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Abstract We address the inverse problem of retrieving the shape of an obstacle with
impedance in the form of a surface wave operator using the knowledge of electromag-
netic scattering amplitude at a fixed frequency. We prove unique reconstructions from
infinitely many measures. We then provide a characterization of the scattering ampli-
tude derivative with respect to the obstacle shape. This derivative includes the case
of shape dependent impedance parameters. We then employ a gradient-descent algo-
rithm with H 1 boundary regularisation of the descent direction to numerically solve
the inverse problem. The procedure is validated for three dimensional geometries
using synthetic data.
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1 Introduction

We investigate the inverse problem of retrieving the shape of coated obstacles from
electromagnetic measurements of the scattering amplitude at a fixed frequency. The
specificity of our work compared to the vast literature on inverse scattering problems
[14], is to address coating models for which the impedance is written as a surface
wave operator. They can also be referred to as generalized impedance boundary con-
ditions [4, 16]. They provide accurate models for thin dielectric coatings, imperfectly
conducting obstacles or corrugated surfaces [17] and they can also be used as models
for plasmonic waves [30]. Considering inverse problems with generalised impedance
boundary conditions has been proposed in [7] and further developed in [5, 9, 10, 12].

The focus of our work is on the use of shape optimisation techniques to solve
the above mentioned inverse problem. Using an adaptation of the mixed-reciprocity
technique [23, 29], we first investigate the identifiability issue and prove in particular
uniqueness of the shape reconstruction (independently from the operator coefficients)
from the knowledge of infinitely many scattering amplitudes associated with differ-
ent directions of incident waves. The case of finitely many measures is known to be
challenging and left open.

We then address the main topic of this work: characterise the shape derivative of
the electromagnetic scattering amplitude. This problem is technically hard, first due
to the inherent complexity of Maxwell’s equations and second due to the presence
of a surface wave operator in the boundary condition. We employ a methodology
similar to the one in [18, 25] where the expression of the derivative is determined
using the integral representation of the solution in terms of the Green’s function of the
unperturbed domain. Although based on integral representations of the solutions, the
method leads to an explicit expression of the derivative in terms of surface differential
operators. Moreover, one is able to deal with cases where the impedance operator
coefficients are also unknown and to define a derivative that depends on the geometry
and the impedance operator. This type of derivative has been proposed in [5] for the
scalar case and shown to be useful in simultaneous reconstructions of the geometry
and the impedance coefficients.

We then exploit the derivative to solve the inverse scattering problem using a gra-
dient descent technique associated with a least squares misfit functional. We employ
an adjoint-state technique in order to compute the cost functional’s derivative. The
slightly uncommon feature of our algorithm is the incorporation of a surface H 1 reg-
ularisation of the descent direction by solving a surface Laplace Beltrami problem.
This smoothing is stronger than the one usually used in shape optimisation problems
[1, 2] and turned out to be essential in order to stabilise the inversion. This method-
ology has the advantage of freeing the number of parameters (mesh points) used to
parametrise the geometry during iterations. Indeed the expression of the shape deriva-
tive can also be used in parametrisation-dependent techniques, such as Newton type
methods [19, 21, 22, 26], but this issue will not be discussed in the present work.

We conclude our paper with validating 3D numerical examples for generalised
impedance boundary conditions. The problem is solved using FreeFem++ [20] and
Nédélec’s edge elements. The radiation condition is ensured using a first order radi-
ation condition on a surface that encloses the computational domain. Inverse crime
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is avoided in our simulations since the 3D mesh is different at each iteration step and
the final mesh (and reconstructed domain) are quite different from the one used to
compute the synthetic data.

The outline of our article is as follows. We formulate the direct and inverse scat-
tering problems in Section 2. We investigate in Section 3 the uniqueness issue for
infinitely many measures after proving mixed reciprocity relations. Section 4 con-
tains the main result of this paper related to the scattering amplitude derivative with
respect to the obstacle shape. Section 5 is dedicated to the presentation of the inver-
sion scheme based on gradient descent with regularised descent direction and an
adjoint technique method to compute the cost functional derivative. We end this
section with some three dimensional validating numerical results. The proofs of some
technical results for surface differential operators is given in an Appendix.

