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Abstract This paper introduces a weak Galerkin (WG) finite element method for
the Stokes equations in the primal velocity-pressure formulation. This WG method is
equipped with stable finite elements consisting of usual polynomials of degree k ≥ 1
for the velocity and polynomials of degree k−1 for the pressure, both are discontinu-
ous. The velocity element is enhanced by polynomials of degree k−1 on the interface
of the finite element partition. All the finite element functions are discontinuous for
which the usual gradient and divergence operators are implemented as distributions
in properly-defined spaces. Optimal-order error estimates are established for the cor-
responding numerical approximation in various norms. It must be emphasized that
the WG finite element method is designed on finite element partitions consisting of
arbitrary shape of polygons or polyhedra which are shape regular.
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1 Introduction

In this paper, we are concerned with the development of weak Galerkin (WG) finite
element methods for the Stokes problem which seeks unknown functions u and p

satisfying

− ∇ · A∇u + ∇p = f in �, (1.1)

∇ · u = 0 in �, (1.2)

u = g on ∂�, (1.3)

where � is a polygonal or polyhedral domain in R
d (d = 2, 3). A is a symmetric

d × d matrix-valued function in �. Assume that there exist two positive numbers
λ1, λ2 > 0 such that

λ1ξ
t ξ ≤ ξ tAξ ≤ λ2ξ

t ξ, ∀ξ ∈ R
d .

Here ξ is understood as a column vector and ξ t is the transpose of ξ .
The weak form in the primal velocity-pressure formulation for the Stokes problem

(1.1)–(1.3) seeks u ∈ [H 1(�)]d and p ∈ L2
0(�) satisfying u = g on ∂� and

(A∇u, ∇v) − (∇ · v, p) = (f, v), (1.4)

(∇ · u, q) = 0, (1.5)

for all v ∈ [H 1
0 (�)]d and q ∈ L2

0(�). The conforming finite element method for
Eqs. 1.1–1.3 developed over the last several decades is based on the weak formula-
tion (1.4)–(1.5) by constructing a pair of finite element spaces satisfying the inf-sup
condition of Babus̆ka [2] and Brezzi [5]. Readers are referred to [11] for specific
examples and details in the classical finite element methods for the Stokes equations.

Weak Galerkin refers to a general finite element technique for partial differential
equations in which differential operators are approximated by weak forms as distri-
butions for generalized functions. Two key features in weak Galerkin methods are
(1) the approximating functions are discontinuous, and (2) the usual partial deriva-
tives are taken as distributions or approximations of distributions. The idea of weak
Galerkin method was first introduced by one of the authors in the International Con-
ference on Applied Mathematics and Interdisciplinary Research in Chern Institute
of Mathematics at Nankai University in June 2011. The method was successfully
applied to the second order elliptic equations in the primal formulation [15], and
then subsequently to the mixed formulation in [16] for general finite element par-
titions of arbitrary shape (see also [13, 14]). The goal of this paper is to develop a
weak Galerkin finite element method for Eqs. 1.1–1.3 by combining the ideas pre-
sented in [16] and [14] over partitions of general polygonal/polyhedral elements.
This new finite element scheme is efficient and robust in that (1) it can be easily
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hybridized for variable reduction purpose in implementation, and (2) it allows the
use of discontinuous approximating functions on finite element partitions of arbitrary
shape.

In general, weak Galerkin finite element formulations for partial differential equa-
tions can be derived naturally by replacing usual derivatives by weakly-defined
derivatives in the corresponding variational forms, with the option of adding a sta-
bilization term to enforce a weak continuity of the approximating functions. For
the Stokes problem (1.1)–(1.3) interpreted by the variational formulation (1.4)–(1.5),
the two principle differential operators are the gradient and the divergence opera-
tor defined in the Sobolev space [H 1(�)]d . Formally, our weak Galerkin method
for the Stokes problem would take the following form: Find uh and ph from
properly-defined finite element spaces satisfying

(A∇wuh, ∇wv) + s(uh, v) − (∇w · v, ph) = (f, v), (1.6)

(∇w · uh, q) = 0 (1.7)

for all test functions v and q in the test spaces. Here ∇w is a discrete weak gradi-
ent and ∇w· is a discrete weak divergence operator to be detailed in Section 2. The
bilinear form s(·, ·) in Eq. 1.6 is a parameter-free stabilizer that shall enforce a cer-
tain weak continuity for the underlying approximating functions. The use of totally
discontinuous functions and weak derivatives in the WG formulation provides the
numerical scheme with many nice features. First, the construction of stable elements
for the Stokes equations under WG formulation is straightforward with standard poly-
nomials. Secondly, the WG method allows the use of finite element partitions with
arbitrary shape of polygons in 2D or polyhedra in 3D with certain shape regular-
ity. The later property provides a convenient and useful flexibility in both numerical
approximation and mesh generation. Thirdly, our WG formulation is parameter-free
and has competitive number of unknowns since lower degree of polynomials are
used on element boundaries, and the unknowns corresponding to the interior of each
element can be eliminated from the system.

The research on finite element methods with polytopal meshes has been an active
topic in recent years. The discontinuous Galerkin methods (see, for example, [1] and
[9] and the references cited therein) have the capability of dealing with polytopal
partitions. The mimetic finite difference method [7] and the virtual element method
[3] are two other representatives along this line. The central issue in this study is the
cross-element continuity enforcement (strongly or weakly) for necessary variables.
Discontinuous Galerkin achieves this goal mostly through a stabilization for the jump
on each interface, while the virtual element method extends from the boundary to
the interior for each element. Both WG and HDG use intermediate functions on the
interface to weakly “glue” different pieces together. Consequently, our WG finite
element scheme has structural similarity with the HDG scheme as presented in [9],
but they make use of different polynomial approximating spaces and utilize different
stabilization techniques.

