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Abstract We study multivariate integration of functions that are invariant under
permutations (of subsets) of their arguments. We find an upper bound for the nth
minimal worst case error and show that under certain conditions, it can be bounded
independent of the number of dimensions. In particular, we study the application of
unshifted and randomly shifted rank-1 lattice rules in such a problem setting. We
derive conditions under which multivariate integration is polynomially or strongly
polynomially tractable with the Monte Carlo rate of convergence O(n−1/2). Further-
more, we prove that those tractability results can be achieved with shifted lattice
rules and that the shifts are indeed necessary. Finally, we show the existence of rank-
1 lattice rules whose worst case error on the permutation- and shift-invariant spaces
converge with (almost) optimal rate. That is, we derive error bounds of the form
O(n−λ/2) for all 1 ≤ λ < 2α, where α denotes the smoothness of the spaces.
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1 Introduction and main results

The approximation of multivariate integrals is a very old and popular topic
of research. In modern science the efficient numerical treatment of very high-
dimensional integration problems becomes more and more important. Therefore one
seeks for algorithms which satisfy error bounds with a higher-order rate of conver-
gence and a moderate dependence on the dimension at the same time. By now it is
well-known that, when working with a huge number of dimensions, some additional
a priori knowledge on the integrands under consideration is needed in order to reduce
the information complexity and thus the computational hardness of such problems.
Usually this additional knowledge is modeled by the use of function spaces endowed
with weighted norms that allow to control the influence of different (groups of) vari-
ables on the functions one likes to integrate; see [2] for a survey. Another kind of
additional knowledge, given in terms of permutation-invariance conditions, was pro-
posed recently; see [14, 15]. In this paper we exploit such conditions in order to bound
the worst case error of general cubature methods for the integration of periodic func-
tions defined on the d-dimensional unit cube, where d ∈ N can be arbitrary large.
Besides proving the existence of good quasi-Monte Carlo (QMC) algorithms based
on well-known averaging techniques we focus on shifted and unshifted rank-1 lattice
rules. In contrast to Monte Carlo algorithms which use n independent random sam-
ples those integration methods are based on very structured, deterministic point sets.
Our setting is motivated by problems from computational quantum physics. Recently
it has been shown that the rate of convergence for solving the electronic Schrödinger
equation ofN electron systems does not depend on the number of electrons [16]. This
is due to the intrinsic property of the system that electronic wavefunctions are anti-
symmetric with respect to the exchange of electrons with the same spin. We observe
from [14] that finding the approximate solution to such problems involves the cal-
culation of inner products of two antisymmetric functions, i.e., the integration of
permutation-invariant functions.

We now briefly describe our main results and the organization of the mate-
rial. To begin with, in Section 2 we present the setting we are going to study.
Here we introduce the reproducing kernel Hilbert spaces (RKHSs), as well as their
permutation-invariant subspaces, our integrands come from. We recall the definition
of (weighted) cubature rules and their worst case errors. Finally, we briefly review
some well-known concepts from information-based complexity. Section 3 then deals
with existence results obtained by averaging. In particular, in Theorem 3.6 we prove
that there are (equal weight) QMC rules which satisfy error bounds that decay with
the Monte Carlo rate of convergence O(n−1/2) while the implied constant grows
only polynomially with the dimension d provided there is sufficient permutation-
invariance. Under fairly moderate assumptions on the underlying function space,
these error bounds do not depend on d at all. That is, e.g., for the fully permutation-
invariant problem we prove strong polynomial tractability (e.g., in periodic Sobolev
spaces). We contrast our results with well-known tractability assertions for related
integration problems defined on weighted spaces. Finally, Section 4 is devoted to the
study of rank-1 lattice rules. It contains our main results. In Section 4.1 we start by
proving exact error formulas for unshifted rules which imply lower bounds showing
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that no such rule can attain the generic upper bounds stated in Theorem 3.6. Con-
sequently (independently of the problem parameters) this class of algorithms is too
small to obtain strong polynomial tractability. Therefore, in Section 4.2, we turn to
(randomly) shifted rank-1 lattice rules which are related to certain permutation- and
shift-invariant RKHSs. We derive exact expressions for the associated kernels and for
the root mean squared worst case error E(Qn(z)) (w.r.t. the random shift) of the inte-
gration algorithms under consideration. These formulas then lead us to lower bounds
for E(Qn(z)) and to the observation that shifted rules outperform their unshifted
counterparts. Finally, our main result (Theorem 4.11) states that there exist gener-
ating vectors z∗ such that (on average) the error of the shifted rank-1 lattice rule
Qn(z

∗)+Δ is bounded byO(n−λ/2), where λ/2 can be chosen arbitrarily close to α

(the smoothness parameter of the space under consideration and the optimal rate of
convergence for these rules). For λ = 1 the bounds proven in Theorem 4.11 resem-
ble the generic upper bounds given in Section 3. Hence, under suitable conditions
shifted rank-1 lattice rules imply strong polynomial tractability for the integration
of permutation-invariant functions. We conclude the paper with an appendix which
contains the proofs of some technical lemmas needed for our derivation.

2 Setting

2.1 Subspaces of permutation-invariant functions

We study multivariate integration

Intdf =
∫

[0,1]d
f (x)dx (2.1)

for functions from subspaces of some Hilbert space of periodic functions

Fd(rα,β) =
⎧⎨
⎩f : [0, 1]d → C

∣∣f ∈ L2 with ‖f ‖2d =
∑
h∈Zd

|f̂ (h)|2rα,β(h) < ∞
⎫⎬
⎭ .

Hence, functions f ∈ Fd(rα,β) can be represented in terms of an absolutely
convergent Fourier expansion and their Fourier coefficients

f̂ (h) = 〈f, exp(2πih · ·)〉L2 =
∫

[0,1]d
f (x) exp(−2πih · x)dx,

h = (h1, . . . , hd) ∈ Z
d , decay faster than rα,β(h)−1/2. Here rα,β : Zd → (0, ∞) is

a d-fold tensor product involving some function R : [1, ∞) → (0, ∞) and a tuple
β = (β0, β1) of positive parameters such that

rα,β(h) =
d∏

�=1

(
δ0,h�

β−1
0 + (1 − δ0,h�

) β−1
1 R(|h�|)2α

)
, h ∈ Z

d .
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Therein δ denotes the Kronecker delta (i.e., δi,j equals one if i = j and zero oth-
erwise) and the parameter α ≥ 0 describes the smoothness. Throughout the whole
paper we assume that

1

cR

R(m) ≤ R(nm)

n
≤ R(m) for all n ≥ 1, m ∈ N, and some cR ≥ 1.

Moreover, we assume that
(
R(m)−1

)
m∈N ∈ �2α , i.e.,

νR(α) =
∞∑

m=1

1

R(m)2α
< ∞ (2.2)

(Note that the latter conditions particularly imply that R(m) ∼ m and α > 1/2).
For a detailed discussion of Fd(rα,β) we refer to Novak and Woźniakowski [5,

Appendix A.1] but we want to stress the point that some well-known spaces are
covered by this definition.

Example 2.1

(i) For β0 = β1 = 1, α > 1/2 and R(m) = m, m ∈ N, we obtain the classical
Korobov space, where rα,β(h) =∏d

�=1 max{1, |h�|}2α .
(ii) If we change our definition of R to R(m) = 2πm, m ∈ N, and assume that

α ∈ N then, for any positive β0 and β1, we have a norm which resembles that
of the unanchored Sobolev space restricted to periodic functions where the
norm for d = 1 can also be written as

‖f‖21= β−1
0

∣∣∣
∫ 1

0
f (x)dx

∣∣∣2 + β−1
1

∫ 1

0

∣∣∣f (α)(x)

∣∣∣2dx.

(iii) Also the periodic Sobolev space of dominating mixed smoothness Sα
2 W stud-

ied, e.g., in Ullrich [13], is covered. To this end, let β0 = β1 = 1, α > 1/2
and R(m) = (1 + m2)1/2 for m ∈ N. Then cR = √

2 and

‖f‖2d=
∑
h∈Zd

(∣∣∣f̂ (h)

∣∣∣
d∏

�=1

(1+ |h�|2)α/2

)2

.

Due to R(m) ∼ m it is known that if α > 1/2 then Fd(rα,β) is a d-fold tensor
product of some univariate reproducing kernel Hilbert space (RKHS) equipped with
the inner product

〈f, g〉 =
∑
h∈Zd

rα,β(h) f̂ (h) ĝ(h).