2 The forward and inverse problems

2.1 The generalized impedance boundary condition scattering problem

Let � be a bounded open set of R3 with C2 boundary �. We denote by ν the outward
unit normal to � and by �ext := R

3 \ � that we assume to be a connected set. The
scattering of an incident electromagnetic wave (Ei ,Hi ) by an obstacle characterised
by a Generalized Impedance Boundary Condition (GIBC) gives rise to a scattered
electromagnetic wave (Es ,Hs) that solves

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

curl Hs + ikEs = 0 in �ext,

curl Es − ikHs = 0 in �ext,

ν × Es + curl�(ηcurl�Hs
T ) + λHs

T = f on �,

lim
R→∞

∫

∂BR

|Hs × x̂ − (x̂ × Es) × x̂|2ds = 0

(1)

with

f := −
(
ν × Ei + curl�(ηcurl�H

i
T ) + λHi

T

)
on �. (2)

In these equations, BR is the ball of radius R, x̂ = x/|x|, k is the wavenumber of the
incident wave and for any vector field V ∈ (L2(�))3 we denote by VT := (ν×V )×ν

its tangential component that belongs to L2
t (�) := {V ∈ (L2(�))3 | V · ν = 0}. The

differential operators curl� and curl� are respectively the scalar and vector surface
curl operators which are adjoint to each other. We refer to [28, Section 2.5.6] for a
precise definition of these operators (see also Eq. 3 below). Finally, the parameters
λ and η in the boundary condition are two complex valued functions of L∞(�).
Problem (1) is well defined for any f ∈ Hcurl� (�)∗ the dual space of Hcurl� (�) :=
{V ∈ L2

t (�) | curl�V ∈ L2(�)} which is endowed with the graph norm. Let us
introduce the spaces

H ext
curl(�ext) := {V ∈ (D′(�ext))

3 | ϕV ∈ Hcurl(�ext), ∀ ϕ ∈ C∞
0 (R3}

VH(�ext) := {V ∈ H ext
curl(�ext) | VT ∈ Hcurl� (�)}
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where for any open set D, Hcurl(D) := {V ∈ (L2(D))3 | curl V ∈ (L2(D))3}. We
also need the Hilbert space

VH,R := {V ∈ Hcurl(� ∩ BR) | VT ∈ Hcurl� (�)}.
endowed with the graph norm denoted by ‖·‖VH,R

. Let us recall the following theorem
from [11].

Theorem 2.1 Let (λ, η) ∈ (L∞(�))2 be such that


(λ) ≥ 0, 
(η) ≥ 0, |λ| ≥ c and |η| ≥ c a.e. on �

for some constant c > 0, and assume the imaginary parts of λ and η do not change
sign on �. Then for all f ∈ Hcurl� (�)∗ problem (1) has a unique solution (Es ,Hs) ∈
H ext

curl(�ext)×VH(�ext). Moreover, for all ballBR that contains� there existsCR > 0
independent of f such that

‖Es‖Hcurl(�R) + ‖Hs‖VH,R
≤ CR‖f ‖Hcurl� (�)∗

where �R := � ∩ BR .

From now on, we assume that the impedance functions λ and η satisfy the assump-
tions of Theorem 2.1. In the following we will need additional regularity for the
solution to problem (1). In this view, let us introduce the surface divergence operator
div� which is the negative adjoint of the surface gradient ∇� . We recall the following
algebraic relations that link the different differential operators introduced here above

ν · (curl V )|� = curl�VT = −div�(ν × V ) and curl�v = −ν × ∇�v (3)

where V is vector field defined in a neighbourhood of � and v is a function
defined on �. For regular boundaries (C∞) we also define fractional Sobolev
spaces Hs

div�
(�) := {V ∈ Hs

t (�) | div�V ∈ Hs(�)} and Hs
curl�

(�) := {V ∈
Hs

t (�) | curl�V ∈ Hs(�)}whereHs
t (�) is the closure of {V ∈ (C∞(�))3 | V ·ν = 0}

in (Hs(�))3 and s ∈ R.
Under additional regularity assumptions on λ, η and � we have the following

regularity property for the electromagnetic field.

