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Abstract Metamorphosis is a method for diffeomorphic matching of shapes, with
many potential applications for anatomical shape comparison in medical imagery, a
problem which is central to the field of computational anatomy. An important tool for
the practical application of metamorphosis is a numerical method based on shooting
from the initial momentum, as this would enable the use of statistical methods based
on this momentum, as well as the estimation of templates from hyper-templates using
morphing. In this paper we introduce a shooting method, in the particular case of
morphing images that lie in a reproducing kernel Hilbert space (RKHS). We derive
the relevant shooting equations from a Lagrangian frame of reference, present the
details of the numerical approach, and illustrate the method through morphing of
some simple images.
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1 Introduction

Metamorphosis is a pattern matching framework that combines diffeomorphic map-
ping with variations in shape or image space; it has potential for interesting
applications in shape analysis and computational anatomy [38, 43, 44]. One of its
advantages is to allow for transgression of the diffeomorphic constraint, inducing
changes in topology between the template and the target image, resulting in a trans-
formation bringing the template to the target through the minimization of a geodesic
cost associated to a Riemannian metric on the product space of shapes and deforma-
tions. For images, this is accomplished by allowing both deformations of the template
as well as smooth changes in the template’s intensity values. Through this combi-
nation of changes, the template is morphed into the target (see [25, 37, 45] for a
precise description, and Section 2 for more details). As a result, metamorphosis is a
“near-diffeomorphic” method that allows one to compare non-diffeomorphic objects
within a well-specified Riemannian geometric framework. It therefore takes a special
place among other “pure” diffeomorphic methods, like the large-deformation diffeo-
morphic metric mapping [8, 9, 45], diffeomorphic demons, [39], elastic matching
approaches [16, 17], or optimal transportation methods [4, 10, 22, 40] — which prop-
erly speaking are not matching images, but densities, since optimal transport does not
change the total mass of the matched functions.

In this paper, we generalize previously known results for image metamorphosis,
and introduce a new shooting method for computing minimizers of the image meta-
morphosis matching functional, in the case where the images have some degree of
smoothness (they are elements of a certain reproducing kernel Hilbert space). Our
work builds upon [25], which introduced a general formulation of metamorphosis
using the Euler-Poincaré framework, and then derived the continuous-time evolu-
tion equations for metamorphosis (EPMorph) in several concrete situations, such as
image matching, density matching, and measure matching. This paper also suggested
extensions of its analysis and numerics for further work, e.g. the numerics for mor-
phing of discrete measures which was analyzed by the authors of this paper in [36].
In Section 11.2 of [25], Holm et al. apply metamorphosis to the case of images that
are members of a reproducing kernel Hilbert space (RKHS), and then they propose
the development of numerical methods for the EPMorph equations in this context. In
this paper, we develop this idea into a shooting method for morphing RKHS images,
by deriving the appropriate forward and adjoint equations, and then we present some
numerical experiments that illustrate the use of such a method for simple examples
of shape matching. We also complete the theoretical analysis of these methods, in a
framework that covers a large range of applications.

The first part of the paper provides a formal presentation of the approach, leav-
ing the detailed discussion of the hypotheses and rigorous proofs to the second
part, constituted by Section 7. The basic notation and assumptions are presented
in Section 2 together with the metamorphosis variational problem and associated
optimality equations. Section 3 describes a family of singular solutions that satisfy
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the optimality equations, providing a key component of the proposed numeri-
cal procedure. These singular solutions are then reinterpreted in Section 4 as the
solutions that arise from a relaxation of the original problem replacing the infinite-
dimensional boundary conditions in image space with a finite number of constraints.
The numerical solution of the relaxed problem is then described in Section 5,
with complements given in the Appendix. Section 6 then provides experimental
results.

2 Mathematical setup

Reproducing kernel Hilbert spaces will be key elements in our construction. If X

is a Banach or Hilbert space, we will denote by (μ | h) the pairing between a lin-
ear form μ ∈ X∗ and a vector h ∈ X; the inner product in a Hilbert space X

will be denoted by 〈h , k〉X, h, k ∈ X. In the Hilbert case, we will denote by
KX : the isometry map between X∗ and X, such that (μ | h) = 〈KXμ , h〉X,
and by AX its inverse, AX = K−1

X . If X and Y are Banach and A : X →
Y a bounded operator, we let A∗ : Y ∗ → X∗ be the conjugate, defined by
(A∗μ | h) = (μ | Ah). If X = Y are Hilbert, we let AT be the transpose, defined

by
〈
AT h , h̃

〉
H

=
〈
h , Ah̃

〉
, or AT = KXA∗AX. We will also denote by AT the

transpose matrix of a finite-dimensional operator. Finally, if X, Y are two Banach
spaces L(X, Y ) denotes the set of bounded linear operators from X to Y , and
the operator norm is denoted ‖ · ‖L(X,Y ). If Y = X, we will use L(X) instead
of L(X, Y ).

A Hilbert space X continuously embedded in L2(Rd ,Rk) is a reproducing kernel
Hilbert space (RKHS) if, for all x ∈ R

d , the Dirac measure δx : X → R
k , defined

by δx(h) = h(x) is a bounded linear map. If X is an RKHS, and given a ∈ R
k , we

will denote by a · δx the continuous linear form (a · δx | h) = a · h(x), where the
latter denotes the usual dot product in R

k . The kernel of X is then the matrix-valued
function (x, y) �→ KX : (x, y) defined by

KX(x, y)a = KX(a · δy)(x).

(KX(x, y) is a k by k matrix, and k will be either d or 1 in the following discussion.)
Metamorphosis is a diffeomorphic registration framework: it is formulated using a

certain subgroup of diffeomorphisms of Rd acting, as a left group action, on images
(see [13, 25, 33, 36, 37] for more general classes of metamorphoses). This group,
denoted DiffV , is the set of all diffeomorphisms of Rd that can be attained as flows
of time-dependent vector fields v ∈ L2([0, 1]; V ), where V is a reproducing kernel
Hilbert space continuously embedded in Bp := C

p

0 (Rd ;Rd) for some p ≥ 1 (the
space of Cp vector fields that decay to zero at infinity). More precisely, ψ ∈ G if
and only if ψ = ϕ(1), where ϕ is the solution of

ϕ̇(t) = v(t) ◦ ϕ(t),

ϕ(0) = id
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for some v satisfying
∫ 1

0 ‖v(t)‖2
V dt < ∞. The group DiffV is then embedded in the

space Diffp of diffeomorphisms ψ such that ψ − id and ψ−1 − id both belong to Bp,
which forms an open subset of the affine space id + Bp.

In most this paper, the image space is a scalar RKHS, denoted H (we will
weaken this assumption in some of the results of Section 7). To simplify the
discussion, we will assume that H is equivalent to a Sobolev space Hr (Rd)

(the space of functions with square integrable partial derivatives up to order r)
for some r > d/2 + 1, so that elements of H are differentiable. Assuming
that p ≥ r , we will consider the the action of Cp diffeomorphisms H given
by ϕ · q = q ◦ ϕ−1.

In order to connect two images q(0) and q(1) in H with a continuous path q(t),
image metamorphosis solves the optimal control problem

1

2

∫ 1

0
‖v(t)‖2

V dt + 1

2σ 2

∫ 1

0
‖ζ(t)‖2

H dt −→ min

subject to q̇(t) = ∇q(t) · v(t) + ζ(t), q(0) = q(0) and q(1) = q(1). (1)

We will prove in Section 7 that, under some additional conditions, solutions of
this problem exist and satisfy a Pontryagin maximum principle (PMP) that we derive
formally here. Introduce the control-dependent Hamiltonian

H(p, q, v, ζ ) = (p | ∇q · v + ζ ) − 1

2
‖v‖2

V − 1

2σ 2
‖ζ‖2

H .

The PMP [3, 41] states that optimal solutions of Eq. 1 satisfy
⎧
⎨
⎩

q̇(t) = ∂pH

ṗ(t) = −∂qH

(v, ζ ) = argmax H(p, q, ·, ·)
yielding ⎧

⎪⎪⎨
⎪⎪⎩

q̇(t) = ∇q(t) · v(t) + ζ(t)

ṗ(t) + ∇ · (p(t)v(t)) = 0
ζ(t) = σ 2KH p(t)

v(t) = −KV (∇q(t) · p(t))

(2)

We will use the following reformulation of problem (1). The evolution equation
for q is an advection and is equivalent to

ṁ(t, ·) = ζ(t, ϕ(t, ·))
with m(t, ·) = q(t, ϕ(t, ·)) ∈ H . Considering (ϕ, m) as a new state, we can define
the problem

1

2

∫ 1

0
‖v(t)‖2

V dt + 1

2σ 2

∫ 1

0
‖ζ(t)‖2

H dt −→ min

subject to ϕ̇(t) = v(t) ◦ ϕ(t), ṁ(t) = ζ(t) ◦ ϕ(t), m(0) = q(0) and m(1) = q(1) ◦ ϕ(1).

(3)
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One of the interests of introducing (3) is that the formulation does not require m

to be differentiable (in space) anymore (one can however use a generalized form of
the evolution equation in Problem (1) to make this problem equivalent to Problem
(3) — see [37]). Moreover, applying (still formally) the PMP to Problem (3) yields
another set of optimality conditions that will be convenient later. Introduce a co-state
ρ = (ρϕ, ρm) ∈ (Bp)∗ × H ∗ and the Hamiltonian

H(ρϕ, ρm, ϕ, m, v, ζ ) = (
ρϕ

∣∣ v ◦ ϕ
) + (ρm | ζ ◦ ϕ ) − 1

2
‖v‖2

V − 1

2σ 2
‖ζ‖2

H .