Throughout the paper, we will follow the usual notation for Sobolev spaces and
norms [8]. For any open bounded domain D ⊂ R

d , d = 2, 3, with Lipschitz con-
tinuous boundary, we use ‖ · ‖s,D and | · |s,D to denote the norm and seminorms in
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the Sobolev space Hs(D) for any s ≥ 0, respectively. The inner product in Hs(D)

is denoted by (·, ·)s,D . More precisely, for any integer s ≥ 0, the seminorm | · |s,D is
given by

|v|s,D =
⎛
⎝ ∑

|α|=s

∫
D

|∂αv|2dD

⎞
⎠

1
2

with the usual notation

α = (α1, . . . , αd), |α| = α1 + . . . + αd, ∂α =
d∏

j=1

∂
αj
xj

.

The Sobolev norm ‖ · ‖m,D is given by

‖v‖m,D =
⎛
⎝

m∑
j=0

|v|2j,D
⎞
⎠

1
2

.

The space H 0(D) coincides with L2(D), for which the norm and the inner product
are denoted by ‖ · ‖D and (·, ·)D , respectively. When D = �, we shall drop the
subscript D in the norm and inner product notation.

The paper is organized as follows. In Section 2, we introduce two weak differential
operators, called weak gradient and weak divergence, and their discrete analogues.
In Section 3, we develop a weak Galerkin finite element scheme for the Stokes
problem (1.1)–(1.2). In Section 4, we shall study the stability and solvability of the
WG scheme. In particular, the usual inf-sup condition is established for the WG
scheme. In Section 5, we shall derive an error equation for the WG approximations.
Optimal-order error estimates for the WG finite element approximations are derived
in Section 6 in virtually an H 1 norm for the velocity, and L2 norm for both the veloc-
ity and the pressure. In Section 7, we make some concluding remarks by mentioning
some outstanding issues for future consideration. Finally, we present some technical
estimates for quantities related to the local L2 projections into various finite element
spaces in Appendix A.

2 Weak differential operators and their approximations

The key to weak Galerkin methods is the use of weak derivatives in the place of strong
derivatives that define the weak formulation for the underlying partial differential
equations. The two differential operators used in the weak formulation (1.4) and (1.5)
are gradient and divergence. Thus, it is essential to introduce a weak version for both
the gradient and the divergence operator. In [16], a weak divergence operator has been
introduced and employed to the mixed formulation of second order elliptic equations.
In [15] and [13], a weak gradient operator was introduced for scalar functions. Those
weakly defined differential operators shall be employed to the Stokes problem (1.4)–
(1.5) in a weak Galerkin approximation. For convenience, the rest of the section will
review the definition for the weak gradient and the weak divergence, respectively.
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Note that the weak gradient shall be applied to each component when the underlying
function is vector-valued, as is the case for the Stokes problem.

2.1 Weak gradient and discrete weak gradient

Let K be any polygonal or polyhedral domain with boundary ∂K . A weak vector-
valued function on the region K refers to a vector-valued function v = {v0, vb} such
that v0 ∈ [L2(K)]d and vb ∈ [L2(∂K)]d . The first component v0 can be understood
as the value of v in K , and the second component vb represents v on the boundary
of K . Note that vb may not necessarily be related to the trace of v0 on ∂K should a
trace be well-defined. Denote by V(K) the space of weak functions on K; i.e.,

V(K) =
{
v = {v0, vb} : v0 ∈

[
L2(K)

]d

, vb ∈
[
L2(∂K)

]d
}

. (2.1)

The weak gradient operator is defined as follows.

Definition 2.1 For any v ∈ V(K), the weak gradient of v is defined as a linear func-
tional ∇wv in the dual space of [H 1(K)]d×d whose action on each q ∈ [H 1(K)]d×d

is given by
〈∇wv, q〉K = −(v0, ∇ · q)K + 〈vb, q · n〉∂K, (2.2)

where n is the outward normal direction to ∂K , (v0, ∇ · q)K = ∫
K v0(∇ · q)dK is

the inner product of v0 and ∇ · q in [L2(K)]d , and 〈vb, q · n〉∂K = ∫
∂K

vb q · nds is
the inner product of vb and q · n in [L2(∂K)]d .

The Sobolev space [H 1(K)]d can be embedded into the space V(K) by an
inclusion map iV : [H 1(K)]d → V(K) defined as follows

iV (φ) = {φ|K, φ|∂K }, φ ∈
[
H 1(K)

]d

.

With the help of the inclusion map iV , the Sobolev space [H 1(K)]d can be viewed
as a subspace of V(K) by identifying each φ ∈ [H 1(K)]d with iV (φ).

Let Pr(K) be the set of polynomials on K with degree no more than r .

Definition 2.2 The discrete weak gradient operator, denoted by ∇w,r,K , is defined as
the unique polynomial (∇w,r,Kv) ∈ [Pr(K)]d×d satisfying the following equation,

(∇w,r,Kv, q)K = −(v0, ∇ · q)K + 〈vb, q · n〉∂K, ∀q ∈ [Pr(K)]d×d . (2.3)

2.2 Weak divergence and discrete weak divergence

To define weak divergence, we require weak function v = {v0, vb} such that v0 ∈
[L2(K)]d and vb · n ∈ L2(∂K). Denote by V (K) the space of weak vector-valued
functions on K; i.e.,

V (K) =
{
v = {v0, vb} : v0 ∈

[
L2(K)

]d

, vb · n ∈ L2(∂K)

}
. (2.4)

A weak divergence operator can be defined as follows.
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Definition 2.3 For any v ∈ V (K), the weak divergence of v is defined as a linear
functional ∇w · v in the dual space of H 1(K) whose action on each ϕ ∈ H 1(K) is
given by

〈∇w · v, ϕ〉K = −(v0, ∇ϕ)K + 〈vb · n, ϕ〉∂K, (2.5)

where n is the outward normal direction to ∂K , (v0, ∇ϕ)K is the inner product of v0
and ∇ϕ in L2(K), and 〈vb · n, ϕ〉∂K is the inner product of vb · n and ϕ in L2(∂K).