Proposition 2.2 Let � be of class Cs+2, and let us assume that λ and η are in
Cs+1(�). For any f ∈ Hcurl� (�)∗ ∩ H

s−1/2
div�

(�) for s ≥ 0, if (E,H) ∈ H ext
curl(�ext) ×

VH(�ext) satisfies problem (1) then (E,H) ∈ (Hs+1(�R)3 × (Hs+1(�R))3 for all
ball BR of radius R such that � ⊂ BR .

Proof Using div�curl� = 0, the boundary condition satisfied by (E,H) implies
div�(λHT ) = −div�(ν × E) + div�f ∈ H−1/2(�) since E ∈ H ext

curl(�ext) and f

is in H
−1/2
div�

(�). Combined with curl�HT ∈ L2(�) because HT ∈ Hcurl� (�), this

implies HT ∈ (H 1/2(�))3. Hence, applying classical regularity results for Maxwell’s
equations [3, Corollary 2.15] to the magnetic field H, we obtain H ∈ (H 1(�R))3. In



Electromagnetic inverse shape problem for coated obstacles 1183

addition, curl�(ηcurl�HT ) = −ν × E − λHT + f ∈ H−1/2(�) whence curl�HT ∈
H 1/2(�) and from Maxwell’s equations we have

ν · E = − 1

ik
ν · curl H = − 1

ik
curl�HT ∈ H 1/2(�). (4)

Therefore, using again regularity results [3, Corollary 2.15], we deduce that E ∈
(H 1(�R))3. To obtain further regularity let us remark that similarly to Eq. 4 we have

div�(ν × E) = −ν · curl E = −ikν · H ∈ H 1/2(�).

We then obtain the desired result by induction on s.

2.2 Statement of the inverse problem

We recall that any solution (E,H) to Maxwell’s equations

curl H + ikE = 0 , curl E − ikH = 0 (5)

outside some bounded Lipschitz domain D that also satisfies the Silver-Müller radi-
ation condition (the last equation in system (1)) admits the following asymptotic
behaviour

E(x)= eik|x|

|x|
(

E∞(x̂)+O
(

1

|x|
))

, H(x)= eik|x|

|x|
(

H∞(x̂)+O
(

1

|x|
))

|x|→+∞

uniformly for all direction x̂ ∈ S2 where S2 denotes the unit sphere of R3. This
asymptotic behaviour uniquely defines the far field patterns E∞ and H∞ as functions
of L2

t (S
2) and we have the following representation formula

E∞(x̂) = ik

4π
x̂ ×

∫

∂D

{ν(y) × E(y) + [ν(y) × H(y)] × x̂}e−ikx̂·yds(y),

and H∞(x̂) = x̂ × E∞(x̂). We refer to [14] or [24] for general results about
electromagnetic scattering theory.

Following the notations in [24] let us introduce the incident electromagnetic plane
waves with incidence direction θ̂ ∈ S2 as being described by the matrices E i (x, θ̂)

and H i (x, θ̂ ) which are defined for a polarisation p ∈ S2 by

E i (x, θ̂)p := − 1

ik
curlxcurlx(peikx·θ̂ ) = ik((θ̂ × p) × θ̂ )eikx·θ̂ ,

H i (x, θ̂)p := curlx(peikx·θ̂ ) = ik(θ̂ × p)eikx·θ̂ .
(6)

