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Abstract In this work we analyze a primal-mixed finite element method for the
coupling of quasi-Newtonian fluids with porous media in 2D and 3D. The flows
are governed by a class of nonlinear Stokes and linear Darcy equations, respec-
tively, and the transmission conditions on the interface between the fluid and the
porous medium are given by mass conservation, balance of normal forces and the
Beavers-Joseph-Saffman law. We apply a primal formulation in the Stokes domain
and a mixed formulation in the Darcy formulation. The “strong coupling” concept
means that the conservation of mass across the interface is introduced as an essen-
tial condition in the space where the velocity unknowns live. In this way, under some
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assumptions on the nonlinear kinematic viscosity, a generalization of the Babuška-
Brezzi theory is utilized to show the well posedness of the primal-mixed formulation.
Then, we introduce a Galerkin scheme in which the discrete conservation of mass
is imposed approximately through an orthogonal projector. The unique solvability of
this discrete system and its Strang-type error estimate follow from the generalized
Babuška-Brezzi theory as well. In particular, the feasible finite element subspaces
include Bernadi-Raugel elements for the Stokes flow, and either the Raviart-Thomas
elements of lowest order or the Brezzi-Douglas-Marini elements of first order for the
Darcy flow, which yield nonconforming and conforming Galerkin schemes, respec-
tively. In turn, piecewise constant functions are employed to approximate in both
cases the global pressure field in the Stokes and Darcy domain. Finally, several
numerical results illustrating the good performance of both discrete methods and
confirming the theoretical rates of convergence, are provided.

Keywords Mixed finite element · Stokes problem · Darcy problem ·
Quasi-Newtonian fluid · Strong coupling · Non-conforming scheme

Mathematics Subject Classification (2010) 65N15 · 65N30 · 74F10 · 74S05 ·
76D07 · 76M10

1 Introduction

The development of suitable numerical methods to solve the Stokes-Darcy and
related coupled problems, including porous media with cracks, the incorporation of
the Brinkman equation in the model, and linear as well as nonlinear behaviors, has
become a very active research area during the last decade (see, e.g., [1, 5–9, 13,
15, 17, 21, 24, 25] and the references therein). In particular, a mixed finite element
method for a class of nonlinear Stokes-Darcy coupled problem arising in industrial
filtring application and involving a non-Newtonian fluid, is introduced and analized
in [7]. Up to the authors’ knowledge, this is the first work dealing with the fully-
coupled problem for non-Newtonian Stokes and Darcy flows. In fact, the fluid is
modeled there by the generalized nonlinear Darcy equation in the porous medium. In
addition, the approach in [7] employs the primal method in the Stokes domain and
the dual-mixed method in the Darcy region, which means that only the original veloc-
ity and pressure unknowns are considered in the fluid, whereas a further unknown
(velocity) is added in the porous medium. The corresponding interface conditions are
given by the mass conservation, balance of normal forces, and the Beavers-Joseph-
Saffman law, and since one of them becomes essential, the trace of the Darcy pressure
on the interface needs also to be incorporated as an additional Lagrange multiplier.
More recently, the model from [7] is recasted in [8] as a reduced matching problem
on the interface by using a mortar space approach. As a consequence, a parallel algo-
rithm for the problems in both regions is derived, which allows to solve the coupled
problem utilizing existing codes for Stokes and Darcy simulations.

On the other hand, the a priori error analyses of a primal-mixed finite ele-
ment method for 2D Stokes-Darcy coupled problem, in which primal and mixed
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formulations are employed in the Stokes and Darcy domains, respectively, were
developed in [13] and [19]. This approach allows, on the one hand, to consider the
natural unknowns, that is, the velocity vector fields and the pressure field in both
domains, and on the other hand, the utilization of different families of finite element
subspaces in each media. The model considered in [13] refers to a linearized Stokes
equations coupled with a linearized Darcy equations. In addition, since the approach
in [13] leads to essential transmission conditions, these are imposed weakly and
hence the trace of the porous medium pressure becomes the corresponding Lagrange
multiplier. However, in [19], the mass conservation across the interface between both
domains was included as an essential condition in the velocity unknowns space, and
hence the resulting primal-mixed formulation does not need the trace of the porous
media pressure as an additional unknown.

The purpose of the present work is to extend the analysis and results from [19] to
the model problem from [7], that is to the coupling of quasi-Newtonian fluids with
porous media. To this end, and following a similar approach from [7] (see also [13]
and [19]), we apply a primal formulation in the fluid domain while a mixed formu-
lation is applied in the porous medium. In addition, the balance of normal forces and
Beavers-Joseph-Saffman law are imposed weakly (exactly as in [13] and [19]), but
following the idea introduced in [19], the mass conservation across the interface is
imposed as an essential condition in the velocity unknowns space. All these equa-
tions yield a nonlinear primal-mixed formulation, whose well-posedness is proved by
applying the generalization of the Babuška-Brezzi theory developed in [11] (see also
[12]). In addition, since the insertion of the mass conservation as an essential con-
dition in the velocity unknowns space leads to a nonconforming Galerkin scheme,
we need to modify the generalized Babuška-Brezzi theory from [11] to be able to
show the uniqueness of the discrete scheme and derive the corresponding a priori
Strang-type estimate.

The rest of this work is organized as follows: In Section 2 we introduce the model
problem and derive the primal-mixed variational formulation, which shows a nonlin-
ear mixed formulation structure. A slight modification of the usual Babuška-Brezzi
theory developed in [23] is also given here to analyze the solvability of our continu-
ous formulation. Next, in Section 3 we provide the discrete analogue of the abstract
theory developed in [11] (see also [12]), which allows us to establish the solvability
and stability of nonconforming Galerkin schemes associated with weak formulations
of nonlinear mixed problems. This abstract framework is then applied, under some
general assumptions on the finite element subspaces, to prove the well-posedness of
the nonconforming discrete scheme associated with our continuous problem. Specific
choices of finite element subspaces satisfying these assumptions are also described
here. Finally, several numerical results illustrating the performance of the method and
confirming the theoretical rates of convergence, are reported in Section 4.

2 The continuous problem

We begin this section by introducing some notations to be used throughout this paper.
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2.1 Preliminaries

In what follows, given d ∈ {2, 3}, Rd×d denotes the space of tensors (or matrices)
τ := (τij ) with real entries, and I is the identity tensor (or identity matrix) of Rd×d .
Also, in this space we consider the tensorial inner product given by

σ : τ :=
d∑

i,j=1

σij τij ∀σ, τ ∈ Rd×d ,

with induced norm

|σ | :=
⎧
⎨

⎩

d∑

i,j=1

σ 2
ij

⎫
⎬

⎭

1/2

∀σ ∈ Rd×d .

In turn, given H and Q Hilbert spaces with induced norms
∥∥ · ∥∥

H
and

∥∥ · ∥∥
Q

, respec-

tively, we endow the product space H × Q with the product norm
∥∥ · ∥∥

H×Q
:=∥∥ ·∥∥

H
+∥∥ ·∥∥

Q
. In addition, we denote by H and H the spaces Hd and Hd×d , respec-

tively. Also, If H ′ denotes the dual space of the Hilbert space H , we let [·, ·]H ′×H be
the duality pairing between H ′ and H . Furthermore, we utilize the standard simpli-
fied terminology for Sobolev spaces and norms. In particular, given s ∈ R, a domain
U ⊆ Rd , and an open or closed surface � ⊆ Rd , we consider the Sobolev spaces

Hs(U) := [
Hs(U)

]d and Hs(�) := [
Hs(�)

]d
.

However, when s = 0 we usually write L2(U) and L2(�) instead of H 0(U)

and H 0(�), respectively, as well as L2(U) and L2(�) instead of H0(U) and H0(�),
respectively. The corresponding norms are denoted by

∥∥ · ∥∥
s,U

and
∥∥ · ∥∥

s,�
for

the respective space on U and �, respectively. In addition, given u, v ∈ L2(U),
u, v ∈ L2(U), and σ, τ ∈ L

2(U), we set

(u, v)0,U :=
∫

U

uv, (u, v)0,U :=
∫

U

u · v

and

(σ, τ )0,U :=
∫

U

σ : τ.

We also need to introduce the space

L2
0(U) :=

{
u ∈ L2(U) :

∫

U

u = 0

}
. (2.1)

Further, 〈·, ·〉� denotes the duality pairing between H−1/2(�) and H 1/2(�), and
between H−1/2(�) and H1/2(�) with respect to the L2(�) and L2(�) inner products,
respectively. When � is an open surface of Rd and � is a closed surface in Rd such
that � ⊆ �, we introduce the extension operator E0 : H 1/2(�) → L2(�) defined by

E0(ψ) :=
{

ψ on �,

0 on �\�,
∀ψ ∈ H 1/2(�),
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and the space

H
1/2
00 (�) :=

{
ψ ∈ H 1/2(�) : E0(ψ) ∈ H 1/2(�)

}
,

which is endowed with the norm
∥∥ψ
∥∥

1/2,00,�
:= ∥∥E0(ψ)

∥∥
1/2,�

, ∀ψ ∈ H
1/2
00 (�). The

expression 〈·, ·〉� is also employed in this case to denote the duality pairing between
H

1/2
00 (�) and H

−1/2
00 (�), where H

−1/2
00 (�) is the dual space of H

1/2
00 (�). In particular,

note that given η ∈ H−1/2(�), its restriction to � defined by

〈η|�, ψ〉� := 〈η, E0(ψ)〉� ∀ψ ∈ H
1/2
00 (�),

is an element of H
−1/2
00 (�). The corresponding vector versions of H

1/2
00 (�) and

H
−1/2
00 (�) are denoted by H1/2

00 (�) and H−1/2
00 (�), respectively, and 〈·, ·〉� is also

employed to refer to the respective duality pairing.
On the other hand, with div denoting the usual divergence operator, the Hilbert

space

H(div; U) :=
{
τ ∈ L2(U) : divτ ∈ L2(U)

}
,

is standard in the realm of mixed problems (see [4, 14]). The norm of this space is
denoted by

∥∥ · ∥∥div,U
. Moreover, given a nonempty set S of Rd and a nonnegative

integer k, we denote by Pk(S) the space of polynomials defined in S with total degree
at most k. Also, Pk(S) denotes the corresponding vector version of Pk(S). Finally,
we employ 0 to denote a generic null vector, the null functional or the null operator,
and we use C with or without subscripts, bars, tildes or hats, to denote generic con-
stants independent of the discretization parameters, which may take different values
at different places.

2.2 The model problem

Let � ⊆ Rd be a Lipschitz polyhedral (polygonal if d = 2) domain with boundary
� := ∂� which has been subdivided in two subdomains �S and �D such that �S ∩
�D = ∅, � = �S ∪ �D, and ∂�S ∩ ∂�D = � is the nonempty polyhedral interface
between �S and �D. Also, we let �S := ∂�S\� and �D := ∂�D\�. On � and on �

we denote by n := (n1, n2, ..., nd)t the unit normal vector which is chosen pointing
outward from �S ∪ � ∪ �D and �S. Note that n points inward from � to �D. In
addition, in the 2D case we denote by t := (−n2, n1)

t the fixed unit tangent vector
on � (see Fig. 1). The model problem we are interested in consists of the movement
of an incompressible quasi-Newtonian viscous fluid that occupies the region �S and
that flows towards and from the region �D through the interface �, where �D is
saturated with the same fluid.

More precisely, the governing equations in �S are those of the nonlinear Stokes
problem with homogeneous Dirichlet boundary condition on �S, that is:

−div {μ (|∇uS|)∇uS − pSI} = fS in �S,

divuS = 0 in �S,
uS = 0 on �S,

(2.2)
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Fig. 1 Layout of the geometry of the coupled problem

where div is the usual divergence operator div applied along each row of a tensor, uS
is the velocity vector field in �S, pS is the pressure field in �S, μ : R+ → R+ is the
nonlinear kinematic viscosity, and fS ∈ L2(�S) is a known volume force. In turn, in
�D we consider the linearized Darcy model with Neumann boundary condition on
�D:

K−1uD + ∇pD = 0 in �D,

divuD = fD in �D,
uD · n = 0 on �D,

(2.3)

where uD is the velocity vector field in �D, pD is the pressure field in �D, fD ∈
L2

0(�D) is a source term, and K is a symmetric and uniformly positive definite
tensor with entries in L∞(�D), which represents the permeability of �D divided
by a constant approximation of the viscosity. Finally, the transmission conditions
across � are given by the conservation of mass, balance of normal forces and
Beavers-Joseph-Saffman law:

uS · n = uD · n on �,

{μ (|∇uS|)∇uS − pSI} n + νκ−1π tuS = −pDn on �,
(2.4)

where ν is a constant approximation of the viscosity μ on �, π tw := w − (w · n)n
and κ ∈ L∞(�D) is a given coefficient that is bounded from below by a positive
constant a.e. on �. We remark that the kind of nonlinear Stokes problem given by
Eq. 2.2 appears in the modeling of a large class of non-Newtonian fluids (see e.g. [16,
22]). In particular, the Ladyzhenskaya law for fluids with large stresses (see [16]),
also known as power law, is given by μ(t) = μ0 + μ1t

β−2 ∀t ∈ R+, with μ0 ≥ 0,

μ1 > 0 and β > 1, and the Carreau law for viscoplastic flows (see, e.g. [18] and
[22]) reads μ(t) = μ0 + μ1(1 + t2)(β−2)/2 ∀t ∈ R+,with μ0 ≥ 0, μ1 > 0 and
β ≥ 1. In what follows we let μij : Rd×d → R be the mapping defined by

μij (σ ) = μ(|σ |)σij ∀σ := (σij ) ∈ Rd×d . (2.5)



Strong coupling of quasi-Newtonian fluids and porous media 681

Throughout this work we suppose that μ is of class C1 and that there exist positive
constants α0 and γ0 such that for all σ, τ ∈ Rd×d

|μij (σ )| ≤ γ0|σ |,
∣∣∣∣
∂μij

∂σkl

(σ )

∣∣∣∣ ≤ γ0, ∀i, j, k, l ∈ {1, ..., d} (2.6)

and
d∑

i,j,k,l=1

∂μij

∂σkl

(σ ) τij τkl ≥ α0|τ |2 . (2.7)

It is easy to check that the Carreau law satisfies Eqs. 2.6 and 2.7 for all μ0 > 0,
and for all β ∈ [1, 2]. In particular, with β = 2 we recover the usual linear Stokes
model.