The Sobolev space [H 1(K)]d can be embedded into the space V (K) by an
inclusion map iV : [H 1(K)]d → V (K) defined as follows

iV (φ) = {φ|K, φ|∂K }, φ ∈
[
H 1(K)

]d

.

Definition 2.4 A discrete weak divergence operator, denoted by ∇w,r,K ·, is defined
as the unique polynomial (∇w,r,K · v) ∈ Pr(K) that satisfies the following equation

(∇w,r,K · v, ϕ)K = −(v0, ∇ϕ)K + 〈vb · n, ϕ〉∂K, ∀ϕ ∈ Pr(K). (2.6)

3 A weak Galerkin finite element scheme

Let Th be a partition of the domain � with mesh size h that consists of arbitrary
polygons/polyhedra. Denote by Eh the set of all edges or flat faces in Th, and let
E0

h = Eh\∂� be the set of all interior edges or flat faces. For every element T ∈ Th,
we denote by |T | the area or volume of T and by hT its diameter. Similarly, we denote
by |e| the length or area of e and by he the diameter of edge or flat face e ∈ Eh. We
also set as usual the mesh size of Th by

h = max
T ∈Th

hT .

All the elements in Th are assumed to be closed and simply connected polygons or
polyhedra, see Fig. 1.

Fig. 1 Depiction of a
shape-regular polygonal element
ABCDEFA
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Assume that the partition Th is shape regular in the sense that the following
conditions A1–A4 are satisfied [13, 16].

A1: Assume that there exist two positive constants 	v and 	e such that for every
element T ∈ Th we have

	vh
d
T ≤ |T |, 	eh

d−1
e ≤ |e| (3.1)

for all edges or flat faces of T .
A2: Assume that there exists a positive constant κ such that for every element

T ∈ Th we have
κhT ≤ he (3.2)

for all edges or flat faces e of T .
A3: Assume that the mesh edges or faces are flat. We further assume that for every

T ∈ Th, and for every edge/face e ∈ ∂T , there exists a pyramid P(e, T , Ae)

contained in T such that its base is identical with e, its apex is Ae ∈ T , and its
height is proportional to hT with a proportionality constant σe bounded away
from a fixed positive number σ ∗ from below. In other words, the height of the
pyramid is given by σehT such that σe ≥ σ ∗ > 0. The pyramid is also assumed
to stand up above the base e in the sense that the angle between the vector
xe − Ae, for any xe ∈ e, and the outward normal direction of e (i.e., the vector
n in Fig. 1) is strictly acute by falling into an interval [0, θ0] with θ0 < π

2 .
A4: Assume that each T ∈ Th has a circumscribed simplex S(T ) that is shape

regular and has a diameter hS(T ) proportional to the diameter of T ; i.e., hS(T ) ≤
γ∗hT with a constant γ∗ independent of T . Furthermore, assume that each
circumscribed simplex S(T ) intersects with only a fixed and small number of
such simplices for all other elements T ∈ Th.

Interested readers are referred to [7] for a similar shape regularity assumption for
the mimetic finite difference method. In Fig. 1, we illustrate a polygonal element that
is shape regular in the WG setting. The shape regularity assumption is essential for
deriving error estimates for locally defined L2 projection operators to be detailed in
coming sections.

For any integer k ≥ 1, we define a weak Galerkin finite element space for the
velocity variable as follows

Vh =
{
v = {v0, vb} : {v0, vb}|T ∈ [Pk(T )]d × [

Pk−1(e)
]d

, e ⊂ ∂T
}

.

We would like to emphasize that there is only a single value vb defined on each edge
e ∈ Eh. For the pressure variable, we have the following finite element space

Wh =
{
q : q ∈ L2

0(�), q|T ∈ Pk−1(T )
}

.

Denote by V 0
h the subspace of Vh consisting of discrete weak functions with

vanishing boundary value; i.e.,

V 0
h = {v = {v0, vb} ∈ Vh, vb = 0 on ∂�} .

The discrete weak gradient ∇w,k−1 and the discrete weak divergence (∇w,k−1·) on the
finite element space Vh can be computed by using Eqs. 2.3 and 2.6 on each element
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T , respectively. More precisely, they are given by

(∇w,k−1v)|T = ∇w,k−1,T (v|T ), ∀ v ∈ Vh,

(∇w,k−1 · v)|T = ∇w,k−1,T · (v|T ), ∀ v ∈ Vh.

For simplicity of notation, from now on we shall drop the subscript k − 1 in the
notation ∇w,k−1 and (∇w,k−1·) for the discrete weak gradient and the discrete weak
divergence. The usual L2 inner product can be written locally on each element as
follows

(∇wv, ∇ww) =
∑
T ∈Th

(∇wv, ∇ww)T ,

(∇w · v, q) =
∑
T ∈Th

(∇w · v, q)T .

Denote by Q0 the L2 projection operator from [L2(T )]d onto [Pk(T )]d . For each
edge/face e ∈ Eh, denote by Qb the L2 projection from [L2(e)]d onto [Pk−1(e)]d .
We shall combine Q0 with Qb by writing Qh = {Q0, Qb}.

We are now in a position to describe a weak Galerkin finite element scheme for
the Stokes Eqs. 1.1–1.3. To this end, we first introduce three bilinear forms as follows

s(v, w) =
∑
T ∈Th

h−1
T 〈Qbv0 − vb, Qbw0 − wb〉∂T ,

a(v, w) = (A∇wv, ∇ww) + s(v,w),

b(v, q) = (∇w · v, q).

Weak Galerkin Algorithm 1 A numerical approximation for Eqs. 1.1–1.3 can be
obtained by seeking uh = {u0, ub} ∈ Vh and ph ∈ Wh such that ub = Qbg on ∂�

and

a(uh, v) − b(v, ph) = (f, v0), (3.3)

b(uh, q) = 0, (3.4)

for all v = {v0, vb} ∈ V 0
h and q ∈ Wh.