Each pair of corresponding columns of E i (·, θ̂ ) andH i (·, θ̂ ) satisfy Maxwell’s Eq. 5
in R3. Since problem (1) is linear with respect to the right-hand side f , we can define
the scattered field matrices E s(·, θ̂ ) and H s(·, θ̂ ) where for any polarisation p ∈ S2,
the electromagnetic field (E s(x, θ̂)p, H s(x, θ̂)p) solves problem (1) with f being
given by Eq. 2 for Ei (x) = E i (x, θ̂ )p and Hi (x) = H i (x, θ̂)p. We also denote by
E ∞(x̂, θ̂ ) the matrix representation of the far field pattern associated with E s(x, θ̂)

and by

E (x, θ̂) = E i (x, θ̂ ) + E s(x, θ̂) and H (x, θ̂) = H i (x, θ̂) + H s(x, θ̂)
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the total fields. In what follows, we will frequently make use this matrix field nota-
tion. We define the curl of a matrix M = (m1, m2, m3) where m1, m2 and m3 are
column vectors as being given by the matrix curlM := (curl m1, curl m2, curl m3).
Similarly, for M = (m1, m2, m3)

T where m1, m2 and m3 are row vectors we define
the divergence of M as the column vector divM := (div(m1), div(m2), div(m3))

T

where T stands for the transpose of a vector or a matrix. Moreover, the surface
differential operator curl� is defined for M by the row vector field curl�M :=
(curl�m1, curl�m2, curl�m3) and the vector curl� operator is defined for a row vec-
tor field V = (v1, v2, v3) by the matrix curl�V := (curl�v1, curl�v2, curl�v3).
Finally, for a column vector V and a matrix M we set V × M = −M × V :=
(V × m1, V × m2, V × m3) and by extension MT := (ν × M) × ν where the normal
vector ν is considered as a column vector.

For fixed λ and η we address the question of reconstructing the shape � from the
knowledge of the far field pattern E∞(x̂, θ̂ ) for any (x̂, θ̂ ). We establish in the next
section a uniqueness result for this inverse problem and in Section 4 we compute the
derivatives of the far field patterns with respect to �. This derivative can then be used
to solve the inverse problem with a non linear optimisation technique as the one pre-
sented in Section 5. We shall numerically demonstrate that in practice a small number
of incident waves would be sufficient to obtain accurate shape reconstructions.

3 Uniqueness for infinitely many incident waves

We prove in this section that the knowledge of E ∞(x̂, θ̂ ) for all (x̂, θ̂ ) ∈ (S2)3

uniquely determines �. The main result of this section is stated in the theorem below
and can be seen as an extension of the case η = 0 treated in [8, Theorem 3.1] for
example.

Theorem 3.1 Let �1 and �2 be two boundaries of class C2 and λ and η be two
complex valued functions defined on �1 and �2 such that λ ∈ C1(�1) ∩ C1(�2)

and η ∈ C1(�1) ∩ C1(�2) satisfy the assumptions of Theorem 2.1. Let us denote by
E ∞
1 (respectively E ∞

2 ) the far field pattern associated with �1, λ and η (respectively

�2, λ and η). If E ∞
1 (x̂, θ̂ ) = E ∞

2 (x̂, θ̂ ) for all x̂, θ̂ ∈ S2 then �1 = �2.

To prove this result we need first to establish a mixed reciprocity relation (see
Lemma 3.2) that has been first obtained by Potthast in [29]. This result is the corner
stone of the proof of uniqueness for � which does not depend on the values of λ and
η. Let us first introduce the electromagnetic dipole located at point z ∈ �ext that we
represent with the matrices E i (·, z) andHi (·, z) defined for p ∈ S2 by

E i (x, z)p := − 1

ik
curlxcurlx(p�(x, z)),

Hi (x, z)p := curlx(p�(x, z)) = ∇x(�(x, z)) × p

where

�(x, z) = 1

4π

eik|x−z|

|x − z| for x �= z
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is the outgoing Green’s function for the Helmholtz’ equation in R
3. By lin-

earity, we define the scattered field matrices E s(·, z) and Hs(·, z) such that
(E s(·, z)p,Hs(·, z)p) solves problem (1) with f being given by Eq. 2 for Ei =
E i (·, z)p and Hi = Hi (·, z)p. We denote by E∞((·, z) and H∞(·, z) the associated
matrix far field patterns and by E := E i + E s and H = Hi + Hs the matrix total
fields. With this notation, the following mixed reciprocity relation holds.