For ϕ ∈ DiffV , introduce the operators T ϕ : v → v ◦ ϕ and T̃ ϕ : ζ → ζ ◦ ϕ,
respectively from V to Bp and from H to itself. The PMP then gives the equations

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ̇ = v ◦ ϕ

ṁ = ζ ◦ ϕ

ρ̇ϕ = −∂ϕ

(
ρϕ

∣∣ v ◦ ϕ
) − ∂ϕ(ρm | ζ ◦ ϕ )

ρ̇m = 0
v = KV T ∗

ϕρϕ

ζ = σ 2KH T̃
∗
ϕρm

(4)

These conditions imply, in particular, that ρm is constant. The boundary condition
m(1) ◦ ϕ(1) = q(1) implies a boundary condition for ρ, namely that

(
ρφ(1)

∣∣w ) +
(ρm | z ) = 0 whenever

z = ∇m(1) · Dϕ(1)−1w,

since ∇q(1) ◦ ϕ(1) = Dϕ(1)−T ∇q(1). This yields

(
ρϕ(1)

∣∣w ) +
(
ρm

∣∣∣∇m(1) · Dϕ(1)−1w
)

= 0.

for all w ∈ Bp, or, replacing w by Dϕ(1)w,
(
ρϕ(1)

∣∣Dϕ(1)w
) + (ρm | ∇m(1) · w) = 0 (5)

holding for all w ∈ Bp.
Note that system (4) implies that

∂t

((
ρϕ(t)

∣∣Dϕ(t)w
) + (ρm | ∇m(t) · w)

) =
−(

ρϕ(t)
∣∣Dv(t) ◦ ϕ(t)Dϕ(t)w

) − (ρm | ∇ζ(t) ◦ ϕ(t) · Dϕ(t)w )

+(
ρϕ(t)

∣∣Dv(t) ◦ ϕ(t)Dϕ(t)w
) + (ρm | ∇ζ(t) ◦ ϕ(t) · Dϕ(t)w ) = 0,

for which we have used ∂tDϕ(t) = Dv(t) ◦ ϕ(t)Dϕ(t) and ∂t∇m(t) =
Dϕ(t)T ∇ζ(t) ◦ ϕ(t). This implies that the linear form

μ(t) : w �→ (
ρϕ(t)

∣∣Dϕ(t)w
) + (ρm(t) | ∇m(t) · w)

is invariant along (4), and the boundary condition (5) propagates over all times, i.e.,
μ(t) = 0 over [0, 1].
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Finally, we let the reader check that one can pass from solutions of Eq. 2 to
solutions of Eq. 4 with the change of variables q(t) ◦ φ(t) = m(t) and

(p(t) | z ) = (ρm | z ◦ φ(t) ).

Note also that the boundary condition can be rewritten in terms of q = m ◦ ϕ−1 as
(
ρϕ(t)

∣∣w ) = (ρm | ∇q(t) · w). (6)

3 Singular solutions

It was recognized in [25] that system (2) admits a family of singular solutions.
These solutions are obtained directly from Eq. 4 by taking ρϕ and ρm in the
form

ρϕ(t) =
N∑

k=1

zk(t) · δ
x

(0)
k

(7)

ρm =
N∑

k=1

αkδx
(0)
k

(8)

Here, x(0) =
{
x

(0)
k

}N

k=1
is a collection of points, or particles, in R

d , z(t) = {zk(t)}Nk=1

is a collection of time-dependent vectors in R
d , α = {αk}Nk=1 is a time-independent

collection of scalars.
Introduce the trajectories xk(t) := ϕ

(
t, x

(0)
k

)
. Using this notation, we have

(
T ∗

ϕ(t)ρϕ(t)

∣∣∣w
)

= (
ρϕ(t)

∣∣w ◦ φ(t)
) =

N∑
k=1

zk(t) · w(xk(t))

so that

T ∗
ϕ(t)ρϕ(t) =

N∑
k=1

zk(t) · δxk(t)

and Eq. 4 implies that (using the reproducing kernel of V )

v(t, ·) =
N∑

�=1

KV (·, x�(t))z�(t).

Similarly, one gets

ζ(t, ·) = σ 2
N∑

�=1

KH (·, x�(t))α�.
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The third equation in Eq. 4 gives, for w ∈ Bp,

N∑
k=1

żk(t) ·w
(
x

(0)
k

)
= −

N∑
k=1

zk(t) ·Dv(xk(t))w
(
x

(0)
k

)
−

N∑
k=1

αk∇ζ(xk(t)) ·w
(
x

(0)
k

)

from which we get

żk(t) = −Dv(xk(t))
T zk(t) − αk∇ζ(xk(t)).

Using the expansions of v and ζ and the fact that ẋk = v(t, xk), we obtain the fact
that Eqs. 7 and 8 provide solutions of Eq. 4 as soon as x, m and z satisfy the coupled
dynamical system

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋk(t) =
N∑

�=1
KV (xk(t), x�(t))z�(t)

ṁk(t) =
N∑

�=1
KH (xk(t), x�(t))α�

żk(t) = −
N∑

�=1
∇1KV (xk(t), x�(t))z�(t) · zk(t) − 1

σ 2

N∑
�=1

∇1KH (xk(t), x�(t))αkα�

(9)

(with the notation mk(t) = m
(
t, x

(0)
k

)
). The boundary condition applied to ρϕ and

ρm is

N∑
k=1

zk(t) · w = −
N∑

k=1

αk∇m
(
t, x

(0)
k

)
· Dϕ

(
t, x

(0)
k

)−1
w

yielding

zk(t) = −αkDϕ
(
t, x

(0)
k

)−T ∇m
(
x

(0)
k

)
= −αk∇q(t, xk(t))

Note that, given the initial positions
{
x

(0)
k

}
, and initial image q(0), the above

system is uniquely specified by the choice of the scalar field α, since zk(0) =
−αk∇q(0)

(
x

(0)
k

)
. The solutions {xk, zk} then determine the controls v and ζ for all t

and x ∈ R
d , which define in turn the evolving image q. This will allow us to design

a shooting method for computing metamorphoses that will look for initial conditions
that bring trajectories to a desired endpoint.
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4 Discrete relaxed problem

Equation 9 are optimality equations for the following relaxation of Problem (3):

1

2

∫ 1

0
‖v(t)‖2

V dt + 1

2σ 2

∫ 1

0
‖ζ(t)‖2

H dt −→ min

subject to ẋk(t) = v(t, xk(t)), ṁk(t) = ζ(t, xk(t)), mk(0) = q(0)
(
x

(0)
k

)
,

and mk(1) = q(1)(xk(1)).

(10)

This is just (3) with boundary conditions only enforced at the initial and final points
of the trajectories xk(t), k = 1, . . . , N . Because the constraints only depend on the
evaluation of v and ζ along the discrete trajectories, the optimal ones should mini-
mize their respective norms subject to the values taken at these points. Well-known
results on RKHS’s [7, 42] imply that these optimal solutions must assume the form

v(t, ·) =
N∑

k=1

KV (·, xk(t))zk(t)

ζ(t, ·) =
N∑

k=1

KH (·, xk(t))αk(t)

for some coefficients z and α, and that their norms are given by

‖v‖2
V =

N∑
k,�=1

zk(t) · KV (xk(t), x�(t))z�(t)

‖ζ(t)‖2
H =

N∑
k,�=1

KH (xk(t), x�(t))αk(t)α�(t).

Solutions of Problem (10) are therefore solutions of the reduced problem

1

2

N∑
k,�=1

∫ 1

0
zk(t) · KV (xk(t), x�(t))z�(t)dt (11)

+ 1

2σ 2

N∑
k,�=1

∫ 1

0
KH (xk(t), x�(t))αk(t)α�(t)dt −→ min

subject to ẋk(t) =
N∑

�=1

KV (xk(t), x�(t))z�(t),

ṁk(t) =
N∑

�=1

KH (xk(t), x�(t))α�(t),

mk(0) = q(0)
(
x

(0)
k

)
and mk(1) = q(1)(xk(1)).
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The PMP associated to this problem derives, as before, from a control-dependent
Hamiltonian

Hα,z(px, pm, x, m) =
N∑

k,�=1

px,k(t) · KV (xk(t), x�(t))z�(t)

+
N∑

k,�=1

KH (xk(t), x�(t))pm,k(t)α�(t)

−1

2

N∑
k,�=1

zk(t) · KV (xk(t), x�(t))z�(t)dt

− 1

2σ 2

N∑
k,�=1

KH (xk(t), x�(t))αk(t)α�(t) (12)

It is then easy to check that the optimality conditions ∂zH = 0 and ∂αH = 0 imply
that px = z and pm = α; from ∂mH = 0, one finds that α is constant; finally, the
equation ż = −∂xH yields an equation identical to the evolution of z in Eq. 9.

The boundary condition for Problem (11) is

zk(1) = −αk∇q(1)(xk(1)).

This identity propagates over time as follows: define m̃(t) ∈ H by ∂t m̃ = ζ(t) ◦ ϕ(t)

with m̃(1) = q(1) ◦ ϕ(1). Define q̃(t) such that m̃(t) = q̃(t) ◦ ϕ(t). Then

zk(t) = −αk∇q̃(t, xk(t))

at all times. To prove this statement write

∂t∇m̃(t) = Dϕ(t)T ∇ζ(t) ◦ ϕ(t)

on the first hand, and, on the other hand,

∂t∇m̃(t) = ∂t (Dϕ(t)T ∇q̃(t) ◦ ϕ(t))

= Dϕ(t)T Dv(t) ◦ ϕ(t)T ∇q̃(t) ◦ ϕ(t) + Dϕ(t)T ∂t (∇q̃(t) ◦ ϕ(t)).

Identifying the expressions, we find

∂t (∇q̃(t, xk(t))) = −Dv(t, xk(t))
T ∇q̃(t, xk(t)) + ∇ζ(t, xk(t)).

This implies

∂t (zk(t) + αk∇q̃(t, xk(t))) = −Dv(t, xk(t))
T (zk(t) + αk∇q̃(t, xk(t)))

proving that Dϕ(t, xk(0))T (zk(t) + αk∇q̃(t, xk(t))) is conserved along the motion.
This quantity therefore vanishes at all times as soon as it vanishes at time t = 1.