4 Stability and solvability

The WG finite element scheme (3.3)–(3.4) is a typical saddle-point problem which
can be analyzed by using the well known theory developed by Babus̆ka [2] and Brezzi
[5]. The core of the theory is to verify two properties: (1) boundedness and a certain
coercivity for the bilinear form a(·, ·), and (2) boundedness and inf-sup condition for
the bilinear form b(·, ·).

The finite element space V 0
h is a normed linear space with a triple-bar norm given

by

|||v|||2 =
∑
T ∈Th

‖∇wv‖2
T +

∑
T ∈Th

h−1
T ‖Qbv0 − vb‖2

∂T . (4.1)
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We claim that ||| · ||| indeed provides a norm in V 0
h . For simplicity, we shall only verify

the positive length property for ||| · |||. Assume that |||v||| = 0 for some v ∈ V 0
h . It

follows that

0 = (∇wv, ∇wv) +
∑
T ∈Th

h−1
T 〈Qbv0 − vb, Qbv0 − vb〉∂T ,

which implies that ∇wv = 0 on each element T and Qbv0 = vb on ∂T . Thus, we
have from the definition (2.3) that for any τ ∈ [Pk−1(T )]d×d

0 = (∇wv, τ )T

= −(v0, ∇ · τ)T + 〈vb, τ · n〉∂T

= (∇v0, τ )T − 〈v0 − vb, τ · n〉∂T

= (∇v0, τ )T − 〈Qbv0 − vb, τ · n〉∂T

= (∇v0, τ )T .

Letting τ = ∇v0 in the equation above yields ∇v0 = 0 on T ∈ Th. It follows that
v0 = const on every T ∈ Th. This, together with the fact that Qbv0 = vb on ∂T and
vb = 0 on ∂�, implies that v0 = 0 and vb = 0.

Note that ||| · ||| defines only a semi-norm in Vh. It is not hard to see that a(v, v) =
|||v|||2 for any v ∈ Vh. In fact, the trip-bar norm is equivalent to the standard H 1-norm,
but was defined for weak finite element functions. It follows from the definition of
||| · ||| and the usual Cauchy-Schwarz inequality that the following boundedness and
coercivity hold true for the bilinear form a(·, ·).

Lemma 4.1 For any v,w ∈ V 0
h , we have

|a(v,w)| ≤ |||v||||||w|||, (4.2)

a(v, v) = |||v|||2. (4.3)

In addition to the projection Qh = {Q0, Qb} defined in the previous section,
let Qh and Qh be two local L2 projections onto Pk−1(T ) and [Pk−1(T )]d×d ,
respectively.

Lemma 4.2 The projection operators Qh, Qh, and Qh satisfy the following commu-
tative properties

∇w(Qhv) = Qh(∇v), ∀ v ∈
[
H 1(�)

]d

, (4.4)

∇w · (Qhv) = Qh(∇ · v), ∀ v ∈ H(div, �). (4.5)

Proof Using Eq. 2.3, we have

(∇w(Qhv), q)T = −(Q0v, ∇ · q)T + 〈Qbv, q · n〉∂T
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for all q ∈ [Pk−1(T )]d×d . Next, we use the definition of Qh and Qh and the usual
integration by parts to obtain

−(Q0v, ∇ · q)T + 〈Qbv, q · n〉∂T = −(v, ∇ · q)T + 〈v, q · n〉∂T

= (∇v, q)

= (Qh(∇v), q).

Thus,
(∇w(Qhv), q)T = (Qh(∇v), q), ∀ q ∈ [Pk−1(T )]d×d,

which verifies the identity (4.4).
To verify (4.5), we use the discrete weak divergence (2.6) to obtain

(∇w · (Qhv), ϕ)T = −(Q0v, ∇ϕ)T + 〈Qbv · n, ϕ〉∂T

for all ϕ ∈ Pk−1(T ). Next, we use the definition of Qh and Qh and the usual
integration by parts to arrive at

−(Q0v, ∇ϕ)T + 〈Qbv · n, ϕ〉∂T = −(v, ∇ϕ)T + 〈v · n, ϕ〉∂T

= (∇ · v, ϕ)T

= (Qh(∇ · v), ϕ)T .

It follows that

(∇w · (Qhv), ϕ)T = (Qh(∇ · v), ϕ)T , ∀ ϕ ∈ Pk−1(T ).

This completes the proof of Eq. 4.5, and hence the lemma.

For the bilinear form b(·, ·), we have the following result on the inf-sup condition.

Lemma 4.3 There exists a positive constant β independent of h such that

sup
v∈V 0

h

b(v, ρ)

|||v||| ≥ β‖ρ‖ (4.6)

for all ρ ∈ Wh.

Proof For any given ρ ∈ Wh ⊂ L2
0(�), it is well known [4, 6, 10–12] that there

exists a vector-valued function ṽ ∈ [H 1
0 (�)]d such that

(∇ · ṽ, ρ)

‖ṽ‖1
≥ C‖ρ‖, (4.7)

where C > 0 is a constant depending only on the domain �. By setting v = Qhṽ ∈
Vh, we claim that the following holds true

|||v||| ≤ C0‖ṽ‖1 (4.8)

for some constant C0. To this end, we use Eq. 4.4 to obtain
∑
T ∈Th

‖∇wv‖2
T =

∑
T ∈Th

‖∇w(Qhṽ)‖2
T =

∑
T ∈Th

‖Qh∇ṽ‖2
T ≤ ‖∇ṽ‖2. (4.9)
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Next, we use Eqs. A.4, A.1, and the definition of Qb to obtain
∑
T ∈Th

h−1
T ‖Qbv0 − vb‖2

∂T =
∑
T ∈Th

h−1
T ‖Qb(Q0ṽ) − Qbṽ‖2

∂T

=
∑
T ∈Th

h−1
T ‖Qb(Q0ṽ − ṽ)‖2

∂T

≤
∑
T ∈Th

h−1
T ‖Q0ṽ − ṽ‖2

∂T

≤ C
∑
T ∈Th

(
h−2

T ‖Q0ṽ − ṽ‖2
T + ‖∇(Q0ṽ − ṽ)‖2

T

)

≤ C‖∇ṽ‖2. (4.10)

Combining the estimate (4.9) with (4.10) yields the desired inequality (4.8).
It follows from Eq. 4.5 and the definition of Qh that

b(v, ρ) = (∇w·(Qhṽ), ρ) = (Qh(∇ · ṽ), ρ) = (∇ · ṽ, ρ).

