr+1‖u0‖Hr+1 ≤ Chr+1 (4.27)

Assuming that u is the solution of system (2.1), then we can get

i(un
t , v) − (∇un, ∇v) + (f (|un|2)un, v) = 0 (4.28)

for any v ∈ Vh. Subtracting Eq. 4.28 from Eq. 2.6 and using Eq. 2.3, we derive at

i(Dt (Rhu
n − Un

h ), v) − (∇(Rhu
n − Un

h ),∇v)+(f (|un|2)un−f (|Un−1
h |2)Un

h , v)

= i(DtRhu
n − un

t , v). (4.29)

We assume that σn
h = Rhu

n − Un
h and v = σn

h ; by Eq. 4.29, we see that

i

2�t
(
∥
∥σn

h

∥
∥2

L2 −
∥
∥
∥σn−1

h

∥
∥
∥

2

L2
+

∥
∥
∥σn

h − σn−1
h

∥
∥
∥

2

L2
) − ∥

∥∇σn
h

∥
∥2

L2 + (f (|un|2)un

−f (|Un−1
h |2)Un

h , σn
h ) = i(DtRhu

n − un
t , σ

n
h ). (4.30)

Taking the imaginary parts of the above equality and using Eqs. 4.14, 2.4, Assump-
tion(A1), and the Young inequality, we obtain

∥
∥σn

h

∥
∥2

L2 −
∥
∥
∥σn−1

h

∥
∥
∥

2

L2

�t

≤ 2|(f (|un|2)un − f (|Un−1
h |2)un, σn

h )| + 2|(f (|Un−1
h |2))(un − Un

h ), σn
h )|

+2|(DtRhu
n − un

t , σ
n
h )|

≤ 2|(f ′(ξ5)(un − Un−1
h )(|un| + |Un−1

h |)un, σn
h )| + 2|(f (|Un−1

h |2)(un−
Rhu

n), σn
h )| + 2|(f (|Un−1

h |2)(Rhu
n − Un

h ), σn
h )| + 2|(DtRhu

n − un
t , σ

n
h )|

≤ 2|(f ′(ξ5)(|ut (ξ6)|)�t(|un| + |Un−1
h |)un, σn

h )| + 2|(f ′(ξ5)(|un−1 − Rhu
n−1|)

(|un| + |Un−1
h |)un, σn

h )| + 2|(f ′(ξ5)(|Rhu
n−1 − Un−1

h |)(|un| + |Un−1
h |)un,

σn
h )| + 2|(f (|Un−1

h |2)(un − Rhu
n), σn

h )| + 2|(f (|Un−1
h |2)(Rhu

n − Un
h ),

σn
h )| + 2|(DtRhu

n − un
t , σ

n
h )|

≤ C(
∥
∥σn

h

∥
∥2

L2 +
∥
∥
∥σn−1

h

∥
∥
∥

2

L2
) + Ch2(r+1) + C�t2 + ∥

∥DtRhu
n − un

t

∥
∥2

L2 (4.31)

where we applying |f ′(ξ4)|+|f (|Un−1
h |2)| ≤ CL4 for |ξ4| ≤ ‖Un−1

h ‖2L∞+‖un‖2L∞ ≤
K2 + K2

1 .
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Applying Eqs. 2.4, 3.2 and Assumption(A1), we can get the following result:

n
∑

m=1

�t
∥
∥DtRhu

m − um
t

∥
∥2

L2 ≤
n

∑

m=1

�t
∥
∥Dt(Rhu

m − um)
∥
∥
2
L2

+
n

∑

m=1

�t
∥
∥Dtu

m − um
t

∥
∥2

L2

≤ C�th2(r+1)
n

∑

m=1

‖Dtu
m‖2

Hr+1 + C�t2

≤ Ch2(r+1) + C�t2. (4.32)

Summing inequalities (4.31) up and using Eqs. 4.27, 4.32, and Assumption(A1),
we can obtain the following result:

∥
∥σn

h

∥
∥2

L2 ≤ ‖σ 0
h‖2

L2 + C�t

n
∑

m=0

‖σm
h ‖2

L2 + Ch2(r+1) + C�t2 + �t

n
∑

m=1

‖DtRhu
m

−um
t ‖2

L2 ≤ C�t

n
∑

m=0

‖σm
h ‖2

L2 + C�t2 + Ch2(r+1). (4.33)

