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Abstract We study the hybridizable discontinuous Galerkin (HDG) method for the
spatial discretization of time fractional diffusion models with Caputo derivative of
order 0 < α < 1. For each time t ∈ [0, T], when the HDG approximations are
taken to be piecewise polynomials of degree k ≥ 0 on the spatial domain �, the
approximations to the exact solution u in the L∞(0, T; L2(�))-norm and to ∇u in the
L∞(0, T;L2(�))-norm are proven to converge with the rate hk+1 provided that u is
sufficiently regular, where h is the maximum diameter of the elements of the mesh.
Moreover, for k ≥ 1, we obtain a superconvergence result which allows us to com-
pute, in an elementwise manner, a new approximation for u converging with a rate
hk+2 (ignoring the logarithmic factor), for quasi-uniform spatial meshes. Numerical
experiments validating the theoretical results are displayed.
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1 Introduction

In this paper, we study the method resulting from using exact integration in time and
a hybridizable discontinuous Galerkin (HDG) method for the spatial discretization of
the following time fractional diffusion model problem:

cD1−αu(x, t) − �u(x, t) = f (x, t) for (x, t) ∈ � × (0, T ], (1a)

u(x, t) = g(x) for (x, t) ∈ ∂� × (0, T ], (1b)

with u(x, 0) = u0(x) for x ∈ �, where � is a convex polyhedral domain of Rd (d =
1, 2, 3) with boundary ∂�, f, g and u0 are given functions assumed to be sufficiently
regular such that the solution u of Eq. 1 is in the space W 1,1(0, T ; H 2(�)), (further
regularity assumptions will be imposed later), and T > 0 is a fixed but arbitrary value.
Here, cD1−α denotes time fractional Caputo derivative of order α defined by

cD1−αv(t) := Iαv′(t) :=
∫ t

0
ωα(t − s)v′(s) ds with 0 < α < 1, (2)

where v′ denotes the time derivative of the function v and Iα is the Riemann–
Liouville (time) fractional integral operator; with ωα(t) := tα−1

�(α)
and � being the

gamma function.
In this work, we investigate a high-order accurate numerical method for the space

discretization for problem (1). Using exact integration in time, we propose to deal
with the accuracy issue by developing a high-order HDG method that allows for
locally varying spatial meshes and approximation orders which are beneficial to
handle problems with low regularity. The HDG methods were introduced in [4] in
the framework of steady-sate diffusion which share with the classical (hybridized
version of the) mixed finite element methods their remarkable convergence and
superconvergence properties, [7], as well as the way in which they can be efficiently
implemented, [13]. They provide approximations that are more accurate than the
ones given by any other DG method for second-order elliptic problems [25]. In [6], a
similar method was studied for the fractional subdiffusion problem:

u′(x, t) − D1−α�u(x, t) = f (x, t) for (x, t) ∈ � × (0, T ], (3)

where D1−α is the Riemann–Liouville fractional time derivative operator,

D1−αv(t) := (Iαv(t))′ = ∂

∂t

∫ t

0
ωα(t − s) v(s) ds . (4)

(For other numerical methods of Eq. 3, see [2, 8, 9, 17–19, 22, 23, 29] and related
references therein.) When f ≡ 0 (that is, homogeneous case), the two representations
(1a) and (3) are different ways of writing the same equation, as they are equivalent
under reasonable assumptions on the initial data. However, the numerical methods
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obtained for each representation are formally different. In [6], the authors extended
the approach of the error analysis used in [1] for the heat equation by using several
important properties of D1−α . Indeed, a duality argument was applied (where delicate
regularity estimates were required) to prove the superconvergence properties of the
method.

We start our work by introducing the spatial semi-discrete HDG method for the
model problem (1) in the next section. In order to actually implement the HDG
scheme, we discretize in time using a generalized Crank-Nicolson scheme [20]. The
existence and uniqueness of the resulting fully discrete scheme will be shown. In
Section 3, we prove the main optimal convergence results of the HDG method.
Indeed, for each time t ∈ [0, T ], we prove that the error of the HDG approximation to
the solution u of problem (1) in theL∞(0, T ; L2(�))-norm and to the flux q := −∇u

in the L∞(0, T ;L2(�))-norm converge with order hk+1 where k is the polynomial
degree and h is the maximum diameter of the elements of the spatial mesh; see Theo-
rem 2. Some important properties of the fractional integral operator Iα are used in our
a priori error analysis. In Section 4, for quasi-uniform meshes and whenever k ≥ 1,
by a simple elementwise postprocessing with a computation cost that is negligible
in comparison with that of obtaining the HDG approximate solution, we obtain a
better approximation to u converging in the L∞(0, T ; L2(�))-norm with a rate
of order

√
log(T /h2/(α+1))hk+2; see Theorem 3. Here, we partially rely on the

superconvergence analysis of the postprocessed HDG scheme in [6, Section 5]. In
Section 5, we present some numerical tests which indicate the validity of our theoret-
ical optimal convergence rates of the HDG scheme as well as the superconvergence
rates of the postprocessed HDG scheme.

Here is a brief history of the numerical methods for problem (1) in the existing lit-
erature. For the one dimensional case, a box-type scheme based on combining order
reduction approach and an L1-discretization was considered in [32]. An explicit finite
difference (FD) method was studied in [26]. For an implicit FD scheme in time and
Legendre spectral methods, we refer the reader to [15]. An extension of this work was
considered in [14], where a time-space spectral method has been proposed and ana-
lyzed. An implicit Crank–Nicolson had been considered in [27] where the stability
of the proposed scheme was proven. Two finite difference/element approaches were
developed in [30]. Therein, the time direction was approximated by the fractional
linear multistep method and the space direction was approximated by the standard
finite element method (FEM). A compact difference scheme (fourth order in space)
was proposed in [33] for solving problem (1) but with a variable diffusion parameter.
The unconditional stability and the global convergence of the scheme were shown.
In [28], a high-order local DG (LDG) method for space discretization was studied.
Optimal convergence rates was proved.