Note that this boundary condition differs from the one we had in the unrelaxed
problem, because m̃ and q̃ are not necessarily identical to m and q. We have, actually,
q(t, xk(t)) = q̃(t, xk(t)) for all k and t , since they have the same derivative and
coincide at t = 1, but this identity does not hold for the the full functions q(t, ·)
and q̃(t, ·), since the constraints at t = 1 only involve the particles. Note also that,

if one initializes system (9) with zk(0) = −αk∇q(0)
(
x

(0)
k

)
, one also gets zk(t) =
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−αk∇q(t, xk(t)) at all times. This can be an interesting constraint to enforce, since
it is consistent with the continuous problem, even though this does not provide a
solution of the relaxed problem.

5 Solution of the discrete problem

The discrete relaxation that was described in the previous sections has several advan-
tages. The first one is that it will allow us to use a particle-based method to solve
the metamorphosis problem, in a Lagrangian setting (i.e., using a shooting algorithm
that is parametrized by the original conditions of the evolution equations). The algo-
rithm is described in the remainder of this section. The second advantage is to lend
itself to multi-grid methods in a rather straightforward way, since the grid size (the
number of particles) can be freely specified when designing the approximation. One
can in this way construct a family of nested problems simply by using nested grids
in the approximation. One last important advantage is that using a shooting algo-
rithm immediately provides a representation of the target in a “template-centered
coordinate system” via the initial value of the pair (α, z), or simply α if the condition
z = −α∇q is enforced. The interest of this representation is that it can be analyzed
using linear methods (see Section 6.2).

One of the drawback of particle methods is that they become computationally
intensive when the number of particles is large. This is specially true in our case
because the computation involves several sums of kernel functions centered over
particles which for a non-regular grid. Some acceleration can be found using fast
multipole methods [14, 15, 21], which however have the drawback of breaking the
positive definiteness of the kernel [27]. Hardware acceleration is also possible. While
our implementation uses multiple processors, a significant gain would results from
graphical processor implementations, for which particle methods are well adapted
[21, 28].

We now describe a shooting method for the solution of Problem (11), in which we

solve for (α1, . . . , αN) and
(
z
(0)
1 , . . . , z

(0)
N

)
such that the solution of Eq. 9 initialized

at xk(0) = x
(0)
k , mk(0) = q(0)

(
x

(0)
k

)
and zk(0) = z

(0)
k satisfies mk(1) = q(1)(xk(1))

for k = 1, . . . , N . Considering xk(·) and mk(·) as functions of α and z(0), we
minimize

E(α, z(0)) =
N∑

k=1

(mk(1) − q(1)(xk(1))2. (13)

Here, we assume that q(1) is defined and known everywhere (by interpolation, for
example). Computing the differential of E gives

dE = 2
N∑

k=1

(mk(1) − q(1)(xk(1))(dmk(1) − ∇q(1)(xk(1)) · dxk(1)) (14)

where dmk and dxk are differentials dual to infinitesimal changes in the discrete
variables mk and xk .
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To compute dE, we apply the well-known adjoint method to compute derivatives
of functions of solutions of dynamical systems. Writing θ(t) = (x, m, z), and defin-
ing F so that Eq. 9 is θ̇ = F(θ, α), we let θ(t, θ(0), α) denote the solution of this
equation with initial condition θ(0) = θ(0) and parameter α. Given variations δα and
δθ(0), then

δθ(t) := ∂θ(0)θ .δθ(0) + ∂αθ .δα

satisfies the ODE
∂t δθ = ∂θF (θ, α).δθ + ∂αF (θ, α).δα

with initial condition δθ(0) = δθ(0). Introduce the solution ξ = (ξx, ξm, ξz) of the
adjoint ODE

∂t ξ = −∂θF (θ, α).ξ

so that
∂t (ξ · δθ) = ξ · ∂αF (θ, α).δα. (15)

If one takes

ξ(1) = {−2(mk(1)−q(1)(xk(1))∇q(1)(xk(1)), 0, 2(mk(1)−q(1)(xk(1)), }Nk=1 (16)

then, from Eqs. 14 and 15,

dE.δθ = ξ(1) · δθ(1) = ξ(0) · δθ(0) +
(∫ 1

0
∂αF (θ, α).ξdt

)T

δα.

In other terms, defining ξ(t) and η(t) as solutions of the system
{

∂t ξ = −∂θF (θ, α)T ξ

∂tη = −∂αF (θ, α)T ξ
(17)

with ξ(1) as above and η(1) = 0, one finds

∂θ(0)E = ξ(0) and ∂αE = η(0).

Detailed expressions for system (17) expressed in terms of x, α and z are provided in
the Appendix.

This system is used for the adjoint method to transport the discrete covector dE

backwards in time, in order to find a descent direction for the optimization. In our
implementation, the initial conditions m(0) and x(0) are fixed, and the optimization
only operates on z(0) and α, yielding Algorithm 1.

If, as discussed at the end of Section 4, the minimization is run with the con-
straint z

(0)
k = −αk∇q(0)

(
x

(0)
k

)
, the gradients obtained at step 1.2 of Algorithm 1

only have to be combined into η̃k(0) = ηk(0) − ∇q(0)
(
x

(0)
k

)
· ξz,k(0) in order to

update α. Note also that the obtained derivatives, ξz(0) and η(0) (or η̃(0)) can be con-
ditioned according to their natural inner product before performing step 2, using the
linear transformation η(0) �→ KH (x(0)−1η(0) and ξz(0) �→ KV (x(0)−1ξz(0), where

KH (x(0) is the matrix with entries KH

(
x

(0)
k , x

(0)
l

)
and KV (x(0) is formed similarly

with d by d blocks KV

(
x

(0)
k , x

(0)
l

)
.



584 C.L. Richardson, L. Younes

Algorithm 1 Shooting algorithm

Require: template q(0), target q(1); specify kernels KV , KH ; matching parameter σ

α ← 0, z(0) ← 0
while (not stop CG) do

1. Compute ∂z(0)E, ∂αE:
1.1 Compute dE = ∂xk

E dxk + ∂mk
E dmk given by Eq. 14

1.2 Compute ξz(0), η(0): solve the adjoint system backwards in time
starting from dE at t = 1.

2. Update conjugate direction and perform line search
3. Update z(0), α

end while

6 Numerical experiments

We now illustrate our method with some simple numerical experiments. We used
Python for our implementation, making extensive use of the open source packages
Numpy, Scipy, and the f2py tool to integrate Fortran and Python [29]. The results in
the examples below are visualized using Paraview [23].

For all numerical results, we use

KV (x, y) = (1 + u + 3u2/7 + 2u3/21 + u4/105) e−u.IdRd

and

KH (x, y) = (1 + ũ + ũ2/3) e−ũ

with u = |x − y|/τV and ũ = |x − y|/τH , where τV and τH are
width parameters associated to the reproducing kernels. These kernels provide
RKHS’s equivalent to Sobolev spaces Hk(Rd ,Rd) and Hr (Rd) with k =
(9 + d)/2 and r = (5 + d)/2, yielding respective inclusions in B4 and
C2

0(Rd). All experiments are discretized on a 2D grid with isotropic resolution
�x1 = �x2 = 1.

6.1 Two-image comparisons

The first examples match images from the training set in the MNIST character recog-
nition database: the letter “D” and the digit “8”. We use a discrete square with 722

points and a time discretization �t = 0.1 (10 timesteps). Images from the charac-
ter database are upsampled at the sampling rate for this grid. We used τV = 1.5 and
τh = 0.5. Figure 1 illustrates the matching of two versions of the letter D (bottom
row at left, to bottom row at right). The top row shows the optimal evolution of the
template m(t), while the bottom row shows the evolution of the deformed template
q(t) = m(t) ◦ ϕ(t)−1. Figure 2 shows matching of versions of the digit eight (top
left to bottom right), along with the deformed gridlines to visualize the minimizing
deformation.
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Fig. 1 Morphing of letter D from MNIST training set: top row shows evolution of the template; bottom
row shows evolution of deformed template

In Fig. 3, we show the metamorphosis of two leaves from the LeafSnap database
[30], after downsampling the images to a grid of 1002 and converting to grayscale
images. Here, τV = 3.0 and τh = 0.5.

6.2 Momentum representation

Figure 4 shows the minimizing momenta α when matching the image on the top
row to each of the seven images of the final row (which shows the final morphed

Fig. 2 Morphing of smoothed version of digit 8 from MNIST training set, where the coordinate grid is
warped by the diffeomorphism and illustrated with grid lines
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Fig. 3 Matching of two leaves from LeafSnap database using metamorphosis

image); the second row is an intensity map of the momenta. On the linear space of
momenta, we can take linear combinations, as depicted in Fig. 5; this allows us to
generate random images based on the ones obtained in Fig. 4, by solving (9) with
initial momentum

α(0) = ᾱ0 + c√
n

7∑
k=1

ξk(α0,k − ᾱ0) (18)

where ξ1, . . . , ξ7 are independent standard Gaussian random variables, α0,k is the
initial momentum obtained for the kth image in Fig. 4 and ᾱ0 is their average. The
covariance structure of the resulting random momentum α(0) coincides with the
empirical covariance estimated from the seven examples.

6.3 Multiscale approach

Figure 6 provides an example in which two cardiac images are compared. The orig-
inal images were 92×112, and we ran a multiscale procedure in which images
were first smoothed and down-sampled by a factor four before a first run of the
shooting algorithm was made, then up-sampled twice by a factor two, each time
running the shooting algorithm initialized with the values of α obtained at the
previous run.

Fig. 4 Momentum field (α) for matching template to several targets for letter B in MNIST training set;
figure in top row is the image chosen to be the template; second row shows α with color intensity indicating
magnitude, negative values of α are colored blue, positive are red; third row shows final morphed image
shooting from the α above
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Fig. 5 Result of shooting with random momenta (described in Eq. 18) learned from letter matching. The
figure provides ten independent samples

7 Rigorous results

7.1 Notation and preliminary results

We first recall our main assumptions. Images (m or q) belong to a Hilbert space H ,
with norm equivalent to the Hr (Rd) norm for some integer r ≥ 0, with notation for
the Hr norm

‖u‖2
r,2 =

∑
|α|≤r

‖∂αu‖2
2

where α denotes a d-dimensional multi-index (α1, . . . , αd), |α| = α1 + · · · + αd ,

∂αu = ∂ |α|u
∂α1x1 . . . ∂αd xd

and ‖ ‖2 is the L2 norm. We will use the usual notation Hr (Rd)∗ = H−r (Rd). Most
of the time, we will assume that r > d/2 + k for some k ≥ 0, which implies [2,
11] that H is continuously embedded in the space Ck

0 (Rd) of k-times continuously
differentiable functions that vanish at infinity, together with their first k derivatives,
with norm

‖u‖k,∞ =
∑
|α|≤k

‖∂αu‖∞.