2.3 A primal-mixed formulation

In this section we proceed as in [13] and [19], and introduce a primal-mixed formu-
lation of the coupled problem given by Eqs. 2.2, 2.3 and 2.4. To this end, we consider
the spaces

H1
�S

(�S) :=
{

vS ∈ H1(�S) : vS = 0 on �S

}

and
H�D(div; �D) := {vD ∈ H(div; �D) : vD · n = 0 on �D} .

Here, H(div; �D) is endowed with the inner product

(uD, vD)div,�D
:= (uD, vD)0,�D

+ (divuD, divvD)0,�D
∀uD, vD ∈ H(div; �D),

and its induced norm
∥∥ · ∥∥2

div,�D
:= (·, ·)div,�D

. Next, in order to construct a
primal-mixed formulation of Eqs. 2.2, 2.3 and 2.4, we begin by testing the first
equation in Eq. 2.2 with vS ∈ H1

�S
(�S). In this way, integrating by parts the term

(div {μ (|∇uS|)∇uS − pSI}, vS)0,�S
, introducing the Dirichlet boundary condition

uS = 0 on �S, and using that pSI : ∇vS = pS div vS we obtain

(μ(|∇uS|)∇uS, ∇vS)0,�S
−(pS, divvS)0,�S

−〈{μ(|∇uS|)∇uS − pSI} n, vS〉� = (fS, vS)0,�S
,

which, using from Eq. 2.4 that

− {μ(|∇uS|)∇uS − pSI} n = νκ−1π tuS + pDn on �,

yields

(μ(|∇uS|)∇uS, ∇vS)0,�S
+ 〈

νκ−1π tuS, π tvS
〉
�+ 〈vS · n, pD〉� − (pS, divvS)0,�S

= (fS, vS)0,�S
∀vS ∈ H1

�S
(�S).

On the other hand, multiplying the first equation of Eq. 2.3 by vD ∈ H�D(div; �D),
integrating by parts, and using that −n is the unit normal vector of � pointing inward
to �D, we arrive at

(K−1uDvD)0,�D − 〈vD · n, pD〉� − (pD, divvD)0,�D
= 0 ∀vD ∈ H�D(div; �D).
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Hence, adding the last two equations we get

(μ(|∇uS|)∇uS, ∇vS)0,�S
+〈νκ−1π tuS, π tvS

〉
�

+(K−1uD, vD
)

0,�D− (pS, divvS)0,�S
−(pD, divvD)0,�D

+〈(vS − vD) · n, pD〉� =(fS, vS)0,�S
,

(2.8)
for all v := (vS, vD) ∈ H1

�S
(�S)×H�D(div; �D). In turn, from the second equations

of Eqs. 2.2 and 2.3, we obtain

(q, divuS)0,�S
+ (q, divuD)0,�D

= (fD, q)0,�D
∀q ∈ L2(�). (2.9)

Now, proceeding as in [19], we introduce the first transmission condition of Eq. 2.4
into the definition of the velocities space H, that is

H :=
{

v := (vS, vD) ∈ H1
�S

(�S) × H�D(div; �D) : vS · n = vD · n on �
}

.

(2.10)
This space is endowed with the usual norm of the product space H1

�S
(�S) ×

H�D(div; �D). Note that, according to the foregoing definition, (2.8) becomes

(μ(|∇uS|)∇uS, ∇vS)0,�S
+ 〈

νκ−1π t uS, π t vS
〉
�+ (

K−1uD, vD
)

0,�D
− (pS, divvS)0,�S

− (pD, divvD)0,�D

= (fS, vS)0,�S
∀ v := (vS, vD) ∈ H.

(2.11)

Then, proceeding as in [13], we find that the resulting weak formulation reduces
to a nonlinear system with three unknowns, namely

uS ∈ H1
�S

(�S), uD ∈ H�D(div; �D) and p :=
{

pS on �S
pD on �D

∈ L2(�),

satisfying Eqs. 2.9 and 2.11. More precisely, our primal-mixed formulation reads:
Find (u, p) := ((uS, uD), p) ∈ H × L2(�) such that

a(u, v) + b(v, p) = [F, v]H′×H ∀v ∈ H,

b(u, q) = [G, q]Q′×Q ∀q ∈ L2(�),
(2.12)

where the semilinear form a : H × H → R, the bilinear form b : H × L2(�) → R,
and the functionals F ∈ H′ and G ∈ L2(�)′, are defined by

a(u, v) := (μ(|∇uS|)∇uS, ∇vS)0,�S
+ 〈νκ−1π t uSπ t vS〉� + (K−1uDvD)0,�D ∀u, v ∈ H,

b(v, q) := − (q, divvS)0,�S
− (q, divvD)0,�D

∀(v, q) ∈ H × L2(�),

[F, v]H′×H := (fS, vS)0,�S
∀v ∈ H, and [G, q]Q′×Q := (fD, q)0,�D

∀q ∈ L2(�).

Now, it is easy to see from Eq. 2.6 that, fixing the first component of a, its second
component defines a bounded linear functional. In turn, it is quite clear that b is a
bounded bilinear form. Hence, we can introduce the nonlinear operator A : H → H′
and the linear operator B : H → [L2(�)]′ given by

[A(u), v]H′×H := a(u, v) ∀u, v ∈ H,
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and
[B(v), q]L2(�)′×L2(�) := b(v, q) ∀(v, q) ∈ H × L2(�),

whence the primal-mixed formulation (2.12) can be re-written as: Find (u, p) ∈ H ×
L2(�) such that

[A(u), v]H′×H + [B(v), p]L2(�)′×L2(�) = [F, v]H′×H ∀v ∈ H,

[B(u), q]L2(�)′×L2(�) = [G, q]Q′×Q ∀q ∈ L2(�).
(2.13)

However, it is easy to show that this system is not unique solvable since, given any
solution (u, p) := ((uS, uD), p) ∈ H × L2(�) of Eq. 2.12 (equivalently (2.13)),
(u, p+c) is also a solution for each c ∈ R. In order to overcome this non-uniqueness,
we recall the decomposition L2(�) = L2

0(�) ⊕ R, (cf. Eq. 2.1), define Q := L2
0(�),

and consider the modified primal-mixed formulation: Find (u, p) ∈ H × Q such that

[A(u), v]H′×H + [B(v), p]Q′×Q = [F, v]H′×H ∀v ∈ H,

[B(u), q]Q′×Q = [G, q]Q′×Q ∀q ∈ Q.
(2.14)

The following lemma shows the connection between Eqs. 2.13 and 2.14.

Lemma 2.1 Let (u, p) ∈ H×L2(�) be a solution of Eq. 2.13 and define p0 ∈ L2
0(�)

by

p0 := p − 1

|�|
∫

�

p.

Then (u, p0) ∈ H × Q is a solution of Eq. 2.14. Conversely, let (u, p0) ∈ H × Q be a
solution of Eq. 2.14, and given c ∈ R, define p := p0 + c. Then (u, p) ∈ H ×L2(�)

is a solution of Eq. 2.13.

Proof First, let (u, p) ∈ H×L2(�) be a solution of Eq. 2.13. We define p0 ∈ L2
0(�)

by

p0 := p − c, with c := 1

|�|
∫

�

p.

Then, for any v ∈ H we have, using the first equation in Eq. 2.13,

[A(u), v]H′×H + [B(v), p0]Q′×Q = [A(u), v]H′×H + [B(v), p − c]L2(�)′×L2(�)

= [F, v]H′×H − c [B(v), 1]L2(�)′×L2(�) .

Now, since vS · n = vD · n on � and n points inward to �D on �, we get

[B(v), 1]L2(�)′×L2(�) =− (1, divvS)0,�S
− (1, divvD)0,�D

=〈vD · n−vS · n, 1〉� =0,

which, replaced back into the foregoing equation, gives

[A(u), v]H′×H + [B(v), p0]Q′×Q = [F, v]H′×H ∀v ∈ H ,

thus showing that the first equation in Eq. 2.14 is satisfied. In turn, the second
equation of Eq. 2.14 is clearly satisfied since Q ⊆ L2(�).
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Conversely, let (u, p0) ∈ H × Q be a solution of Eq. 2.14 and let c ∈ R. Then,
defining p := p0 + c we see from the first equation in Eq. 2.14 that for all v ∈ H
there holds

[A(u), v]H′×H + [B(v), p]L2(�)′×L2(�)

= [A(u), v]H′×H + [B(v), p0]Q′×Q + c · [B(v), 1]L2(�)′×L2(�)

= [A(u), v]H′×H + [B(v), p0]Q′×Q

= [F, v]H′×H ,

that is the first equation in Eq. 2.13 is satisfied. Now, given q := q0 + c ∈ L2(�) :=
L2

0(�) ⊕ R, with q0 ∈ L2
0(�) and c ∈ R, we deduce, using the second equation in

Eq. 2.14 and the identity G(1) = 0 (which follows from the fact that fD ∈ L2
0(�D)),

that

[B(u), q]L2(�)′×L2(�) = [B(u), q0]Q′×Q+c·[B(u), 1]L2(�)′×L2(�) = G(q0) = G(q),

which proves that the second equation in Eq. 2.13 holds.

According to the previous lemma, throughout the rest of the paper we consider the
primal-mixed formulation (2.14).

2.4 An abstract theory for a class of nonlinear mixed problems

Let H and Q be Hilbert spaces with dual spaces H ′ and Q′, and let A : H → H ′ be a
nonlinear operator, and B : H → Q′ be a linear operator with adjoint B ′ : Q → H ′.
Then, given F ∈ H ′ and G ∈ Q′, we are interested in the following variational
problem: Find (u, p) ∈ H × Q such that

[A(u), v]H ′×H + [B(v), p]Q′×Q = [F, v]H ′×H ∀v ∈ H,

[B(u), q]Q′×Q = [G, q]Q′×Q ∀q ∈ Q.
(2.15)

In order to analyze the unique solvability of Eq. 2.15, we need to introduce some
assumptions on the operators A : H → H ′ and B : H → Q′.

(H.1) There exists γ > 0 such that A is Lipschitz continuous, that is
∥∥A(u) − A(v)

∥∥
H ′ ≤ γ

∥∥u − v
∥∥

H
∀u, v ∈ H.

(H.2) There exists α > 0 such that for any z ∈ H , the nonlinear operator A(z + ·)
is strongly monotone in the null space of the linear operator B, that is

α
∥∥u − v

∥∥2
H

≤ [A(z + u) − A(z + v), u − v]H ′×H ∀u, v ∈ V,

where V := {
v ∈ H : [B(v), q]Q′×Q = 0 ∀q ∈ Q

}
.

(H.3) There exists β > 0 such that the following continuous inf-sup condition holds

sup
v∈H
v �=0

[B(v), q]Q′×Q∥∥v
∥∥

H

≥ β
∥∥q
∥∥

Q
∀q ∈ Q.
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We now recall from [14] a result establishing equivalent statements for (H.3).

Lemma 2.2 The following are equivalent:

i) (H.3) is satisfied.
ii) B ′ is an isomorphism from Q onto V ◦, where

V ◦ := {
F ∈ H ′ : [F, v]H ′×H = 0 ∀v ∈ V

}

is the polar set of V , and there holds
∥∥B ′(q)

∥∥
H ′ ≥ β

∥∥q
∥∥

Q
∀q ∈ Q.

iii) B is an isomorphism from V ⊥ onto Q′ and there holds
∥∥B(v)

∥∥
Q′ ≥ β

∥∥v
∥∥

H
∀v ∈ V ⊥.

iv) B : H → Q′ is surjective.

Proof See [14, Chapter 1, Section 4] for details.

While the solvability analysis of Eq. 2.15 follows as a particular case of
[23, Proposition 2.3], we provide next an alternative proof by adapting the arguments
from [12]. Indeed, for each G ∈ Q′, we first set

VG := {
v ∈ H : [B(v), q]Q′×Q = [G, q]Q′×Q ∀q ∈ Q

}
.

In particular, when G = 0, we just write V instead of V0 to denote the null space
of the linear operator B. Obviously, since B is linear and bounded, V becomes a
closed subspace of H . Then, we associate with Eq. 2.15 the following problem: Find
u ∈ VG such that

[A(u), v]H ′×H = [F, v]H ′×H ∀v ∈ V. (2.16)

The next result establishes the connection between Eqs. 2.15 and 2.16.

Lemma 2.3 Let (u, p) ∈ H × Q be a solution of Eq. 2.15. Then, u ∈ VG and u is
a solution of Eq. 2.16. Conversely, let u ∈ VG be a solution of the problem (2.16).
Then, there exists p ∈ Q such that (u, p) ∈ H × Q is a solution of Eq. 2.15.

Proof Let (u, p) ∈ H × Q be a solution of Eq. 2.15. Then, from the second equa-
tion in Eq. 2.15 we have that u ∈ VG, and clearly u is a solution of Eq. 2.16 since
[B(v), p]Q′×Q = 0 ∀v ∈ V . Conversely, let u ∈ VG be a solution of Eq. 2.16.
It follows that [B(u), q]Q′×Q = [G, q]Q′×Q ∀q ∈ Q, which says that the second
equation in Eq. 2.15 is satisfied. In turn, from Lemma 2.2 we know that B ′ is an iso-
morphism from Q onto V ◦, and since F − A(u) ∈ V ◦, we deduce that there exists a
unique p ∈ Q such that B ′(p) = F − A(u). In this way, the pair (u, p) ∈ H × Q

solves (2.15).