Using the above equation, (4.7) and (4.8), we have

|b(v, ρ)|
|||v||| ≥ |(∇ · ṽ, ρ)|

C0‖ṽ‖1
≥ β‖ρ‖

for a positive constant β. This completes the proof of the lemma.

It follows from Lemma 4.1 and Lemma 4.3 that the following solvability holds
true for the weak Galerkin finite element scheme (3.3)–(3.4).

Lemma 4.4 The weak Galerkin finite element scheme (3.3)–(3.4) has one and only
one solution.

5 Error equations

For simplicity of analysis, we assume the coefficient tensor A = I in (1.1). The result
can be extended to variable tensors without any difficulty, provided that the tensor
a is piecewise sufficiently smooth. Let uh = {u0, ub} ∈ Vh and ph ∈ Wh be the
weak Galerkin finite element solution arising from the numerical scheme (3.3)–(3.4).
Denote by u and p the exact solution of Eqs. 1.1–1.3. The L2 projection of u in the
finite element space Vh is given by

Qhu = {Q0u, Qbu}.
Similarly, the pressure p is projected into Wh as Qhp. Denote by eh and εh the
corresponding error given by

eh = {e0, eb} = {Q0u − u0, Qbu − ub}, εh = Qhp − ph. (5.1)
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The goal of this section is to derive two equations for which the error eh and εh shall
satisfy. The resulting equations are called error equations, which play a critical role
in the convergence analysis for the weak Galerkin finite element method.

Lemma 5.1 Let (w; ρ) ∈ [H 2(�)]d × H 1(�) satisfy the following equation

− �w + ∇ρ = η (5.2)

in the domain �. Let Qhw = {Q0w, Qbw} and Qhρ be the L2 projection of (w; ρ)

into the finite element space Vh × Wh. Then, the following equation holds true

(∇w(Qhw), ∇wv) − (∇w ·v,Qhρ) = (η, v0) + �w(v) − θρ(v) (5.3)

for all v ∈ V 0
h , where �w and θρ are two linear functionals on V 0

h defined by

�w(v) =
∑
T ∈Th

〈v0 − vb, ∇w · n − Qh(∇w) · n〉∂T ,

θρ(v) =
∑
T ∈Th

〈v0 − vb, (ρ − Qhρ)n〉∂T .

Proof First, it follows from Eqs. 4.4, 2.3, and the integration by parts that

(∇w(Qhw), ∇wv)T = (Qh(∇w), ∇wv)T
= −(v0, ∇ · Qh(∇w))T + 〈vb,Qh(∇w) · n〉∂T

= (∇v0,Qh(∇w))T − 〈v0 − vb, Qh(∇w) · n〉∂T

= (∇w, ∇v0)T − 〈v0 − vb,Qh(∇w) · n〉∂T . (5.4)

Next, by using Eqs. 4.5 and 2.6, the fact that
∑

T ∈Th
〈vb, ρ n〉∂T = 0 and the

integration by parts, we obtain

(∇w·v,Qhρ)=−
∑
T ∈Th

(v0, ∇(Qhρ))T +
∑
T ∈Th

〈vb, (Qhρ)n〉∂T

=
∑
T ∈Th

(∇ · v0,Qhρ)T −
∑
T ∈Th

〈v0 − vb, (Qhρ)n〉∂T

=
∑
T ∈Th

(∇ · v0, ρ)T −
∑
T ∈Th

〈v0 − vb, (Qhρ)n〉∂T

=−
∑
T ∈Th

(v0, ∇ρ)T +
∑
T ∈Th

〈v0, ρn〉∂T −
∑
T ∈Th

〈v0 − vb, (Qhρ)n〉∂T

=−
∑
T ∈Th

(v0, ∇ρ)T +
∑
T ∈Th

〈v0−vb, ρn〉∂T −
∑
T ∈Th

〈v0 − vb, (Qhρ)n〉∂T

=−(v0, ∇ρ) +
∑
T ∈Th

〈v0 − vb, (ρ − Qhρ)n〉∂T ,

which leads to

(v0, ∇ρ) = −(∇w·v,Qhρ) +
∑
T ∈Th

〈v0 − vb, (ρ − Qhρ)n〉∂T . (5.5)
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Next we test (5.2) by using v0 in v = {v0, vb} ∈ V 0
h to obtain

− (�w, v0) + (∇ρ, v0) = (η, v0). (5.6)

It follows from the usual integration by parts that

−(�w, v0) =
∑
T ∈Th

(∇w, ∇v0)T −
∑
T ∈Th

〈v0 − vb, ∇w · n〉∂T ,

where we have used the fact that
∑

T ∈Th
〈vb, ∇w · n〉∂T = 0. Using Eq. 5.4 and the

equation above, we have

− (�w, v0) = (∇w(Qhw), ∇wv)

−
∑
T ∈Th

〈v0 − vb, ∇w · n − Qh(∇w) · n〉∂T . (5.7)

Substituting Eqs. 5.5 and 5.7 into Eq. 5.6 yields

(∇w(Qhw), ∇wv) − (∇w·v, Qhρ) = (η, v0) + �w(v) − θρ(v),

which completes the proof of the lemma.