For the two- (or three-) dimensional cases, a standard second-order central dif-
ference approximation was used in space, and, for the time stepping, two alternating
direction implicit (ADI) schemes (L1-approximation and backward Euler method)
were investigated in [31]. A fractional ADI scheme for problem (1a) in 3D was pro-
posed in [3]. Unique solvablity, unconditional stablity and convergence in H 1-norm
were shown. A compact fourth order FD method (in space) with operator-splitting
techniques was considered in [10]. The Caputo derivative was evaluated by the L1
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approximation, and the second order spatial derivatives were approximated by the
fourth-order, compact (implicit) FDs. In [12], the authors developed two simple fully
discrete schemes based on piecewise linear Galerkin FEMs in space and implicit
backward differences for the time discretizations. Finally, a high-order accurate
(variable) time-stepping discontinuous Petrov-Galerkin that allows low regularity
combined with standard finite elements in space was investigated recently in [20].
Stability and error analysis were rigourously studied.

2 The HDG method

This section is devoted to defining a scalar approximation uh(t) to u(t), a vector
approximation qh(t) to the flux q(t), and a scalar approximation ûh(t) to the trace of
u(t) on element boundaries for each time t ∈ [0, T ], using a spatial HDG method.
We begin by discretizing the domain � by a conforming triangulation (for simplicity)
Th made of simplexes K; we denote by ∂Th the set of all the boundaries ∂K of the
elements K of Th. We denote by Eh the union of faces F of the simplexes K of the
triangulation Th.

Next, we introduce the discontinuous finite element spaces:

Wh = {w ∈ L2(�): w|K ∈ Pk(K) ∀ K ∈ Th}, (5a)

V h = {v ∈ [L2(�)]d : v|K ∈ [Pk(K)]d ∀ K ∈ Th}, (5b)

Mh = {μ ∈ L2(Eh) : μ|F ∈ Pk(F ) ∀ F ∈ Eh}, (5c)

where Pk(K) is the space of polynomials of total degree at most k in the spatial
variable.

To describe our scheme, we rewrite (1a) as a first order system as follows: q +
∇u = 0 and cD1−αu + ∇ · q = f. So, q and u satisfy: for t ∈ (0, T ],

(q, φ) − (u, ∇ · φ) + 〈u,φ · n〉 = 0 ∀ φ ∈ H(div, �), (6a)(
cD1−αu, χ

)
− (q, ∇χ) + 〈q · n, χ〉 = (f, χ) ∀ χ ∈ H 1(�) . (6b)

where (v, w) := ∑
K∈Th

(v, w)K and 〈v, w〉 := ∑
K∈Th

〈v,w〉∂K . Throughout
the paper, for any domain D in R

d , by (u, v)D = ∫
D

uv dx we denote the
L2-inner product on D. However, we use instead 〈u, v〉D for the L2-inner
product when D is a domain of Rd−1. We use ‖ · ‖D to denote the L2(D)-norm
where we drop D when D = �. For vector functions v and w, the notation is
similarly defined with the integrand being the dot product v · w. For later use, the
norm and semi-norm on any Sobolev space X are denoted by ‖ · ‖X and | · |X,
respectively. We also denote ‖ · ‖X(0,T ;Y(�)) by ‖ · ‖X(Y).

For each t > 0, the HDG method provides approximations uh(t) ∈ Wh, qh(t) ∈
V h, and ûh(t) ∈ Mh of u(t), q(t), and the trace of u(t), respectively. These are
determined by requiring that

(qh, r) − (uh, ∇ · r) + 〈̂uh, r · n〉 = 0, ∀ r ∈V h, (7a)
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(
cD1−αuh, w

)
− (qh, ∇w) + 〈̂qh · n, w〉 = (f, w), ∀ w ∈ Wh, (7b)

〈̂uh, μ〉∂� = 〈g, μ〉∂�, ∀ μ ∈ Mh, (7c)

〈̂qh · n, μ〉 − 〈̂qh · n, μ〉∂� = 0, ∀ μ ∈ Mh, (7d)

and take the numerical trace for the flux as

q̂h = qh + τ
(
uh − ûh

)
n on ∂Th, (7e)

for some nonnegative stabilization function τ defined on ∂Th; we assume that, for
each element K ∈ Th, τ |∂K is constant on each of its faces. At t = 0, uh(0) ∈ Wh

approximates the initial solution u0.
The first two equations are inspired by the weak form of the fractional differential

equations satisfied by the exact solution, Eq. 6a. The form of the numerical trace
given by Eq. 7d allows us to express (uh, qh, q̂h) elementwise in terms of ûh and f

by using Eqs. 7a, 7b and 7e. Then, the numerical trace ûh is determined by as the
solution of the transmission condition (7d), which enforces the single-valuedness of
the normal component of the numerical trace q̂h, and the boundary condition (7c).
Thus, the only globally-coupled degrees of freedom are those of ûh.

In our experiments, to implement our spatial semi-discrete HDG scheme (7), we
use for simplicity a generalized Crank-Nicolson (CN) scheme for time discretiza-
tion, see [20]. Formally, the CN scheme is second-order accurate provided that the
continuous solution is sufficiently regular. To this end, we introduce a uniform par-
tition of the time interval [0, T ] given by the points: ti = iδ for i = 0, · · · , N, with
δ = T/N being the time-step size. We take δ to be sufficiently small so that the
spatial discretizations errors are dominant.