Thus, Fd(rα,β) itself is also a RKHS, where the respective d-variate kernel is given
by

Kd(x, y) =
∑
h∈Zd

rα,β(h)−1exp (2πih · (x − y)) . (2.3)

A comprehensive discussion of RKHSs can be found in Aronszajn [1]. For the latest
state of the art in integration theory related to RKHSs we refer the reader to the
textbook of Dick and Pillichshammer [3], as well as to the survey article of Dick,
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Kuo, and Sloan [2] and the references therein. A detailed introduction to special
integration methods (such as lattice rules discussed below) can also be found in the
monographs of Sloan and Joe [10] and Novak and Woźniakowski [6], as well as in
the review [7].

In what follows we focus on the integration problem restricted to subsets of
Id -permutation-invariant functions f ∈ Fd(rα,β) for some coordinate sets Id ⊆
{1, . . . , d}; see [14, 15]. That is, we impose the additional condition that f is invariant
under all permutations of the variables with indices in Id :

f (x) = f (P (x)) for all x ∈ [0, 1]d and each P ∈ Sd ,

where

Sd = S{1,...,d}(Id)

=
{
P : {1, . . . , d} → {1, . . . , d}

∣∣∣P bijection such that P | {1,...,d}\Id
= id

}
.

(Note that this set always contains at least the identity permutation.) These subspaces
will be denoted by SId

(Fd(rα,β)). For the extremal case of fully permutation-
invariant functions we use the shorthand S(Fd(rα,β)). It is known that if Id =
{i1, i2, . . . , i#Id

} then the subset of symmetrized and scaled basis functions of
Fd(rα,β) given by

φk(x) =
√

r−1
α,β(k)

#Sd Md(k)!
∑

P∈Sd

exp(2πiP (k) · x)

with
k ∈ ∇d = ∇{1,...,d}(Id) =

{
k ∈ Z

d
∣∣∣ki1 ≤ ki2 ≤ · · · ≤ ki#Id

}
, (2.4)

builds an orthonormal basis of SId
(Fd(rα,β)); see [14] for details. Here

Md(k)! = M{1,...,d}(k, Id)! = #{P ∈ Sd | P(k) = k}
accounts for the repetitions of indices in the multi-index k, giving rise to repetitive
permutations. It immediately follows that for every function G : Zd → C it holds

∑
h∈Zd

G(h) =
∑
k∈∇d

1

Md(k)!
∑

P∈Sd

G(P (k)). (2.5)

Since SId
(Fd(rα,β)) is equipped with the same norm as the entire space Fd(rα,β) it

is again a RKHS. Moreover, it can be easily checked that its reproducing kernel is
given by

Kd,Id
(x, y) = 1

(#Sd)2

∑
P,P ′∈Sd

Kd(P (x), P ′(y)) = 1

#Sd

∑
P∈Sd

Kd(P (x), y)

=
∑
k∈∇d

r−1
α,β(k)

Md(k)!
1

#Sd

∑
P,P ′∈Sd

exp(2πik · (P (x) − P ′(y)))

=
∑
h∈Zd

r−1
α,β(h)

#Sd

∑
P∈Sd

exp(2πih · (P (x) − y)) (2.6)
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for x, y ∈ [0, 1]d . Finally, it is known that (using a suitable rearrangement of the
coordinates) the space SId

(Fd(rα,β)) can be seen as the tensor product of the fully
permutation-invariant subset of the #Id -variate space with the entire (d−#Id)-variate
space, i.e.,

SId
(Fd(rα,β)) = S

(
F#Id

(rα,β)
)⊗ Fd−#Id

(rα,β).

Hence, also the reproducing kernel factorizes to

Kd,Id
= K#Id ,{1,...,#Id } ⊗ Kd−#Id

. (2.7)

Remark 2.2 Some comments are in order.

(i) Note that our theory can be extended easily to spaces which yield permutation-
invariance with respect to at least two disjoint subsets of coordinates Id and
Jd . Similar spaces play some role for approximation problems from com-
putational practice, e.g., related to the electronic Schrödinger equation; see
[14].

(ii) We do not consider anisotropic spaces Fd(rα,β) where the parameters β1 in
rα,β are allowed to depend on the index of the respective variable. Although
this approach is reasonable to model the influence of different variables xj on
f (x), when j ∈ Id the effect would be averaged out by the application of the
permutations P ∈ Sd such that finally all variables in Id would be equally
important. The same result can be reached by taking appropriate constant val-
ues of β1. For j /∈ Id the standard results apply and so we do not study this
here; see, e.g., [6] or Sloan and Woźniakowski [12].

(iii) In this paper we mainly concentrate on spaces with weight parameters β1 that
are independent of the dimension d. For tractability it turns out that this case
is sufficient, provided that the number of permutation-invariance conditions
(i.e., the cardinality of the sets Id ) is large enough. Occasionally we briefly
describe how to proceed if this major assumption is violated.

2.2 Algorithms, worst case errors and notions of tractability

We like to approximate the integral (2.1) by some weighted cubature rule

Qd,n(f ) = Qd,n

(
f ; t (0), . . . , t (n−1), w0, . . . , wn−1

)
= 1

n

n−1∑
j=0

wj f
(
t (j)
)

, (2.8)

d, n ∈ N, that samples f at the points t (j) ∈ [0, 1]d , j = 0, . . . , n − 1, where the
weights wj are well-chosen real numbers. If w0 = · · · = wn−1 = 1 and all t (j) are
chosen deterministically, then Qd,n is the classical quasi-Monte Carlo (QMC) rule
which we will denote by QMCd,n = QMCd,n( · ; t (0), . . . , t (n−1)). This construc-
tion is inspired by the standard Monte Carlo algorithm MCd,n that formally equals
QMCd,n with the difference that here the sample points t (j), j = 0, . . . , n − 1, are
independent and identically uniformly distributed in [0, 1]d .
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Provided that K is the reproducing kernel of some RKHS Hd of functions on
[0, 1]d the squared worst case error of Qd,n is then given by, see, e.g., Hickernell and
Woźniakowski [4],

ewor(Qd,n; Hd)2 =
⎛
⎜⎝ sup

f ∈Hd‖f ‖d≤1

|Intdf − Qd,n(f )|
⎞
⎟⎠

2

=
∫

[0,1]2d
K(x, y)dxdy − 2

n

n−1∑
j=0

wj

∫
[0,1]d

K
(
x, t (j)

)
dx

+ 1

n2

n−1∑
j,�=0

wjw�K
(
t (j), t (�)

)
. (2.9)

In what follows, we want to bound the nth minimal worst case error

e(n, d; Hd) = inf
An,d

ewor(An,d; Hd) (2.10)

for integration on Hd . Here the infimum is taken with respect to some class of
algorithms An,d which use at most n samples of the input function.

Remark 2.3 We stress that due to results of Smolyak and Bakhvalov we can restrict
ourselves to linear, non-adaptive cubature rulesQd,n of the form (2.8), without loss of
generality. For details and further references see, e.g., Sloan and Woźniakowski [11,
Remark 1] or [5, Section 4.2.2].

In this context, we briefly recall the concepts of tractability that will be used later
on. For this purpose we rely on the notions described in [5]. Let n = n(ε, d) denote
the information complexitywith respect to the normalized error criterion. That is, the
minimal number of function values necessary to reduce the initial error e(0, d; Hd)

by a factor of ε ∈ (0, 1), in the d-variate case. Then a problem is said to be poly-
nomially tractable if n(ε, d) is upper bounded by some polynomial in ε−1 and d,
i.e., if there exist constants C, p > 0, and q ≥ 0 such that for all d ∈ N and every
ε ∈ (0, 1)

n(ε, d) ≤ C dq ε−p. (2.11)

If this bound is independent of d, i.e., if we can take q = 0, then the problem is said
to be strongly polynomially tractable. In contrast, problems are called polynomially
intractable if Eq. 2.11 does not hold for any such choice of C, p, and q. Finally, a
problem is said to be weakly tractable if its information complexity does not grow
exponentially with ε−1 and d, i.e., if

lim
ε−1+d→∞

ln n(ε, d)

ε−1 + d
= 0.
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3 Upper bounds and tractability

Here we derive conditions on the problem parameters Id and rα,β that are sufficient
to guarantee (strong) polynomial tractability of the integration problem under consid-
eration. To this end, we recall an averaging technique that allows to establish upper
bounds on the nth minimal worst case error (2.10). Arguments of this type were ini-
tially presented in [12, Lemma 8] and further developed by Plaskota, Wasilkowski,
and Zhao [9]. For generalizations of the method the interested reader is referred
to [6, Section 10.7].

3.1 An averaging technique

Given a reproducing kernel K let us define the quantities

M1,d = M1,d (K) =
(∫

[0,1]d
√

K(x, x)dx

)2
,

M2,d = M2,d (K) =
∫

[0,1]d
K(x, x)dx,

and

Sd = Sd(K) =
∫

[0,1]d

∫
[0,1]d

K(x, y)dxdy.