The following is a result on the error equation for the weak Galerkin finite element
scheme (3.3)–(3.4).

Lemma 5.2 Let eh and εh be the error of the weak Galerkin finite element solution
arising from Eqs. 3.3–3.4, as defined by Eq. 5.1. Then, we have

a(eh, v) − b(v, εh) = ϕu,p(v), (5.8)

b(eh, q) = 0, (5.9)

for all v ∈ V 0
h and q ∈ Wh, where ϕu,p(v) = �u(v) − θp(v) + s(Qhu, v) is a linear

functional defined on V 0
h .

Proof Since (u; p) satisfies the Eq. 5.2 with η = f, then from Lemma 5.1 we have

(∇w(Qhu), ∇wv) − (∇w ·v,Qhp) = (f, v0) + �u(v) − θp(v).

Adding s(Qhu, v) to both side of the above equation gives

a(Qhu, v) − b(v,Qhp) = (f, v0) + �u(v) − θp(v) + s(Qhu, v). (5.10)

The difference of Eqs. 5.10 and 3.3 yields the following equation,

a(eh, v) − b(v, εh) = �u(v) − θp(v) + s(Qhu, v)

for all v ∈ V 0
h , where eh = {e0, eb} = {Q0u− u0, Qbu− ub} and εh = Qhp − ph.

This completes the derivation of Eq. 5.8.
As to Eq. 5.9, we test Eq. 1.2 by q ∈ Wh and use (4.5) to obtain

0 = (∇ · u, q) = (∇w · Qhu, q). (5.11)

The difference of Eqs. 5.11 and 3.4 yields the following equation

b(eh, q) = 0
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for all q ∈ Wh. This completes the derivation of Eq. 5.9.

6 Error estimates

In this section, we shall establish optimal order error estimates for the velocity
approximation uh in a norm that is equivalent to the usual H 1-norm, and for the pres-
sure approximation ph in the standard L2 norm. In addition, we shall derive an error
estimate for uh in the standard L2 norm by applying the usual duality argument in
finite element error analysis.

Theorem 6.1 Let (u; p) ∈ [H 1
0 (�)∩Hk+1(�)]d ×(L2

0(�)∩Hk(�)) with k ≥ 1 and
(uh; ph) ∈ Vh × Wh be the solution of Eqs. 1.1–1.3 and Eqs. 3.3–3.4, respectively.
Then, the following error estimate holds true

|||Qhu − uh||| + ‖Qhp − ph‖ ≤ Chk(‖u‖k+1 + ‖p‖k). (6.1)

Proof By letting v = eh in Eq. 5.8 and q = εh in Eq. 5.9 and adding the two
resulting equations, we have

|||eh|||2 = ϕu,p(eh). (6.2)

It then follows from Eqs. A.6–A.8 (see Appendix A) that

|||eh|||2 ≤ Chk(‖u‖k+1 + ‖p‖k)|||eh|||, (6.3)

which implies the first part of Eq. 6.1. To estimate ‖εh‖, we have from Eq. 5.8 that

b(v, εh) = a(eh, v) − ϕu,p(v).

Using the equation above, (4.2), (6.3) and (A.6)–(A.8), we arrive at

|b(v, εh)| ≤ Chk(‖u‖k+1 + ‖p‖k)|||v|||.
Combining the above estimate with the inf-sup condition (4.6) gives

‖εh‖ ≤ Chk(‖u‖k+1 + ‖p‖k),

which yields the desired estimate (6.1).

In the rest of this section, we shall derive an L2-error estimate for the veloc-
ity approximation through a duality argument. To this end, consider the problem of
seeking (ψ; ξ) such that

− �ψ + ∇ξ = e0 in �, (6.4)

∇ · ψ = 0 in �, (6.5)

ψ = 0 on ∂�. (6.6)

Assume that the dual problem has the [H 2(�)]d × H 1(�)-regularity property in
the sense that the solution (ψ; ξ) ∈ [H 2(�)]d × H 1(�) and the following a priori
estimate holds true:

‖ψ‖2 + ‖ξ‖1 ≤ C‖e0‖. (6.7)
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Theorem 6.2 Let (u; p) ∈ [H 1
0 (�)∩Hk+1(�)]d ×(L2

0(�)∩Hk(�)) with k ≥ 1 and
(uh; ph) ∈ Vh × Wh be the solution of Eqs. 1.1–1.3 and Eqs. 3.3–3.4, respectively.
Then, the following optimal order error estimate holds true

‖Q0u − u0‖ ≤ Chk+1(‖u‖k+1 + ‖p‖k). (6.8)

Proof Since (ψ; ξ) satisfies the Eq. 5.2 with η = e0 = Q0u− u0, then from Eq. 5.3
we have

(∇wQhψ, ∇wv) − (∇w · v,Qhξ) = (e0, v0) + �ψ(v) − θξ (v), ∀v ∈ V 0
h .

In particular, by letting v = eh we obtain

‖e0‖2 = (∇wQhψ, ∇weh) − (∇w · eh,Qhξ) − �ψ(eh) + θξ (eh).

Adding and subtracting s(Qhψ, eh) in the equation above yields

‖e0‖2 = a(Qhψ, eh) − b(eh,Qhξ) − ϕψ,ξ (eh),

where ϕψ,ξ (v) = �ψ(eh)−θξ (eh)+s(Qhψ, eh). It follows from Eqs. 5.9, 6.5 and 5.11
that

b(eh,Qhξ) = 0, b(Qhψ, εh) = 0.

Combining the above two equations gives

‖e0‖2 = a(eh, Qhψ) − b(Qhψ, εh) − ϕψ,ξ (eh).