The time-stepping CN combined with the HDG method provides approximations
u

j
h ∈ Wh, q

j
h ∈ V

j
h, and û

j
h ∈ Mh of u(tj ), q(tj ), and the trace of u(tj ), respectively,

for j = 1, · · · , N . Starting from u0h = uh(0) ≈ u0, and with appropriate choices of
q0

h and û0h, our fully discrete scheme is defined by:
(
q

j− 1
2

h , r
)

− (u
j− 1

2
h , ∇ · r) + 〈̂uj− 1

2
h , r · n〉 = 0, ∀ r ∈ V h,

(Jαuh(tj ), w) −
(
q

j− 1
2

h , ∇w
)

+ 〈̂qj− 1
2

h · n, w〉 =
(
f j− 1

2 , w
)
, ∀ w ∈ Wh, (8)

〈̂uj
h, μ〉∂� = 〈g, μ〉∂�, ∀ μ ∈ Mh,

〈̂qj
h · n, μ1〉 − 〈̂qj

h · n, μ1〉∂� = 0, ∀ μ1 ∈ Mh,

where f j− 1
2 := 1

2 (f (tj−1) + f (tj )), q̂
j
h = q

j
h + τ

(
u

j
h − û

j
h

)
n on ∂Th,

Jαuh(tj ) =
∫ tj

tj−1

∫ t

0
ωα(t − s)uh(s) ds dt,

with uh(s) := δ−1(ui
h − ui−1

h ) for s ∈ (ti−1, ti), q
j− 1

2
h := 1

2 (q
j
h + q

j−1
h ), and the

functions u
j− 1

2
h , û

j− 1
2

h , and q̂
j− 1

2
h are similarly defined.

For each 1 ≤ j ≤ N , Eq. 8 amounts to a square linear system. Thus the existence
of the CN HDG solution follows from its uniqueness. We prove the uniqueness by
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induction hypothesis on j . We let f i− 1
2 (for 1 ≤ i ≤ j ) and g be identically zero in

Eq. 8, we assume that (ui
h, q

i
h, û

i
h) ≡ (0, 0, 0) for 1 ≤ i ≤ j − 1 and the task is to

show that this holds true for i = j . To do so, choose r = q
j
h, w = u

j
h, μ = q̂

j
h · n

and μ1 = û
j
h in Eq. 8 and then simplify, yield

‖qh‖2 −
(
u

j
h, ∇ · qj

h

)
+ 〈̂uj

h, q
j
h · n〉 = 0,

2
(
Jαuh(tj ), u

j
h

)
−

(
q

j
h, ∇u

j
h

)
+ 〈̂qj

h · n, u
j
h〉 = 0,

〈̂qj
h · n, û

j
h〉 = 0.

Since
(
u

j
h, ∇ · qj

h

)
= 〈uj

h, q
j
h · n〉 −

(
q

j
h, ∇u

j
h

)
, adding the above equations give

2
(
J αuh(tj ), u

j
h

)
+ ‖qj

h‖2 + 〈̂uj
h − u

j
h,

(
q

j
h − q̂

j
h

)
· n〉 = 0 .

Hence, by the induction hypothesis and the identity
(
q

j
h − q̂

j
h

)
· n = τ

(
u

j
h − û

j
h

)
on ∂Th, we notes that

2
∫ tj

0
(Iαuh(t), uh(t)) dt + ‖qj

h‖2 + ‖√τ (̂u
j
h − u

j
h)‖2∂Th

= 0,

and therefore, the use of the coercivity property of Iα , Eq. 9, completes the proof.

3 Error estimates

In this section, we carry our a priori error analysis of the HDG method. First, we
state the coercivity and continuity properties of Iα [24, Lemma 3.1] that will be used
throughout the paper: with cα := cos(απ

2 ),

∫ T

0
(Iαv(t), v(t)) dt ≥ cα

∫ T

0
‖I α

2 v(t)‖2 dt for v ∈ C(0, T ; L2(�)), (9)

and for v, w ∈ C(0, T ; L2(�)), we have

2
∣∣∣
∫ T

0
(v, Iαw) dt

∣∣∣ ≤
∫ T

0

(
1

c2α
(v, Iαv) + (w, Iαw)

)
dt . (10)

We also use the following integral inequality [6, Lemma 4]:

Lemma 1 For any t ≥ 0, suppose that E2(t) ≤ A(t) + 2
∫ t

0 B(s)E(s) ds, for some
nonnegative functions A and B. Then,

E(T ) ≤ max
t∈(0,T )

A1/2(t) +
∫ T

0
B(s) ds for any T > 0.

Next, we define the projections which play the comparison function role in
the error analysis. For each t ∈ (0, T ], we assume that q(t) ∈ [H 1(Th)]d and
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u(t) ∈ H 1(Th), where H 1(Th) = ∏
K∈Th

H 1(K), the projections ΠV q(t) ∈ V h and
ΠWu(t) ∈ Wh are defined by: on each simplex K ∈ Th and for all faces F of K,

(ΠV q(t), v)K = (q(t), v)K, (11a)

(ΠWu(t), w)K = (u(t), w)K, (11b)

〈ΠV q(t) · n + τΠWu(t), μ〉F = 〈q(t) · n + τu(t), μ〉F , (11c)

for al v ∈ [Pk−1(K)]d , w ∈ Pk−1(K) and μ ∈ Pk(F ). This projection introduced
in [5] to study HDG methods for the steady-state diffusion problem and also used in
the error analyses of HDG methods for classical diffusion [1] as well as for fractional
subdiffusion [6] problems. As mentioned in [5], the projection ΠV depends not only
on q, but rather on both q and u. Similarly for the projection ΠW . Hence the notations
ΠV and ΠW are somewhat misleading but convenient.