Then Sd coincides with the square of the initial error of numerical integration over
Hd = H(K) with respect to the worst case setting. Furthermore, it can be checked
that

Sd ≤ M1,d ≤ M2,d .

Therefore the integration problem is well-defined for Hd if at least M2,d (K) is finite
and it is normalized if Sd = 1. The following result can be found in [9, Theorem 1].

Proposition 3.1 Let n ∈ N and assume M1,d < ∞ for all d ∈ N. Then

e(n, d; Hd) ≤ √M1,d − Sd n−1/2 =
√

M1,d

Sd

− 1 n−1/2 e(0, d; Hd).

and there exist points t (0), . . . , t (n−1) ∈ [0, 1]d such that the cubature rule Qd,n with
wi = √

M1,d/K(t (i), t (i)) achieves this bound. Moreover, if M2,d < ∞ for d ∈ N,
then there are points such that QMCd,n (i.e., wi ≡ 1) satisfies

ewor(QMCd,n; Hd) ≤ √M2,d − Sd n−1/2 =
√

M2,d

Sd

− 1 n−1/2 e(0, d; Hd).

Remark 3.2 Although these bounds are non-constructive it is known that slightly
larger bounds can be achieved with high probability by any random set of points; see
[9, Remark 2].

We want to apply Proposition 3.1 for the spaces Hd = SId
(Fd(rα,β)) as defined

in Section 2. In order to conclude (strong) polynomial tractability we simply need to
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bound M2,d/Sd from above by C dq for some C, q ≥ 0 and all d ∈ N (with q = 0 for
strong polynomial tractability). In the following lemma we calculate the quantities of
interest. We postpone its proof to the Appendix.

Lemma 3.3 For d ∈ N and every Id ⊆ {1, . . . , d} it holds
Sd

(
Kd,Id

) = βd
0 and M2,d (Kd,Id

) =
∑
k∈∇d

r−1
α,β(k). (3.1)

If #Id < 2, i.e., Kd,Id
= Kd , we moreover have, with μR(α) defined in Eq. 2.2,

M1,d (Kd) = M2,d (Kd) = βd
0

(
1 + 2β1νR(α)

β0

)d

. (3.2)

Remark 3.4 We stress the point that, since ∇d � Z
d whenever #Id ≥ 2, the term

M2,d
(
Kd,Id

)
given in Eq. 3.1 might be dramatically smaller than the respective

quantity (3.2) for the full space.

In order to derive a suitable upper bound forM2,d (Kd,Id
)/Sd it suffices to consider

the fully permutation-invariant part. That is, we assume K = Kd,{1,...,d} in what
follows. Denoting the number of non-zero components hj of h ∈ Z

d by |h|0 we can
estimate the sum in Eq. 3.1 as follows:

M2,d (Kd,{1,...,d}) = 1

#Sd

∑
h∈Zd

Md(h)! r−1
α,β(h)

≤ 1

#Sd

∑
k∈Nd

0

2|k|0Md(k)! r−1
α,β(k) =

∑
k∈Nd

0
0≤k1≤···≤kd

2|k|0 r−1
α,β(k).

The latter sum can be bounded with the help of another, rather technical lemma which
is based on [14, Lemma 4]. For the convenience of the reader a detailed proof can be
found in the Appendix.

Lemma 3.5 Assume (λm)m∈N0 to be a sequence of non-negative real numbers with
λ0 > 0 and λ0 ≥ λm ≥ 0 for all m ∈ N0. Moreover, set λs,k = ∏s

�=1 λk�
for k∈ N

s
0

and s ∈ N. Then we have for all V ∈ N0 and every d ∈ N

∑
k∈Nd

0
0≤k1≤···≤kd

λd,k ≤ λd
0 dV

⎛
⎜⎜⎜⎝1 + V +

d∑
L=1

λ−L
0

∑
j∈NL

V +1≤j1≤···≤jL

λL,j

⎞
⎟⎟⎟⎠ (3.3)

with equality at least for V = 0.

Setting (λm)m∈N0 to

λ0 = β0 > 0 and λm = 2β1 R(m)−2α, m ∈ N, (3.4)
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we observe that λd,k = 2|k|0 r−1
α,β(k), k∈ N

d
0 . Thus, we can apply Lemma 3.5 if

2β1

β0 R(m)2α
≤ 1 for all m ∈ N. (3.5)

In Eq. 4.8 from Proposition 4.12 we will see that a condition like Eq. 3.5
is indeed necessary in order to avoid an exponential dependence of the term
M2,d (Kd,{1,...,d})/Sd on the dimension d. From Eq. 2.2 we particularly conclude that
there exists some V ∗ = V ∗(R, α, β) ∈ N0 such that

η∗ = η∗(V ∗) =
∞∑

m=V ∗+1

2β1

β0 R(m)2α
< 1. (3.6)

Using Lemma 3.5 for this V ∗ and λ given by Eq. 3.4 we obtain

M2,d (Kd,{1,...,d}) ≤ βd
0 dV ∗

⎛
⎜⎜⎜⎝1 + V ∗ +

d∑
L=1

∑
j∈NL

0
V ∗+1≤j1≤···≤jL

L∏
�=1

2β1

β0 R(j�)2α

⎞
⎟⎟⎟⎠

≤ βd
0 dV ∗

(
1 + V ∗ +

∞∑
L=1

(η∗)L
)

= Sd dV ∗
(

V ∗ + 1

1 − η∗

)
.

In summary we obtain the bound

M2,d (Kd,Id
)

Sd

= M2,d−#Id
(Kd−#Id

)

Sd−#Id

M2,#Id
(K#Id ,{1,...,#Id })

S#Id

≤
(
1 + 2β1νR(α)

β0

)d−#Id

(#Id)V
∗
(

V ∗ + 1

1 − η∗

)

which, in view of Proposition 3.1, implies the following theorem that ensures the
existence of good QMC algorithms for the approximation of the integrals (2.1).

Theorem 3.6 For d ≥ 2 let Id ⊆ {1, . . . , d} with #Id ≥ 2 and assume (3.5) to be
true. We consider the integration problem on the Id -permutation-invariant subspaces
SId

(Fd(rα,β)). Then

• for all n and d ∈ N the nth minimal worst case error is bounded by

e(n, d;SId
(Fd(rα,β)))

≤ e(0, d;SId
(Fd(rα,β)))

√
V ∗ + 1

1−η∗

×
(
1 + 2β1νR(α)

β0

)(d−#Id )/2
(#Id)V

∗/2 1√
n
, (3.7)

where the absolute constants V ∗ and η∗ are given by Eq. 3.6.
• there exists a QMC rule which achieves this bound.

Consequently, we have the following tractability statements:
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• If (d − #Id) ∈ O(ln d), then the integration problem is polynomially tractable
(with respect to the worst case setting and the normalized error criterion).

• If (d − #Id) ∈ O(1) and Eq. 3.6 holds for V ∗ = 0, then we obtain strong
polynomial tractability.

3.2 Discussion

Let us illustrate the obtained results with some examples. We first consider the case
where Id = {1, . . . , d} and β0 = 1, i.e., fully permutation-invariant subspaces where
the integration problem is well-scaled. In this case the bound (3.7) simplifies to

e(n, d) ≤
√

V ∗ + 1

1 − η∗ dV ∗/2 1√
n
.

Then for the classical unweighted Korobov space (β0 = β1 = 1 and R(m) = m, see
Example 2.1(i)) our assumption (3.5) is not fulfilled. We can overcome this problem
by changing the parameter β1 to 1/2. In this case η∗ equals the generalized zeta
function ζ(2α, V ∗+1) which can only be smaller than one for V ∗ > 0, depending on
α. Hence, we can show polynomial tractability, but not strong polynomial tractability
for the Korobov space.

For the periodic unanchored Sobolev space from Example 2.1(ii) with β0 = β1 =
1 and R(m) = 2πm our assumption (3.5) is always fulfilled for α > 1/2 and we
can prove strong polynomial tractability if α is sufficiently large. (We here consider
arbitrary α as this is then a modified Korobov space with appropriately chosen β1.)
Indeed, η∗(0) < 1 if α ≥ α∗ ≈ 0.61769976. Unfortunately, the constant (1−η∗)−1/2

will be extremely large for smoothness parameters α close to α∗. On the other hand,
already α = 1 yields

√
1

1 − η∗ = √12/11 ≈ 1.044465936.

For the periodic Sobolev space of dominating mixed smoothness discussed in
Example 2.1(iii), with β0 = β1 = 1 and R(m) = (1 + m2)1/2, it follows imme-
diately that our assumption (3.5) is fulfilled for α ≥ 1. For α = 1 and V ∗ = 0
we have η∗(0) ≈ 2.15335, but for α ≥ α∗ ≈ 1.521196 we find η∗(0) < 1 and
thus strong polynomial tractability from there on. For α = 2 we thus have strong
polynomial tractability with η∗(0) ≈ 0.613674 and a very acceptable constant of
(1 − η∗)−1/2 ≈ 1.60888. Although we only replace max{1, |k|} by (1 + k2)1/2 for
k ∈ Z when moving from the Korobov norm to the norm of the Sobolev space of
dominating mixed smoothness, these observations particularly show that exchanging
equivalent norms can cause a big difference in tractability.