We have denoted Bp the space C
p

0 (Rd ,Rd), with norm ‖ ‖p,∞, and we will denote
‖ ‖p,∞,∗ the associated norm on the dual space (Bp)∗. We will assume that V is a
Hilbert space which is continuously embedded in Bp, with p ≥ max(r, 1) at least,
and p ≥ r +1 most of the time. If v ∈ L2([0, 1],Bp) (which contains L2([0, 1], V )),
the associated flow, ϕv(s, t, ·), solution of ∂tϕ

v = v(t, ϕv) with ϕv(s, s, x) = x takes
values in Diffp(Rd), the group of diffeomorphisms ψ such that ψ − id and ψ−1 − id
both belong to Bp. More precisely [3, 37, 45], there exists a continuous function c

such that, for all s, t ∈ [0, 1],
‖ϕv(s, t, ·) − id‖p,∞ ≤ c

(‖v‖L2([s,t],Bp)

) ‖v‖L2([s,t],Bp) .
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Fig. 6 Multiscale procedure applied to a cardiac image. From top to bottom and from left to right: First
compared image (template), second compared image (target), final metamorphosis after down-sampling
by four in every direction, final metamorphosis after down-sampling by two in every direction, final
metamorphosis at original resolution

In the following, we will use the generic notation c(·) to represent some continuous
function of its arguments (the actual function can change from an equation to another,
even if we still denote it c). The notation cst will denote a generic constant.

The mapping v �→ ϕv(s, t, ·) is differentiable from L2([0, 1],Bp) to Diffp−1 with
derivative

∂vϕ
v(s, t, ·).h =

∫ t

s

Dϕv(u, t, ϕv(s, u, ·))h(u, ϕv(s, u, ·))du.

Moreover, one can show that, if v, ṽ ∈ L2([s, t],Bp), then

‖ϕv(s, t, ·)−ϕṽ(s, t, ·)‖p−1,∞ ≤ c
(‖v‖L2([s,t],Bp), ‖ṽ‖L2([s,t],Bp)

) ‖v−ṽ‖L2([s,t],Bp) .

Note that ‖v‖L2([s,t],Bp) is bounded, up to a multiplicative constant, by ‖v‖L2([s,t],V ).
Finally, we note that weak convergence of a sequence vn to a limit v in

L2([0, 1], V ) implies that ϕvn converges to ϕv in the (p, ∞) norm over compact
subsets of Rd [18, 45].

To simplify our expressions, we will simply denote ϕ(t, x) = ϕ(0, t, x) when
s = 0.

We let DiffV ⊂ Diffp denote the group of diffeomorphisms that can be obtained
from flows associated to some v ∈ L2([0, 1], V ). For ψ ∈ DiffV , we introduced the
translation operators T ψ : V → Bp and T̃ ψ : H → H defined by T ψv = v ◦ ψ
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and T̃ ψh = h ◦ ψ . The fact that T̃ ψ maps H onto itself (with (T̃ ψ)−1 = T̃ ψ−1 )
is a consequence of H being equivalent to Hr (Rd) and of p ≥ r (see justification
below). The following lemma, which can be proved by induction, describes how T̃ ψ

commutes with partial derivatives.

Lemma 1 Let α be a multi-index. Assume that z : Rd → R has at least |α| continu-
ous derivatives, and let ψ ∈ Diffp with p ≥ |α|. One can write ∂α(z ◦ ψ−1) ◦ ψ in
the form

∂α(z ◦ ψ−1) ◦ ψ(y) =
∑
β≤α

Qα
β(ψ)(y)∂βz(y)

where Qα
β(ψ)(y) depends on derivatives of ψ at y, and can be written as a sum of

terms

σ(Dψ)(∂γ1ψj1)
�1 · · · (∂γk

ψjk
)�k

with |γq | > 1 for q = 1, . . . , k and |β|+∑k
q=1 �q(|γq |−1) ≤ |α|. In this expression,

ψj denotes the j th coordinate of ψ and σ is a continuous function of Dψ , which
can be expressed as the ratio of a polynomial in the coefficients of Dψ divided by
| det Dψ | to some power.

This result (or a similar version of it) can be found in many places in the literature:
see [19, 20, 26] and their references. This lemma implies, in particular, that

∑
|α|≤r

|∂αT̃ ψ−1z|2 ≤ c(‖ψ − id‖p,∞)
∑
|α|≤r

T̃ ψ−1 |∂αz|2,

from which one obtains the continuity of T̃ ψ−1 , with the operator norm

‖T̃ ψ−1‖L(H,H) a continuous function of ‖ψ − id‖p,∞.
We will use the following result. Assume that ψn is a sequence of diffeomorphisms

of Rd that converges pointwise to a diffeomorphism ψ , and such that ‖ψ−1
n ‖1,∞ is

bounded. Then, for any z ∈ L2(Rd), z ◦ ψn converges in L2 to z ◦ ψ . This can be
proved by using the fact that for any ε > 0, one can find a compact subset of Rd ,
Aε, such that z is continuous on Aε, Ac

ε = R
d \ Aε has measure less than ε and

‖z1Ac
ε
‖2 ≤ ε. Assume without loss of generality that ψ = id and write

‖z◦ψn−z‖2
2 =

∫

Rd

z2(| det D(ψ−1
n )|−1)dx+

∫

Aε

z(z◦ψn−z)dx+
∫

Ac
ε

z(z◦ψn−z)dx.

The last integral is less than ‖z ◦ ψn − z‖2‖z1Ac
ε
‖2 ≤ cst.‖z‖2ε and the rest can be

made arbitrarily small by letting n go to infinity.
This result combined with Lemma 1 implies that, if z ∈ Hr (Rd), then ψ �→

T̃ ψz is continuous in ψ as a function from Diffp (p ≥ r) to Hr (Rd) (or H ). More
generally, if ψn ∈ Diffp and its p first derivatives converge to those of ψ ∈ Diffp

pointwise, with ‖ψ−1
n ‖p,∞ bounded, then T̃ ψnz converges to T̃ ψz in Hr (Rd). Finally

T̃ ψ is, in addition, differentiable in ψ in the following setting. If z ∈ Hr+1(Rd),
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then ψ �→ T̃ ψz is differentiable, as a function from Diffp to H , with differential
u �→ ∇z ◦ ψ · u. Indeed, starting with a smooth z, one writes

T̃ ψ+uz − T̃ ψz − (∇z ◦ ψ) · u =
∫ 1

0
(∇z ◦ (ψ + εu) − ∇z ◦ ψ) · udε.

An application of Leibnitz formula yields

‖(∇z ◦ (ψ + εu) − ∇z ◦ ψ) · u‖r,2 ≤ cst‖∇z ◦ (ψ + εu) − ∇z ◦ ψ‖r,2‖u‖r,∞
yielding

‖T̃ ψ+uz − T̃ ψz − (∇z ◦ ψ) · u‖r,2 ≤ cst‖u‖r,∞
∫ 1

0
‖∇z ◦ (ψ + εu) − ∇z ◦ ψ‖r,2dε,

which can be extended to arbitrary z ∈ Hr+1(Rd) by density. The conclusion then
follows from the continuity of ψ �→ ∇z◦ψ as an Hr (Rd ,Rd)-valued mapping, since
∇z ∈ Hr (Rd ,Rd). From this, it also follows that ψ �→ T̃

∗
ψρ is differentiable in ψ ,

for the H−r (Rd) norm, as soon as ρ ∈ H1−r (Rd).
We will also be interested, for ψ ∈ GV , in the operator Lψ = T̃

∗
ψAH T̃ ψ , where

AH is, as before, the duality isometry from H to H ∗, with inverse KH . Lψ provides
a bounded invertible mapping from H to H ∗, and one has

(
Lψ−1z

∣∣ z ) = ‖z ◦ ψ−1‖2
H .

Note that ‖Lψ‖L(H,H ∗) ≤ ‖T̃ ψ‖2
L(H)

and, using L−1
ψ = T̃ ψ−1KH T̃

∗
ψ−1 ,

‖L−1
ψ ‖L(H ∗,H) ≤ ‖T̃ ψ−1‖2

L(H)
. More generally, if ψ ∈ Br+k , then Lψ maps

Hr+k(Rd) to Hk−r (Rd) and ‖Lψ‖L(Hr+k,Hk−r ) ≤ cst‖T̃ ψ‖L(Hr+k)‖T̃ ψ‖L(Hr−k).

Similarly, L−1
ψ maps Hk−r (Rd) to Hr+k(Rd) with ‖Lψ‖L(Hk−r ,Hr+k) ≤

cst‖T̃ ψ−1‖L(Hr+k)‖T̃ ψ−1‖L(Hr−k).