Using Eq. 5.8 and the equation above, we have

‖e0‖2 = ϕu,p(Qhψ) − ϕψ,ξ (eh). (6.9)

To estimate the two terms on the right hand side of Eq. 6.9, we use the inequalities
(A.6)–(A.8) with (w; ρ) = (ψ; ξ), v = eh, and r = 1 to obtain

|ϕψ,ξ (eh)| ≤ Ch(‖ψ‖2 + ‖ξ‖1)|||eh||| ≤ Ch|||eh||| ‖e0‖, (6.10)

where we have used the regularity assumption (6.7). Each of the terms in ϕu,p(Qhψ)

can be handled as follows.

(i) For the stability term s(Qhu, Qhψ), we use the definition of Qb and (A.4) to
obtain

|s(Qhu, Qhψ)| =
∣∣∣∣∣∣
∑
T ∈Th

h−1
T 〈Qb(Q0u − u), Qb(Q0ψ − ψ)〉∂T

∣∣∣∣∣∣

≤
⎛
⎝ ∑

T ∈Th

h−1
T ‖Q0u − u‖2

∂T

⎞
⎠

1/2 ⎛
⎝ ∑

T ∈Th

h−1
T ‖Q0ψ − ψ‖2

∂T

⎞
⎠

1/2

≤ Chk+1‖u‖k+1‖ψ‖2.

(ii) For the term �u(Qhψ), we first use the definition of Qb and the fact that ψ = 0
on ∂� to obtain∑
T ∈Th

〈ψ − Qbψ, ∇u · n − Qh(∇u) · n〉∂T =
∑
T ∈Th

〈ψ − Qbψ, ∇u · n〉∂T = 0.
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Thus,

|�u(Qhψ)| =
∣∣∣∣∣∣
∑
T ∈Th

〈Q0ψ − Qbψ, ∇u · n − Qh(∇u) · n〉∂T

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∑
T ∈Th

〈Q0ψ − ψ, ∇u · n − Qh(∇u) · n〉∂T

∣∣∣∣∣∣

≤
⎛
⎝∑

T ∈Th

hT ‖∇u · n−Qh(∇u) · n‖2
∂T

⎞
⎠

1/2⎛
⎝∑

T ∈Th

h−1
T ‖Q0ψ − ψ‖2

∂T

⎞
⎠

1/2

≤ Chk+1‖u‖k+1‖ψ‖2.

(iii) For the term θp(Qhψ), we first use the definition of Qb and the fact that ψ = 0
on ∂� to obtain

∑
T ∈Th

〈ψ − Qbψ, (p − Qhp)n〉∂T =
∑
T ∈Th

〈ψ − Qbψ, pn〉∂T = 0.

Thus, from Eqs. A.4 and A.3 we obtain

|θp(Qhψ)| =
∣∣∣∣∣∣
∑
T ∈Th

〈Q0ψ − Qbψ, (p − Qhp)n〉∂T

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∑
T ∈Th

〈Q0ψ − ψ, (p − Qhp)n〉∂T

∣∣∣∣∣∣

≤
⎛
⎝ ∑

T ∈Th

hT ‖p − Qhp‖2
∂T

⎞
⎠

1/2 ⎛
⎝ ∑

T ∈Th

h−1
T ‖Q0ψ − ψ‖2

∂T

⎞
⎠

1/2

≤ Chk+1‖p‖k‖ψ‖2.

The three estimates in (i), (ii), (iii), and the regularity (6.7) collectively yield

|ϕu,p(Qhψ)| ≤ Chk+1(‖u‖k+1 + ‖p‖k)‖ψ‖2

≤ Chk+1(‖u‖k+1 + ‖p‖k)‖e0‖. (6.11)

Finally, substituting Eqs. 6.10 and 6.11 into Eq. 6.9 gives

‖e0‖2 ≤ Chk+1(‖u‖k+1 + ‖p‖k)‖e0‖ + Ch|||eh||| ‖e0‖.
It follows that

‖e0‖ ≤ Chk+1(‖u‖k+1 + ‖p‖k) + Ch|||eh|||,
which, together with Theorem 6.1, completes the proof of the theorem.
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7 Concluding remarks

This paper introduced a new finite element method for the Stokes equations by using
the general concept of weak Galerkin. The scheme is applicable to finite element
partitions of arbitrary polygon or polyhedra. The paper has laid a solid theoretical
foundation for the stability and convergence of the weak Galerkin method. There are,
however, many open issues that need to be investigated in future work. Here we would
like to list a few for interested readers to consider: (1) how the discretized linear
systems can be solved efficiently by using techniques such as domain decomposi-
tion and multigrids? (2) can the weak Galerkin scheme for the Stokes equations be
hybridized? If so, how such a hybridization may help in variable reduction and solu-
tion solving? and (3) what superconvergence can one develop for the weak Galerkin
method? (4) is the weak Galerkin method more competitive than other existing
finite element schemes in practical computation? (5) what stability do weak Galerkin
methods have in other norms such as Lp, p > 1?

Appendix A

In this Appendix, we shall provide some technical results regarding approximation
properties for the L2 projection operators Qh, Qh, and Qh. These estimates have been
employed in previous sections to yield various error estimates for the weak Galerkin
finite element solution of the Stokes problem arising from the scheme (3.3)–(3.4).

Lemma A.1 Let Th be a finite element partition of � satisfying the shape regularity
assumption as specified in [16] and w ∈ [Hr+1(�)]d and ρ ∈ Hr(�) with 1 ≤ r ≤
k. Then, for 0 ≤ s ≤ 1 we have

∑
T ∈Th

h2s
T ‖w − Q0w‖2

T ,s ≤ h2(r+1)‖w‖2
r+1, (A.1)

∑
T ∈Th

h2s
T ‖∇w − Qh(∇w)‖2

T ,s ≤ Ch2r‖w‖2
r+1, (A.2)

∑
T ∈Th

h2s
T ‖ρ − Qhρ‖2

T ,s ≤ Ch2r‖ρ‖2
r . (A.3)

Here C denotes a generic constant independent of the meshsize h and the functions
in the estimates.