We contrast these results with results known for the full space, i.e., for Id = ∅. In
the literature the following assertions for the full space with

α >1/2, β0 = 1, 0 < β1 = β1(d) ≤ C < ∞, and R(m) = 2πm for m ∈ N,

can be found; see [6, Theorems 16.5 and 16.16].
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Proposition 3.7 Integration on Fd(rα,β) is

• weakly tractable if and only if

lim
d→∞ β1(d) = 0.

• polynomially tractable if and only if

β1(d) ≤ C
ln(d + 1)

d
for some C < ∞ and all d ∈ N.

• strongly polynomially tractable if and only if

β1(d) ≤ C
1

d
for some C < ∞ and all d ∈ N.

Proof The authors of [6] deal with coordinate dependent bounded product weights
γd,j . Setting γd,j = β1(d) for all j = 1, . . . , d and every d ∈ N proves the claim.

Thus if α is large enough, then we have strong polynomial tractability for the fully
permutation-invariant problem, whereas the integration problem on the full space is
not even weakly tractable.

Remark 3.8 Let us stress the point that there is a trade-off between our growth con-
ditions on the subsets Id and the decay conditions on the weight parameters β1 which
are typically imposed to achieve tractability. To give an example, we see that the
factor (

1 + 2β1νR(α)

β0

)(d−#Id )/2

≤ exp

(
νR(α)

β0
β1 (d − #Id)

)

in Eq. 3.7 is upper bounded polynomially in d if

β1 = β1(d) ≤ C
ln(d + 1)

max{d − #Id, 1}
for some C > 0 and all d. If #Id is uniformly bounded, then this condition coin-
cides with the well-known assumption stated in Proposition 3.7. Moreover, in this
case Eq. 3.5 is always fulfilled (at least for d ≥ d0). In contrast, allowing a growth
of Id with the dimension leads us to weaker restrictions on β1 such that finally con-
stant β1 is sufficient for (strong) polynomial tractability provided that Eq. 3.5 is
fulfilled.

4 Rank-1 lattice rules

This section contains our main results. Here we analyze unshifted and shifted rank-
1 lattice rules for the approximation of the integral (2.1) of Id -permutation-invariant
functions from the Korobov-type spaces Fd(rα,β) defined in Section 2. First of all we
give an exact error formula which holds for general cubature rules Qd,n of the form
(2.8). The proof can be found in the Appendix.
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Lemma 4.1 For d, n ∈ N let Qd,n denote a general cubature rule given by Eq. 2.8.
Then its worst case error on the Id -permutation-invariant subspace of Fd(rα,β)

satisfies

ewor(Qd,n;SId
(Fd(rα,β )))2n

= r−1
α,β(0)

⎛
⎝1 − 2

n

n−1∑
j=0

wj

⎞
⎠+

∑
h∈Zd

r−1
α,β(h)

(
1

n

n−1∑
�=0

w� exp(−2πih · t (�))

)

×
⎛
⎝ 1

#Sd

∑
P∈Sd

1

n

n−1∑
j=0

wj exp(2πiP (h) · t (j))

⎞
⎠ .

Remark 4.2 Note that, as for the standard space, the first part of the squared
worst case error only depends on r−1

α,β(0) and wj . Thus, it cannot be reduced by
permutation-invariance encoded by Id . Moreover, for QMC rules this term simplifies
as usual.

Before we turn to (randomly) shifted rank-1 lattice rules let us consider unshifted
rules first.

4.1 Lower bounds for unshifted rules

Given natural numbers n and d, an n-point rank-1 lattice rule Qn(z) is a QMC rule
(i.e., it takes the form (2.8) with w0 = · · · = wn−1 = 1) which is fully determined
by its generating vector z ∈ Z

d
n = {0, 1, . . . , n − 1}d . It uses points t (j) from an

integration lattice L = L(z) induced by z:

t (j) =
{

zj

n

}
= zj

n
mod 1 for j = 0, 1, . . . , n − 1.

This choice is reasonable since we have the following character property over Zd
n

w.r.t. the trigonometric basis:

1

n

n−1∑
j=0

exp(2πi(h · z)j/n) =
{
1 if h · z ≡ 0 (mod n),

0, otherwise.
(4.1)

As usual, we collect those h ∈ Z
d for which this sum is one in the set L⊥, called the

dual lattice.

Proposition 4.3 For d ∈ N let Qn(z) denote an arbitrary (unshifted) rank-1 lattice
rule as defined above. Then its worst case error on the Id -permutation-invariant
subspace of Fd(rα,β) satisfies

ewor(Qn(z);SId
(Fd(rα,β)))2 =

∑
0�=h∈L⊥

r−1
α,β(h)

#Sd

∑
P∈Sd

1P(h)∈L⊥ .
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Proof The proof directly follows from the definition of Qn(z), formula (4.1), and
Lemma 4.1:

ewor(Qn(z);SId
(Fd(rα,β)))2

= −r−1
α,β(0) +

∑
h∈Zd

r−1
α,β(h) 1h∈L⊥

⎛
⎝ 1

#Sd

∑
P∈Sd

1P(h)∈L⊥

⎞
⎠ .

Remark 4.4 This expression also holds for general rank lattice rules.

Denoting the nth minimal worst case error among all unshifted lattice rules by

elat(n, d;SId
(Fd(rα,β))) = inf

z∈Zd
n

ewor(Qn(z);SId
(Fd(rα,β))), d, n ∈ N,

we obtain the following negative result.

Theorem 4.5 For every d, n ∈ N and all choices Id ⊆ {1, . . . , d}, it holds

elat(n, d;SId
(Fd(rα,β))) ≥

⎛
⎝ ∑

0�=h∈Zd

r−1
α,β(nh)

⎞
⎠

1/2

≥ e(0, d;SId
(Fd(rα,β)))

([
1+ 2β1νR(α)

β0

1

n2α

]d

−1

)1/2

.

Proof For any lattice rule Qn(z) we always have that nZd ⊆ L⊥. In view of
Proposition 4.3 this establishes the lower bound

ewor(Qn(z);SId
(Fd(rα,β)))2 ≥

∑
0 �=h∈nZd

r−1
α,β(h)

#Sd

∑
P∈Sd

1P(h)∈L⊥

=
∑

0 �=h∈Zd

r−1
α,β(nh).

The properties of rα,β and R moreover yield

∑
0�=h∈Zd

r−1
α,β(nh) =

d∏
�=1

[
β0 + 2β1

∞∑
m=1

R(nm)−2α

]
− βd

0

= βd
0

⎛
⎝
[
1 + 2β1

β0

∞∑
m=1

R(nm)−2α

]d

− 1

⎞
⎠

≥ βd
0

([
1 + 2β1νR(α)

β0

1

n2α

]d

− 1

)
.

Since βd
0 = Sd = e(0, d;SId

(Fd(rα,β)))2 taking the square root and passing to the
infimum over all z ∈ Z

d
n proves the claim.
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Remark 4.6 Note that for fixed n the term in the brackets grows exponentially in the
dimension d. From Bernoulli’s inequality it moreover follows that for all d, n ∈ N

[
1 + 2β1νR(α)

β0

1

n2α

]d

− 1 ≥ c d n−2α,

where c = 2β1νR(α)/β0 is independent of d and n. Furthermore, this estimate is
sharp (up to some absolute constant), provided that n grows at least polynomially
with d. To see this assume that n satisfies c d n−2α ≤ c1 for some 0 < c1 < 1 and c

as before. Then 1+ x ≤ exp(x) for all x ≥ 0, and exp(y) ≤ 1/(1− y) for all y < 1,
implies

[
1 + c

n2α

]d − 1 ≤ exp

(
c d

n2α

)
− 1 ≤ 1

1 − c d n−2α
− 1 = c d n−2α

1 − c d n−2α

≤ c

1 − c1
d n−2α

which proves the claim.

We derive the following tractability result which is in sharp contrast to Theorem
3.6.

Corollary 4.7 Consider the integration problem on the Id -permutation-invariant
subspaces SId

(Fd(rα,β)) in the worst case setting w.r.t. the normalized error
criterion. Then

• the optimal rate of convergence which can be attained by unshifted lattice rules
Qn(z) is upper bounded by α.

• independent of the problem parameters Id and rα,β , the class of unshifted lattice
rules Qn(z) is too small to obtain strong polynomial tractability.