Its approximation properties are described in the following result.

Theorem 1 ([5]) Suppose τ |∂K is nonnegative and τmax
K := max τ |∂K > 0. Then the

system (11) is uniquely solvable for ΠV q and ΠWu. Furthermore, there is a constant
C independent of K and τ such that for each t ∈ (0, T ],

‖eq(t)‖K ≤ C hk+1
K

(
|q(t)|H k+1(K) + τ ∗

K |u(t)|Hk+1(K)

)
,

‖eu(t)‖K ≤ C hk+1
K

(
|u(t)|Hk+1(K) + |∇ · q(t)|Hk(K)/τ

max
K

)
,

where eq := ΠV q − q, eu := ΠWu − u, and hK is the diameter of the spatial mesh
element K. Here τ ∗

K := max τ |∂K\F ∗ , where F ∗ is a face of K at which τ |∂K is
maximum.

Note that the approximation error of the projection is of order k + 1 provided that
the stabilization function is such that both τ ∗

K and 1/τmax
K are uniformly bounded and

the exact solution is sufficiently regular.
Thus, the main task now is to estimate the terms εu := ΠWu−uh and εq := ΠV q−

qh. For convenience, we further introduce the following notations: εû := PMu − ûh

and εq̂ := P Mq − q̂h where PM denotes the L2-orthogonal projection onto Mh,
and P M denotes the vector-valued projection each of whose components are equal to
PM . For later use, for each t ∈ (0, T ], Eq. 11c is equivalent to

〈ΠV q(t) · n + τΠWu(t) − PM(q(t) · n) − τPMu(t), μ〉F ∀ μ ∈ Pk(F ) .

Since ΠV q(t) · n + τΠWu(t) − PM(q(t) · n) − τPMu(t) ∈ Pk(F ),

ΠV q(t) · n + τΠWu(t) − PM(q(t) · n) − τPMu(t) = 0 for each t ∈ (0, T ] . (13)

The projection of the errors satisfy the equations stated in the next lemma.
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Lemma 2 For each t > 0, we have

(εq, r) − (εu, ∇ · r) + 〈εû, r · n〉 = (eq , r), ∀ r ∈ V h (14a)

(Iαε′
u, w) − (εq, ∇w) + 〈εq̂ · n, w〉 = (Iαe′

u, w), ∀ w ∈ Wh (14b)

〈εû, μ〉∂� = 0, ∀ μ ∈ Mh (14c)

〈εq̂ · n, μ〉 − 〈εq̂ · n, μ〉∂� = 0, ∀ μ ∈ Mh (14d)

and we also have

εq̂ · n := εq · n + τ(εu − εû) on ∂Th. (14e)

Proof From (6), we recall that q and u satisfy the equations

(q, r) − (u, ∇ · r) + 〈u, r · n〉 = 0 ∀ r ∈ V h,

(Iαu′, w) − (q, ∇w) + 〈q · n, w〉 = (f, w) ∀ w ∈ Wh .

By the equalities q = ΠV q − eq and u = ΠWu − eu, the fact that PM is the
L2−projection into Mh and (11), we get

(ΠV q, r) − (u, ∇ · r) + 〈PMu, r · n〉 = (eq , r),

(Iα(ΠWu)′, w) − (q, ∇w) + 〈ΠV q · n + τ(ΠWu − PMu), w〉 = (f + Iαe′
u, w),

∀ r ∈ V h and ∀ w ∈ Wh, given that, for each element K ∈ Th, τ is constant on each
face F of K. Hence, by Eq. 11a and Eq. 11b, we observe that

(ΠV q, r) − (ΠWu,∇ · r) + 〈PMu, r · n〉 = (eq , r), ∀ r ∈ V h (16)

(Iα(ΠWu)′, w) − (ΠV q, ∇w) + 〈ΠV q · n + τ(ΠWu − PMu), w〉
= (f + Iαe′

u, w), ∀ w ∈ Wh . (17)

Subtracting the Eqs. 7a and 7b from Eqs. 16 and 17, respectively, we obtain
Eqs. 14a and 14b, respectively. The Eq. 14c follows directly from Eqs. 7c and 1b

By the definition of εq̂ and since PM is the L2-projection into Mh, we have

〈εq̂ · n, μ〉 − 〈εq̂ · n, μ〉∂� = 〈(P Mq − q̂h) · n, μ〉 −〈(P Mq − q̂h) · n, μ〉∂�

= 〈(q − q̂h) · n, μ〉 − 〈(q − q̂h) · n, μ〉∂�

= [〈q · n, μ〉 − 〈q · n, μ〉∂�] − [〈̂qh · n, μ〉 − 〈̂qh · n, μ〉∂�] = 0

where in the last equality we used that q is inH(div, �) and Eq. 7d. Thus, the identity
(14d) holds. For the proof of Eq. 14e,

εq̂ · n = PM(q · n) − (qh · n + τ (uh − ûh)) by (7e),

= (ΠV q · n + τ (ΠWu − PMu)) − (qh · n + τ (uh − ûh)) by (13),

= εq · n + τ(εu − εû) .
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Lemma 3 Let Sh := ‖√τ(εu − εû)‖∂Th
. For T > 0,

∫ T

0

(
Iαε′

u, ε
′
u

)
dt + ‖εq(T )‖2 + S2

h(T ) ≤ ‖εq(0)‖2 + S2
h(0)

+ 1

c2α

∫ T

0
(Iαe′

u, e
′
u) dt + 2

∫ T

0
(e′

q , εq) dt .

Proof Since (εu, ∇ · r) = −(∇εu, r) + 〈εu, r.n〉, Eq. 14a can be rewritten as:

(εq, r) + (∇εu, r) + 〈εû − εu, r · n〉 = (eq , r) .