From the differentiability of T̃ ψ and T̃
∗
ψ , one obtains the fact that Lψz and L−1

ψ ρ

are differentiable in ψ as soon as z ∈ Hr+1(Rd) and ρ ∈ H1−r (Rd) (note that AH

maps Hr+1 onto H1−r ). One can go a little further by assuming that p ≥ r + 1 and
that the norm on H results from a differential operator, i.e.,

‖z‖2
H =

∥∥∥∥∥∥
∑
|α|≤r

bα∂αz

∥∥∥∥∥∥

2

2

for some coefficients bα . One has, in this case,

‖z ◦ ψ−1‖2
H =

∫

Rd

⎛
⎝ ∑

|α|≤r

bα ◦ ψ ∂α(z ◦ ψ−1) ◦ ψ

⎞
⎠

2

| det Dψ |dy

and using Lemma 1 to expand the partial derivatives, one sees that the integrand can
be written as a polynomial in the partial derivatives of z, with coefficients expressed
as smooth functions of ψ and its first r derivatives. From this, one concludes that
Lψ−1 is differentiable in ψ−1 for the L(H, H ∗) operator norm, and so is the inverse

map L−1
ψ−1 .
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Finally, let ϕ : [0, 1] → GV be a continuous mapping (e.g., ϕ = ϕv for some
v ∈ L2([0, 1],Rd)). Define the operator

Rϕ =
∫ 1

0
L−1

φ(t)−1dt =
∫ 1

0
T̃ ϕ(t)KH T̃

∗
ϕ(t)dt,

defined on H ∗, with values in H . This operator is continuous in ϕ (for ‖ϕ‖ =
supt∈[0,1] ‖ϕ‖p,∞), and is invertible. To prove the last statement, first notice that Rϕ

has closed range. Indeed, if Rϕρn → ξ , then ρn is bounded because

(
ρn

∣∣Rϕρn

) =
∫ 1

0
‖T̃ ∗

ϕ(t)ρn‖2
H ∗dt ≥

(∫ 1

0
‖T̃ ϕ(t)−1‖−2

L(H)
dt

)
‖ρn‖2

H ∗ (19)

so that

‖ρn‖H ∗ ≤ ‖Rϕρn‖H

(∫ 1

0
‖T̃ ϕ(t)−1‖−2

L(H)
dt

)−1

.

This implies that ρn has a weakly converging subsequence in H ∗, say ρn ⇀ ρ, which
implies Rϕρn ⇀ Rϕρ so that ξ = Rϕρ. Thus, Rϕ is one-to-one and has closed
range, which implies that it is invertible.

From Eq. 19 and a similar upper bound for the inverse, we obtain the fact that
‖Rϕ‖L(H ∗,H) and ‖R−1

ϕ ‖L(H,H ∗) are bounded by continuous functions of ϕ. From

this, and the identity R−1
ϕ − R−1

ϕ′ = R−1
ϕ (Rϕ′ − Rϕ)R−1

ϕ′ , it follow that R−1
ϕ is also

continuous in ϕ. The differentiability of Rϕ in ϕ comes from the differentiability of
L−1

ψ , so that ϕ �→ Rϕρ is differentiable as soon as ρ ∈ H1−r (Rd). This statement

holds also for ρ ∈ H−r (Rd) if ‖ ‖H is associated to a differential operator. From
these results and the continuity of the inverse map, one also concludes that R−1

ϕ z is
differentiable in ϕ if z ∈ Hr+1(Rd) (or Hr (Rd) if ‖ ‖H is associated to a differential
operator).

7.2 Existence of solutions of the boundary-value problem

We start with the existence of solutions for Problems (3) and (10).

Theorem 1 Assume r > d/2 and p ≥ max(1, r). Then Problems (3) and (10) have
non-empty sets of solutions.

Let x(0,n) = {x(0,n)
k }Nn

k=1 be nested sets of points in R
d such that

⋃
n x(0,n) is

dense in R
d . Let (v(n), ζ (n), ϕ(n), m(n)) be solutions of Problem (10) with x(0) =

x(0,n). Then, possibly after replacing them with subsequences, both v(n) and ζ (n)

weakly converge to limits v and ζ , while ϕ(n) and m(n) converge pointwise to the
corresponding ϕ and m such that (v, ζ, ϕ, m) is a solution of Problem (3).

Proof Let
(
v(n), ζ (n), ϕ(n), m(n)

)
be a minimizing sequence for Problem (3). Then

(using a subsequence if needed), the bounded sequences v(n) and ζ (n) weakly
converge to limits v and ζ in L2([0, 1], V ) and L2([0, 1], H) respectively, with

‖v‖L2([0,1],V ) ≤ lim inf ‖v(n)‖L2([0,1],V ) and‖ζ‖L2([0,1],H) ≤ lim inf ‖ζ (n)‖L2([0,1],H).
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This weak convergence for v(n) implies that ϕ(n) converges to ϕ uniformly on
compact sets. For x ∈ R

d , write

m(n)(t, x) − m(t, x) =
∫ t

0
(ζ (n)(s, ϕ(n)(s, x)) − ζ (n)(s, ϕ(s, x)))ds

+
∫ t

0
(ζ (n)(s, ϕ(s, x)) − ζ(s, ϕ(s, x)))ds.

Since the linear form

ζ ′ �→
∫ t

0
ζ ′(s, ϕ(s, x))ds

is continuous in L2([0, 1], H), the last term in the right-hand side converges to 0.
Recall that KH denote the reproducing kernel on H , defined by KH (·, x) = KH δx .
Rewrite the first term as

∫ t

0
(ζ (n)(s, ϕ(n)(s, x)) − ζ (n)(s, ϕ(s, x)))ds

=
∫ t

0

〈
KH (·, ϕ(n)(s, x)) − KH (·, ϕ(s, x)) , ζ (n)(s, ·)

〉
H

ds

≤
(∫ 1

0
‖KH (·, ϕ(n)(s, x)) − KH (·, ϕ(s, x))‖2

H ds

)1/2

‖ζ (n)‖L2([0,1],H)

=
(∫ 1

0
(KH (ϕ(n)(s, x), ϕ(n)(s, x)) − 2KH (ϕ(n)(s, x), ϕ(s, x))+KH (ϕ(s, x), ϕ(s, x)))2ds

)1/2

×‖ζ (n)‖L2([0,1],H).

This last term goes to 0 because r > d/2 implies that KH is continuous. As a conse-
quence, we find that m(1) = q(1)(ϕ(1, x)) is still satisfied at the limit, implying that
(v, ζ, ϕ, m) is a solution of Problem (3). The proof for Problem (10) is exactly the
same, since the only difference is that the constraint is enforced on a finite set instead
of everywhere.

Now, let (v(n), ζ (n), ϕ(n), m(n)) be a sequence of solutions of Problem (10) with
x(0) = x(0,n). Since (10) is a relaxation of Problem (3), the optimal cost of the former
is less than the optimal cost of the latter, implying that v(n) and ζ (n) (or a subse-
quence) weakly converge to v and ζ with pointwise convergence of ϕ(n) and m(n) to ϕ

and m as above. Since the sets x(0,n) are nested, the constraint m(1) = q(1)(ϕ(1, x))

is satisfied for all x in their union, and therefore everywhere in R
d since the union is

dense. Finally, since the cost of the limit is no larger than the lim inf of the costs of
the sequence, which is itself no larger than the optimal cost of Problem (3), we find
that (v, ζ, ϕ, m) is an optimal solution of Problem (3).

The existence of solutions for the continuous problem (3) is in fact true as soon as
r ≥ 0. Indeed, one can write

∫ 1

0
‖ζ(t)‖2

H dt =
∫ 1

0

(
Lϕv(t)−1ṁ

∣∣ ṁ)
dt
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since ṁ(t) = ζ ◦ ϕv(t), from which it results that the optimal m at fixed v is such
that Lϕv(t)−1ṁ remains constant over time. Letting σ 2ρm ∈ H ∗ denote this constant
value (the normalization by σ 2 ensures that ρm coincides with the one introduced in
Eq. 4), we get

m(t) − q(0) =
(

σ 2
∫ t

0
L−1

ϕv(t)−1dt

)
ρm

and using m(1) = T̃ ϕv(1)q
(1), we get

σ 2ρm = R−1
ϕv

(
T̃ ϕv(1)q

(1) − q(0)
)

so that ∫ 1

0
‖ζ(t)‖2

H dt =
(
R−1

ϕv

(
T̃ ϕv(1)q

(1) − q(0)
) ∣∣∣ T̃ ϕv(1)q

(1) − q(0)
)
.

The optimal v must therefore minimize

1

2

∫ 1

0
‖v(t)‖2

V dt + 1

2σ 2

(
R−1

ϕv

(
T̃ ϕv(1)q

(1) − q(0)
) ∣∣∣ T̃ ϕv(1)q

(1) − q(0)
)

(20)

and an argument using minimizing sequences combined with the continuity of T̃ ψ

and Rϕ leads to the existence of a minimizer (this generalizes the result proved in
[37] in the L2 case). Of course, the discretization in Problem (10) does not make
sense for r ≤ d/2, unless one replaces point evaluation by some other continuous
linear forms on H , like evaluation against test functions. This would, however, have
less practical interest, since test functions do not evolve in a computationally simple
way under the action of diffeomorphisms.

7.3 Optimality conditions

We pass to the necessary conditions for optimal solutions of Problem (3), and now
assume that r > d/2 + 1 so that H is embedded in C1

0(Rd). Note that, since (10) can
be reduced to Problem (11), which is finite dimensional, its optimality conditions fol-
low from the standard Pontryagin maximum principle. For the infinite-dimensional
case, we have:

Theorem 2 Assume that both q(1) and q(0) belong toHr+1(Rd). Then, if (v, ζ, ϕ, m)

is an optimal solution of Problem (3) there exist ρϕ ∈ (Bp)∗ and ρm ∈ H ∗ such that
Eq. 4 is satisfied, with

(
ρϕ(t)

∣∣ w ) +
(
ρm

∣∣∣∇q(1) ◦ ϕ(1) · w
)

= 0

for all w ∈ Bp.

Proof Let (v, ζ, ϕ, m) be an optimal solution and let ρm = R−1
ϕ

(
T̃ ϕ(1)q

(1) − q(0)
)

.

As remarked at the end of the previous section, the optimal ζ with fixed v is given by

ζ(t) = T̃ ϕ(t)−1L
−1
ϕv(t)−1ρm = KH T̃

∗
ϕ(t)ρm, (21)
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which is consistent with Eq. 4.
We now consider the optimal v when ζ is given by Eq. 21, which minimizes

1

2
‖v‖2

L2([0,1],V )
+ 1

2σ 2

(
R−1

ϕ

(
T̃ ϕ(1)q

(1) − q(0)
) ∣∣∣ T̃ ϕ(1)q

(1) − q(0)
)

subject to ϕ̇(t) = v(t) ◦ ϕ(t). (22)

If z ∈ Hr+1(Rd) the mapping ϕ �→ (
R−1

ϕ z
∣∣ z )

is differentiable with differential

∂ϕ

((
R−1

ϕ z

∣∣∣ z
))

.w = −2
∫ 1

0

(
∂φ(T̃

∗
ϕ(t)η).w

∣∣∣KH T̃
∗
ϕ(t)η

)
dt

with η = R−1
ϕ z.