4.2 Existence of good shifted rank-1 lattice rules

In contrast to the negative result for unshifted lattice rules from the previous section,
we will show here that there exist shifted lattice rules which satisfy the bound (3.7)
in Theorem 3.6.

Given n and d, an n-point shifted rank-1 lattice rule consists of an unshifted lattice
rule Qn(z), with generating vector z ∈ Z

d
n, whose points are shifted by some fixed

Δ ∈ [0, 1)d modulo 1, i.e.,

t (j) =
{

z j

n
+ Δ

}
=
(

z j

n
+ Δ

)
mod 1 for j = 0, 1, . . . , n − 1.

In what follows such a cubature rule will be denoted by Qn(z) + Δ. To show that
there exist good shifts Δ it is convenient to analyze the root mean squared worst case
error

E(Qn(z)) =
(∫

[0,1)d
ewor(Qn(z) + Δ;SId

(Fd(rα,β)))2dΔ

)1/2
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which is related to the shift-invariant kernel (associated to Kd,Id
)

Kshinv
d,Id

(x, y) =
∫

[0,1)d
Kd,Id

({x + Δ}, {y + Δ})dΔ, x, y ∈ [0, 1]d, (4.2)

as the next proposition shows.

Proposition 4.8 Let d ∈ N and Id ⊆ {1, . . . , d}. Then the shift-invariant kernel can
be written as

Kshinv
d,Id

(x, y) =
∑
k∈∇d

r−1
α,β(k)

#Sd

∑
P∈Sd

exp (2πiP (k) · (x − y)) , x, y ∈ [0, 1]d .

Moreover, for every unshifted rank-1 lattice rule Qn(z) we have

E(Qn(z))
2 = ewor

(
Qn(z);H shinv

d,Id

)2 =
∑

0�=k∈∇d

r−1
α,β(k)

#Sd

∑
P∈Sd

1P(k)∈L⊥ , (4.3)

where H shinv
d,Id

denotes the RKHS with kernel Kshinv
d,Id

and L⊥ is the dual lattice induced

by z ∈ Z
d
n.

Proof Step 1. From Eqs. 4.2 and 2.6 we derive that Kshinv
d,Id

(x, y) equals

∫
[0,1)d

∑
h∈Zd

r−1
α,β(h)

#Sd

exp (−2πih · {y + Δ})
∑

P∈Sd

exp (2πiP (h) · {x + Δ}) dΔ

=
∑
h∈Zd

r−1
α,β(h)

#Sd

exp (−2πih · y)

×
∑

P∈Sd

exp (2πiP (h) · x)

∫
[0,1)d

exp(2πi[P(h) − h] · Δ)dΔ,

where the latter integral is 1 if h = P(h) and 0, otherwise. By definition, for h ∈
Z

d there are exactly Md(h)! different permutations P ∈ Sd such that h = P(h).
Consequently, using Eq. 2.5 we obtain that

Kshinv
d,Id

(x, y) =
∑
h∈Zd

r−1
α,β(h)

#Sd

exp (2πih · (x − y)) Md(h)! (4.4)

=
∑
k∈∇d

r−1
α,β(k)

#Sd

∑
P∈Sd

exp (2πiP (k) · (x − y))

for every x, y ∈ [0, 1]d .
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Step 2. We use formula (2.9) for the worst case error in terms of the reproduc-
ing kernel, together with Eq. 5.2 from the proof of Lemma 4.1 (see Appendix) and
Eq. 4.2, to obtain

E(Qn(z))
2 = −r−1

α,β(0) + 1

n2

n−1∑
j,�=0

∫
[0,1)d

Kd,Id
({s(j) + Δ}, {s(�) + Δ})dΔ

= −r−1
α,β(0) + 1

n2

n−1∑
j,�=0

Kshinv
d,Id

(s(j), s(�))

= ewor(Qn(z);H shinv
d,Id

)2,

where s(j) = {z j/n}, j = 0, . . . , n − 1, denote the nodes used by Qn(z). The rest
of the claim now follows from the representation derived in Step 1.

Subsequently, we deduce the existence of good shifts. At this point we restrict
ourselves to lattice rules with a prime number of points as this simplifies proofs.

Theorem 4.9 For d ∈ N let Id ⊆ {1, . . . , d}. Given a prime number n ∈ N let Qn(z)

denote an arbitrary (unshifted) rank-1 lattice rule for the integration problem on the
Id -permutation-invariant subspace of Fd(rα,β). Then

• for some Δ∗ = Δ∗(z) ∈ [0, 1)d

ewor(Qn(z) + Δ∗;SId
(Fd(rα,β))) ≤ E(Qn(z)) ≤ ewor(Qn(z);SId

(Fd(rα,β))),

i.e., there exists a shift such that Qn(z) + Δ∗ performs better than Qn(z).
• the root mean squared worst case error w.r.t. Δ ∈ [0, 1)d satisfies

E(Qn(z)) ≥ e(0, d;SId
(Fd(rα,β)))

([
1 + 2β1μR(α)

β0
1

n2α

]d−#Id − 1

)1/2

×
⎛
⎝1 + 2

#Id∑
�=1

[
β1 μR(α�)1/�

β0

1

n2α

]�
⎞
⎠

1/2

if #Id < d , and

E(Qn(z)) ≥ e(0, d;SId
(Fd(rα,β)))

(
2

d∑
�=1

[
β1 μR(α�)1/�

β0

1

n2α

]�
)1/2

if #Id = d. In particular,

E(Qn(z)) ≥ c max{d − #Id, 1}1/2 n−α,

where c = √
2β1μR(α)/β0 does not depend on d and n.
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Proof Let Qn(z) be given. From Eq. 4.4 we obtain

E(Qn(z))
2 =

∑
0 �=h∈L⊥

r−1
α,β(h)

#Sd

Md(h)!

≤
∑

0 �=h∈L⊥

r−1
α,β(h)

#Sd

∑
P∈Sd

1P(h)∈L⊥ =ewor(Qn(z);SId
(Fd(rα,β)))2, (4.5)

where the last line is the squared worst case error for the unshifted lattice rule from
Proposition 4.3. The inequality holds since, by definition, Md(h)! is the number of
P ∈ Sd such that P(h) = h and we sum over all h ∈ L⊥. Due to the mean value
property, there clearly exists a shift Δ∗ ∈ [0, 1)d such that

ewor(Qn(z) + Δ∗;SId
(Fd(rα,β))) ≤ E(Qn(z)).

To prove the lower bounds we again use the fact that nZd ⊆ L⊥. To this end, we
first consider the case Id � {1, . . . , d}, i.e., I c

d = {1, . . . , d} \ Id �= ∅. By Jd we
denote the set of all indices h = (h1, . . . , hd) ∈ Z

d such that, for some u ⊆ Id ,

h
∣∣
I c
d

= nk and hj =
{

nh, if j ∈ u,

0, if j ∈ Id \ u
for k ∈ Z

d−#Id \ {0} and h ∈ Z \ {0}. By construction Jd ⊆ L⊥ \ {0} and for all
h ∈ Jd we haveMd(h)! = (#u)! (#Id − #u)!, as well as

r−1
α,β(h) = r−1

α,β(nk) β
#Id−#u
0 β#u

1 R(n |h|)−2α#u

= β
#Id

0 r−1
α,β(nk)

[
β1

β0

]#u
R(n |h|)−2α#u.

Thus, Eq. 4.5 implies

E(Qn(z))
2

≥
∑
h∈Jd
(u⊆Id )

Md(h)!
#Sd

r−1
α,β(h)

=
∑

0�=k∈Zd−#Id

(u=∅)

(#Id)!
(#Id)! β

#Id

0 r−1
α,β(nk)

+
#Id∑
�=1

∑
u⊆Id
#u=�

∑
0�=k∈Zd−#Id

∑
0�=h∈Z

�! (#Id − �)!
(#Id)! β

#Id

0 r−1
α,β(nk)

[
β1

β0

]�

R(n |h|)−2α�

= β
#Id

0

⎛
⎝ ∑

0�=k∈Zd−#Id

r−1
α,β(nk)

⎞
⎠
⎛
⎜⎜⎝1 +

#Id∑
�=1

∑
u⊆Id
#u=�

1(#Id

�

)
[
β1

β0

]� ∑
0�=h∈Z

R(n |h|)−2α�

⎞
⎟⎟⎠ .
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Similar to the proof of Theorem 4.5 we estimate

∑
0�=k∈Zd−#Id

r−1
α,β(nk) ≥ β

d−#Id

0

([
1 + 2β1μR(α)

β0

1

n2α

]d−#Id

− 1

)
,

as well as

∑
0�=h∈Z

R(n |h|)−2α� ≥ 2 n−2α�

∞∑
m=1

R(m)−2α� = 2

[
μR(α�)1/�

1

n2α

]�

for � = 1, . . . , #Id . Since #{u ⊆ Id |#u = �} = (#Id

�

)
for those �, it follows

E(Qn(z))
2

≥ βd
0

([
1 + 2β1νR(α)

β0
1

n2α

]d−#Id − 1

)⎛
⎝1 + 2

#Id∑
�=1

[
β1 μR(α�)1/�

β0

1

n2α

]�
⎞
⎠ .