Now, given G ∈ Q′, we know from Lemma 2.2 that there exists a unique uG ∈ V ⊥
such that B(uG) = G. It follows that for each u ∈ VG there holds u−uG ∈ V , that is
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u = u0 + uG, with u0 ∈ V and hence problem (2.16) can be re-stated, equivalently,
as: Find u0 ∈ V such that

[A(u0 + uG), v]H ′×H = [F, v]H ′×H ∀v ∈ V. (2.17)

According to the foregoing analysis, we have the following result, which states that
problems (2.16) and (2.17) are equivalent.

Lemma 2.4 Given uG ∈ VG, we let u0 ∈ V be a solution of Eq. 2.17. Then, u :=
u0 + uG ∈ VG is a solution of Eq. 2.16. Conversely, let u ∈ VG be a solution of
Eq. 2.16. Then, there exist uG ∈ V ⊥ and u0 ∈ V such that u = u0 +uG, and u0 ∈ V

is solution of Eq. 2.17.

The next result establishes the unique solvability of problem (2.17).

Theorem 2.1 (H.1) and (H.2) imply that problem (2.17) is well posed.

Proof It follows from a classical result in nonlinear functional analysis (see, e.g.
[20, Chapter 3, Section 3].

Moreover, we remark from this last result that the solution u0 + uG ∈ VG of
Eq. 2.17 is independent of the election of uG ∈ V ⊥ ∩ VG. In fact, given other ũG ∈
VG, we let ũ0 ∈ V be the unique solution of

[
A(ũ0 + ũG), v

]
H ′×H

= [F, v]H ′×H ∀v ∈ V.

Since
[
A(ũ0 + ũG), v

]
H ′×H

= [
A((ũ0 + ũG − uG) + uG), v

]
H ′×H

for each v ∈
V,we deduce from Theorem 6.1 with uG ∈ VG, that ũ0 + ũG − uG = u0, whence
ũ0 + ũG = u0 + uG ∈ VG.

Now, we introduce the main result of this section.

Theorem 2.2 Assume that (H.1), (H.2) and (H.3) hold. Then, there exists a unique
solution (u, p) ∈ H × Q of Eq. 2.15. In addition, there exists a constant C > 0,
depending on the constants α, γ and β provided by (H.1), (H.2) and (H.3), such that

∥∥(u, p)
∥∥

H×Q
≤ C

{∥∥F
∥∥

H ′ + ∥∥G
∥∥

Q′ + ∥∥A(0)
∥∥

H ′
}

. (2.18)

Proof The unique solvability of Eq. 2.15 follows straightforwardly from Lemmas 2.3
and 2.4, and Theorem 2.1. To show the estimate (2.18) we let u0 ∈ V and uG ∈
V ⊥ ∩ VG, provided by Lemma 2.4, such that u = u0 + uG. Then, since B is an
isomorphism from V ⊥ onto Q′ (cf. Lemma 2.2), we get

∥∥uG

∥∥
H

≤ 1

β

∥∥B(uG)
∥∥

Q′ = 1

β

∥∥G
∥∥

Q′ . (2.19)
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In turn, from (H.2) and problem (2.17), we have

α
∥∥u0

∥∥2
H

≤ [A(u0 + uG) − A(uG), u0]H ′×H

= [F, u0]H ′×H + [A(0) − A(uG), u0]H ′×H − [A(0), u0]H ′×H ,

which, applying (H.1) and the fact that F, A(0) ∈ H ′, yields
∥∥u0

∥∥
H

≤ 1

α

{∥∥F
∥∥

H ′ + γ
∥∥uG

∥∥
H

+ ∥∥A(0)
∥∥

H ′
}
. (2.20)

On the other hand, applying (H.3) to p ∈ Q, we get

β
∥∥p
∥∥

Q
≤ sup

v∈H
v �=0

[B(v), p]Q′×Q∥∥v
∥∥

H

,

whence, using that

[B(v), p]Q′×Q = [F, v]H ′×H − [A(u), v]H ′×H

= [F, v]H ′×H + [A(0) − A(u), v]H ′×H − [A(0), v]H ′×H
∀v ∈ H,

and applying (H.1), leads to
∥∥p
∥∥

Q
≤ 1

β

{∥∥F
∥∥

H ′ + γ
∥∥u
∥∥

H
+ ∥∥A(0)

∥∥
H ′
}
. (2.21)

The proof follows by combining Eqs. 2.19 and 2.20 with the inequality
∥∥u
∥∥

H
≤∥∥u0

∥∥
H

+ ∥∥uG

∥∥
H

, and then replacing the resulting estimate in Eq. 2.21.

2.5 Analysis of the weak formulation

In this section we show the unique solvability of Eq. 2.14 by checking first that (H.1),
(H.2), and (H.3) are satisfied, and then applying Theorem 2.2. We begin our analysis
with the characterization of the null space V of the operator B.

Lemma 2.5 There holds,

V = {v ∈ H : div vS = 0 in �S and div vD = 0 in �D} .

Proof Given v ∈ V,we have

− (q, div vS)0,�S
− (q, div vD)0,�D

= 0 ∀q ∈ Q := L2
0(�).

In turn, since vS · n = vD · n on �, we get

0 = 〈vD · n − vS · n, 1〉� = −(1, div vD)0,�D − (1, div vS)0,�S,

that is,
−(c, div vD)0,�D − (c, div vS)0,�S = 0 ∀c ∈ R.

Then, the decomposition L2(�) = L2
0(�) ⊕ R implies that

− (q, div vS)0,�S
− (q, div vD)0,�D

= 0 ∀q ∈ L2(�),



688 S. Domı́nguez et al.

which yields div vS = 0 in �S and div vD = 0 in �D, thus finishing the proof.

The continuous inf-sup condition for the operator B is shown next.

Lemma 2.6 There exists a constant β > 0 such that

sup
v∈H
v�=0

[B(v), q]Q′×Q∥∥v
∥∥

H

≥ β
∥∥q
∥∥

Q ∀q ∈ Q.

Proof Let q ∈ Q. A well-known result (see e.g. [14]) yields the existence of
z ∈ H1

0(�) and C > 0, independent of z, such that −divz = q in � and
∥∥z
∥∥

1,�
≤

C
∥∥q
∥∥

Q. Next, we put wS := z|�S and wD := z|�D. Then, we observe that wS · n =
wD · n on �, that is w := (wS, wD) ∈ H. It follows that [B(w), q]Q′×Q = ∥∥q

∥∥2
Q and∥∥w

∥∥
H ≤ ∥∥z

∥∥
1,�

≤ C
∥∥q
∥∥

Q, which gives

sup
v∈H
v�=0

[B(v), q]Q′×Q∥∥v
∥∥

H

≥ [B(w), q]Q′×Q∥∥w
∥∥

H

≥ 1

C

∥∥q
∥∥

Q,

and the proof is completed.

The next lemma shows that the nonlinear operator, induced by the term
(μ(|∇uS|)∇uS, ∇vS)0,�S

, satisfies (H.1) and (H.2).

Lemma 2.7 Let AS : H1
�S

(�S) → [H1
�S

(�S)]′ be the nonlinear operator given by
[AS(uS), vS] := (μ(|∇uS|)∇uS, ∇vS)0,�S

∀uS, vS ∈ H1
�S

(�S),

where [·, ·] denotes the duality pairing between H1
�S

(�S) and [H1
�S

(�S)]′. Then, AS

is Lipschitz continuous, and for each zS ∈ H1
�S

(�S), AS(zS+·) is strongly monotone.

Proof Let uS, vS, wS ∈ H1
�S

(�S). By definition of AS we have that

[AS(uS) − AS(vS), wS] =
∫

�S

(μ(|∇uS|)∇uS − μ(|∇vS|)∇vS) : ∇wS,

which, denoting σ := ∇uS, τ := ∇vS, and τ̃ := ∇wS, becomes

[AS(uS) − AS(vS), wS] =
∫

�S

(μ(|σ |)σ − μ(|τ |)τ ) : τ̃

=
d∑

i,j=1

∫

�S

(μ(|σ |)σij − μ(|τ |)τij )τ̃ij .
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Next, using Eq. 2.5 and setting σ̃ (m) := mσ + (1 −m)τ ∀m ∈ (0, 1), we can write
for each i, j ∈ {1, ..., d},

μ(|σ |)σij − μ(|τ |)τij = μij (σ ) − μij (τ ) =
∫ 1

0

∂

∂m
μij (σ̃ )dm

=
d∑

k,l=1

∫ 1

0

∂σ̃kl

∂m

∂

∂σ̃kl

μij (σ̃ )dm

=
d∑

k,l=1

∫ 1

0

∂

∂σ̃kl

μij (σ̃ )(σkl − τkl)dm,

which yields

[AS(uS) − AS(vS), wS] =
d∑

i,j,k,l=1

∫

�S

(∫ 1

0

∂

∂σ̃kl

μij (σ̃ )(σkl − τkl)dm

)
τ̃ij .

Hence, applying Eq. 2.6 and the Cauchy-Schwarz inequality, we find that

∥∥AS(uS) − AS(vS)
∥∥

H1(�S)′ = sup
wS∈H1(�S)

wS �=0

[AS(uS) − AS(vS), wS]∥∥wS
∥∥

1,�S

≤γ0
∥∥uS−vS

∥∥
1,�S

.

Similarly, given zS, uS, vS ∈ H1
�S

(�S), and denoting σ := ∇zS, τ := ∇uS,
τ̃ := ∇vS, and σ̂ (m) := m(σ + τ) + (1 − m)(σ + τ̃ ) ∀ m ∈ (0, 1), we obtain

[AS(zS + uS) − AS(zS + vS), uS − vS] =
∫

�S

{μ(|σ + τ |)(σ + τ)

−μ(|σ + τ̃ |)(σ + τ̃ )} : (τ − τ̃ )

=
d∑

i,j,k,l=1

∫

�S

∫ 1

0

∂

∂σ̂kl

μij (σ̂ )(τij − τ̃ij )

×(τkl − τ̃kl)dm.

In this way, using now Eq. 2.7 and the Friedrich-Poincaré inequality, we get

[AS(zS + uS) − AS(zS + vS), uS − vS] ≥ α̃0
∥∥uS − vS

∥∥2
1,�S

,

with α̃0 > 0 depending on α0 and the constant provided by the aforementioned
inequality.

Note now that the nonlinear operator A can be written as

[A(u), v]H′×H = [AS(uS), vS] + 〈νκ−1π tuSπ tvS〉�+(K−1uDvD)0,�D ∀u, v ∈ H.

(2.22)
The following lemma shows that A satisfies (H.1) and (H.2).
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Lemma 2.8 Let H�D(div0; �D) := {
vD ∈ H�D(div; �D) : divvD = 0

}
. Then, the

nonlinear operator A is Lipschitz continuous in H1
�S

(�S) × H�D(div; �D), and for

each z ∈ H1
�S

(�S) × H�D(div; �D), A(z + ·) is strongly monotone in H1
�S

(�S) ×
H�D(div0; �D).

Proof It follows straightforwardly from the corresponding properties of AS (cf.
Lemma 2.7) and from the fact that the expressions 〈νκ−1π tuS, π tvS〉� and
〈K−1uD, vD〉0,�D induce positive semi-definite, symmetric and uniformly positive
definite bilinear forms, respectively.

The main result of this section is established as follows.

Theorem 2.3 There exists a unique (u, p) ∈ H × Q solution of the primal-mixed
formulation (2.14) and there exists C > 0 such that

∥∥(u, p)
∥∥

H×Q ≤ C
{∥∥fS

∥∥
0,�S

+ ∥∥fD
∥∥

0,�D

}
.

Proof It follows from Lemmas 2.5, 2.6, 2.7 and 2.8, and a straightforward application
of Theorem 2.2.

3 The discrete problem

In this section we introduce and analyze a nonconforming Galerkin scheme for
the primal-mixed formulation (2.14). We begin with the following discrete abstract
analysis.

3.1 A nonconforming discrete scheme

We begin by recalling that the unique solvability of Eq. 2.15 is guaranteed by
Theorem 2.2. Now, we let H̃ and Q̃ be two Hilbert spaces with dual spaces H̃ ′ and
Q̃′, respectively, such that H ⊆ H̃ and Q ⊆ Q̃, and we consider finite dimensional
subspaces Hh ⊆ H̃ and Qh ⊆ Q̃. Also, we let Ã : H̃ → H̃ be a nonlinear operator,
and let B̃ : H̃ → Q̃′ be a linear operator with adjoint B̃ ′ : Q̃ → H̃ ′. Then, given
F̃ ∈ H̃ and G̃ ∈ Q̃ we consider the nonconforming discrete scheme of Eq. 2.15:
Find (uh, ph) ∈ Hh × Qh such that

[
Ã(uh), vh

]

H̃ ′×H̃
+
[
B̃(vh), ph

]

Q̃′×Q̃
=
[
F̃ , vh

]

H̃ ′×H̃
∀vh ∈ Hh,

[
B̃(uh), qh

]

Q̃′×Q̃
=
[
G̃, qh

]

Q̃′×Q̃
∀qh ∈ Qh.

(3.1)
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Note that the nonconformity of Eq. 3.1 is due to the fact that Hh and Qh are not
necessarily contained in H and Q, respectively, and also because Ã and B̃ dot not
necessarily coincide with the operators A and B. Now, given G̃ ∈ Q̃′, we set

V
G̃,h

:=
{
vh ∈ Hh :

[
B̃(vh), qh

]

Q̃′×Q̃
=
[
G̃, qh

]

Q̃′×Q̃
∀qh ∈ Qh

}
.

In particular, if G̃ = 0, we just write Vh instead of V0,h to denote the discrete kernel
of the operator B̃. In order to establish the uniqueness, stability, and corresponding a
priori estimate for the discrete scheme (3.1) we need to introduce some hypotheses:

(H.4) There exists a constant β̃ > 0, independent of h, such that

sup
vh∈Hh
vh �=0

[
B̃(vh), qh

]

Q̃′×Q̃∥∥vh

∥∥
H̃

≥ β̃
∥∥qh

∥∥
Q̃

∀qh ∈ Qh.