A time differentiation of both sides yields,(
ε′
q, r

)
+

(
∇ε′

u, r
)

+ 〈ε′̂
u − ε′

u, r · n〉 =
(
e′
q , r

)
.

Setting r = εq and choosing w = ε′
u in Eq. 14b, we observe that(

ε′
q, εq

)
+ (∇ε′

u, εq
) + 〈ε′̂

u − ε′
u, εq · n〉 =

(
e′
q , εq

)
,(

Iαε′
u, ε

′
u

) − (
εq, ∇ε′

u

) + 〈εq̂ · n, ε′
u〉 = (

Iαe′
u, ε

′
u

)
.

Combining the above two equations and using (ε′
q, εq) = 1

2
d
dt

‖εq‖2, we obtain
(
Iαε′

u, ε
′
u

) + 1

2

d

dt
‖εq‖2 + ψh = (

Iαe′
u, ε

′
u

) +
(
e′
q , εq

)
, (18)

where
ψh = 〈ε′̂

u − ε′
u, εq · n〉 + 〈εq̂ · n, ε′

u〉 .

A time differentiation of Eq. 14c followed by choosing μ = εq̂ · n and then using
Eq. 14d yields 〈εq̂ · n, ε′̂

u〉∂� = 〈εq̂ · n, ε′̂
u〉 = 0. Thus, by Eq. 14e,

ψh = 〈ε′̂
u − ε′

u, (εq − εq̂ ) · n〉 = 〈τ(ε′
u − ε′̂

u), (εu − εû)〉 = 1

2

d

dt
S2

h(t) . (19)

Now, integrating Eq. 18 over the time interval [0, T ] and using Eq. 19, we get∫ T

0
(Iαε′

u, ε
′
u) dt + 1

2

∫ T

0

d

dt

[
‖εq‖2 + S2

h

]
dt =

∫ T

0
(Iαe′

u, ε
′
u) dt +

∫ T

0
(e′

q , εq) dt .

Therefore,

2
∫ T

0

(
Iαε′

u, ε
′
u

)
dt + ‖εq(T )‖2 + S2

h(T )

= ‖εq(0)‖2 + S2
h(0) + 2

∫ T

0

(
Iαe′

u, ε
′
u

)
dt + 2

∫ T

0

(
e′
q , εq

)
dt . (20)

An application of the continuity property of the fractional derivative operator Iα ,
Eq. 10, yields

2
∣∣∣
∫ T

0

(
Iαe′

u, ε
′
u

)
dt

∣∣∣ ≤ 1

c2α

∫ T

0

(
Iαe′

u, e
′
u

)
dt +

∫ T

0

(
Iαε′

u, ε
′
u

)
dt .

Finally, inserting this in Eq. 20 and simplifying completes the proof.
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Next, we show the main error bounds of the HDG method. For the remaining part
of the paper, we choose uh(0) = ΠWu0 and so, εu(0) = 0.

Theorem 2 Assume that u ∈ C1(0, T ; Hk+1(�)) and q ∈ C1(0, T ; H k+1(�)).
Assume also that τ ∗

K and 1/τmax
K are bounded by C. Then we have that

‖(u − uh)(T )‖ + ‖(q − qh)(T )‖ ≤ C1(1 + T ) hk+1.

The constant C1 only depends on C, α, ‖u‖C1(Hk+1), and on ‖q‖C1(H k+1).

Proof From the decompositions: u − uh = εu − eu and q − qh = εq − eq , and the
error projection in Theorem 1, we have

‖(u − uh)(T )‖ + ‖(q − qh)(T )‖ ≤ C1 hk+1 + ‖εu(T )‖ + ‖εq(T )‖ .

The task now is to estimate ‖εu(T )‖ and ‖εq(T )‖. From Lemma 3, for t ≥ 0, we
have E2(t) ≤ A(t) + 2

∫ t

0 B(s)E(s) ds where

A(t) := ‖εq(0)‖2 + S2
h(0) + 1

c2α

∫ t

0
(Iαe′

u, e
′
u) ds, B(t) := ‖e′

q(t)‖,

E(t) :=
(
‖εq(t)‖2 +

∫ t

0
(Iαε′

u, ε
′
u) ds

) 1
2
.

Thus, an application of the integral inequality in Lemma 1, yields

E(T ) ≤ max
t∈(0,T )

A
1
2 (t) +

∫ T

0
B(s) ds for any T > 0.

Hence,

‖εq(T )‖2 +
∫ T

0
(Iαε′

u, ε
′
u) ds ≤ C

(
‖εq(0)‖2 + S2

h(0)

+
∫ T

0

( 1

c2α
‖Iαe′

u‖ ‖e′
u‖ + T ‖e′

q‖2
)
ds

)
. (21)

However, since εu(t) = ∫ t

0 ε′
u(s) ds = I1− α

2 (I α
2 ε′

u)(t) because εu(0), by the Cauchy-
Schwarz inequality and the coercivity property of the operator Iα , Eq. 9,

‖εu(t)‖2 ≤
(∫ t

0
ω1− α

2
(t − s) ‖I α

2 ε′
u(s)‖ ds

)2

≤
∫ t

0
ω2
1− α

2
(s) ds

∫ t

0
‖I α

2 ε′
u(s)‖2 ds

= t1−α

(1 − α)�2(1 − α
2 )

∫ t

0
‖I α

2 ε′
u(s)‖2 ds

≤ t1−α

(1 − α)�2(1 − α
2 ) cα

∫ t

0
(Iαε′

u, ε
′
u) ds .
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Therefore, combining Eq. 21 with the above bound, and apply Theorem 1 for the
time derivative error projections e′

u and e′
q , we obtain

‖εq(t)‖2 + ‖εu(t)‖2 ≤ C2
1(1 + T )2

(
‖εq(0)‖2 + S2

h(0) + h2k+2
)

.