Let E(v, ϕ) denote the minimized term in Eq. 22. We assume that both q(1) and
q(0) belong to Hr+1(Rd), which implies that q(1) ◦ ϕ(1) − q(0) ∈ Hr+1(Rd) too.
From the previous discussion and the expression of ρm, E is differentiable in ϕ, with

∂ϕE.w = −
∫ 1

0

(
∂ϕ(T̃

∗
ϕ(t)ρm).w(t)

∣∣∣ ζ(t)
)
dt +

(
ρm

∣∣∣ ∇q(1) ◦ ϕ(1) · w(1)
)

= −
∫ 1

0
∂ϕ

(
ρm

∣∣∣ T̃ ϕ(t)ζ(t)
)
.w(t)dt +

(
ρm

∣∣∣ ∇q(1) ◦ ϕ(1) · w(1)
)

Define μ(t) = ∂ψ

(
ρm

∣∣∣ T̃ψζ(t)
)

|ψ=ϕ(t)

. The derivative exists, since ρm ∈
H−r (Rd) and ζ ∈ Hr+1(Rd), and provides a a bounded linear form on Cr(Rd ,Rd).
Define also the form ν : w �→ (

ρm

∣∣ (∇q(1) ◦ ϕ(1)
) · w

)
, which is also bounded on

Cr(Rd ,Rd). Define ρϕ(t) as the solution of the ODE

ρ̇ϕ = −∂ψ

(
ρϕ

∣∣ Tϕ(t)v(t)
)
|ψ=ϕ(t)

− μ(t)

with ρϕ(1) = −ν (this ODE is the third equation in Eq. 4). To see that this solution
is well defined, first note that, for any given ρ ∈ (Bp−1)∗ and w ∈ V , the mapping
ψ �→ (ρ | w ◦ ψ ), defined on Bp, is differentiable in ψ , with differential

∂ψ(ρ | w ◦ ψ ) · δψ = (ρ | Dw ◦ ψ · δψ ).

As a consequence, we have

∂ψ(ρ | w ◦ ψ ) ∈ Cp−1(Rd ,Rd)∗,
with norm bounded by cst.‖ρ‖p−1,∞,∗‖w‖p,∞ ‖ψ‖p−1,∞ . The map Qw,ψ : ρ �→
∂ψ(ρ | w ◦ ψ ) therefore is a bounded linear map on Cp−1(Rd ,Rd)∗, satisfying

∫ 1

0
‖Qv(t),ϕ(t)‖2dt < ∞

as soon as
∫ 1

0 ‖v(t)‖2
p,∞dt < ∞, which is true for a minimizer of Eq. 22. Since both

μ(t) and ν belong to Cr
0(Rd ,Rd)∗ ⊂ C

p−1
0 (Rd ,Rd)∗ (since p ≥ r + 1), the solution

ρϕ of ρ̇ϕ = Qv,ϕρϕ + μ initialized at ρϕ(1) = −ν is uniquely defined over [0, 1].
If δv ∈ L2([0, 1], V ), the directional derivative δϕ := ∂vϕ

v.δv satisfies (since
ϕ = ϕv)

∂t δϕ(t) = ∂ϕ(Tϕ(t)v(t)) · δϕ(t) + δv(t) ◦ ϕ(t)
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with δϕ(0) = 0. From the definition of ρϕ , we have

∂t

(
ρϕ

∣∣ δϕ ) = −(μ | δϕ ) + (
ρϕ

∣∣ δv ◦ ϕ
)

so that

−
∫ 1

0
(μ(t) | δϕ(t) )dt + (ν(1) | δϕ(1) ) = −

∫ 1

0

(
ρϕ(t)

∣∣ δv(t) ◦ ϕ(t)
)
dt.

If v is an optimal solution of Problem (3), we must have
∫ 1

0
(AV v(t) | δv(t) )dt −

∫ 1

0

(
ρϕ(t)

∣∣ δv(t) ◦ ϕ(t)
)
dt = 0

for all δv, which implies that

v(t) = KV T ∗
ϕρϕ(t).

This is the fifth equation in Eq. 4, and completes the proof of Theorem 2.

7.4 Existence of solutions of the initial-value problem

We now discuss the existence and uniqueness of solutions of Eq. 4 with initial condi-
tions ϕ(0) = id, m(0) = m0, ρϕ(0) = ρϕ,0 and ρm(0) = ρm,0. We will assume that
ρϕ,0 ∈ (Bp−2)∗ and ρm,0 ∈ H1−r (Rd) with p ≥ r + 1.

Since ρm is constant and m is obtained via quadrature given ζ and ϕ, we will focus
on the subsystem

⎧
⎪⎪⎨
⎪⎪⎩

ϕ̇(t) = v(t) ◦ ϕ(t)

ρ̇ϕ(t) = −∂ϕ(t)

(
ρϕ(t)

∣∣ v(t) ◦ ϕ(t)
) − ∂ϕ(t)(ρm | ζ(t) ◦ ϕ(t) )

v(t) = KV T ∗
ϕ(t)ρϕ(t)

ζ(t) = σ 2KH T̃
∗
ϕ(t)ρm

(23)

If ρ ∈ (Bp−2)∗ and w ∈ V ⊂ Bp, the mapping ψ �→ (ρ | w ◦ ψ ) = (
ρ

∣∣T ψw
)

is differentiable in ψ ∈ Diffp with ∂ψ(ρ | w ◦ ψ ).h = (ρ | Dw ◦ ψ.h). One deduces
from this that ρ �→ ∂ψ(ρ | w ◦ ψ ) is a bounded endomorphism of (Bp−2)∗ with
operator norm bounded by c(‖ψ − id‖p−2,∞)‖w‖p−1,∞. If ρm ∈ H−1(Rd) and
ζ ∈ Hr (Rd), we have ∂ψ(ρm | ζ ◦ ψ ).h = (ρm | ∇ζ ◦ ψ · h).

From the expressions of v and ζ , one easily checks that

∂ψ

(
ρϕ

∣∣ v ◦ ψ
) = 1

2
∂ϕ

(
ρϕ

∣∣∣T ψKV T ∗
ψρϕ

)
and ∂ψ(ρm | ζ ◦ ψ )

= 1

2
∂ψ

(
ρm

∣∣∣ T̃ ψKH T̃
∗
ψρm

)
.

One also has ‖v‖2
V = (

ρϕ

∣∣ v ◦ ϕ
)

and ‖ζ‖2
H = σ 2(ρm | ζ ◦ ϕ ), from which one

deduces that, along any solution of Eq. 23, one has

∂t

(
‖v‖2

V + ‖ζ‖2
H /σ 2

)
= 0

since this time derivative is equal to
(
∂tρϕ

∣∣ v ◦ ϕ
) + ∂ϕ

(
ρϕ

∣∣ v ◦ ϕ
)
.∂tϕ + ∂ϕ(ρm | ζ ◦ ϕ ).∂tϕ
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which vanishes since ∂tϕ = v ◦ ϕ. This implies, in particular, that v ∈ L2([0, t], V )

and ζ ∈ L2([0, t], H) along any solution of Eq. 23 on the interval [0, t].
Conversely, as soon as v ∈ L2([0, t], V ) and ζ ∈ L2([0, t], H), the equation

ρ̇ϕ = −∂ϕ

(
ρϕ

∣∣ v ◦ ϕ
) − ∂ϕ(ρm | ζ ◦ ϕ ) (24)

is a well-defined linear equation on (Bp−2)∗, with a unique solution, since we assume
ρϕ,0 ∈ (Bp−2)∗. Its solution can be made explicit by noting that

∂t

(
ρϕ

∣∣ Dϕ w
) = −(

ρϕ

∣∣Dv ◦ ϕ Dϕ w
) − (ρm | ∇ζ ◦ ϕ · Dϕ w ) + (

ρϕ

∣∣ Dv ◦ ϕ Dϕ w
)

= −(ρm | ∇(ζ ◦ ϕ) · w ),

from which we conclude that
(
ρϕ(t)

∣∣Dϕ(t)w
) = (

ρϕ,0
∣∣w ) −

∫ t

0
(ρm | ∇(ζ(s) ◦ ϕ(s)) · w)ds.

Given this, we can summarize system (4) with a single consistency equation for v,
namely, for all w ∈ V :

(AV v(t) | w)=(
ρϕ,0

∣∣Adϕv(t)−1w
)−σ 2

∫ t

0

(
ρm

∣∣∣∇
(
L−1

ϕv(s)−1ρm

)
· Adϕv(t)−1w

)
dt,

(25)
in which we have introduced (for ψ ∈ Diffp−1) the “adjoint” operator Adψ : w �→
(Dψ w) ◦ ψ−1, as an operator from V to Bp−2 and used the fact that ζ ◦ ϕ =
σ 2T̃ ϕKH T̃

∗
ϕρm = σ 2L−1

ϕ−1ρm. Equation 25 with σ 2 = 0 is of course the well-known
momentum conservation equation over diffeomorphisms with a right-invariant metric
[5, 6, 24, 32].

Let βv denote the time-dependent linear form applied to w in the right-hand side
of Eq. 25, which therefore can be summarized as v(t) = KV βv(t). Fix a constant M .
We first check that, for small enough t , βv(t) ∈ V ∗ as soon as v ∈ L2([0, t], V ) and
‖v‖L2([0,t],V ) ≤ M implies ‖βv‖L2([0,t],V ∗) = ‖KV βv‖L2([0,t],V ) ≤ M also.