(H.5) The operator Ã is Lispchitz continuous in H̃ with constant γ̃ > 0, that is
∣∣∣∣
[
Ã(u) − Ã(v), w

]

H̃ ′×H̃

∣∣∣∣ ≤ γ̃
∥∥u − v

∥∥
H̃

∥∥w
∥∥

H̃
∀ u, v, w ∈ H̃ .

(H.6) For all zh ∈ Hh, the operator Ã(zh + ·) is strongly monotone in Vh with
constant α > 0 independent of h, that is,
[
Ã(zh + uh) − Ã(zh + vh), uh − vh

]

H̃ ′×H̃
≥ α̃

∥∥uh−vh

∥∥2
H̃

∀ uh, vh ∈ Vh .

Applying Lemma 2.2 to the present discrete scheme, we deduce from (H.4)
that the discrete version of B̃ is an isomorphism from V ⊥

h onto Qh, whence

we find that there exists a unique u
G̃,h

∈ V ⊥
h such that

[
B̃(u

G̃,h
), qh

]

Q̃′×Q̃
=

[
G̃, qh

]

Q̃′×Q̃
∀qh ∈ Qh. Note that this also says that u

G̃,h
∈ V ⊥

h ∩V
G̃,h

. Then, we

associate with Eq. 3.1 the discrete problem: Find u0,h ∈ Vh such that
[
Ã(u0,h + u

G̃,h
), vh

]

H̃ ′×H̃
=
[
F̃ , vh

]

H̃ ′×H̃
∀vh ∈ Vh, (3.2)

which is the discrete analogue of Eq. 2.17. In addition, using similar arguments to
those employed in the proof of Lemma 2.3, we can prove the corresponding connec-
tion between Eqs. 3.1 and 3.2. Further, similary as in Section 2.4 (cf. Lemma 2.4), we
remark that Eq. 3.2 is actually equivalent to the problem: Find uh ∈ V

G̃,h
such that

[
Ã(uh), vh

]

H̃ ′×H̃
=
[
F̃ , vh

]

H̃ ′×H̃
∀vh ∈ Vh.

We now establish the well-posedness of Eq. 3.2.

Lemma 3.1 Assumptions (H.5) and (H.6) guarantee the unique solvability of
Eq. 3.2.
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Proof It follows from [20, Chapter 3, Theorem 3.3.23].

As for the continuous case, we remark here that the solution u0,h+u
G̃,h

∈ V
G̃,h

of
Eq. 3.2 is independent of the choice of u

G̃,h
∈ V

G̃,h
. The well-posedness of Eq. 3.1

is stated now.

Theorem 3.1 There exists a unique (uh, ph) ∈ Hh × Qh solution of Eq. 3.1. In
addition, there exists a constant C̃ > 0, independent of h, such that

∥∥(uh, ph)
∥∥

H̃×Q̃
≤ C̃

{∥∥F̃
∥∥

H̃ ′ + ∥∥G̃
∥∥

Q̃′ + ∥∥Ã(0)
∥∥

H̃ ′
}

.

Proof The proof follows similarly as for Theorem 2.2.

We now aim to derive an a priori error estimate for Eq. 2.15 and its discrete scheme
(3.1). Hereafter, we let (u, p) ∈ H × Q and (uh, ph) ∈ Hh × Qh be the unique
solutions of the weak formulation (2.15) and the nonconforming Galerkin scheme
(3.1), respectively, and let u

G̃,h
∈ V

G̃,h
and u0,h ∈ Vh, provided by the foregoing

analysis, such that uh = u
G̃,h

+ u0,h. The next two preliminary results show partial

error estimates for
∥∥u − uh

∥∥
H̃

and
∥∥p − ph

∥∥
Q̃

, as well as a translation property
between the discrete subspaces Vh and Hh.

Lemma 3.2 Under the assumptions (H.4), (H.5), and (H.6) there hold

∥∥u − uh

∥∥
H̃

≤ C1

{
inf

vh∈Vh

∥∥u − (u
G̃,h

+ vh)
∥∥

H̃
+ inf

qh∈Qh

∥∥p − qh

∥∥
Q̃

+ sup
wh∈Vh
wh �=0

[
F − Ã(u) − ˜B(p), wh

]

H̃ ′×H̃∥∥wh

∥∥
H̃

+ sup
wh∈Vh
wh �=0

[
F̃ − F,wh

]

H̃ ′×H̃∥∥wh

∥∥
H̃

⎫
⎪⎬

⎪⎭
,

and
∥∥p − ph

∥∥
Q̃

≤ C2

{∥∥u − uh

∥∥
H̃

+ inf
qh∈Qh

∥∥p − qh

∥∥
Q̃

+ sup
vh∈Hh
vh �=0

[
F − Ã(u) − ˜B(p), vh

]

H̃ ′×H̃∥∥vh

∥∥
H̃

+ sup
vh∈Hh
vh �=0

[
F̃ − F, vh

]

H̃ ′×H̃∥∥vh

∥∥
H̃

⎫
⎪⎬

⎪⎭
,

where C1 := 1
α̃

max
{
α̃ + γ̃ ,

∥∥B̃
∥∥

Q̃
, 1
}
and C2 := 1

β̃
max

{
β̃ + ∥∥B̃

∥∥
Q̃

, γ̃ , 1
}
.
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Proof We first estimate
∥∥u − uh

∥∥
H̃

. Given vh ∈ Vh, we have from the triangle
inequality
∥∥u−uh

∥∥
H̃

= ∥∥u− (u
G̃,h

+u0,h)
∥∥

H̃
≤ ∥∥u− (u

G̃,h
+vh)

∥∥
H̃

+∥∥u0,h −vh

∥∥
H̃

. (3.3)

Now, applying (H.6) with zh = u
G̃,h

, we deduce that

α̃
∥∥u0,h − vh

∥∥2
H̃

≤
[
Ã(u

G̃,h
+ u0,h) − Ã(u

G̃,h
+ vh), u0,h − vh

]

H ′×H

=
[
Ã(uh), u0,h − vh

]

H̃ ′×H̃
−
[
Ã(u

G̃,h
+ vh), u0,h − vh

]

H̃ ′×H̃
.

Then, using that
[
B̃(u0,h − vh), qh

]

Q̃′×Q̃
= 0 ∀qh ∈ Qh ,

and that
[
Ã(uh), u0,h − vh

]

H̃ ′×H̃
=
[
F̃ , u0,h − vh

]

H̃ ′×H̃
,

we find, after adding and substracting appropiate terms, that

α̃
∥∥u0,h − vh

∥∥2
H̃

≤
[
F̃ , u0,h − vh

]

H̃ ′×H̃
−
[
B̃(u0,h − vh), qh

]

Q̃′×Q̃

−
[
Ã(u

G̃,h
+ vh), u0,h − vh

]

H̃ ′×H̃

=
[
F − Ã(u) − ˜B(p), u0,h − vh

]

H̃ ′×H̃

+
[
F̃ − F, u0,h − vh

]

H̃ ′×H̃

+
[
B̃(u0,h − vh), p − qh

]

Q̃′×Q̃

+
[
Ã(u) − Ã(u

G̃,h
+ vh), u0,h − vh

]

H̃ ′×H̃
,

which, applying the boundedness provided by the duality parings and the assumption
(H.5), dividing by α̃‖u0,h − vh‖H̃

, and then combining the resulting inequality with
Eq. 3.3, implies that for each (vh, qh) ∈ Vh × Qh there holds

∥∥u − uh

∥∥
H̃

≤ 1

α̃

{
(α̃ + γ̃ )

∥∥u − (u
G̃,h

+ vh)
∥∥

H̃
+ ‖B̃‖‖p − qh‖Q̃

+ sup
wh∈Vh
wh �=0

[
F − Ã(u) − B̃(p), wh

]
H̃ ′ × H̃

∥∥wh

∥∥
H̃

+ sup
wh∈Vh
wh �=0

[
F̃ − F,wh

]
H̃ ′ × H̃

∥∥wh

∥∥
H̃

⎫
⎪⎬

⎪⎭
. (3.4)
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On the other hand, applying (H.4) we obtain for each qh ∈ Qh

β̃
∥∥ph − qh

∥∥
Q̃

≤ sup
vh∈Hh
vh �=0

[
B̃(vh), ph − qh

]

Q̃′×Q̃∥∥vh

∥∥
H̃

, (3.5)

and according to the first equation of Eq. 3.1, we can write

[
B̃(vh), ph − qh

]

Q̃′×Q̃
=
[
B̃(vh), ph

]

Q̃′×Q̃
−
[
B̃(vh), qh

]

Q̃′×Q̃

=
[
F̃ , vh

]

H̃ ′×H̃
−
[
Ã(uh), vh

]

H̃ ′×H̃
−
[
B̃(vh), qh

]

Q̃′×Q̃

=
[
F̃ − F, vh

]

H̃ ′×H̃
+
[
F − Ã(u) − B̃ ′(p), vh

]

H̃ ′×H̃

+
[
Ã(u) − Ã(uh), vh

]

H̃ ′×H̃
+
[
B̃(vh), p − qh

]

Q̃′×Q̃
,

that is, for each (vh, qh) ∈ Hh × Qh there holds

[
B̃(vh), ph − qh

]

Q̃′×Q̃
=
[
F̃ − F, vh

]

H̃ ′×H̃
+
[
F − Ã(u) − B̃ ′(p), vh

]

H̃ ′×H̃

+
[
Ã(u) − Ã(uh), vh

]

H̃ ′×H̃
+
[
B̃(vh), p − qh

]

Q̃′×Q̃
.

Replacing the foregoing identity back into Eq. 3.5, and applying (H.5) and the
boundedness of B̃, we arrive at

∥∥ph − qh

∥∥
Q̃

≤ 1

β̃

{
γ̃
∥∥u − uh

∥∥
H̃

+ ∥∥B̃
∥∥

Q̃′
∥∥p − qh

∥∥
Q̃

+ sup
wh∈Hh
wh �=0

[
F − Ã(u) − B̃ ′(p), wh

]

H̃ ′×H̃∥∥wh

∥∥
H̃

+ sup
wh∈Hh
wh �=0

[
F̃ − F,wh

]

H̃ ′×H̃∥∥wh

∥∥
H̃

⎫
⎪⎬

⎪⎭
.
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Hence, applying the triangle inequality we conclude that

∥∥p − ph

∥∥
Q̃

≤ ∥∥p − qh

∥∥
Q̃

+ ∥∥ph − qh

∥∥
Q̃

≤ 1

β̃

{
γ̃
∥∥u − uh

∥∥
H̃

+
(
β̃ + ∥∥B̃

∥∥
Q̃′
) ∥∥p − qh

∥∥
Q̃

+ sup
wh∈Hh
wh �=0

[
F − Ã(u) − B̃ ′(p),wh

]

H̃ ′×H̃∥∥wh

∥∥
H̃

+ sup
wh∈Hh
wh �=0

[
F̃ − F,wh

]

H̃ ′×H̃∥∥wh

∥∥
H̃

⎫
⎪⎬

⎪⎭
. (3.6)

Finally, the result follows applying infimum on Vh and Qh in Eq. 3.4, and also
taking infimum on Qh in the Eq. 3.6.

It remains to estimate inf
vh∈Vh

∥∥u−(u
G̃,h

+vh)
∥∥

H̃
, which is provided by the following

lemma.

Lemma 3.3 There holds

inf
vh∈Vh

∥∥u − (u
G̃,h

+ vh)
∥∥

H̃
≤ C

{
inf

vh∈Hh

∥∥u − vh

∥∥
H̃

+ sup
qh∈Qh
qh �=0

[
G − B̃(u), qh

]

Q̃′×Q̃∥∥qh

∥∥
Q̃

+ sup
qh∈Qh
qh �=0

[
G̃ − G, qh

]

Q̃′×Q̃∥∥qh

∥∥
Q̃

⎫
⎪⎬

⎪⎭
,

with C := 1
β̃

max
{
β̃ + ∥∥B̃

∥∥
Q̃′ , 1

}
.

Proof Given v̂h ∈ Hh, we know from (H.4) that there exists a unique wh ∈ V ⊥
h ∩Hh

such that
[
B̃(wh), qh

]

Q̃′×Q̃
=
[
B̃(u

G̃,h
− v̂h), qh

]

Q̃′×Q̃
∀ qh ∈ Qh, (3.7)
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and there holds

∥∥wh

∥∥
H̃

≤ 1

β̃
sup

qh∈Qh
qh �=0

[
B̃(wh), qh

]

Q̃′×Q̃∥∥qh

∥∥
Q̃

= 1

β
sup

qh∈Qh
qh �=0

[B̃(u
G̃,h

− v̂h), qh]Q̃×Q̃∥∥qh

∥∥
Q̃

= 1

β̃
sup

qh∈Qh
qh �=0

[
B̃(u − v̂h) − B̃(u − u

G̃,h
), qh

]

Q̃′×Q̃∥∥qh

∥∥
Q̃

≤
∥∥B̃
∥∥

Q̃′

β̃

∥∥u − v̂h

∥∥
Q̃

+ 1

β̃

⎧
⎪⎨

⎪⎩
sup

qh∈Qh
qh �=0

[
G − B̃(u), qh

]

Q̃′×Q̃∥∥qh

∥∥
Q̃

+ sup
qh∈Qh
qh �=0

[
G̃ − G, qh

]

Q̃′×Q̃∥∥qh

∥∥
Q̃

⎫
⎪⎬

⎪⎭
,

where the foregoing expressions have arised after adding and substracting B̃(u) and
G, and realizing that [B̃(u

G̃,h
), qh]Q̃′×Q̃

= [G̃, qh]Q̃′×Q̃
∀ qh ∈ Qh. Then, noting

from Eq. 3.7 that v̂h + wh − u
G̃,h

∈ Vh, we find that

inf
vh∈Vh

∥∥u−(u
G̃,h

+vh)
∥∥

H̃
≤∥∥u − (u

G̃,h
+v̂h+wh−u

G̃,h
)
∥∥

H̃
≤∥∥u−v̂h

∥∥
H̃

+∥∥wh

∥∥
H̃

≤
(

1 +
∥∥B̃
∥∥

Q̃′

β̃

)
∥∥u − v̂h

∥∥
H̃

+ 1

β̃

⎧
⎪⎨

⎪⎩
sup

qh∈Qh
qh �=0

[
G − B̃(u), qh

]

Q̃′×Q̃∥∥qh

∥∥
Q̃

+ sup
qh∈Qh
qh �=0

[
G̃ − G, qh

]

Q̃′×Q̃∥∥qh

∥∥
Q̃

⎫
⎪⎬

⎪⎭
,

which, taking infimum on v̂h ∈ Hh, yields the required inequality and completes the
proof.