Lemma 3.2 For all x ∈ �ext and θ̂ ∈ S2 we have

[E s(x, −θ̂ )]T = 4πE∞(θ̂ , x).

Proof For (E,H) solution to Maxwell’s equations outside � that satisfy the Silver-
Müller radiation condition, the Stratton-Chu formula (see e.g. [24, Corollary 4.1.2.3])
writes as

E(x) =
∫

�

{[E i (z, x)]T[ν×H(z)]+[Hi (z, x)]T[ν×E(z)]} ds(z) for x ∈ �ext. (7)

The associated far field pattern is given by (see e.g. [24, Corollary 4.1.3.1])

4πE∞(θ̂)=
∫

�

{[H i (z, −θ̂ )]T[ν×E(z)]+[E i (z, −θ̂ )]T[ν×H(z)]} ds(z) for θ̂ ∈ S2.

(8)
Moreover, for (Ei

1,H
i
1) and (Ei

2,H
i
2) solutions to Maxwell’s equations inside �,

∫

�

{Ei
1 · [ν × Hi

2] + Hi
1 · [ν × Ei

2]} ds = 0, (9)

and the same applies for solutions (Es
1,H

s
1) and (Es

2,H
s
2) to Maxwell’s equations

outside � that satisfy the Silver-Müller radiation condition:
∫

�

{Es
1 · [ν × Hs

2] + Hs
1 · [ν × Es

2]} ds = 0. (10)

Formulas (7) and (8) applied to the expressions of E s(z, −θ̂ ) and E∞(θ̂ , z) imply that

[E s(x, −θ̂ )]T − 4πE∞(θ̂ , x) =
∫

�

{[H s(z, −θ̂ )]T[E i (z, x) × ν]
+ [E s(z, −θ̂ )]T[Hi (z, x) × ν]
+ [H i (z, −θ̂ )]T[E s(z, x) × ν]
+ [E i (z, −θ̂ )]T[Hs(z, x) × ν]} ds(z)

for all x ∈ �ext and θ̂ ∈ S2. By using identities Eqs. 9 and 10 we then obtain

[E s(x, −θ̂ )]T − 4πE∞(θ̂ , x) =
∫

�

{[H (z, −θ̂ )]T[E(z, x) × ν]
+ [E (z, −θ̂ )]T[H(z, x) × ν]} ds(z).

Since the columns of (E (·, θ̂ ), H (·, θ̂ )) and (E(·, x),H(·, x)) satisfy

ν × E = −{curl�(ηcurl�HT ) + λHT } on �,
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the previous identity and the symmetry of the operator curl�(ηcurl�·)+λ· imply that

[E s(x, −θ̂ )]T − 4πE∞(θ̂ , x) = 0 for all (x, θ̂) ∈ �ext × S2.

We have now the necessary tools to prove Theorem 3.1.

Proof of Theorem 3.1 Let us assume that �1 �= �2 and let us define �̃ = R
3 \

�1 ∪ �2. From Rellich’s Lemma and the unique continuation principle we have

E s
1 (y, θ̂) = E s

2 (y, θ̂) for all (y, θ̂) ∈ �̃ × S2.

The mixed reciprocity principle (Lemma 3.2) then implies

E∞
1 (−θ̂ , y) = E∞

2 (−θ̂ , y) for all (y, θ̂) ∈ �̃ × S2.