We have, for ψ ∈ Diffp, Adψ−1w = (
(Dψ)−1 − IdRd

)
w◦ψ +w◦ψ , from which

one gets
(
ρϕ,0

∣∣Adϕv(t)−1w
) ≤ c(‖ϕ(t) − id‖p−1,∞)‖ρϕ,0‖p−2,∞,∗‖w‖p−2,∞

Since
‖ϕ(t) − id‖p−1,∞ ≤ c

(‖v‖L2([0,t],V )

) ‖v‖L2([0,t],V )

we find
(
ρϕ,0

∣∣Adϕv(t)−1w
) ≤ c

(‖v‖L2([0,t],V )

) ‖ρϕ,0‖p−2,∞,∗‖w‖p−2,∞. (26)

Since L−1
ψ−1 maps H1−r (Rd) onto Hr+1(Rd) for ψ ∈ Diffp, we have

‖L−1
ψ−1ρm‖r+1,2 ≤ cst‖T̃ ψ‖2

L2(Hr+1)
‖ρm‖1−r,2 ≤ c(‖ψ‖r+1,∞)‖ρm‖1−r,2.

Combined with the previous estimate, this yields, for ψ, ψ̃ ∈ Diffp,
(
ρm

∣∣∣ ∇(L−1
ψ−1ρm) · Adψ̃−1w

)
≤ c(‖ψ‖r+1,∞, ‖ψ̃‖r−1,∞)‖ρm‖2

1−r,2‖‖w‖r−2,∞.
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Since r ≤ p − 1, we can conclude that

‖βv(t)‖p−2,∞,∗ ≤ c(‖v‖L2([0,t],V ))
(
‖ρϕ,0‖p−2,∞,∗ + t‖ρm‖2

1−r,2

)
, (27)

from which it follows that βv(t) ∈ (Bp−2)∗ ⊂ V ∗ with

‖βv‖2
L2([0,t],V ∗) ≤ tc(‖v‖L2([0,t],V ))

(
‖ρϕ,0‖p−2,∞,∗ + t‖ρm‖2

1−r,2

)2
.

If we assume that ‖v‖L2([0,t],V ) ≤ M , we get ‖βv‖L2([0,t],V ∗ ≤ M for t ≤ t0, where

t0 is chosen such that t0c(M)
(
‖ρϕ,0‖p−2,∞,∗ + t0‖ρm‖2

1−r,2

)2 ≤ M . It is important

to notice that, beside universal constants and M , t0 only depends on ‖ρϕ,0‖2
p−2,∞,∗

and ‖ρm‖1−r,2. In the following, we take M large enough so that any solution of
Eq. 4 must satisfy ‖v‖L2([0,t0],V ) ≤ M for any t0 ≤ 1. This is possible since we have
remarked that ‖v(t)‖2

V + σ−2‖ζ(t)‖2
H remains constant along any solution of Eq. 4

so that, if t0 ≤ 1, one must have

‖v‖2
L2([0,t0],V )

≤ ‖v(0)‖2
V + σ−2‖ζ(0)‖2

H = ‖ρϕ,0‖2
V ∗ + σ 2‖ρm‖2

H ∗ .

We now estimate the Lipschitz constant of v �→ βv on the ball of radius M of
L2([0, t], V ) for t ≤ t0. In the computations that follow, we will use repetitively the
fact that ‖ϕv(t)− id‖l,∞ ≤ c(M) for any l ≤ p, as soon as ‖v‖L2([0,t],V ) ≤ M (recall
that c is a notation for a generic continuous function). Recall also that p ≥ r + 1.
Writing, assuming max

(‖v‖L2([0,t0],V ), ‖ṽ‖L2([0,t0],V )

) ≤ M ,

Adϕv(t)−1w−Adϕṽ(t)−1w =
(
Dϕv(t)−1 − Dϕṽ(t)−1

)
w◦ϕv(t)+Dϕṽ(t)−1(w◦ϕv(t)−w◦ϕṽ(t))

and using Lemma 1 and Leibnitz formula, we get

‖Adϕv(t)−1w − Adϕṽ(t)−1w‖p−2,∞ ≤ c(M)‖ϕv(t) − ϕṽ(t)‖p−1,∞‖w‖p−1,∞ (28)

as soon as ψ, ψ̃ ∈ Diffp−1 and w ∈ Bp−1. This immediately implies
∥∥∥
(
Ad∗

ϕv(t)−1 −Ad∗
ϕ(t)−1

)
ρϕ,0

∥∥∥ p − 1, ∞, ∗ ≤ c(M)‖ρϕ,0‖p−2,∞,∗‖ϕv(t)−ϕṽ(t)‖p−1,∞.

Write
(
ρm

∣∣∣∇
(
L−1

ϕv(s)−1ρm

)
· Adϕv(t)−1w − ∇

(
L−1

ϕ̃v(s)−1ρm

)
· Adϕ̃v(t)−1w

)

=
(
ρm

∣∣∣
(
∇

(
L−1

ϕv(s)−1ρm

)
− ∇

(
L−1

ϕ̃v(s)−1ρm

))
· Adϕv(t)−1w

)

+
(
ρm

∣∣∣∇
(
L−1

ϕ̃v(s)−1ρm

)
· (
Adϕv(t)−1w − Adϕ̃v(t)−1w

))

≤ cst ‖ρm‖1−r,2‖L−1
ϕv(s)−1ρm − L−1

ϕ̃v(s)−1ρm‖r,2‖Adϕv(t)−1w‖r−1,∞

+cst ‖ρm‖1−r,2‖L−1
ϕ̃v(s)−1ρm‖r,2‖Adϕv(t)−1w − Adϕ̃v(t)−1w‖r−1,∞ (29)
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We have (letting ψ = ϕv(s) and ψ̃ = ϕṽ(s))

‖L−1
ψ−1ρm − L−1

ψ̃−1ρm‖r,2 = ‖T̃ ψKH T̃
∗
ψρm − T̃ ψ̃KH T̃

∗
ψ̃ρm‖r,2

≤ ‖T̃ ψ‖r,2‖KH T̃
∗
ψρm − KH T̃

∗
ψ̃ρm‖r,2

+‖T̃ ψKH T̃
∗
ψ̃ρm − T̃ ψ̃KH T̃

∗
ψ̃ρm‖r,2 (30)

Let us consider the last two terms separately. We have ‖T̃ ψ‖r,2 = c(‖ψ −
id‖r,∞) ≤ c(M). Also,

‖KH T̃
∗
ψρm − KH T̃

∗
ψ̃ρm‖r,2 ≤ cst‖T̃ ∗

ψρm − T̃
∗
ψ̃ρm‖−r,2

= cst sup
((

ρm

∣∣∣ T̃ ψz − T̃ ψ̃ z
)

: ‖z‖r,2 ≤ 1
)

and we have

(
ρm

∣∣∣ T̃ ψz − T̃ ψ̃ z
)

≤ ‖ρm‖1−r,2‖T̃ ψz − T̃ ψ̃ z‖r−1,2 ≤ c(M)‖ρm‖1−r,2‖ψ − ψ̃‖r−1,∞‖z‖r,2

so that

‖T̃ ψ‖r,2‖KH T̃
∗
ψρm − KH T̃

∗
ψ̃ρm‖r,2 ≤ c(M)‖ρm‖1−r,2‖ψ − ψ̃‖r−1,∞. (31)

For the second term in Eq. 30, write

‖T̃ ψKH T̃
∗
ψ̃ρm − T̃ ψ̃KH T̃

∗
ψ̃ρm‖r,2 ≤ c(M)‖ψ − ψ̃‖r,∞‖KH T̃

∗
ψ̃ρm‖r+1,2

≤ c(M)‖ψ − ψ̃‖r,∞‖T̃ ∗
ψ̃ρm‖1−r,2

≤ c(M)‖ψ − ψ̃‖r,∞‖ρm‖1−r,2

From this and (30), (31), we get

‖L−1
ψ−1ρm − L−1

ψ̃−1ρm‖r,2 ≤ c(M)‖ψ − ψ̃‖r,∞‖ρm‖1−r,2 (32)

Since
‖Adϕv(t)−1w‖r−1,∞ ≤ c(‖ϕv(t) − id‖r,∞)‖w‖r−1,∞

we find that the first term in Eq. 29 is less than c(M)‖ψ−ψ̃‖r,∞‖ρm‖2
1−r,2‖w‖r−1,∞.

For the second term in Eq. 29, we have ‖L−1
ϕ̃v(s)−1ρm‖r,2 ≤ c(M)‖ρm‖1−r,2 while,

similarly to Eq. 28,

‖Adϕv(t)−1w − Adϕ̃v(t)−1w‖r−1,∞ ≤ c(M)‖ϕv(t) − ϕṽ(t)‖r,∞‖w‖r,∞.

This finally gives the upper-bound(
ρm

∣∣∣∇
(
L−1

ϕv(s)−1ρm

)
· Adϕv(t)−1w − ∇

(
L−1

ϕ̃v(s)−1ρm

)
· Adϕ̃v(t)−1w

)

≤ c(M)‖ρm‖2
1−r,2‖w‖r,∞ sup

s≤t
‖ϕv(s) − ϕṽ(s)‖r,∞

so that (using r ≤ p − 1)

‖βv(t) − βṽ(t)‖p−1,∞,∗ ≤ c(M)
(
‖ρϕ,0‖p−2,∞,∗ + t‖ρm‖2

1−r,2

)
sup
s≤t

‖ϕv(s) − ϕṽ(s)‖p−1,∞.
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Using the fact that

sup
s≤t0

‖ϕv(s) − ϕṽ(s)‖p−1,∞ ≤ c(M)‖v − ṽ‖L2([0,t0],V )

we find that v �→ KV βv is Lipschitz on the ball of radius M in L2([0, t0], V ), with

Lipschitz constant less than c(M)t0

(
‖ρϕ,0‖p−2,∞,∗ + t0‖ρm‖2

1−r,2

)
.

Reducing the value of t0 if needed, one can make this upper-bound less than 1
to ensure that v �→ KV βv has a unique fixed point in the ball of radius M in
L2([0, t0], V ). This shows that system (23) has a unique solution (with the considered
initial condition) over the interval [0, t0].