The main result of this section is established as follows.
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Theorem 3.2 Under the assumptions (H.4), (H.5), and (H.6), the nonconforming
discrete scheme (3.1) is stable, and there holds the Strang-type error estimate

∥∥(u − uh, p − ph)
∥∥

H̃×Q̃
≤ C

{
inf

vh∈Hh

∥∥u − vh

∥∥
H̃

+ inf
qh∈Qh

∥∥p − qh

∥∥
Q̃

+ sup
wh∈Hh
wh �=0

[
F − Ã(u) − B̃ ′(p), wh

]

H̃ ′×H̃∥∥wh

∥∥
H̃

+ sup
wh∈Hh
wh �=0

[
F̃ − F,wh

]

H̃ ′×H̃∥∥wh

∥∥
H̃

+ sup
qh∈Qh
qh �=0

[
G − B̃(u), qh

]

Q̃′×Q̃∥∥qh

∥∥
Q̃

+ sup
qh∈Qh
qh �=0

[
G̃ − G, qh

]

Q̃′×Q̃∥∥qh

∥∥
Q̃

⎫
⎪⎬

⎪⎭
.

Proof The proof follows from a straightforward application of Lemmas 3.2 and 3.3.

It is important to observe from Theorem 3.2 that if Hh ⊆ H , then

sup
vh∈Hh
vh �=0

[
F − Ã(u) − B̃ ′(p), vh

]

H̃ ′×H̃∥∥vh

∥∥
H̃

= 0 and sup
vh∈Hh
vh �=0

[
F̃ − F, vh

]

H̃ ′×H̃∥∥vh

∥∥
H̃

= 0.

Similarly, if Qh ⊆ Q, then

sup
qh∈Qh
qh �=0

[
G − B̃(u), qh

]

Q̃′×Q̃∥∥qh

∥∥
Q̃

= 0 and sup
qh∈Qh
qh �=0

[
G̃ − G, qh

]

Q̃′×Q̃∥∥qh

∥∥
Q̃

= 0.

Therefore, when Hh ⊆ H and Qh ⊆ Q, the a priori error bound provided by
Theorem 3.2 becomes the usual Cea error estimate. In other words, the last four terms
in that estimate constitute the consistency error for the case in which Hh and Qh are
not subspaces of H and Q, respectively.

3.2 Analysis of the Galerkin scheme

Let TS and TD be separate shape-regular families of triangulations, that is, satisfying
the minimum angle condition, of �S and �D, respectively, by triangles (or tetrahedra)
T of diameter hT , assume that the vertices of TS and TD coincide on the interface �,
and let Th := TS ∪ TD, where h := max{hS, hD}, hS := max{hT : T ∈ TS}, and
hD := max{hT : T ∈ TD}. Since the triangulations TS and TD coincide on �, we let
�h be the set of edges/faces inherited from TS and TD. Then, we let HS,h, HD,h and
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Qh be discrete finite dimensional subspaces of H1
�S

(�S), H�D(div; �D) and L2(�),
respectively, and we set

Qh,0 := Qh ∩ L2
0(�). (3.8)

In addition, we denote by �S,h and �D,h the subspaces of the normal components on
� from HS,h and HD,h, respectively, that is,

�S,h := {
vS,h · n|� : vS,h ∈ HS,h

}
and �D,h := {

vD,h · n|� : vD,h ∈ HD,h

}
.

Then, if �h : L2(�) → �D,h denotes the orthogonal projector, and H̃h := HS,h ×
HD,h, we introduce the finite element subspace

Hh :=
{

vh := (vS,h, vD,h) ∈ H̃h : �h(vS,h · n − vD,h · n) = 0 on �
}

. (3.9)

From this definition we observe that the discrete subspace Hh is not contained in
H, but the space H̃ := H1

�S
(�S) × H�D(div; �D) contains both Hh and H. Also, we

observe that A : H̃ → H̃′ is a well-defined nonlinear operator, B : H̃ → Q′ is a well-
defined linear and bounded operator, and the extension of F to H̃ belongs to H̃′. Then,
we now introduce the nonconforming Galerkin scheme: Find (uh, ph) ∈ Hh × Qh,0
such that

[A(uh), vh]H′×H + [B(vh), ph]Q′×Q = [F, vh]H′×H ∀vh ∈ Hh,

[B(uh), qh]Q′×Q = [G, qh]Q′×Q ∀qh ∈ Qh,0.
(3.10)

The nonconformity of this discrete scheme refers to the fact that Hh is not contained
in H. We note from the definition of the finite element subspace Hh that �h(vS,h ·
n − vD,h · n) = 0 on �, for all vh ∈ Hh, which is equivalent to saying that �h(vS,h ·
n) − vD,h · n = 0 on �, for all vh ∈ Hh. Then, since �h : L2(�) → �D,h is the
orthogonal projector, the discrete scheme (3.10) becomes conforming if only if the
discrete normal components on � from HS,h are contained in the discrete normal
components on � from HD,h, i.e., if only if �S,h ⊆ �D,h.

In what follows we need to consider some hypotheses concerning the subspaces
involved in the discrete formulation (3.10), the linear operator B, and the existence of
a stable lifting operator from �D,h onto HD,h. The set of assumptions is as follows.

(H.7) there holds P0(�h) ⊆ �D,h, where P0(�h) is the space of piecewise
constant functions defined on �h.

(H.8) there exists β̃ > 0, independent of h, such that

sup
vh∈Hh
vh �=0

[B(vh), qh]Q′×Q∥∥vh

∥∥
H

≥ β̃
∥∥qh

∥∥
Q ∀qh ∈ Qh,0.

(H.9) divHD,h is contained in the restriction of the discrete subspace Qh to �D.
(H.10) there exists an operator Lh : �D,h → HD,h, satisfying the following

properties:

a) there exists a constant C > 0, independent of h, such that
∥∥Lh(φD,h)

∥∥
div,�D

≤ C
∥∥φD,h

∥∥−1/2,00,�
∀φD,h ∈ �D,h.



Strong coupling of quasi-Newtonian fluids and porous media 699

b) for all φD,h ∈ �D,h there holds

Lh(φD,h) · n = φD,h on �.

We say in this case that Lh is a stable discrete lifting of �D,h.
It is easy to prove that (H.7) and a classical duality argument imply the following

approximation property of the projector �h:
∥∥ξ − �h(ξ)

∥∥−1/2,00,�
≤ Ch1/2

∥∥ξ
∥∥

0,�
∀ ξ ∈ L2(�) . (3.11)

Moreover, employing Sobolev interpolation estimates we find that (see, e.g.
[10, Proof of Lemma 4.8])

∥∥ξ − �h(ξ)
∥∥

0,�
≤ C h1/2

∥∥ξ
∥∥

1/2,�
∀ ξ ∈ H 1/2(�) . (3.12)

We now establish the first result of this section.

Lemma 3.4 Let vh := (vS,h, vD,h) ∈ Vh := {vh ∈ Hh : [B(vh), qh]Q′×Q =
0 ∀qh ∈ Qh,0

}
. Then, divvD,h = 0 on �D.

Proof By definition of the linear operator B we get

− (
qh, divvS,h

)
0,�S

− (
qh, divvD,h

)
0,�D

= 0 ∀qh ∈ Qh,0.

Also, (H.7) and the orthogonalilty condition satisfied by �h imply

0 = 〈
�h(vS,h · n − vD,h · n), 1

〉
�

= 〈
vS,h · n − vD,h · n, 1

〉
�

= (
1, divvS,h

)
0,�S

+ (
1, divvD,h

)
0,�D

,

which, together with the decomposition Qh = Qh,0 ⊕ R, yield

− (
qh, divvS,h

)
0,�S

− (
qh, divvD,h

)
0,�D

= 0 ∀qh ∈ Qh.

In particular,
(
qh, divvD,h

)
0,�D

= 0,for all qh belonging to the restriction of Qh to
�D, and hence (H.9) and the foregoing identity give divvD,h = 0 on �D.

The next result establishes the well-posedness of our discrete scheme (3.10).

Lemma 3.5 There exists a unique solution (uh, ph) ∈ Hh×Qh,0 of the nonconform-
ing discrete scheme (3.10). In addition, there exists C > 0, independent of h, such
that ∥∥(uh, ph)

∥∥
H×Q ≤ C

{∥∥fS
∥∥

0,�S
+ ∥∥fD

∥∥
0,�D

}
.

Proof We first recall from Lemma 2.8 that the nonlinear operator A is Lipschitz con-
tinuous in H̃. Also, it is clear from Lemma 3.4 that Vh ⊆ H1

�S
(�S)×H�D(div0; �D).

Then, given zh ∈ Hh, we know from Lemma 2.8 that the nonlinear operator A(zh+·)
is strongly monotone in Vh, and hence the nonlinear operator A satisfies (H.5) and
(H.6) (cf. Section 3.1). Therefore, noting also that (H.4) follows from (H.8), the proof
becomes a straightforward application of Theorem 3.1.

We now show the a priori error estimate for the primal-mixed formulation (2.14)
and the Galerkin scheme (3.10).
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Lemma 3.6 Let (u, p) ∈ H × Q and (uh, ph) ∈ Hh × Qh,0 be the unique solutions,
guaranteed by Theorem 2.2 and Lemma 3.5 of the continuous problem (2.14) and
its nonconforming discrete scheme (3.10), respectively. Then there exists C > 0,
independent of h, such that

∥∥(u − uh, p − ph)
∥∥

H×Q ≤ C

{
inf

vh∈Hh

∥∥u − vh

∥∥
H + inf

qh∈Qh,0

∥∥p − qh

∥∥
Q

+h1/2
∥∥pD − �h(pD)

∥∥
0,�

}
.

Proof Applying Theorem 3.2 we have the estimate

∥∥(u − uh, p − ph)
∥∥

H×Q ≤ C1

{
inf

vh∈Hh

∥∥u − vh

∥∥
H + inf

qh∈Qh,0

∥∥p − qh

∥∥
Q

+ sup
vh∈Hh
vh �=0

[
F − A(u) − B′(p), vh

]
H′×H∥∥vh

∥∥
H

⎫
⎪⎬

⎪⎭
, (3.13)

where C1 > 0 is a constant independent of h. Now, we just need to bound the
consistency term on the right hand side of the above inequality. To this end, we
proceed as in [19] and let P0 : L2(�) → P0(�h) be the orthogonal projector
and P0 : L2(�) → P0(�h) its vector version. Recalling Eq. 2.8, we note that
pD ∈ H 1(�D). Then the consistency error term in Eq. 3.13 yields

[
F − A(u) − B′(p), vh

]
H′×H = 〈

(vS,h − vD,h) · n, pD
〉
�

∀vh ∈ Hh. (3.14)

Now, given vh ∈ Hh, we first observe that
〈
(vS,h − vD,h) · n, pD

〉
�

= 〈
(vS,h−vD,h) · n, pD

〉
�

−〈�h(vS,h · n−vD,h · n), pD
〉
�

= 〈
(vS,h−vD,h) · n, pD

〉
�

−〈�h(vS,h · n) − vD,h · n, pD
〉
�

= 〈
vS,h · n, pD

〉
�

− 〈
�h(vS,h · n), pD

〉
�

= 〈
vS,h · n, pD − �h(pD)

〉
�

.

Further, from (H.7) we find that for all v ∈ H 1/2(�) there holds
〈
P0(vS,h · n), v − �h(v)

〉
�

= 〈
P0(vS,h · n), v

〉
�

− 〈
P0(vS,h · n), �h(v)

〉
�

= 〈
P0(vS,h · n), v

〉
�

− 〈
�h

(
P0(vS,h · n)

)
, v
〉
�

= 0,

that is,
〈
P0(vS,h · n), v − �h(v)

〉
�

= 0 ∀v ∈ H 1/2(�). Then, taking in particular
v = pD|� ∈ H 1/2(�), we obtain from the foregoing identity
〈
(vS,h − vD,h) · n, pD

〉
�

= 〈
vS,h · n, pD−�h(pD)

〉
�

−〈P0(vS,h · n), pD−�h(pD)
〉
�

= 〈
vS,h · n − P0(vS,h · n), pD − �h(pD)

〉
�

.
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In turn, since P0(vS,h) · n ∈ P0(�h), we deduce that
〈
P0(vS,h · n) − P0(vS,h) · n, v − �h(v)

〉
�

= 0 ∀v ∈ H 1/2(�) ,

whence
〈
(vS,h − vD,h) · n, pD

〉
�

= 〈
vS,h · n − P0(vS,h) · n, pD − �h(pD)

〉
�

.

Then, from the normal trace theorem in H1(�S), using a well known approxima-
tion estimate for piecewise constant functions and the trace theorem in H1(�S), we
deduce that

〈
(vS,h − vD,h) · n, pD

〉
�

≤ ∥∥vS,h · n − P0(vS,h) · n
∥∥

0,�

∥∥pD − �h(pD)
∥∥

0,�

≤ Ch1/2
∥∥vS,h

∥∥
1/2,00,�

∥∥pD − �h(pD)
∥∥

0,�

≤ C̃h1/2
∥∥vS,h

∥∥
1,�S

∥∥pD − �h(pD)
∥∥

0,�
,

that is,
〈
(vS,h − vD,h) · n, pD

〉
�

≤ C̃h1/2
∥∥vS,h

∥∥
1,�S

∥∥pD − �h(pD)
∥∥

0,�
,

with C̃ > 0 a constant independent of h. Thus, dividing the previous inequality
by
∥∥vS,h

∥∥
1,�S

, noting that
∥∥vS,h

∥∥
1,�S

≤ ∥∥vh

∥∥
H, and taking supremum on Hh, we

conclude that

sup
vh∈Hh
vh �=0

〈
(vS,h − vD,h) · n, pD

〉
�∥∥vh

∥∥
H

≤ C̃h1/2
∥∥pD − �h(pD)

∥∥
0,�

.