The lower bound for the case Id = {1, . . . , d}, i.e., #Id = d, can be derived
similarly but then we need to exclude u = ∅ in order to ensure 0 /∈ Jd . Finally, we
use Bernoulli’s inequality (see Remark 4.6) and the fact that βd

0 equals the squared
initial error e(0, d;SId

(Fd(rα,β)))2 to complete the proof.

In order to show the existence of good shifted lattice rules, we are left with finding
generating vectors z ∈ Z

d
n such that E(Qn(z)) is upper bounded appropriately. In

view of Theorem 4.9 the best rate of convergence we can hope for is n−α and the
constants will be independent of the dimension d only if (d−#Id) ∈ O(1). Moreover,
it is known that already for d = 1 this rate cannot be improved. We refer to [10] for
details.

To derive the desired existence result we need a lemma which is based on the
character property (4.1). For its proof we refer to the Appendix.

Lemma 4.10 Let d ∈ N, h ∈ Z
d , and n ∈ N prime. Then

1

#Zd
n

∑
z∈Zd

n

1h∈L(z)⊥ = 1

n

n−1∑
j=0

d∏
�=1

1

n

n−1∑
z�=0

exp(2πi jh�z�/n)

=
{
1 if h ≡ 0 (mod n),

n−1, otherwise,

whereL(z)⊥ denotes the dual lattice induced by z and h ≡ 0 (mod n) is a shorthand
for h� ≡ 0 (mod n) for all 1 ≤ � ≤ d.

Now we are ready to establish the main result of this paper, the exis-
tence of shifted rank-1 lattice rules which nearly achieve O(n−α) convergence
for numerical integration of Id -permutation-invariant functions. To this end we
prove that for carefully chosen generating vectors the root mean squared worst
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case error decays with a rate arbitrarily close to α. For explicit component-by-
component constructions of such generating vectors we refer to the forthcoming
paper [8].

Theorem 4.11 Let d ∈ N, Id ⊆ {1, . . . , d}, and n ∈ N with n ≥ cR be prime. Then
there exists a generating vector z∗ ∈ Z

d
n such that the mean squared worst case error

of Qn(z
∗) + Δ w.r.t. all shifts Δ ∈ [0, 1)d satisfies

E(Qn(z
∗))2 ≤ (1 + cR)λ Cd,λ(rα,β)

1

nλ
for all 1 ≤ λ < 2α

with cR as defined in Section 2.1 and

Cd,λ(rα,β) =
⎛
⎝ ∑

0 �=h∈Zd

[
Md(h)!
#Sd

r−1
α,β(h)

]1/λ⎞⎠
λ

. (4.6)

Proof For the optimal choice z∗ ∈ Z
d
n which minimizes the mean squared worst

case error (4.3) and all λ > 0 we naturally have E(Qn(z
∗))2/λ ≤ E(Qn(z))

2/λ for
every z ∈ Z

d
n, i.e.,

E(Qn(z
∗))2/λ ≤ 1

#Zd
n

∑
z∈Zd

n

E(Qn(z))
2/λ.

We now use Eq. 4.5 to expand E(Qn(z))
2, z ∈ Z

d
n, and apply Jensen’s inequality (see

Lemma 5.1 in the Appendix) for p = 1 ≥ 1/λ = q to obtain

E(Qn(z))
2/λ =

⎛
⎝ ∑

0�=h∈L(z)⊥

Md(h)!
#Sd

r−1
α,β(h)

⎞
⎠

1/λ

≤
∑

0�=h∈L(z)⊥

[
Md(h)!
#Sd

r−1
α,β(h)

]1/λ

for all z ∈ Z
d
n. Combining both estimates yields

E(Qn(z
∗))2/λ ≤ 1

#Zd
n

∑
z∈Zd

n

∑
0�=h∈L(z)⊥

[
Md(h)!
#Sd

r−1
α,β(h)

]1/λ

=
∑

0�=h∈Zd

[
Md(h)!
#Sd

r−1
α,β(h)

]1/λ 1

#Zd
n

∑
z∈Zd

n

1h∈L(z)⊥ .

From Lemma 4.10 we derive

E(Qn(z
∗))2/λ

≤
∑

0 �=h∈Zd

h≡0 (mod n)

[
Md(h)!
#Sd

r−1
α,β(h)

]1/λ
+ 1

n

∑
0�=h∈Zd

∃� : h� �≡0 (mod n)

[
Md(h)!
#Sd

r−1
α,β(h)

]1/λ
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≤ ( cR

n

)2α/λ
∑

0�=h∈Zd

[
Md(h)!
#Sd

r−1
α,β(h)

]1/λ
+ 1

n

∑
0�=h∈Zd

[
Md(h)!
#Sd

r−1
α,β(h)

]1/λ

≤ 1+cR

n

∑
0�=h∈Zd

[
Md(h)!
#Sd

r−1
α,β(h)

]1/λ
,

where we used that for all h = nk ∈ nZd \ {0} it is

Md(nk)! = Md(k)! and r−1
α,β(nk) ≤

(cR

n

)2α|k|0
r−1
α,β(k) ≤

(cR

n

)2α
r−1
α,β(k),

since we assumed that λ < 2α as well as n ≥ cR .

As already stated in the introduction, not only the rate of convergence but also the
dependence of the error bounds on the dimension d plays an important role in modern
research and computational practice. As we will see in Proposition 4.12 below, for
fixed β = (β0, β1), the constant Cd,λ(rα,β) in the estimate stated in Theorem 4.11
can be bounded polynomially in d only if we restrict ourselves to the case λ = 1
which corresponds to the Monte Carlo rate of convergence n−1/2. Furthermore, even
in this case we need to assume reasonably small parameters β1, as well as enough
permutation-invariance conditions. In detail, we need

(d − #Id) ∈ O(ln d) and
β1

β0R(m)2α
< 1 for all m ∈ N

in order to avoid an exponential growth with the dimension. The proofs of the
following assertions are postponed to the Appendix.

Proposition 4.12 For d ∈ N, Id ⊆ {1, . . . , d}, rα,β as in Section 2, and λ ≥ 1
consider the constant Cd,λ(rα,β) defined by Eq. 6. Then

• Cd,λ(rα,β) is a monotonically increasing, continuous function of λ, i.e.,

Cd,λ(rα,β) ≤ Cd,μ(rα,β) for all 1 ≤ λ ≤ μ.

Moreover, for all λ ≥ 1 this constant scales with the squared initial error. That
is,

Cd,λ(rα,β) = e(0, d;SId
(Fd(rα,β)))2 Cd,λ(rα,(1,β1/β0)). (4.7)

• For λ = 1 and all m ∈ N we have

Cd,1(rα,β) = e(0, d;SId
(Fd(rα,β)))2

(
M2,d (Kd,Id

)

Sd(Kd,Id
)

− 1

)

≥ e(0, d;SId
(Fd(rα,β)))2

(
2

[
β1

β0 R(m)2α

]d

− 1

)
, (4.8)

where M2,d (Kd,Id
) and Sd(Kd,Id

) are given by Lemma 3.3 and Kd,Id
denotes

the reproducing kernel of SId
(Fd(rα,β)).
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• The constant Cd,λ(rα,β) is lower bounded as follows: In the fully permutation-
invariant case (#Id = d) it holds

Cd,λ(rα,β) ≥ e(0, d;SId
(Fd(rα,β)))2

×

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
d∑

�=1

(
β1

β0R(1)2α

)�

if λ = 1,

2λ

⎡
⎣
(
1 +

[
β1

β0 R(1)2α

]1/(λ−1)
)d

− 1

⎤
⎦

λ−1

if λ > 1,

whereas in the case #Id < d we have

Cd,λ(rα,β)

≥ e(0, d;SId
(Fd(rα,β)))2

[(
1 + 2

[
β1
β0

]1/λ
νR(α/λ)

)d−#Id

− 1

]λ

×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝1+ 2

#Id∑
�=1

[
β1

β0R(1)2α

]�
⎞
⎠ if λ = 1,

⎛
⎜⎝1+2λ

⎡
⎣
(
1+
[

β1

β0 R(1)2α

]1/(λ−1)
)#Id

−1

⎤
⎦

λ−1
⎞
⎟⎠ if λ > 1.