To complete the proof, we need to bound ‖εq(0)‖2 + S2
h(0).

Since (εu, ∇ · r) = −(∇εu, r) + 〈εu, r.n〉, setting r = εq in Eq. 14a and w = ε′
u

in Eq. 14b yield

‖εq‖2 + (∇εu, εq) + 〈εû − εu, εq · n〉 = (eq , εq),(
Iαε′

u, εu

) − (εq, ∇εu) + 〈εq̂ · n, εu〉 = (
Iαe′

u, εu

)
.

Adding the above equations, and using 〈εq̂ · n, εû〉 = 0 (this follows by choosing
μ = εq̂ · n in Eq. 14c and μ = εû in Eq. 14d) and (14e), we obtain(

Iαε′
u, εu

) + ‖εq‖2 + S2
h = (

Iαe′
u, εu

) + (eq , εq) .

Now, integrating over the time interval [0, t], observing that∫ t

0

(
Iαε′

u, εu

)
ds =

∫ t

0

(
D1−αεu, εu

)
ds ≥ 0,

(in the first equality we used εu(0) = 0 and the last inequality follows from the
nonnegativity property of the Riemann–Liouville fractional derivative operator D1−α ,
see [16, Section 2]) and using the inequality (eq , εq) ≤ 1

2‖eq‖2 + 1
2‖εq‖2, we get∫ t

0
[1
2
‖εq‖2 + S2

h] ds≤
∫ t

0

(
‖Iαe′

u‖ ‖εu‖ + 1

2
‖eq‖2

)
ds .

Therefore, by the mean value theorem for integrals, there exist t∗, t̃ ∈ (0, t) such that

t
(1
2
‖εq(t∗)‖2 + S2

h(t∗)
)

≤ t
(
‖εu(t̃)‖ max

s∈(0,t)
‖Iαe′

u(s)‖ + 1

2
max

s∈(0,t)
‖eq(s)‖2

)
.

Finally, dividing by t , taking the limit when t goes to zero, and using again the fact
that εu(0) = 0, we observe that ‖εq(0)‖2 + S2

h(0) ≤ ‖eq(0)‖2 ≤ C1h
2k+2 by the

error estimate of eq given in Theorem 1. The proof is now complete.

4 Superconvergence and post-processing

In this section, we seek a better approximation to u by means of an element-by-
element postprocessing. We begin by describing such approximation, then we show
how to get our superconvergence result by a duality argument.

Following [1, 11], for each t ∈ [0, T ], we define the postprocessed HDG solution
u�

h(t) ∈ Pk+1(K) to u(t) for each simplex K ∈ Th, as follows:

(u�
h(t), 1)K = (uh(t), 1)K (22a)

(∇u�
h(t), ∇w)K = −(qh(t), ∇w)K ∀ w ∈ Pk+1(K). (22b)

Since (22) amounts to a square linear system (for each fixed t ∈ (0, T ]), the existence
of the postprocessed HDG solution follows from its uniqueness. To this end, we let



388 K. Mustapha et al.

uh(t) and qh(t) to be identically zero in (22). The task is to show that u�
h(t) ≡ 0 for

each t ∈ (0, T ]. We choose w = u�
h(t) in Eq. 22b and observe that u�

h(t) is equal to
a constant c0 on K. Hence, by Eq. 22a, it is easy to see that c0 = 0.

For showing the superconvergence property of u�
h, splitting the postprocessed error

as: u − u�
h = (u − Pk+1u) + P0ζ + (ζ − P0ζ ) where ζ = Pk+1u − u�

h and P� (for
� ≥ 0) be the L2(�)-projection into the space of functions which are polynomials of
total degree ≤ � on each element K ∈ Th. Hence, by the triangle inequality and the
error properties of the projection P�,

‖u − u�
h‖ ≤ C hk+2

K |u|Hk+2(K) + ‖P0ζ‖K + Ch‖∇ζ‖K . (23)

By the definition of u�
h, Eqs. 22a and 22b, and the definition of the projection operator

ΠW , Eq. 11b, we have

‖P0ζ‖2K = (Pk+1u − uh, P0ζ )K = (Pk+1u − u, P0ζ )K + (P0εu, P0ζ )K

‖∇ζ‖2K = (∇Pk+1u + qh, ∇ζ )K = (∇(Pk+1u − u), ∇ζ )K − (q − qh, ∇ζ )K .

We combine the above three equations and then we apply the Cauchy-Schwarz and
simplify to observe that

‖(u−u�
h)(T )‖K ≤ C hk+2

K |u(T )|Hk+2(K)+‖P0εu(T )‖K +C h ‖(q−qh)(T )‖K. (24)

The main task now is to show that the term ‖P0εu(T )‖ is of order O(hk+2).
Then the postprocessed approximation u�

h would converge faster than the original

approximation uh. Noting that ‖P0εu(T )‖ = sup�∈C∞
0 (�)

(P0εu(T ),�)
‖�‖ . To estimate

the expression (P0εu(T ), �), we use the traditional duality approach by using the
solution of the dual problem

Φ + ∇Ψ = 0 and (Iα∗
Ψ )′ − ∇ · Φ = 0 on � × (0, T ), (25)

with Ψ = 0 on ∂� × (0, T ) and Ψ (T ) = � on �, where Iα∗ is the adjoint operator
of Iα defined by [23]:

Iα∗
ψ(t) =

∫ T

t

ωα(s − t) ψ(s) ds .