Applying once more Rellich’s Lemma and the unique continuation principle we
deduce from the last identity that

E s
1(x, y) = E s

2(x, y) for all (x, y) ∈ (�̃)2. (11)

We now make use of the singular behaviour of the dipole functions E i and Hi to
complete the proof. Let us assume that �1 �⊂ �2. Then there exists x∗ ∈ (�1 ∩
∂�̃) \ �2 and r∗ > 0 such that B(x∗, r∗) ⊂ R

3 \ �2. Let us define the sequence of
points zn := x∗ + ν/n which approaches x∗ from outside �̃ (at least for large n). For
n sufficiently large we deduce from Eq. 11 and the boundary condition satisfied by
(E s

1(·, zn),Hs
1(·, zn)) on �1 that

ν × E s
2(·, zn) + curl�(ηcurl�Hs

2,T )(·, zn) + λHs
2,T (·, zn)

= ν × E s
1(·, zn) + curl�(ηcurl�Hs

1,T )(·, zn) + λHs
1,T (·, zn)

= −{ν × E i (·, zn) + curl�(ηcurl�Hi
T )(·, zn) + λHi

T (·, zn)}
(12)

on �1∩B(X∗, r∗). Let us denote P [E,H ] := ν×E+curl�(ηcurl�HT )+λHT . Since
the scattering problem associated with�2 is well posed and since η ∈ C1(�1) and λ ∈
C1(�1), the sequence P [E s

2(·, zn),Hs
2(·, zn)] converges in (L2(�1 ∩ B(x∗, r∗)))3×3

towards P [E s
2(·, x∗),Hs

2(·, x∗)] as n → ∞. Moreover, for x1 ∈ �1 ∩ B(X∗, r∗) \ x∗
we have

lim
n→∞ P [E i (x1, zn),Hi (x1, zn)] = P [E i (x1, x∗),Hi (x1, x∗)].

Therefore, by Eq. 12 we deduce that

P [E i (·, x∗),Hi (·, x∗)] ∈ (L2(�1 ∩ B(x∗, r∗)))3×3.

Similarly we obtain that div�[P [E i (·, x∗),Hi (·, x∗)]] ∈ (L2(�1 ∩ B(x∗, r∗)))3 and
since �1 is of class C2, by using Proposition 2.2 we deduce that E i (·, x∗) ∈ (H 1(R3\
�1 ∩ B(x∗, r∗)))3. This is in contradiction with the fact that E i (·, x∗) is singular at
point x∗. Therefore �1 ⊂ �2. The reverse inclusion also holds by symmetry and
hence �1 = �2.
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Remark 3.3 The uniqueness result stated in Theorem 3.1 only rely on the symmetry
of the impedance operator curl�ηcurl�+λ and therefore can be extended to boundary
conditions of the form

ν × E + ZHT = 0 on �

where Z : V (�) → V (�)∗ is a linear, bounded and symmetric operator from an
Hilbert space V (�) ⊂ H

−1/2
curl�

(�) into its dual space V (�)∗. The operator Z has also
to satisfy sign conditions which ensure that the scattering problem is well-posed (see
[11]).

Remark 3.4 For a known shape � of class C2 one can establish uniqueness for the
impedance functions λ and η. To be more precise, let us denote� a subset ofC0(�)∩
C2(�) that is such that any (λ, η) ∈ � satisfy assumptions of Theorem 2.1. Then the
map

� −→
(
L2

t

(
S2 × S2

))3 ; (λ, η) �−→ E ∞(x̂, θ̂ )

is injective. The proof relies on a density result for the total magnetic field stipulating
that that if f ∈ Hcurl� (�)∗ satisfies

∫

�

H (x, θ̂)Tf (x) ds = 0 for all θ̂ ∈ S2

then f = 0 (see [12, Section 6.2] for further details). The question of identifiability
for a finite number of incident waves is still open. Even if one assumes that the
boundary is known numerical simulations suggest that a single incident wave is not
sufficient to uniquely determine λ and η. See [7] for a discussion of the scalar case.