The result follows by combining the previous inequality with Eq. 3.13 after replacing
Eq. 3.14 back into Eq. 3.13.

The next result establishes an approximation property of the discrete space Hh.

Lemma 3.7 There existsC > 0, independent of h, such that for each v := (vS, vD) ∈
H there holds

inf
vh∈Hh

∥∥v − vh

∥∥
H ≤ C

{
inf

vS,h∈HS,h

∥∥vS − vS,h

∥∥
1,�S

+ inf
vD,h∈HD,h

∥∥vD − vD,h

∥∥
div,�D

+h1/2
∥∥vS · n − �h(vS · n)

∥∥
0,�

}
,

with C > 0 a constant independent of h.

Proof This proof is provided in [19, Proposition 4.1]. In what follows we describe the
main aspects of it. Let �S,h : H1

�S
(�S) → HS,h and �D,h : H�D(div; �D) → HD,h

be the orthogonal projectors with respect to the inner products L2(�S) and L2(�D),
respectively. Then, given v := (vS, vD) ∈ H, we set

vS,h := �S,h(vS) and vD,h :=�D,h(vD) − Lh

(
�D,h(vD) · n−�h(�S,h(vS) · n)

)
,
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where Lh : �D,h → HD,h is the stable discrete lifting defined in (H.10). It follows
precisely from (H.10) that

vD,h · n = �D,h(vD) · n − Lh

(
�D,h(vD) · n − �h(�S,h(vS) · n)

) · n

= �h(�S,h(vS) · n) = �h(vS,h · n) on �,

which shows that the pair vh := (vS,h, vD,h) belongs to Hh. Next, the triangle
inequality and (H.10) again imply that

‖v − vh‖H = ∥∥vS − vS,h

∥∥
1,�S

+ ∥∥vD − vD,h

∥∥
div,�D

≤ ∥∥vS,h − �S,h(vS)
∥∥

1,�S
+ ∥∥vD − �D,h(vD)

∥∥
div,�D

+∥∥Lh(�D,h(vD) · n − �h(�S,h(vS) · n))
∥∥

div,�D

≤ ∥∥vS,h − �S,h(vS)
∥∥

1,�S
+ ∥∥vD − �D,h(vD)

∥∥
div,�D

+C
∥∥�D,h(vD) · n − �h(�S,h(vS) · n)

∥∥−1/2,00,�
.

Now, since vS · n = vD · n on �, using the normal trace theorem in H(div; �D)

we get
∥∥�D,h(vD) · n − �h(�S,h(vS) · n)

∥∥−1/2,00,�

≤ ∥∥vD · n − �D,h(vD) · n
∥∥−1/2,00,�

+ ∥∥vS · n − �h(vS,h · n)
∥∥−1/2,00,�

≤ C
∥∥vD − �D,h(vD)

∥∥
div,�D

+ ∥∥vS · n − �h(vS,h · n)
∥∥−1/2,00,�

,

whence, adding and substracting appropiate terms, employing the estimate (3.11)
twice, and applying the trace theorem in H1(�S), we find that
∥∥vS · n − �h(�S,h(vS) · n)

∥∥−1/2,00,�
≤ ∥∥(I − �h)(vS · n − �h(vS · n))

∥∥−1/2,00,�

+ ∥∥(I − �h)(vS · n − vS,h · n)
∥∥−1/2,00,�

+ ∥∥vS · n − vS,h · n
∥∥−1/2,00,�

≤ Ch1/2
{∥∥vS · n − �h(vS · n)

∥∥
0,�

+ ∥∥vS · n − vS,h · n
∥∥

0,�

}

+∥∥vS · n − vS,h · n
∥∥−1/2,00,�

≤ C̃
{∥∥vS − vS,h

∥∥
1,�S

+ h1/2
∥∥vS − �h(vS · n)

∥∥
0,�

}
,

which completes the proof.

We now summarize the unique solvability and the Strang-type a priori error
estimate for the nonconforming discrete scheme (3.10) in the following theorem.

Theorem 3.3 There exists a unique (uh, ph) ∈ Hh × Qh,0 solution of Eq. 3.10, and
there holds

∥∥(u − uh, p − ph)
∥∥

H×Q ≤ C

{
inf

vS,h∈HS,h

∥∥uS − vS,h

∥∥
1,�S

+ inf
vD,h∈HD,h

∥∥uD − vD,h

∥∥
div,�D

+ inf
qh∈Qh,0

∥∥p − qh

∥∥
Q

+ h1/2
(∥∥pD − �h(pD)

∥∥
0,�

+ ∥∥uS · n − �h(uS · n)
∥∥

0,�

)}
, (3.15)
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where C > 0 is a constant independent of h.

Proof The proof follows from a straightforward application of Lemmas 3.5, 3.6 and
3.7.

3.3 Particular choices of finite element subspaces

In this section we specify concrete 2D examples of finite element subspaces of
H1

�S
(�S), H�D(div, �D) and L2

0(�) satisfying (H.7)-(H.10). Given T ∈ TS, we first
define the local Bernardi-Raugel space (see [2]), denoted by BR(T ), as

BR(T ) := P1(T ) ⊕ span {η2η3n1, η1η3n2, η1η2n3} , (3.16)

where η1, η2 and η3 are the barycentric coordinates of the triangle T , and n1, n2 and
n3 are the three unit normal components to the opposite sides of its corresponding
vertices, which point outwards on ∂T . In turn, given T ∈ TD, we let RT (T ) be the
local Raviart-Thomas space of lowest order, that is

RT0(T ) := P0(T ) ⊕ P0(T )x. (3.17)

where x denotes a generic vector of R2. Also, we consider the local Brezzi-Douglas-
Marini space of order one, which is given by

BDM1(T ) := P1(T ). (3.18)

In what follows, we describe two different examples of finite element subspaces for
the Stokes and Darcy domains in terms of the local spaces defined in Eqs. 3.16,
3.17 and 3.18, with their corresponding finite element subspaces approximating the
pressure field in �.

3.3.1 Bernadi-Raugel + Raviart-Thomas

The subspaces HS,h, HD,h, Hh (cf. (3.9)), and Qh,0 of H1
�S

(�S), H�D(div; �D), H̃,

and L2
0(�), respectively, are defined as

HS,h :=
{

vS,h ∈ [C(�S)]2 : vS,h|T ∈ BR(T ) ∀T ∈ TS

}
∩ H1

�S
(�S),

HD,h := {
vD,h ∈ H(div; �D) : vD,h|T ∈ RT0(T ) ∀T ∈ TD

} ∩ H�D(div; �D),

Hh := {
vh := (vS,h, vD,h) ∈ HS,h × HD,h : �h(vS,h · n − vD,h · n) = 0 on �

}
,

(3.19)

and
Qh,0 :=

{
qh ∈ L2(�) : qh|T ∈ P0(T ) ∀T ∈ Th

}
∩ L2

0(�). (3.20)

From these particular choices of finite element subspaces, and taking into account
the definition of the local spaces BR and RT (cf. (3.16) and (3.17), respectively),
we observe that the discrete space �S,h becomes the continuous piecewise quadratic
functions while the discrete space �D,h becomes the piecewise constant functions.
Note that the discrete space �S,h is not contained in �D,h, which means that the dis-
crete scheme (3.10) is nonconforming in this case. In turn, it is clear that (H.7) and
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(H.9) are satisfied. In addition, (H.10) has been shown in the 2D case (see [19]) with-
out any requeriment on the meshes for both the Raviart-Thomas subspace of lowest
order (cf. (3.17)) and the Brezzi-Douglas-Marini subspaces for any nonnegative inte-
ger l ≥ 1. Finally, in order to verify (H.8) we proceed similarly as in [13]. To this end,
we let �S : H1

�S
(�S) → HS,h be the Bernadi-Raugel interpolation operator (cf. [2,

14]), which is linear and bounded with respect to the H1(�S)-norm. More precisely,
given vS ∈ H1

�S
(�S), this interpolation operator is characterized by the following

identities: ∫

e

�S(vS) · ne =
∫

e

vS · ne, for each edge e of TS, (3.21)

and
�S(vS(a)) = Ih(vS(a)) for each node a of TS,

where Ih is the Clément regularization operator defined in [14, Appendix A, A.3].
Note that, as a consequence of Eq. 3.21, there holds

∫

�S

qhdiv�S(vS) =
∫

�S

qhdivvS ∀qh in the restriction of Qh to �S. (3.22)

Equivalently, if PS denotes the L2(�S)−orthogonal projection onto the restriction of
Qh to �S, then the relation (3.22) can be rewritten as

PS(div(�S(vS))) = PS(divvS) ∀vS ∈ H1
�S

(�S). (3.23)

In turn, we let �D : H1
�D

(�D) → HD,h be the Raviart-Thomas interpolation operator

of lowest order, which, given vD ∈ H1
�D

(�D), is characterized by:
∫

e

�D(vD) · ne =
∫

e

vD · ne, for each edge e of TD. (3.24)

Similarly as for �S, we find that Eq. 3.24 yields
∫

�D

qhdiv�D(vD) =
∫

�D

qhdivvD ∀qh in the restriction of Qh to �D. (3.25)

Equivalently, if PD denotes the L2(�D)−orthogonal projection onto the restriction
of Qh to �D, then the relation (3.25) can be rewritten as

div(�D(vD)) = PD(divvD) ∀vD ∈ H1
�D

(�D). (3.26)

In addition, we know that the Raviart-Thomas interpolation operator �D satisfies
the following approximation property: For any vD ∈ H1(�D), there exists C > 0,
independent of h, such that

∥∥vD − �D(vD)
∥∥

0,�D
≤ ChD

∥∥vD
∥∥

1,�D
. (3.27)

The next result shows that (H.8) also holds.

Lemma 3.8 There exists β1 > 0, independent of h, such that

sup
vh∈Hh
vh �=0

[B(vh), qh]Q′×Q∥∥vh

∥∥
H

≥ β1
∥∥qh

∥∥
Q ∀qh ∈ Qh,0.
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Proof Given qh ∈ Qh,0, a well-known result (see, e.g. [14]) implies the existence of
z ∈ H1

0(�) such that −divz = qh in � and
∥∥z
∥∥

1,�
≤ C

∥∥qh

∥∥
0,�

. We define

wS,h := �S(wS) ∈ HS,h and wD,h := �D(wD) ∈ HD,h,

where wS := z|�S and wD := w|�D. It is clear that w := (wS, wD) belongs to H.
This fact together with Eqs. 3.21 and 3.24 yield

∫

e

wS,h · ne =
∫

e

wS · ne =
∫

e

wD · ne =
∫

e

wD,h · ne ∀e ∈ �h. (3.28)

Now, since �h : L2(�) → �D,h is the orthogonal projector and �D,h becomes the
piecewise constant functions, we obtain that

∫

e

{ξ − �h(ξ)} = 0 ∀ξ ∈ L2(�), ∀e edge of �.

Then Eq. 3.28 and the foregoing identity applied to ξ = wS,h · n ∈ L2(�) imply that
∫

e

�h(wS,h · n) =
∫

e

wS,h · n =
∫

e

wD,h · n ∀e edge of �,

and combining this last relation with the fact that �h(wS,h · n) − wD,h · n ∈ P0(�h),
we deduce that �h(wS,h · n) = wD,h · n on �, that is the pair wh := (wS,h, wD,h)

belongs to Hh. Further, Eq. 3.23 yields

PS
(
divwS,h

) = PS (divwS) = PS(−qh) = −qh in �S,

and Eq. 3.26 implies that

divwD,h = PD (divwD) = PD(−qh) = −qh in �D.

It follows that

[B(wh), qh]Q′×Q = ∥∥qh

∥∥2
Q. (3.29)

On the other hand, since the operator �S is bounded, there holds
∥∥wS,h

∥∥
1,�S

≤ C
∥∥wS

∥∥
1,�S

≤ C
∥∥z
∥∥

1,�
≤ c1

∥∥qh

∥∥
0,�

,

and applying Eq. 3.27 we have that
∥∥wD,h

∥∥
div,�D

= ∥∥wD,h

∥∥
0,�D

+ ∥∥divwD,h

∥∥
0,�D

≤ Ch
∥∥wD

∥∥
1,�D

+ ∥∥wD
∥∥

0,�D
+ ∥∥qh

∥∥
0,�

≤ c2
∥∥qh

∥∥
0,�

,

where we used here, from the previous estimate, that
∥∥wD

∥∥
1,�D

≤ ∥∥z
∥∥

1,�
≤

C
∥∥qh

∥∥
0,�

. Therefore, we have that
∥∥wh

∥∥
H ≤ c3

∥∥qh

∥∥
0,�

, and using Eq. 3.29 we
conclude that

sup
vh∈Hh
vh �=0

[B(vh), qh]Q′×Q∥∥vh

∥∥
H

≥ [B(wh), qh]Q′×Q∥∥wh

∥∥
H

≥ 1

c3

∥∥qh

∥∥
0,�

,

with c3 > 0 a constant independent of h.
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Finally, we recall from [14] (see also [2]) an approximation property for the
Bernadi-Raugel interpolation operator �S, that is: for each vS ∈ H2(�S), there exists
C > 0, independent of hS, such that

∥∥vS − �S(vS)
∥∥

1,�S
≤ ChS

∥∥vS
∥∥

2,�S
. (3.30)

We are now in a position to establish the main result of this section.