A valid choice for t0 can therefore be made in terms of M , ‖ρϕ,0‖p−2,∞,∗, and
‖ρm‖1−r,2 uniquely; since M can itself be chosen as a function of the last two norms,
their values are sufficient to specify t0. If we now define T0 to be the largest time
T0 ≤ 1 such that a solution exists over all intervals [0, t] ⊂ [0, T0), we must have
T0 = 1 unless ‖ρϕ(t)‖p−2,∞,∗ tends to ∞ when t tends to T0 (recall that ρm is time-
independent). Since ρϕ(t) = T ∗

ϕ(t)−1AV v(t) = T ϕ(t)−1βv(t), Eq. (27) shows that
‖ρϕ(t)‖p−2,∞,∗ must remain bounded, showing that T0 = 1 necessarily.

Since one can obviously replace the unit interval by any interval [0, T ], we have
obtained the following result.

Theorem 3 Assume that p ≥ 1 + d/2 and p ≥ r + 1. Then system (4) has a unique
solution over any bounded interval as soon as ρϕ,0 ∈ (Bp−2)∗ and ρm ∈ H1−r (Rd).

Note that, with metamorphosis, the boundary condition requires that
(
ρϕ,0

∣∣ w ) =
(ρm | ∇q0 · w). Assuming that q0 ∈ H1(Rd) (which is restrictive only for r = 0), we
see that ρm ∈ H1−r (Rd) implies that ρϕ,0 ∈ (Br−1)∗ ⊂ (Bp−2)∗ since p ≥ r + 1, so
that the regularity condition for ρϕ,0 is automatically satisfied.

Remark In the previous result, we “lose” two derivatives in the initial condition for
ρϕ and one in ρm. This can be improved under more restrictive assumptions on the
spaces V and H .

– Assume that the norm on H is specified by a differential operator. We have seen

that ψ �→
(
ρm

∣∣∣L−1
ψ−1ρm

)
was a smooth function of ψ ∈ Diffp as soon as

ρm ∈ H , with
(
ρm

∣∣∣∇(L−1
ψ−1ρm) · w

)
= (1/2)∂ψ

(
ρm

∣∣∣L−1
ψ−1ρm

)
.w.

Using this property, one can carry on the estimates on the second term in βv

using only the assumption ρm ∈ H−r , and therefore extend the conclusion of the
theorem to this case.

– If one makes the same hypothesis for V , namely that V ∼ Hp(Rd ,Rd) with
p ≥ 1 + d/2 and p ≥ r (note that this assumption only implies that V is
embedded in B1), the associated group DiffV is then included in the Hilbert
manifold Dp of diffeomorphisms ψ such that ψ −id and ψ−1−id both belong to
Hp(Rd ,Rd), on which the right invariant metric is a strong Riemannian metric
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(i.e., the Riemannian topology coincides with the one induced by Hp(Rd ,Rd)).
This is a consequence of Lemma 1 and of results on the stability of Sobolev
spaces by products which imply that all terms (∂γ1ψj1)

�1 · · · (∂γk
ψjk

)�k ∂βz are
square integrable as soon as |β| + ∑k

q=1 �q(|γq | − 1) ≤ p [35]. (It has actually
recently been showed that Dp coincides with DiffV ; see [12].) The right-invariant
metric

‖(ξ, z)‖2
(ψ,q) = ‖ξ ◦ ψ−1‖2

V + σ−1‖z ◦ ψ−1‖2
r,2

on the product space DiffV × Hr (Rd) is then also a strong metric as soon as
r ≤ p, and since (4) is the geodesic equation on this manifold, its solutions are
uniquely defined over arbitrary time intervals without loss of derivatives (see [1,
19, 20, 26, 31, 34], and the references therein, for more details).

8 Discussion

In this paper we developed new numerical tools, combined with an extension of
known theoretical results, on image metamorphosis. We proposed, in particular, a
particle-based optimization method for their estimation, based on the determination
of initial conditions of the geodesic equation performed via a shooting method. The
resulting algorithm allows for a numerically-stable sparse representation of the tar-
get image in a template-centered coordinate system, which was hard to achieve using
previous methods. This improvement was made possible by the introduction of a
Sobolev norm in image space, allowing for particle solutions that were not available
when using an L2 norm.

One of the limitations of the discretization scheme discussed in Section 3 is its
asymmetry, since the evolving image is represented using a moving grid, x, which
is specified at time t = 0, in the template coordinate frame (the continuous prob-
lem itself is symmetric, so that the asymmetry disappears in the discretization limit).
Our scheme can, however, be modified to incorporate more symmetry by introduc-
ing a second set of particles, this time defined in the target coordinate frame. More
precisely, one can add to Problem (10) another set of constraints, associated to a
new grid y and image value n (in addition to x and m) in the form ẏk = v(t, yk),

ṅk = ζ(t, yk), nk(0) = q(0)(yk(0)), nk(1) = q(1)
(
y

(1)
k

)
. The optimality equa-

tions are similar to those derived in Eq. 9 (the states are simply extended from x to
(x, y) and from m to (m, n), with extended control variables z and α). The shoot-
ing algorithm must then be parametrized by the initial controls, as described in
this paper, but also by the initial position of the y variables, with a new objective
function

E =
N∑

k=1

(mk(1) − q(1)(xk(1)))2 +
N∑

k=1

(
nk(1) − q(1)(y

(1)
k )

)2 +
N∑

k=1

|yk(1) − y
(1)
k |2.

This symmetrized discretization scheme can be addressed along the same lines as the
one studies in the present paper.
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Appendix: Forward and adjoint systems

We here provide more details on the implementation of the adjoint method
described in Section 5. We assume, in the following, that KV is a scalar multi-
ple of the identity matrix, and taking variations of Eq. 9 in the discrete variables
xk, zk, mk yields a forward system of equations that evolves these variations (note,
to keep the equations below compact, we do not write the explicit evaluation of
KV and KH at xk, x�):

∂t (δxk) = 1

σ 2

N∑
�=1

((∇1KV ) · δxkz�(t) + (∇2KV ) · δx�z�(t) + KV δz�(t)) ,

∂t (δzk) = − 1

σ 2

N∑
�=1

(
z�(t) · zk(t)

(
D2

11KV

)T

δxk + z�(t) · zk(t)
(
D2

12KV

)T

δx�

+∇1KV zk(t) · δz�(t) + ∇1KV z�(t) · δzk(t))

−
N∑

�=1

(
αkα�

(
D2

11KH

)T

δxk−αkα�(D
2
12KH )T δx�−∇1KH αkδα� − ∇1KH α�δαk

)
,

∂t (δmk) =
N∑

�=1

(α�(∇1KH ) · δxk + α�(∇2KH ) · δx� + KH δα�) ,

where δxk(t) denotes a variation in the value of the position of the node xk at time
t (and analogously for δzk , δmk), and KV , KH are treated as functions on R

d × R
d ,

and so the subscripts for the gradient and Jacobian denote differentiation with respect
to the first and second variables xk, x� ∈ R

d .
Let ξx, ξz, ξm, ηα denote dual forms to the variations δx, δz, δm, and ηα the associ-

ated variation in α, as introduced in Eq. 17, which expands as (again without writing
the evaluation of the kernel terms, and combining the summations for compactness
of notation):

(∂t ξx)k =
N∑

�=1

{
− 1

σ 2

(
∇1KV z�(t) · ξx,k(t) + ∇1KV zk(t) · ξx,�(t) + z�(t) · zk(t)D

2
11KV ξz,k(t)

+ zk(t) · z�(t)D
2
21KV ξz,�(t)

)
+ αkα�D

2
11KH ξz,k(t) + α�αkD

2
21KH ξz,�(t)

− α�∇1KH ξm,k(t) − αk∇1KH ξm,�(t)
}
,

(∂t ξz)k = 1

σ 2

N∑
�=1

{−KV ξx,�(t) + z�(t)(∇1KV ) · ξz,k(t) + z�(t)(∇2KV ) · ξz,�(t)
}

(∂t ηα)k =
N∑

�=1

{
α�(∇1KH ) · ξz,k(t) + α�(∇2KH ) · ξz,�(t) − KH ξm,�(t)

}
.

Note that since no other variables depend on mk in the forward system, the dual
variable ξm is constant in time, and so we do not display its evolution in the
list above.
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37. Trouvé, A., Younes, L.: Local geometry of deformable templates. SIAM J. Math. Anal. 37(1), 17–59

(2005)
38. Vaillant, M., Miller, M.I., Trouv’e, A., Younes, L.: Statistics on diffeomorphisms via tangent space

representations. Neuroimage 23(S1), S161—S169 (2004)
39. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-

parametric image registration. NeuroImage 45(1), S61—S72 (2009)
40. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer Science Business Media (2008)
41. Vincent, T.L., Grantham, W.J.: Nonlinear and Optimal Control Systems. Wiley, New York (1999)
42. Wahba, G.: Spline models for observational data. SIAM (1990)
43. Wang, L., Beg, F., Ratnanather, T., Ceritoglu, C., Younes, L., Morris, J.C., Csernansky, J.G., Miller,

M.I.: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in
dementia of the alzheimer type. IEEE Trans. Med. Imaging 26, 462–470 (2007)

44. Wang, L., Swank, J.S., Glick, I.E., Gado, M.H., Miller, M.I., Morris, J.C., Csernansky, J.G.: Large
deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of
the alzheimer type. NeuroImage 20, 667–682 (2003)

45. Younes, L.: Shapes and Diffeomorphisms, volume 171 of Applied Mathematical Sciences. Springer,
Berlin (2010)


	Metamorphosis of images in reproducing kernel Hilbert spaces
	Abstract
	Introduction
	Mathematical setup
	Singular solutions
	Discrete relaxed problem
	Solution of the discrete problem
	Numerical experiments
	Two-image comparisons
	Momentum representation
	Multiscale approach

	Rigorous results
	Notation and preliminary results
	Existence of solutions of the boundary-value problem
	Optimality conditions
	Existence of solutions of the initial-value problem

	Discussion
	Appendix A Forward and adjoint systems
	References