4 Shape derivative of the far field pattern

For a given direction of incidence θ̂ ∈ S2 and a given polarisation p ∈ S2 let us
define the non linear functional

T : (λ, η, �) −→ E ∞(·, θ̂ )p

where E ∞(·, θ̂ )p ∈ L2
t (S

2) is the far field pattern of the solution to problem (1) with
f given by Eq. 2 and (Ei ,Hi ) given by Eq. 6. In the following we assume that θ̂ and
p are fixed and we do not mention explicitly the dependence of T on θ̂ and p. We
begin this section by giving an explicit characterization of the Fréchet derivative of
T with respect to both, the shape in Theorem 4.1, and the impedance coefficient in
Theorem 4.3. We then pursue in Section 4.2 with the proof of Theorem 4.1 and
we conclude in Section 4.3 with a numerical validation of the result obtained in
Theorem 4.1.

4.1 Characterization of the partial derivatives of the far field pattern

Before giving the derivative of T with respect to �, let us introduce some notations
and give a precise definition of the shape derivative of the far-field pattern. Let B∞

r be
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the open ball of (C1,∞(R3))3 of radius r where C1,∞(R3) := C1(R3) ∩ W 1,∞(R3)

and (C1,∞(R3))3 is endowed with the norm

‖V ‖ := ‖V ‖(L∞(R3))3 + ‖∇V ‖(L∞(R3))3×3 .

For any ε ∈ B∞
1 we denote fε := Id+ ε and λε := λ ◦ f −1

ε , ηε := η ◦ f −1
ε . We note

that since ‖ε‖ < 1, the map fε is a C1 diffeomorphism from R
3 into R3. This map is

used to define a perturbed geometry �ε := fε(�) with boundary �ε := fε(�).
For r < 1 small enough we define the map

Tλ,η : B∞
r −→ L2

t (S
2); ε �−→ T (λε, ηε, �ε).

Then, for fixed λ and η, the shape derivative of T at � is defined as the Fréchet
derivative of Tλ,η at 0 that we denote by T ′

λ,η. Moreover, we have the following
characterization of T ′

λ,η.

Theorem 4.1 For an analytic boundary � and two analytic functions λ and η, the
map Tλ,η is Fréchet differentiable at 0 and its Fréchet derivative is given by

T ′
λ,η(0) · ε = U∞

ε

where U∞
ε is the far field pattern of the electric field that solves problem (1) with f

given by

f := − ik(ν · ε)HT + curl�[(ν · ε)(ν · E)] + λ(ν · ε) (2R − 2H�Id)HT

− λ∇�[(ν · ε)(ν · H)] + 2curl�[H�(ν · ε)ηcurl�(HT )] + ikZ[(ν · ε)ZHT ]
+ (∇�λ · ε)HT + curl�[(∇�η · ε)curl�HT ],

where Z· = curl�(ηcurl�·) + λ·, R = ∇�ν, 2H� = div�ν, E := E (·, θ̂ )p and
H := H (·, θ̂ )p.

Let us mention that this result coincide with the result obtained in [18, Theorem
3.4] for η = 0 and λ being constant ((∇�λ · ε)HT = 0).

Remark 4.2 We would like to emphasise that due to our definition of the shape
derivative, its expression contains two non standard terms, namely (∇�λ · ε)HT and
curl�[(∇�η · ε)curl�HT ] that involve the tangential component of the perturbation
ε. It has been numerically demonstrated in [6], for the scalar case, that these addi-
tional terms improve the speed of convergence of iterative schemes for simultaneous
reconstruction of the impedance coefficients and obstacle shape.

Another possible choice for defining the shape derivative would be to first extend
the impedance parameters λ and η in a neighbourhood of � and then study the varia-
tion of T (λ, η, �). In this case the expression of the shape derivative coincides with
the one in Theorem 4.1 but without the above mentioned additional terms.

For the sake of completeness we also give the derivative of T with respect to λ

and η, with � being fixed. We introduce the functional

T� : � −→ L2
t (S

2); (λ, η) �−→ T (λ, η, �),
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where � ⊂ (L∞(�))2 is the subset of (λ, η) satisfying the hypothesis of Theorem
2.1. The Fréchet derivative of T� is given below.