Theorem 3.4 Let Hh and Qh,0 be the finite element subspaces defined by Eqs. 3.19
and 3.20, respectively. Then the nonconforming discrete scheme (3.10) has a unique
solution (uh, ph) ∈ Hh × Qh,0 and there exists c1 > 0, independent of h, such that

∥∥(uh, ph)
∥∥

H×Q ≤ c1

{∥∥Fh

∥∥
H′ + ∥∥Gh

∥∥
Q′
}

,

where Fh := F |Hh
and Gh := G|Qh,0 . In addition, assume that the unique solution

(u, p) ∈ H × Q of the primal-mixed formulation (2.14) is such that uS ∈ H2(�S),
uS · n|� ∈ H 1/2(�), uD ∈ H1(�D), divuD ∈ H 1(�D), and p ∈ H 1(�). Then there
exists c2 > 0, independent of h, such that

∥∥(u − uh, p − ph)
∥∥

H×Q ≤ c2

{
hS
∣∣uS

∣∣
2,�S

+ hD

(∣∣uD
∣∣
1,�D

+ ∣∣divuD
∣∣
1,�D

)

+h
∣∣p
∣∣
1,�

+ h ‖uS · n‖1/2,�

}
.

Proof The proof follows from a straightforward application of Theorem 3.3 and
the approximation properties of the subspaces and projectors involved. In particular,
Eq. 3.12 allows to estimate the expressions

∥∥pD −�h(pD)
∥∥

0,�
and

∥∥uS ·n−�h(uS ·
n)
∥∥

0,�
in Eq. 3.15.

3.3.2 Bernadi-Raugel + Brezzi-Douglas-Marini

The specific subspaces HS,h, HD,h, Hh (cf. (3.9)), and Qh,0 of H1
�S

(�S), H�D(div;

�D), H̃, and L2
0(�), respectively, are

HS,h :=
{

vS,h ∈ [C(�S)
]2 : vS,h|T ∈ BR(T ) ∀T ∈ TS

}
∩ H1

�S
(�S),

HD,h := {
vD,h ∈ H(div; �D) : vD,h|T ∈ BDM1(T ) ∀T ∈ TD

} ∩ H�D(div; �D),

Hh := {
vh := (vS,h, vD,h) ∈ HS,h × HD,h : �h(vS,h · n − vD,h · n) = 0 on �

}
,

(3.31)

and
Qh,0 :=

{
qh ∈ L2(�) : qh|T ∈ P0(T ) ∀T ∈ Th

}
∩ L2

0(�). (3.32)

We observe that the discrete space �S,h is formed by continuous piecewise
quadratic functions while the discrete space �D,h becomes the piecewise linear func-
tions. Therefore, the discrete mixed formulation (3.10) is nonconforming as well.
In turn, (H.7) holds because P0(�h) ⊆ P1(�h) = �D,h. Further, it is clear that
(H.9) is satisfied. Also, we know from [19, Appendix] that (H.10) is satisfied in the
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2D case with no requeriment on the meshes around � for the Raviart-Thomas sub-
space of lowest order (cf. (3.17)) and for the Brezzi-Douglas-Marini subspace of any
nonnegative integer order.

On the other hand, in order to prove the discrete inf-sup condition for the lin-
ear operator B (cf. (H.8)), we introduce the BDM interpolation operator �D,h :
H1

�D
(�D) → HD,h (cf. [3]) which, given vD ∈ H1

�D
(�D), is characterized by the

following indentity:
∫

e

(vD − �D,h(vD)) · ne p = 0 ∀p ∈ P1(e) ∀e edge of TD. (3.33)

Moreover, if we denote by PD the L2(�D)-orthogonal onto the restriction of Qh to
�D, (3.33) implies that

div�D,h(vD) = PD(divvD) ∀vD ∈ H1
�D

(�D). (3.34)

We now recall from [4] an approximation property of the interpolation operator
�D,h: there exists C > 0, independent of h, such that for each vD ∈ H1(�D) there
holds ∥∥vD − �D,h(vD)

∥∥
0,�D

≤ ChD
∥∥vD

∥∥
1,�D

. (3.35)

In addition, we recall from [19, Appendix] the following result summarizing the
properties of a stable lifting.

Lemma 3.9 There exists an operator Lh : �D,h → HD,h with the properties
indicated in (H.10) (cf. Section 3.2). In addition, there holds

divL(φh) = 1

|�|
∫

�

φh ∀φh ∈ �D,h. (3.36)

Proof See [19, Appendix].

The hypothesis (H.8) is proved next.

Lemma 3.10 There exists β2 > 0, independent of h, such that

sup
vh∈Hh
vh �=0

[B(vh), qh]Q′×Q∥∥vh

∥∥
H

≥ β2
∥∥qh

∥∥
Q ∀qh ∈ Qh,0.

Proof Let qh ∈ L2
0(�). We know that there exists z ∈ H1

0(�) such that

− divz = qh in � and
∥∥z
∥∥

1,�
≤ C

∥∥qh

∥∥
0,�

. (3.37)

We let wS := z|�S , wD := z|�D, and then we define

wS,h := �S(wS) ∈ HS,h and wD,h := �D,h(wD)

+Lh

(
�hwS,h · n − �D,h(wD) · n

) ∈ HD,h.

It is clear that w := (wS, wD) ∈ H, and (H.10) implies that the pair wh :=
(wS,h, wD,h) belongs to Hh. In addition, Eqs. 3.23 and 3.34 yield

PS
(
divwS,h

) = PS (div�S(wS)) = PS (divwS) = PS(−qh) = −qh in �S,
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and
div�D,h(wD) = PD(divwD) = PD(−qh) = −qh in �D.

Next,

[B(wh), qh]Q′×Q = ∥∥qh

∥∥2
0,�

− (
qh, divLh

(
�hwS,h · n − �D,h(wD) · n

))
0,�D

.

(3.38)

Moreover, from Eq. 3.36 (cf. Lemma 3.9) we get

divLh

(
�hwS,h · n − �D,h(wD) · n

) = 1

|�|
∫

�

{
�hwS,h · n − �D,h(wD) · n

}
,

whence, using Eqs. 3.21, 3.33 and the fact that w := (wS, wD) belongs to H, we find
for each e edge of � that

∫

e

�hwS,h · n =
∫

e

wS,h · n =
∫

e

wS · n =
∫

e

wD · n =
∫

e

�D,h(wD) · n,

which proves that

divLh

(
�hwS,h · n − �D,h(wD) · n

) = 0.

The foregoing relation and Eq. 3.38 lead to

[B(wh), qh]Q′×Q = ∥∥qh

∥∥2
0,�

. (3.39)

On the other hand, the boundedness of the interpolation operator �S and Eq. 3.37
imply that

∥∥wS,h

∥∥
1,�S

≤ C
∥∥wS

∥∥
1,�S

≤ C
∥∥z
∥∥

1,�
≤ c1

∥∥qh

∥∥
0,�

. (3.40)

In turn, since divwD = div�D,h(wD) = −qh we have that
∥∥wD − �D,h(wD)

∥∥
div,�D

= ∥∥wD − �D,h(wD)
∥∥

0,�D
,

so that the above relation, the uniform boundedness of Lh (cf. (H.10)), Eqs. 3.35
and 3.37 lead to

∥∥wD,h

∥∥
div,�

≤ ∥∥wD − �D,h(wD)
∥∥

div,�D
+ ∥∥wD

∥∥
div,�D

+∥∥Lh

(
�h�S(wS) · n − �D,h(wD) · n

) ∥∥
div,�D

≤ ∥∥wD − �D,h(wD)
∥∥

0,�D
+ ∥∥wD

∥∥
1,�D

+ C̃
∥∥�h�S(wS) · n

−�D,h(wD) · n
∥∥−1/2,00,�

≤ ChD
∥∥wD

∥∥
1,�

+ ∥∥wD
∥∥

1,�D
+ C̃

∥∥�h�S(wS) · n

−�D,h(wD) · n
∥∥−1/2,00,�

≤ ChD
∥∥z
∥∥

1,�
+ ∥∥z

∥∥
1,�

+ C̃
∥∥�h�S(wS) · n

−�D,h(wD) · n
∥∥−1/2,00,�

≤ c2
∥∥qh

∥∥
Q + C̃

∥∥�h�S(wS) · n − �D,h(wD) · n
∥∥−1/2,00,�

,

that is
∥∥wD,h

∥∥
div,�D

≤ c2
∥∥qh

∥∥
Q + C̃

∥∥�h�S(wS) · n − �D,h(wD) · n
∥∥−1/2,00,�

. (3.41)
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Now, the trace theorems on H1(�S) and on H(div; �D), the boundedness of �h

and �S, and the estimates (3.35) and (3.37) imply that the second term on the right
hand side of Eq. 3.41 can be bounded as follows

∥∥�h�S(wS) · n − �D,h(wD) · n
∥∥−1/2,00,�

≤C
∥∥�h�S(wS) · n

∥∥
0,�

+ ∥∥�D,h(wD) · n
∥∥−1/2,00,�

≤C
∥∥�S(wS)

∥∥
0,�

+ C2
∥∥�D,h (wD)

∥∥
div,�D

≤C1
∥∥�S(wS)

∥∥
1,�S

+ C2
∥∥�D,h (wD)

∥∥
div,�D

≤ C̃1
∥∥wS

∥∥
1,�

+C2
∥∥wD−�D,h (wD)

∥∥
0,�D

+ C2
∥∥wD

∥∥
div,�D

≤ C̃1
∥∥wS

∥∥
1,�

+ C̃2hD
∥∥wD

∥∥
1,�D

+ C2
∥∥wD

∥∥
1,�D

≤ C3
∥∥z
∥∥

1,�
≤ c3

∥∥qh

∥∥
0,�

,

i.e.,

∥∥�h�S(wS) · n − �D(wD) · n
∥∥−1/2,00,�

≤ c3
∥∥qh

∥∥
0,�

.

Replacing this last inequality back into Eq. 3.41 and combining the resulting estimate
with Eq. 3.40 we can deduce that

∥∥wh

∥∥
H ≤ ∥∥wS,h

∥∥
1,�S

+ ∥∥wD,h

∥∥
div,�

≤ c4
∥∥qh

∥∥
0,�

. (3.42)

Thus, from Eqs. 3.39 and 3.42 we conclude that

sup
vh∈Hh
vh �=0

[B(vh), qh]Q′×Q∥∥vh

∥∥
H

≥ [B(wh), qh]Q′×Q∥∥wh

∥∥
H

≥ 1

c4

∥∥qh

∥∥
Q,

with c4 > 0 a constant independent of h.

Then, by applying again Theorem 3.3 and the approximation properties of the
subspaces and projectors involved, we arrive at the following main result.

Theorem 3.5 Let Hh and Qh,0 be the finite element subspaces defined by Eqs. 3.31
and 3.32, respectively. Then, the nonconforming Galerkin scheme (3.10) has a unique
solution (uh, ph) ∈ Hh × Qh,0, and there exists c3 > 0, independent of h, such that

∥∥(uh, ph)
∥∥

H×Q ≤ c3

{∥∥Fh

∥∥
H′ + ∥∥Gh

∥∥
Q′
}

,

where Fh := F |Hh
and Gh := G|Qh,0 . In addition, assume that the unique solution

(u, p) ∈ H × Q of the primal-mixed formulation (2.14) is such that uS ∈ H2(�S),
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uS · n|� ∈ H 1/2(�), uD ∈ H1(�D), divuD ∈ H 1(�D), and p ∈ H 1(�). Then, there
exists c4 > 0, independent of h, such that

∥∥(u − uh, p − ph)
∥∥

H×Q ≤ c4

{
hS
∥∥uS

∥∥
2,�

+ hD

(∣∣uD
∣∣
1,�D

+ ∣∣divuD
∣∣
1,�D

)

+h
∣∣p
∣∣
1,�

+ h‖uS · n‖1/2,�

}
.

3.3.3 A general approach

Irrespective of the previous analysis in Sections 3.3.1 and 3.3.2, we remark that the
results in [19] can be extended to the present situation in such a way that (H.8) is
simplified as follows:

(H.11) there exists β̃ > 0, independent of h, such that

sup
vh∈H̄h

v�=0

[B(vh), qh]Q′×Q∥∥vh

∥∥
H

≥ β̃
∥∥qh

∥∥
Q ∀qh ∈ Q̄h,

where

H̄h :=
[
HS,h ∩ H1

0(�S)
]

× [
HD,h ∩ H0(div; �D)

]

and

Q̄h :=
{
qh ∈ Qh :

∫

�S

qh = 0,

∫

�D

qh = 0

}
.

Indeed, it was shown in [19] that one can combine either the RT-element or the
BDM-element of order k, with any stable FEM for Stokes of the same order, to obtain
a global (conforming as in Table 1 or nonconforming as in Table 2) coupled scheme
of order of convergence k. In particular, when the BR elements are employed in
the fluid, the corresponding face bubbles do not need to be considered on the faces
lying on �, which yields a conforming scheme (see [19, Proposition 3.1] for the
respective proof). Note also that, in spite of the foregoing modification, the associated
approximation property remains unaltered.