Integrating (Iα∗Ψ )′ − ∇ · Φ = 0 over the time interval (t, T ), we obtain

Iα∗
Ψ (t) +

∫ T

t
∇ · Φ(s) ds = 0 . (26)

We define now the adjoint Dα∗ of the Riemann–Liouville fractional derivative
operator Dα(see (4) for the definition of Dα) as follows [23]: for t ∈ (0, T ),

Dα∗
v(t) = − ∂

∂t

∫ T

t

ω1−α(s − t) v(s) ds for any v ∈ C1(0, T ) .

Since
∫ q

t
ωα(s − t) ω1−α(q − s) ds = 1, it is easy to see that Iα∗ is the right-inverse

of Dα∗, that is, Dα∗(Iα∗Ψ )(t) = Ψ (t). Hence, using this after applying the operator
Dα∗ to both sides of Eq. 26, yields

Ψ (t) + Dα∗
(∫ T

t
∇ · Φ(q) dq

)
= 0 . (27)
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However, since

Dα∗
(∫ T

t
∇ · Φ(s) ds

)
= − ∂

∂t

∫ T

t

ω1−α(s − t)

∫ T

s
∇ · Φ(q) dq ds

= − ∂

∂t

∫ T

t
∇ · Φ(q)

∫ q

t

ω1−α(s − t) ds dq

= − ∂

∂t

∫ T

t

ω2−α(q − t)∇ · Φ(q) dq

=
∫ T

t

ω1−α(s − t)∇ · Φ(s) ds,

differentiating both sides of Eq. 27 with respect to t , yield Ψ ′ − ∇ ·Dα∗Φ = 0.
Therefore, an alternative formulation of the dual problem (25) is given by:

Φ + ∇Ψ = 0 on � × (0, T ), (28a)

Ψ ′ − ∇ ·Dα∗Φ = 0 on � × (0, T ), (28b)

Ψ = 0 on ∂� × (0, T ), (28c)

Ψ (T ) = � on �. (28d)

In the next lemma, an expression for the quantity (P0εu(T ), Θ) in terms of the
errors ε′

u, εq, the projection errors eq and e′
u, and the solution of the dual problem

will be given. In it, Ih is any interpolation operator from L2(�) into Wh ∩ H 1
0 (�),

PW is the L2-projection into Wh and �BDM is the well-known projection associated to
the lowest-order Brezzi-Douglas-Marini (BDM) space.

Lemma 4 Assume that k ≥ 1. Then, for any T > 0,

(P0εu(T ), Θ) =
∫ T

0
[(εq,Dα∗

(∇IhΨ ) − �BDM∇Ψ )

+(eq ,Dα∗
(�BDM∇Ψ − ∇PWΨ )) + (ε′

u − e′
u, P0Ψ − IhΨ )] dt.

Proof Since Ψ (T ) = Θ by Eq. 28d and εu(0) = 0, we have

(P0εu(T ), Θ) =
∫ T

0
[((P0εu)

′, Ψ ) + (P0εu, Ψ
′)] dt

=
∫ T

0
[(ε′

u, P0Ψ ) + (εu, P0∇ · Dα∗Φ)] dt

by the definition of the L2-projection P0 and by Eq. 28b.
By the commutativity property P0∇· = ∇ · �BDM and the first error equation

(14a) with r := Dα∗�BDMΦ (since k ≥ 1), we get for each t ∈ (0, T ],

(εu, P0∇ · Dα∗Φ) =
(
εu, ∇ · Dα∗�BDMΦ

)
,

=
(
εq,D

α∗�BDMΦ
)
+〈εû,D

α∗�BDMΦ ·n〉−
(
eq ,Dα∗�BDMΦ

)
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=
(
εq,D

α∗�BDMΦ
)

−
(
eq ,Dα∗�BDMΦ

)

=
(
εq,D

α∗
(−�BDM∇Ψ + ∇IhΨ )

)
− (εq,D

α∗
(∇IhΨ ))

−
(
eq ,Dα∗�BDMΦ

)
.

Noting that, in the second last equality we used

〈εû,D
α∗�BDMΦ · n〉 = 〈εû,D

α∗�BDMΦ · n〉∂� = 0

which follows from Eq. 14d (because Dα∗�BDMΦ ∈ H(div, �)) and the fact that
εû = 0 on ∂� by Eq. 14c.

But, by the error (14b) with w := Dα∗(IhΨ ),

(εq,D
α∗

(∇IhΨ )) = (
Iα

(
ε′
u − e′

u

)
,Dα∗

(IhΨ )
) + 〈εq̂ · n,Dα∗

(IhΨ )〉 .

Now, putting together all the above intermediate steps,

(P0εu(T ), Θ) =
∫ T

0

[(
ε′
u, P0Ψ

) + (εq,D
α∗

(∇IhΨ ) − �BDM∇Ψ )

− (
DαIα

(
ε′
u − e′

u

)
, IhΨ

) − 〈εq̂ · n,Dα∗
(IhΨ )〉

−(eq ,Dα∗�BDMΦ)] dt. (29)

But, 〈εq̂ · n,Dα∗(IhΨ )〉 = 〈εq̂ · n,Dα∗(IhΨ )〉∂� = 0 by Eq. 14d and the identity
IhΨ = 0 on ∂� by the boundary condition of the dual problem (28c). Using this and
the identity Dα(Iα(ε′

u − e′
u)) = (εu − eu)

′ in Eq. 29, we observe

(P0εu(T ), Θ) =
∫ T

0
[(εq,Dα∗

(∇IhΨ − �BDM∇Ψ ))

−(eq ,Dα∗�BDMΦ) + (ε′
u, P0Ψ − IhΨ ) + (e′

u, IhΨ )] dt.