A proof of the lemma can be found in [16], which is based on some technical
inequalities for functions defined on polygon/polyhedral elements with shape regu-
larity. We emphasize that the approximation error estimates in Lemma A.1 hold true
when the underlying mesh Th consists of arbitrary polygons or polyhedra with shape
regularity as detailed in [16] and [13].
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Let T be an element with e as an edge/face. For any function g ∈ H 1(T ), the
following trace inequality has been proved to be valid for general meshes satisfying
the shape regular assumptions detailed in [16]:

‖g‖2
e ≤ C

(
h−1

T ‖g‖2
T + hT ‖∇g‖2

T

)
. (A.4)

Lemma A.2 For any v = {v0, vb} ∈ Vh, we have

∑
T ∈Th

‖∇v0‖2
T ≤ C|||v|||2. (A.5)

Proof For any v = {v0, vb} ∈ Vh, it follows from the integration by parts and the
definitions of weak gradient and Qb,

(∇v0, ∇v0)T = −(v0, ∇ · ∇v0)T + 〈v0, ∇v0 · n〉∂T

= −(v0, ∇ · ∇v0)T + 〈vb, ∇v0 · n〉∂T + 〈v0 − vb, ∇v0 · n〉∂T

= (∇wv, ∇v0)T + 〈Qbv0 − vb, ∇v0 · n〉∂T .

By applying the trace inequality (A.4) and the inverse inequality to the equation
above, we obtain

‖∇v0‖2
T ≤ C

(
‖∇wv‖T ‖∇v0‖T + h

− 1
2

T ‖Qbv0 − vb‖∂T ‖∇v0‖T

)
.

Thus,

‖∇v0‖2
T ≤ C

(
‖∇wv‖2

T + h−1
T ‖Qbv0 − vb‖2

∂T

)
,

which gives rise to Eq. A.5 after a summation over all T ∈ Th.

Lemma A.3 Let 1 ≤ r ≤ k and w ∈ [Hr+1(�)]d and ρ ∈ Hr(�) and v ∈ Vh.
Assume that the finite element partition Th is shape regular. Then, the following
estimates hold true

|s(Qhw, v)| ≤ Chr‖w‖r+1|||v|||, (A.6)

|�w(v)| ≤ Chr‖w‖r+1|||v|||, (A.7)

|θρ(v)| ≤ Chr‖ρ‖r |||v|||, (A.8)

where �w(·) and �ρ(·) are two linear functionals on Vh given by

�w(v) =
∑
T ∈Th

〈v0 − vb, ∇w · n − Qh(∇w) · n〉∂T , (A.9)

θρ(v) =
∑
T ∈Th

〈v0 − vb, (ρ − Qhρ)n〉∂T . (A.10)
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Proof Using the definition of Qb, (A.4) and (A.1), we have

|s(Qhw, v)| =
∣∣∣∣∣∣
∑
T ∈Th

h−1
T 〈Qb(Q0w) − Qbw, Qbv0 − vb〉∂T

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∑
T ∈Th

h−1
T 〈Qb(Q0w − w), Qbv0 − vb〉∂T

∣∣∣∣∣∣

=
∣∣∣∣∣∣
∑
T ∈Th

h−1
T 〈Q0w − w, Qbv0 − vb〉∂T

∣∣∣∣∣∣

≤
⎛
⎝ ∑

T ∈Th

(h−2
T ‖Q0w − w‖2

T + ‖∇(Q0w − w)‖2
T )

⎞
⎠

1/2

⎛
⎝ ∑

T ∈Th

h−1
T ‖Qbv0 − vb‖2

∂T

⎞
⎠

1/2

≤ Chr‖w‖r+1|||v|||.
It follows from Eqs. A.4 and A.2 that

|�w(v)| =
∣∣∣∣∣∣
∑
T ∈Th

〈v0 − vb, ∇w · n − Qh(∇w) · n〉∂T

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
∑
T ∈Th

〈v0 − Qbv0, ∇w · n − Qh(∇w) · n〉∂T

∣∣∣∣∣∣

+
∣∣∣∣∣∣
∑
T ∈Th

〈Qbv0 − vb, ∇w · n − Qh(∇w) · n〉∂T

∣∣∣∣∣∣
.

To estimate the first term on the righ-hand side of the above inequality, we use
Eqs. A.4, A.2, A.5 and the inverse inequality to obtain

∣∣∣∣∣∣
∑
T ∈Th

〈v0 − Qbv0, ∇w · n − Qh(∇w) · n〉∂T

∣∣∣∣∣∣
≤ C

∑
T ∈Th

hT ‖∇w · n − Qh(∇w) · n‖∂T ‖∇v0‖∂T

≤ C

⎛
⎝ ∑

T ∈Th

hT ‖∇w · n − Qh(∇w) · n‖2
∂T

⎞
⎠

1/2 ⎛
⎝ ∑

T ∈Th

‖∇v0‖2
T

⎞
⎠

1/2

≤ Chr‖w‖r+1|||v|||.
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Similarly, for the second term, we have∣∣∣∣∣∣
∑
T ∈Th

〈Qbv0 − vb, ∇w · n − Qh(∇w) · n〉∂T

∣∣∣∣∣∣

≤ C

⎛
⎝ ∑

T ∈Th

hT ‖∇w · n − Qh(∇w) · n‖2
∂T

⎞
⎠

1/2 ⎛
⎝ ∑

T ∈Th

h−1
T ‖Qbv0 − vb‖2

∂T

⎞
⎠

1/2

≤ Chr‖w‖r+1|||v|||.
The estimate (A.7) is verified by combining the above three estimates.

The same technique for proving (A.7) can be applied to yield the following
estimate.

|θρ(v)| =
∣∣∣∣∣∣
∑
T ∈Th

〈v0 − vb, (ρ − Qhρ)n〉∂T

∣∣∣∣∣∣
≤ Chr‖ρ‖r |||v|||.

This completes the proof of the lemma.
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