Using Gronwall inequality,

‖σn
h ‖L2 ≤ C11(�t + hr+1), (4.34)

when �t ≤ τ8 and h ≤ h′. Thanks to Eq. 2.4 and Assumption(A1), we have

∥
∥un − Un

h

∥
∥

L2 ≤ ∥
∥un − Rhu

n
∥
∥

L2 + ∥
∥Rhu

n − Un
h

∥
∥

L2

≤ Chr+1 + C11(�t + hr+1). (4.35)

With τ ′′ = min(τ ′, τ8), C∗∗ = max(C,C11) and h ≤ h′, we complete the proof of
Theorem 4.2.

Remark . In the above proof, if r = 1, it is easy to show (4.26) (the L2-norm optimal
error estimate). However, as the Galerkin FEM order r is bigger than 1, we cannot
obtain the optimal error estimates by using only Theorems 3.1 and 4.1.

5 Numerical experiments

In this section, we present two numerical examples to validate the theoretical anal-
ysis in the previous sections. All numerical results are performed by free software
FreeFEM++[9].
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Table 1 L2 error estimates of the linear FEM with h2 = �t (Example 5.1)

||u(·, tn) − Un
h ||L2

t=0.5 order t=1 order t=1.5 order t=2 order

1/h = 5 1.45815E-02 3.01352E-02 7.18496E-02 1.88144E-01

1/h = 10 4.32468E-03 1.7535 8.40798E-03 1.8416 2.00191E-02 1.8436 6.54744E-02 1.5228

1/h = 20 1.31054E-03 1.7224 2.22639E-03 1.9171 5.14973E-03 1.9588 1.80891E-02 1.8558

1/h = 40 3.52571E-04 1.8942 5.64739E-04 1.9791 1.30656E-03 1.9787 4.59479E-03 1.9770

Example 5.1 Let f (s) = s, and we can get the cubic Schrödinger equation
⎧

⎪⎪⎨

⎪⎪⎩

iut + �u + |u|2u = g, x ∈ �, 0 < t ≤ T ,

u(x, 0) = u0(x), x ∈ �,

u = 0, x ∈ ∂�,

(5.1)

where � = [0, 1] × [0, 1]. Moreover, the exact solution u of the above system is
given as follows:

u = 5eit (1 + 2t2)(1 − x)(1 − y) sin(x) sin(y)

and the right-hand side g is given by the exact solution u and system (5.1).
Next, we solve system (5.1) by the semi-implicit backward Euler method with

a linear finite element approximation and a quadratic finite element approximation,
respectively. To check the optimal convergence rate in the L2 norm, we pick �t = h2

for the linear finite element approximation and �t = h3 for the quadratic finite
element approximation, respectively. We choose t = 0.5, 1, 1.5, and 2 to present our
numerical results. From Tables 1–2, we can see that the results completely agree with
the theoretical analysis above.

In [20], Tourigny showed the optimal L2 error estimate with the condition of
�t = o(h2/d). However, in Theorem 4.2, the L2 optimal error estimate without any
condition is obtained. For checking the unconditional convergence, we discuss (5.1)
with different �t on gradually refined meshes at t = 1.0. From Fig. 1, we can see
that for a fixed �t , the L2-error of the linear FEM and quadratic FEM asymptotically
converges to a small constant as 1/h increases. Obviously, it shows no restriction on
�t and h.