Table 1 Coupling of Stokes elements with BDM elements

Stokes Velocity Press Darcy Vel Press Order

MINI P1+bubbles P cont
1 BDM1 P1 P0 h

Taylor-Hood, k ≥ 2 Pk P cont
k−1 BDMk Pk Pk−1 hk

Conf Crouzeix-Raviart P2+bubbles P1 BDM2 P2 P1 h2

Bernardi-Raugel P1+face bubbles P0 BDM1 P1 P0 h

The superscript cont refers to the demand of contnuity for the discrete pressure space. The bubbles are used
for velocities in the MINI and conformal Crouzeix-Raviart elements: an internal Pd+1(T ) bubble is added
to the velocity space on each element. For the Bernardi-Raugel element, face bubbles are included on all
internal faces, but no bubbles are added on faces lying on �. When these bubbles (not needed for stability)
are added, the method stops being a particular case of this class
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Table 2 Coupling of Stokes elements with BDM and RT elements and their order of convergence

Stokes Velocity Press Darcy Vel Press Order

MINI P1+bubbles Pcont
1 RT0 RT0 P0 h

Taylor-Hood, k ≥ 2 Pk Pcont
k−1 RTk−1 RTk−1 Pk−1 hk

Bernardi-Raugel P1+face bubbles P0 RT0 RT0 P0 h

P2-iso-P1 P1(T h/2
S ) Pcont

1 BDM1 P1 P0 h

The superscript cont refers to the demand of continuity for the discrete pressure space. The bubbles are
used for velocities in the MINI element. The triangulation T h/2

S is a one level refinement of T h
S and

P1(T h/2
S ) is the space of piecewise linear functions with respect to T h/2

S . For the Bernardi-Raugel element,
face bubbles are only included on the internal faces. Adding them to faces on � does not change the
convergence order. In that case Bernardi-Raugel can be coupled with BDM1 as well

4 Numerical results

In this section we present numerical examples in 2D illustrating the good perfor-
mance of the discrete scheme (3.10) on a set of uniform triangulations of the domains
�S and �D. We begin by introducing additional notations. In what follows, N stands
for the number of degree of freedom defining the corresponding finite element sub-
spaces Hh and Qh,0. Then, given the unique solutions (u, p) := ((uS, uD), p) ∈
H × Q and (uh, ph) := ((uS,h, uD,h), ph) ∈ Hh × Qh,0 of the primal-mixed
formulation (2.14) and the discrete scheme (3.10), respectively, the corresponding
individual and global errors are denoted by

e(uS) :=∥∥uS −uS,h

∥∥
1,�S

, e(uD) :=∥∥uD −uD,h

∥∥
div,�D

, and e(p) := ∥∥p−ph

∥∥
0,�

,

and

e(uS, uD, p) :=
{

e(uS)2 + e(uD)2 + e(p)2
}1/2

.

Also, we let r(uS), r(uD) and r(p) be the experimental rates of convergence given by

r(uS) := log(e(uS)/e′(uS))

log(h/h′)
, r(uD) := log(e(uD)/e′(uD))

log(h/h′)

and

r(p) := log(e(p)/e′(p))

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with errors e and e′, respectively.
Further, we let r(uS, uD, p) be the experimental rate for the total error defined by

r(uS, uD, p) := log(e(uS, uD, p)/e′(uS, uD, p))

log(h/h′)
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In the following two sections we present several numerical examples for the noncon-
forming and conforming versions of the discrete scheme (3.10). For both cases, we
choose κ = 1, K = I, and consider the nonlinear function μ : R+ → R+ given by a
particular case of the Carreau law for viscoplastic flows, that is

μ(t) := μ0 + μ1(1 + t2)(β−2)/2 ∀t ∈ R+,

with μ0 = μ1 = 0.5 and β = 1.5. It is easy to check in this case that the assumptions
(2.6) and (2.7) are satisfied with

γ0 = μ0 + μ1

{ |β − 2|
2

+ 1

}
and α0 = μ0.

4.1 A nonconforming case

Here we consider the pair of finite element subspaces Hh and Qh,0 given in
Section 3.3.1 (cf. (3.19), (3.20)), which yields a nonconforming discrete scheme
(3.10). In what follows we set

curl q :=
(

∂q

∂x2
, − ∂q

∂x1

)t

.

In Example 1 we set the regions �S := (−1, 1)2\[0, 1)2 and �D := (0, 1)2 of
R2, and choose the data fS and fD so that the exact solution is given by the smooth
functions

uS(x) := curl
(

3(x2
1 + x2

2)13/3(x2
1 − 1)2(x2

2 − 1)2
)

,

and

p(x) :=

⎧
⎪⎨

⎪⎩

−π

4
cos

(πx1

2

){
x2 + 1

2
− 2 cos2

[
π

2

(
x2 + 1

2

)]}
on �S

(x1 − 1)2 sin3 (2π(x2 + 0.5)) on �D .

Next, in Example 2 we consider the regions �S := (−1, 1)2 \ (−1, 0]2 and �D :=
(−1, 0)2 of R2, and choose the data fS and fD so that the exact solutions is given by

uS(x) := curl
(

3(x2
1 + x2

2)2/3(x2
1 − 1)2(x2

2 − 1)2
)

,

and

p(x) :=
⎧
⎨

⎩

exp(x1 + x2)x1x2 on �S

(x1 + 1)2 sin3 (2π(x2 + 0.5)) on �D .

Note that in this example uS becomes singular at the origin.
The numerical results shown below were obtained using a MATLAB code. In

Tables 3 and 4 we summarize the convergence history of the discrete primal-mixed
scheme (3.10) as applied to Examples 1 and 2, for sequences of quasi-uniform
triangulations of the domains. We observe in Table 3, looking at the correspond-
ing experimental rates of convergence, that the O(h) predicted by Theorem 3.4 is
attained by all the unknowns in Example 1. In addition, we notice that the dominant
error is given by e(uD). The behavior of the experimental rates of convergence can
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Table 3 Example 1, convergence history

h N e(uS) r(uS) e(uD) r(uD) e(p) r(p) e(uS, uD, p) r(uS, uD, p)

1/17 12828 3.989E−00 − 5.612E−00 − 2.806E−01 − 6.891E−00 − (5)

1/19 16114 3.509E−00 1.153 5.040E−00 0.967 2.741E−01 0.209 6.147E−00 1.027 (5)

1/21 19882 3.178E−00 0.990 4.491E−00 1.152 2.573E−01 0.635 5.508E−00 1.097 (5)

1/25 28121 2.718E−00 0.896 3.787E−00 0.978 2.003E−01 1.436 4.666E−00 0.951 (5)

1/35 54222 1.915E−00 1.040 2.763E−00 0.937 1.331E−01 1.216 3.365E−00 0.971 (5)

1/45 91170 1.482E−00 1.022 2.072E−00 1.145 1.007E−01 1.109 2.550E−00 1.104 (5)

1/55 135720 1.201E−00 1.049 1.721E−00 0.925 8.112E−02 1.077 2.100E−00 0.966 (5)

1/65 190019 1.017E−00 0.991 1.461E−00 0.982 7.188E−02 0.724 1.782E−00 0.984 (5)

1/75 254402 8.851E−01 0.974 1.244E−00 1.123 6.147E−02 1.093 1.528E−00 1.073 (5)

1/85 325129 7.754E−01 1.057 1.101E−00 0.973 5.173E−02 1.378 1.348E−00 1.001 (5)

1/95 403178 6.953E−01 0.981 9.951E−01 0.913 4.445E−02 1.364 1.215E−00 0.936 (5)

1/105 493751 6.296E−01 0.991 9.021E−01 0.980 4.114E−02 0.773 1.101E−00 0.984 (5)

1/115 592931 5.691E−01 1.111 8.196E−01 1.054 3.650E−02 1.315 9.985E−01 1.073 (5)

1/125 705036 5.246E−01 0.976 7.469E−01 1.113 3.416E−02 0.796 9.134E−01 1.068 (5)

be also checked from Fig. 2, where we display the mesh size h and the errors e(uS),
e(uD) and e(p) versus the degrees of freedom N . In particular, we realize there that
e(p) is quite below the other individual errors and that, in spite of its convergence
slower than O(h) at the beginning, it rapidly stabilizes around that order later on.
Concerning Example 2, we note on the contrary in Table 4 that r(uS) lies around

Table 4 Example 2, convergence history

h N e(uS) r(uS) e(uD) r(uD) e(p) r(p) e(uS, uD, p) r(uS, uD, p)

1/17 12853 2.856E−00 − 5.560E−00 − 5.160E−01 − 6.272E−00 − (5)

1/19 16108 2.671E−00 0.602 5.059E−00 0.848 4.950E−01 0.372 5.743E−00 0.793 (5)

1/21 19671 2.577E−00 0.359 4.596E−00 0.959 4.854E−01 0.196 5.292E−00 0.817 (5)

1/25 28444 2.313E−00 0.622 3.761E−00 1.151 4.365E−01 0.609 4.437E−00 1.011 (5)

1/35 54513 2.144E−00 0.225 2.774E−00 0.904 5.668E−01 − 3.552E−00 0.661 (5)

1/45 91225 1.767E−00 0.769 2.090E−00 1.127 3.214E−01 2.257 2.756E−00 1.010 (5)

1/55 136347 1.704E−00 0.182 1.724E−00 0.960 3.269E−01 − 2.446E−00 0.595 (5)

1/65 190171 1.597E−00 0.388 1.463E−00 0.982 3.012E−01 0.489 2.187E−00 0.670 (5)

1/75 254577 1.493E−00 0.469 1.257E−00 1.063 3.224E−01 − 1.978E−00 0.701 (5)

1/85 324355 1.427E−00 0.360 1.109E−00 0.997 2.650E−01 1.567 1.827E−00 0.635 (4)

1/95 403975 1.457E−00 − 9.954E−01 0.973 3.119E−01 − 1.792E−00 0.173 (4)

1/105 496126 1.359E−00 0.698 9.007E−01 0.998 2.800E−01 1.079 1.654E−00 0.800 (4)

1/115 595622 1.331E−00 0.229 8.211E−01 1.018 2.895E−01 − 1.590E−00 0.432 (4)

1/125 707479 1.262E−00 0.634 7.532E−01 1.034 2.328E−01 2.614 1.488E−00 0.795 (4)
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Fig. 2 Example 1, h and errors versus degree of freedom N

1/2 whereas r(p) shows large oscillations, which is certainly due to the singular
behaviour of the corresponding exact solution. However, r(uD) does not seem to be
affected by the lack of regularity of uS since it behaves always as O(h). The forego-
ing facts are also observed in Fig. 3, where we display the mesh size h and the errors
e(uS), e(uD) and e(p) versus the degrees of freedom N . This example is certainly
very suitable to explore in the future the application of an adaptive algorithm based
on a posteriori error estimates. Indeed, one would expect that by means of this pro-
cedure the optimal rates of convergence would be recovered by all the unknowns. On
the other hand, in Figs. 4, 5, 6, and 7, we show some components of the approximate

Fig. 3 Example 2, h and errors versus degree of freedom N
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Fig. 4 Example 1, Stokes pressure with N = 54222

(left) and exact (right) solutions. We notice from Figs. 4 and 5 that the piecewise con-
stant functions approximate quite well the pressure in the Darcy domain �D and the
interior of the Stokes region �S, whereas this approximation deteriorates a bit near
by ∂�S\� (Fig. 4 and 5). In turn, in Figs. 6 and 7 we see that the Bernardi-Raugel
subspace provides a quite good approximation of the velocity in the Stokes domain
�S.

4.2 A conforming case

We now consider the pair of finite element subspaces Hh and Qh,0 given in
Section 3.3.2 (cf. (3.31), (3.32)), but with the modification explained at the end of
Section 3.3.3 so that the resulting scheme (3.10) becomes conforming. Then, for the
Example 3 we set the regions �S := (−1, 1) × (−1, 0) and �D := (−1, 1) × (0, 1)

Fig. 5 Example 1, Darcy pressure with N = 54222
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Fig. 6 Example 2, first component of the Stokes velocity with N = 54513

of R2, and choose the data fS and fD so that the exact solution is given by the smooth
functions

uS(x) := curl
(

sin(πx2 + π/4) sin2(2πx1)(1 + x2)
2
)

,

and

p(x) :=

⎧
⎪⎨

⎪⎩

exp(x1 + x2)x1x2 on �S

3π

(
1 − x2 − 1

π
sin(πx2)

)
sin2(πx1) cos(πx1) on �D .

Fig. 7 Example 2, second component of the Stokes velocity with N = 54513
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Table 5 Example 3, convergence history

h N e(uS) r(uS) e(uD) r(uD) e(p) r(p) e(uS, uD, p) r(uS, uD, p)

1/32 7923 6.372E−00 − 1.260E+01 − 6.352E−01 − 1.413E+01 − (6)

1/64 31203 3.188E−00 0.999 6.319E−00 0.996 2.411E−01 1.398 7.082E−00 0.997 (5)

1/96 69843 2.124E−00 1.002 4.215E−00 0.999 1.472E−01 1.216 4.722E−00 0.999 (5)

1/128 123843 1.592E−00 1.001 3.162E−00 0.999 1.062E−01 1.136 3.542E−00 1.000 (5)

1/160 193203 1.274E−00 1.001 2.530E−00 1.000 8.292E−02 1.107 2.833E−00 1.000 (5)

1/192 277923 1.061E−00 1.001 2.108E−00 1.000 6.813E−02 1.077 2.361E−00 1.000 (5)

1/224 378003 9.094E−01 1.001 1.807E−00 1.000 5.776E−02 1.071 2.024E−00 1.000 (5)

1/256 493443 7.956E−01 1.001 1.581E−00 1.000 5.017E−02 1.056 1.771E−00 1.000 (5)

1/288 624243 7.072E−01 1.001 1.406E−00 1.000 4.433E−02 1.050 1.574E−00 1.000 (5)

1/320 770403 6.364E−01 1.001 1.265E−00 1.000 3.973E−02 1.041 1.417E−00 1.000 (5)

1/352 931923 5.785E−01 1.001 1.150E−00 1.000 3.597E−02 1.042 1.288E−00 1.000 (5)

1/384 1108803 5.303E−01 1.001 1.054E−00 1.000 3.288E−02 1.034 1.180E−00 1.000 (4)

The numerical results shown below were also obtained using a MATLAB code. In
Table 5 we summarize the convergence history of the discrete primal-mixed scheme
(3.10) as applied to Example 3, for sequences of quasi-uniform triangulations of the
domains. Similarly as for Example 1, we observe there, looking at the corresponding
experimental rates of convergence, that the order O(h) predicted by Theorem 3.5
is attained by all the unknowns. In addition, the individual errors e(uS) and e(uD)

are the dominant ones in this example. This fact is even more clear in Fig. 8 where

Fig. 8 Example 3, h and errors versus degree of freedom N
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Fig. 9 Example 3, first component of the Darcy velocity with N = 31203

one sees that e(uS) and e(uD) are quite above e(p). Moreover, we observe there that
e(p) seems to converge a bit faster than O(h) at the beginning but then it rapidly
stabilizes around that order. Finally, in Figs. 9 and 10 we show some components of
the approximate (left) and exact (right) solutions for this example. In particular, we
remark that the Raviart-Thomas subspace reconstructs quite accurately the velocity
in the porous medium �D.

Fig. 10 Example 3, second component of the Darcy velocity with N = 31203
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