(4.9)

(If we do not have any permutation-invariance, i.e., if Id = ∅, then the lower
bound reduces to the first line (4.9) with d − #Id replaced by d.)

• Finally, if 1 < λ < 2α and A > 0 is chosen such that α > A + 1/2 > λ/2, then
for all γ > 0 there holds the upper bound

Cd,λ(rα,(β0,β1)) (4.10)

≤ Cd,1(rα−A,(β0, β1γ ))
([
1 + 2 γ −1/(λ−1) μR(A/(λ − 1))

]d − 1
)λ−1

< ∞.

Remark 4.13 If we allow weight parameters β1 which decay with the dimension d

then Eq. 4.10 can be used to bound Cd,λ(rα,(β0,β1)) polynomially in d also for λ > 1.
To this end, let us record that

[
1 + 2 γ −1/(λ−1) νR(A/(λ − 1))

]d ≤ exp

(
2μR(A/(λ − 1))

d

γ 1/(λ−1)

)

is polynomially upper bounded in d if γ = γ (d) is chosen such that

γ ≥ C

(
d

ln(d + 1)

)λ−1
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for some constant C > 0 and all d ∈ N. In order to bound the first factor in Eq. 4.9
we follow the lines of Section 3. Thus, it is sufficient to ensure that for all m ∈ N

2β1γ

β0R(m)2(α−A)
≤ 1 and β1γ ≤ C

ln(d + 1)

max{d − #Id, 1} ,

see Remark 3.8. Choosing γ as above then leads to the condition

β1 = β1(d) ≤ [ln(d + 1)]λ

dλ−1

c

max{ln(d + 1), d − #Id}
which generalizes the condition for λ = 1.

Recall that for fixed parameters rα,β and fixed dimension d the blowup of
the constant Cd,λ(rα,β) for λ > 1 is quite typical. Therefore the case λ = 1
deserves special attention. We summarize the final assertion for this case in the next
corollary.

Corollary 4.14 Let d ∈ N and Id ⊆ {1, . . . , d}. Then for all n ∈ N prime with
n ≥ cR there exists a shifted rank-1 lattice rule Qn(z

∗) + Δ∗ for integration of
Id -permutation-invariant functions in Fd(rα,β) such that

ewor(Qn(z
∗) + Δ∗;SId

(Fd(rα,β)))

≤ √
1 + cR

√
M2,d

(
Kd,Id

)
Sd

(
Kd,Id

) − 1 n−1/2 e(0, d;SId
(Fd(rα,β))). (4.11)

Therefore, up to some small constant, it realizes the bounds stated in Proposition 3.1
and Theorem 3.6, respectively. Consequently, our tractability results can be achieved
using shifted rank-1 lattice rules.

Proof Due to Theorem 4.11 (for λ = 1) there exists a generating vector z∗∈ Z
d
n such

that

E(Qn(z
∗)) ≤ √1 + cR

√
Cd,1(rα,β) n−1/2.

Moreover, the mean value property implies the existence of some Δ∗ = Δ∗(z∗) ∈
[0, 1)d with

ewor(Qn(z
∗) + Δ∗;SId

(Fd(rα,β))) ≤ E(Qn(z
∗)).

Consequently, Eq. 4.8 in Proposition 4.12 yields the claim.

Remark 4.15 Note that more elaborate estimates in the proof of Theorem 4.11 allow
to reduce the constant 1 + cR to 1 + δ with arbitrarily small δ > 0 when we assume
that n is larger than some constant only depending on α, λ, cR , and δ. This clearly
effects the bound (4.11) in Corollary 4.14 as well.
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Appendix

In this final section we collect the proofs of all lemmas and propositions we
postponed in the course of this paper.

Proof of Lemma 3.3

Proof Due to the definition of M1,d , M2,d , and Sd we can restrict ourselves to the
study of the extremal cases of the fully permutation-invariant spaces S(Fd(rα,β))

and the spaces Fd(rα,β) without any permutation-invariance since Eq. 2.7 implies

Xd(Kd,Id
) = X#Id

(K#Id ,{1,...,#Id }) Xd−#Id
(Kd−#Id

)

for X ∈ {S, M1, M2}.
For the fully permutation-invariant spaces Hd = S(Fd(rα,β)) induced by K =

Kd,{1,...,d}, as well as for the entire spaces Hd = Fd(rα,β), where K = Kd , the initial

error for integration clearly equals β
d/2
0 . This proves Sd(Kd,Id

) = βd
0 .

We turn to the derivation of M2,d . If Hd = Fd(rα,β) then

M2,d (Kd) =
(∫ 1

0
K1(x, x) dx

)d

=
(∑

h∈Z
r−1
α,β(h)

)d

=
∑
h∈Zd

r−1
α,β(h)

due to the (tensor) product structure of the objects involved. Using the definition of
rα,β for d = 1 we see that
∑
h∈Z

r−1
α,β(h) =

∑
h∈Z

(
δ0,hβ0 + (1 − δ0,h)β1R(|h |)−2α

)
= β0 + 2β1

∑
m∈N

R(m)−2α

= β0 + 2β1νR(α),

where νR(α) is given by Eq. 2.2. Thus, we have shown that

M2,d (Kd) = βd
0

(
1 + 2β1νR(α)

β0

)d

.

Since K1(x, x) is constant with respect to x ∈ [0, 1] we see that M1,d (Kd) =
M2,d (Kd) which finally implies (3.2).

For the fully permutation-invariant case we need a little more effort. We restrict
ourselves to M2,d . In this case,

M2,d (Kd,{1,...,d}) =
∑
k∈∇d

r−1
α,β(k)

Md(k)!
∑

P∈Sd

∫
[0,1]d

exp(2πi(k − P(k)) · x)dx.

It is clear that the integral is 1 whenever k = P(k), which happens exactly Md(k)!
times out of all P ∈ Sd , and 0 otherwise. Thus, we get

M2,d (Kd,{1,...,d}) =
∑
k∈∇d

r−1
α,β(k).

Now the (tensor) product structure of the set ∇d , see Eq. 2.4, the weights rα,β , the
kernel Kd,Id

, see Eq. 2.7, and the quantity M2,d , implies that the latter expression
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remains valid for K = Kd,Id
with arbitrary subsets ∅ �= Id ⊆ {1, . . . , d}. Finally,

note that for #Id < 2 we have ∇d = Z
d which completes the proof.

Proof of Lemma 3.5

Proof We first note the following equality

∑
k∈Ns

0
m≤k1≤···≤ks

λs,k = λs
m +

s∑
�=1

λs−�
m

∑
j∈N�

m+1≤j1≤···≤j�

λ�,j for all s ∈ N, (5.1)

which follows by considering � of the kj ’s to be larger than m and by the product
structure of λs,k . We now prove Eq. 3.3 via induction on V ∈ N0. Therefore, let
d ∈ N be fixed arbitrarily. Setting s = d and m = 0 in Eq. 5.1 corresponds to Eq. 3.3
with V = 0. Thus, assume Eq. 3.3 to be true for some fixed V ∈ N0. Then, by using
Eq. 5.1 for s = L and m = V + 1, we see that the right hand side of Eq. 3.3 equals

λd
0 dV

⎛
⎜⎜⎜⎝1+V +

d∑
L=1

λ−L
0

⎛
⎜⎜⎜⎝λL

V +1+
L∑

�=1

λL−�
V +1

∑
j∈N�

V +2≤j1≤···≤j�

λ�,j

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

= λd
0 dV

(
1+V+

d∑
L=1

(
λV +1

λ0

)L

+
d∑

L=1

L∑
�=1

(
λV +1

λ0

)L−�

λ−�
0

∑
j∈N�

(V +1)+1≤j1≤···≤j�

λ�,j

)
.

We now decouple the double sum by letting � go up to d. The sums on L can then
be bounded by d as (by assumption) we have λV +1/λ0 ≤ 1. Now also bounding
1 + V ≤ d (1 + V ) we obtain

∑
k∈Nd

0
0≤k1≤···≤kd

λd,k ≤ λd
0 dV +1

⎛
⎜⎜⎜⎝1 + (V + 1) +

d∑
�=1

λ−�
0

∑
j∈N�

(V +1)+1≤j1≤···≤j�

λ�,j

⎞
⎟⎟⎟⎠

which completes the induction step.

Proof of Lemma 4.1

Proof Using Eq. 2.6 we obtain∫
[0,1]d

Kd,Id
(x, y)dx

=
∑

P∈Sd

∑
h∈Zd

r−1
α,β(h)

#Sd

exp (−2πih · y)

∫
[0,1]d

exp (2πih · P(x)) dx

= r−1
α,β(0) (5.2)
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independent of y ∈ [0, 1]d since the last integral equals one for h = 0 and zero
otherwise. Therefore ∫

[0,1]d

∫
[0,1]d

Kd,Id
(x, y)dxdy = r−1

α,β(0)

and

−2

n

n−1∑
j=0

wj

∫
[0,1]d

Kd,Id
(x, t (j))dx = − r−1

α,β(0)
2

n

n−1∑
j=0

wj .