Table 2 L2 error estimates of the quadratic FEM with h3 = �t (Example 5.1)

∥
∥u(·, tn) − Un

h

∥
∥

L2

t=0.5 order t=1 order t=1.5 order t=2 order

1/h = 5 2.26241E-04 4.54483E-04 1.70451E-03 8.67418E-03

1/h = 10 1.78403E-05 3.6646 2.80334E-05 4.0190 1.69899E-04 3.3266 1.03279E-03 3.0702

1/h = 20 1.72314E-06 3.3720 1.94346E-06 3.8504 1.80592E-05 3.2339 1.21222E-04 3.0908

1/h = 40 2.13961E-07 3.0096 2.05939E-07 3.2383 2.05455E-06 3.1358 1.50013E-05 3.0145
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Fig. 1 L2-norm errors of the linear and quadratic FEMs (Example 5.1)

Example 5.2 Let f (s) = −s + s2, and we can get the cubic-quintic Schrödinger
equation

⎧

⎪⎪⎨

⎪⎪⎩

iut + �u − |u|2u + |u|4u = g, x ∈ �, 0 < t ≤ T ,

u(x, 0) = u0(x), x ∈ �,

u = 0, x ∈ ∂�,

(5.2)

where � = [0, 1] × [0, 1]. In addition, the exact solution u of the above system is
given as follows:

u = eit+(x+y)/2(1 + 3t2)x(1 − x)y(1 − y).

The right-hand side g is given by system (5.2) and the exact solution u. We solve
system (5.2) with the Euler semi-implicit scheme by applying the linear and quadratic
FEMs. Similarly, to verify our theoretical analysis, we choose �t = h2 for the linear
FEM and �t = h3 for the quadratic FEM, respectively. From Table 3 and 4, we can
see that the L2 error estimates of linear FEM are proportional to h2 and the L2 error
estimates of quadratic FEM are proportional to h3. Meanwhile, we choose different
mesh scales 1/h=10,20,...,100 with different �t = 0.2, 0.05, 0.01 at t = 1.0. Also,
from Fig. 2, we see that the errors converge to a constant as h

�t
→ 0, which shows

Fig. 2 L2-norm errors of the linear and quadratic FEMs (Example 5.2)
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Table 3 L2 error estimates of the linear FEM with h2 = �t (Example 5.2)

∥
∥u(·, tn) − Un

h

∥
∥

L2

t=0.5 order t=1 order t=1.5 order t=2 order

1/h = 5 5.1901E-03 1.1201E-02 2.2399E-02 4.9182E-02

1/h = 10 1.4603E-03 1.8124 3.0493E-03 1.8770 5.8612E-03 1.9342 1.4945E-02 1.7185

1/h = 20 4.2169E-04 1.7920 8.1699E-04 1.9001 1.4209E-03 2.0444 4.0147E-03 1.8963

1/h = 40 1.1064E-04 1.9303 2.0785E-04 1.9748 3.4029E-04 2.0619 1.0369E-03 1.9530

Table 4 L2 error estimates of the quadratic FEM with h3 = �t (Example 5.2)

∥
∥u(·, tn) − Un

h

∥
∥

L2

t=0.5 order t=1 order t=1.5 order t=2 order

1/h = 5 1.1249E-04 2.4069E-04 4.6009E-04 1.5751E-03

1/h = 10 9.7713E-06 3.5251 2.2870E-05 3.3956 3.4378E-05 3.7423 1.5102E-04 3.3826

1/h = 20 1.0696E-06 3.1914 2.7265E-06 3.0684 3.1570E-06 3.4449 1.6416E-05 3.2623

1/h = 40 1.3297E-07 3.0079 3.4950E-07 2.9636 3.6936E-07 3.0954 1.9160E-06 3.0989

the unconditional convergence by using the Euler semi-implicit FEMs for solving the
Schrödinger equation.

6 Conclusions

In this paper, we obtain the optimal error estimates of an Euler semi-implicit method
for a generalized nonlinear Schrödinger equation without any time step restriction.
This method is based on a splitting of an error into a time error and a spatial error.
As the regularity of the solution Un of the time-discrete formulation is obtained, the
solution of the fully-discrete Euler method in the L∞ norm can be bounded by

∥
∥Un

h

∥
∥

L∞ ≤ ∥
∥RhU

n
∥
∥

L∞ + ∥
∥Un

h − RhU
n
∥
∥

L∞ ≤ K1.

Applying the above inequality, the optimal error estimate in the L2 norm of the fully-
discrete scheme can be obtained as follow:

∥
∥um − Um

h

∥
∥

L2 ≤ C∗∗(�t + hr+1).

This optimal error estimate has no restriction on the time and spatial steps. The
analytic approach in this paper can be extended similarly to other PDEs.
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