Therefore, the desired result now follows after noting that

−
∫ T

0

(
eq ,Dα∗�BDMΦ

)
dt =

∫ T

0

(
eq ,Dα∗

(�BDM∇Ψ − ∇PWΨ )
)

dt,

(by Eq. 28a, the fact that PW is the L2-projection into Wh, and the orthogonality
property of the projection ΠV , Eq. 11a) and that (e′

u, IhΨ ) = ( e′
u, IhΨ − P0Ψ ) (by

the fact that P0Ψ is constant on each element K ∈ Th, and the orthogonality property
of the projection ΠW , Eq. 11b). The proof is completed now.

In the next theorem we state the superconvergence estimate of the postprocessed
HDG approximation. For the proof, we follow the derivation in [6, Section 5] step-
by-step and use Lemma 4 instead of [6, Lemma 7], and we also use the achieved
HDG error estimates in Theorem 2.

Theorem 3 Assume that u ∈ C1(0, T ; Hk+2(�)) and q ∈ C1(0, T ; H k+1(�)).
Assume also that τ ∗

K and 1/τmax
K are bounded by C. Then, we have

‖(u − u∗
h)(T )‖ ≤ C2 max

{
1,

√
log

(
T h−2/(α+1)

)}
hk+2 for k ≥ 1,
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where the constant C2, only depends on C, α, T , ‖u‖ C1(Hk+2), and on ‖q‖ C1(H k+1).

5 Numerical experiments

In this section, we present numerical experiments devised to validate our theoretical
predictions from HDG spatial discretizations. To do so, we use the fully discrete CN
HDG scheme (8). We take the (uniform) time steps δ to be sufficiently small so that
the HDG and postprocessed HDG spatial discretizations errors are dominant. This

is achieved by fixing the ratio δ2

hk+2 to a given number less than the unit because the
time stepping CN scheme is second-order accurate provided that the exact solution is
sufficiently regular.

We choose the spatial domain � to be the unit interval (0, 1) and T = 1 in (1).
We impose homogenous Dirichlet boundary conditions and choose the source term
f and the initial data u0 so that the exact solution is u(x, t) = t3−αsin(πx) . For dif-
ferent values of α, we obtain the history of convergence of the errors ‖(u − uh)(T )‖,
‖(q − qh)(T )‖ and ‖(u − u�

h)(T )‖ for different values of the polynomial degree,

Table 1 The errors ‖(uh − u)(T )‖, ‖(qh − q)(T )‖ and ‖(u�
h − u)(T )‖, and the corresponding rates of

convergence for α = 0.5 with HDG solutions of degree k = 0, 1, 2

N

k = 0

4 5.269e-01 7.899e-01 5.048e-01

8 3.027e-01 0.799 4.028e-01 0.972 2.922e-01 0.788

16 1.616e-01 0.905 2.025e-01 0.992 1.566e-01 0.899

32 8.342e-02 0.954 1.014e-01 0.997 8.098e-02 0.951

64 4.237e-02 0.977 5.072e-02 0.999 4.117e-02 0.976

128 2.135e-02 0.989 2.537e-02 0.999 2.076e-02 0.988

k = 1

4 6.031e-02 5.936e-02 7.401e-03

8 1.502e-02 2.005 1.321e-02 2.165 8.835e-04 3.066

16 4.144e-03 1.858 3.487e-03 1.924 1.142e-04 2.951

32 1.048e-03 1.983 8.649e-04 2.011 1.420e-05 3.008

64 2.697e-04 1.958 2.199e-04 1.976 1.812e-06 2.970

k = 2

4 3.960e-03 4.596e-03 8.902e-04

8 5.059e-04 2.969 4.868e-04 3.239 5.497e-05 4.017

16 6.352e-05 2.993 5.652e-05 3.107 3.416e-06 4.008

We observe optimal convergence of order hk+1 for the errors in uh and qh, and superconvergence rates of
order hk+2 (when k ≥ 1) for the error from the postprocessed HDG solution u�

h
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Table 2 The errors ‖(uh − u)(T )‖, ‖(qh − q)(T )‖ and ‖(u�
h − u)(T )‖, and the corresponding rates of

convergence for α = 0.7 with HDG solutions of degree k = 0, 1, 2

N

k = 0

4 5.455e-01 7.705e-01 5.240e-01

8 3.122e-01 0.805 3.088e-01 9.884 3.020e-01 0.795

16 1.661e-01 0.910 1.939e-01 1.002 1.612e-01 0.905

32 8.558e-02 0.957 9.674e-02 1.003 8.320e-02 0.954

64 4.342e-02 0.979 4.830e-02 1.002 4.225e-02 0.978

128 2.187e-02 0.989 2.413e-02 1.001 2.128e-02 0.989

k = 1

4 6.081e-02 6.005e-02 7.898e-03

8 1.501e-02 2.018 1.321e-02 2.185 9.403e-04 3.070

16 4.154e-03 1.854 3.485e-03 1.922 1.218e-04 2.949

32 1.048e-03 1.987 8.434e-04 2.047 1.506e-05 3.015

64 2.682e-04 1.966 2.143e-04 1.977 1.953e-06 2.947

k = 2

4 4.025e-03 4.978e-03 1.079e-03

8 5.088e-04 2.984 5.014e-04 3.312 6.698e-05 4.010

16 6.367e-05 2.998 5.701e-05 3.137 4.167e-06 4.007

k = 0, 1, 2. To compute the spatial L2-norm, we apply a composite Gauss quadrature
rule with 4 points on each interval of the finest spatial mesh. The numerical results
(errors and convergence rates) of the experiments are presented in Tables 1 and 2. In
full agreement with our theoretical results, we obtain optimal convergence rates for
the HDG scheme and O(hk+2) superconvergence rates for the postprocessed HDG
scheme.
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