The remaining term in Eq. 2.9 is the double cubature sum for which we obtain

1
n2

n−1∑
j,�=0

wj w� Kd,Id
(t (j), t (�))

=
∑
h∈Zd

r−1
α,β(h)

(
1

n

n−1∑
�=0

w� exp(−2πih · t (�))

)

×
⎛
⎝ 1

#Sd

∑
P∈Sd

1

n

n−1∑
j=0

wj exp(2πih · P(t (j)))

⎞
⎠

which directly follows from Eq. 2.6. Summing up the three contributions and
replacing P by P −1 now proves the claim.

Proof of Lemma 4.10

Proof The first equality in the statement of Lemma 4.10 follows from the character
property (4.1) and Zn = {0, 1, . . . , n − 1} since

1

#Zd
n

∑
z∈Zd

n

1h∈L(z)⊥ = 1

nd

∑
z1∈Zn

· · ·
∑

zd∈Zn

1

n

n−1∑
j=0

exp

(
2πi

j

n

d∑
�=1

h�z�

)

= 1

n

n−1∑
j=0

d∏
�=1

1

n

n−1∑
z�=0

exp(2πi h�(jz�)/n).

For j = 0 we have
d∏

�=1

1

n

n−1∑
z�=0

exp(0) = 1,

while for j �= 0 and n prime we have that jZn = Zn and thus for each 0 < j < n it
holds

d∏
�=1

1

n

n−1∑
z�=0

exp(2πi h�z�/n) =
d∏

�=1

{
1, if hj ≡ 0 (mod n),

0, otherwise

=
{
1, if all hj ≡ 0 (mod n),

0, otherwise.

This proves the claim as (1 + (n − 1))/n = 1 and (1 + 0)/n = n−1.
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Proof of Proposition 4.12

For the reader’s convenience let us first recall a standard estimate which is sometimes
referred to as Jensen’s inequality.

Lemma 5.1 Let (aj )j∈N denote an arbitrary sequence of non-negative real numbers.
Then, for every 0 < q ≤ p < ∞, it holds

⎛
⎝ ∞∑

j=1

a
p
j

⎞
⎠

1/p

≤
⎛
⎝ ∞∑

j=1

a
q
j

⎞
⎠

1/q

whenever the right-hand side is finite.

The proof of Proposition 4.12 now reads as follows:

Proof Step 1. To show the monotonicity of Cd,λ(rα,β) we simply apply Jensen’s
inequality with the exponent p = μ/λ ≥ 1 = q. The continuous dependence on λ

follows from the fact that �p-sequence norms are continuous w.r.t. p and the repre-
sentation (4.7) can easily be verified since the squared initial error onSId

(Fd(rα,β))

is given by βd
0 ; see Eq. 3.1.

Step 2. For λ = 1 the identities proven in Lemma 3.3 together with Eq. 2.5 show
that Cd,1(rα,β) equals

∑
0�=h∈Zd

Md(h)!
#Sd

r−1
α,β(h) =

∑
h∈Zd

Md(h)!
#Sd

r−1
α,β(h) − βd

0 =
∑
k∈∇d

r−1
α,β(k) − βd

0

= βd
0

(
M2,d (Kd,Id

)

Sd(Kd,Id
)

− 1

)

which agrees with Eq. 4.8. To prove the lower bound we note that for every m ∈ N

the vector m = (m, . . . , m) as well as its negative belong to the set ∇d such that

∑
k∈∇d

r−1
α,β(k) ≥ 2 r−1

α,β(m) = 2
[
β1 R(m)−2α

]d
.

Step 3. The proof of the remaining lower bounds is based on the arguments already
used in the proof of Theorem 4.9. There we defined sets of indices Jd ⊂ Z

d \ {0}
whose elements behave well under permutations P ∈ Sd . Using essentially the same
calculations we obtain the bounds

Cd,λ(rα,β) ≥ βd
0

(
2

d∑
�=1

(
d

�

)1−1/λ [
β1

β0

]�/λ

νR(α �/λ)

)λ
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if #Id = d, and

Cd,λ(rα,β) ≥ βd
0

[(
1 + 2

[
β1
β0

]1/λ
νR(α/λ)

)d−#Id

− 1

]λ

×
⎛
⎝1 + 2

#Id∑
�=1

(
#Id

�

)1−1/λ[
β1

β0

]�/λ

νR(α �/λ)

⎞
⎠

λ

if #Id < d (where the second factor is not present for #Id = 0). Note that both the last
formulas hold true for general λ ≥ 1 (but observe that νR(x) is infinite for x ≤ 1/2)
and that for every � ∈ N we have the lower estimate

νR(α �/λ) =
∞∑

m=1

R(m)−2α �/λ ≥
[

1

R(1)2α

]�/λ

.

This proves the lower bounds for the case λ = 1. Thus we are left with the case
λ > 1. Here the bound for Id = ∅ is obvious. For #Id > 0 we use Jensen’s inequality
(Lemma 5.1) with q = 1 − 1/λ < 1 = p and the binomial theorem to obtain

#Id∑
�=1

(
#Id

�

)1−1/λ[
β1

β0 R(1)2α

]�/λ

=
⎛
⎜⎝
⎡
⎣ #Id∑

�=1

((
#Id

�

)[
β1

β0 R(1)2α

]�/(λ−1)
)1−1/λ

⎤
⎦
1/(1−1/λ)

⎞
⎟⎠

1−1/λ

≥
⎛
⎝ #Id∑

�=1

(
#Id

�

)[
β1

β0 R(1)2α

]�/(λ−1)
⎞
⎠

1−1/λ

=
⎛
⎝
(
1 +

[
β1

β0 R(1)2α

]1/(λ−1)
)#Id

− 1

⎞
⎠

1−1/λ

.

Consequently, we have
⎛
⎝2

#Id∑
�=1

(
#Id

�

)1−1/λ [
β1

β0

]�/λ

νR(α �/λ)

⎞
⎠

λ

≥2λ

⎡
⎣
(
1+
[

β1

β0 R(1)2α

]1/(λ−1)
)#Id

−1

⎤
⎦

λ−1

(5.3)

which yields the bound for #Id = d. For 0 < #Id < d we apply Jensen’s inequality
once again (this time with q = 1 < λ = p) and derive

⎛
⎝1 + 2

#Id∑
�=1

(
#Id

�

)1−1/λ [
β1

β0

]�/λ

νR(α �/λ)

⎞
⎠

λ
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≥ 1 +
⎛
⎝2

#Id∑
�=1

(
#Id

�

)1−1/λ [
β1

β0

]�/λ

νR(α �/λ)

⎞
⎠

λ

.

The assertion now follows from Eq. 5.3.
Step 4. It remains to show the upper bound (4.10). Therefore let λ, A, and γ be

given and note that the restrictions on the choice of A are equivalent to

α − A >
1

2
and

A

λ − 1
> 1/2.

Hence the quantities νR(α − A) (which appears in Cd,1(rα−A,(β0,β1γ ))), as well as
νR(A/(λ − 1)) (which appears in the other factor), are finite. Applying Hölder’s
inequality yields

Cd,λ(rα,(β0,β1))
1/λ

=
∑

0�=h∈Zd

[
Md(h)!
#Sd

r−1
α,(β0,β1)

(h) rA,(1,1/γ )(h)

]1/λ
r
−1/λ
A,(1,1/γ )(h)

≤
⎛
⎝ ∑

0�=h∈Zd

Md(h)!
#Sd

r−1
α−A,(β0,β1γ )(h)

⎞
⎠

1/λ⎛
⎝ ∑

0�=h∈Zd

r
−1/(λ−1)
A,(1,1/γ ) (h)

⎞
⎠

1−1/λ

,

since r−1
α,(β0,β1)

(h) rA,(1,1/γ )(h) = r−1
α−A,(β0,β1γ )(h) for every h ∈ Z

d . Now the first
sum obviously equals Cd,λ(rα−A,(β0,β1γ )), whereas the second sum can be calculated
in the usual way using the tensor product structure of r:

∑
0 �=h∈Zd

r
−1/(λ−1)
A,(1,1/γ ) (h) =

∑
h1∈Z

· · ·
∑
hd∈Z

d∏
�=1

r
−1/(λ−1)
A,(1,1/γ ) (h�) − 1

=
[
1 + 2 γ −1/(λ−1) νR(A/(λ − 1))

]d − 1.

This completes the proof.
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6. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems. Vol. II: Standard Information

for Functionals, EMS Tracts in Mathematics, vol. 12, European Mathematical Society (EMS), Zürich
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