Theorem 4.3 The function T� is Fréchet differentiable on � and for all (λ, η) ∈ �

its Fréchet derivative is the map T ′
�(λ, η) : L∞(�) × L∞(�) → (L2

t (S
2))3 defined

by

T ′
�(λ, η) · (h, l) = U∞

h,l for all (h, l) ∈ (L∞(�))2,

where U∞
h,l is the far field pattern of the solution to problem (1) with

f = −(curl�(lcurl�HT ) + hHT )

and H := H s(·, θ̂ )p + H i (·, θ̂ )p.

Proof The proof of this result is very similar to the proof of Proposition 6 in [7] in
the scalar case and is not detailed here. See also [12].

4.2 Proof of Theorem 4.1

In this section we assume that λ, η and � are analytic and characterise the shape
derivative of the far field pattern. We chose to follow the constructive procedure first
proposed in [25] and then extended in [18] to treat the case of a classical impedance
boundary condition (η = 0 and λ being constant).

We recall that E s(·, θ̂ )p is the solution to problem (1) with f being given
by Eq. 2 for a given incident field (E i (·, θ̂ )p, H i (·, θ̂ )p). Moreover, we denote
(E s

ε (·, θ̂ )p, H s
ε (·, θ̂ )p) the scattered field induced by the scattering of plane waves

on �ε that solves
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

curl Hε + ikEε = 0 in �ε
ext,

curl Eε − ikHε = 0 in �ε
ext,

νε × Eε + curl�ε (ηεcurl�εHε,Tε ) + λεHε,Tε = f on �ε,

lim
R→∞

∫

∂BR

|Hε × x̂ − (x̂ × Eε) × x̂|2ds = 0,

where νε is the outward normal to �ε, �ε
ext := R

3 \ �ε is the exterior domain to �ε

and f is given by

f := −
(
νε × E i (·, θ̂ )p + curl�(ηεcurl�H i

Tε
(·, θ̂ )p) + λεH

i
Tε

(·, θ̂ )p
)

.

For all column vectors or matrices V defined on �ε, we denote VTε := (νε ×V )×νε.
The scheme of the proof mainly consists in writing an appropriate integral repre-

sentation formula for the difference E s
ε (·, θ̂ )p−E s(·, θ̂ )p on �ε and then performing

an asymptotic expansion for small ε of this integral representation. In the remain-
ing of the section we do not mention the dependence of the electromagnetic fields
on the position x, the direction of incidence θ̂ and the polarisation p. The notations
(Es ,Hs) and (Es

ε,H
s
ε) always refer to the scattered field associated with a plane wave

of direction of incidence θ̂ and polarisation p given by Eq. 6. The notations E and H
refer to the matrix representations of the total fields associated with the scattering of
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an electromagnetic dipole. To begin with, we assume that � ⊂ �ε and give a first
representation formula for Es

ε − Es .

Lemma 4.4 For any z ∈ R
3 \ �ε,

Es
ε(z) − Es(z) = −

∫

�ε

[νε × E(y, z) + curl�ε (ηεcurl�εHTε (y, z))

+ λεHTε (y, z)]THε(y) ds(y). (13)

Proof Let z ∈ R
3 \ �ε. From the Stratton Chu integral representation (7) we first

have

Es(z) =
∫

�

{[E i (y, z)]T[ν(y) × Hs(y)] + [Hi (y, z)]T[ν(y) × Es(y)]} ds(y),

which can be equivalently written as (using properties Eqs. 9 and 10)

Es(z) = −
∫

�

{[E s(y, z)]T[ν(y) × Hi (y)] + [Hs(y, z)]T[ν(y) × Ei (y)]} ds(y)

+
∫

�

{[E(y, z)]T[ν(y) × H(y)] + [H(y, z)]T[ν(y) × E(y)]} ds(y).

In this expression the second line is indeed equal to zero from the boundary con-
ditions satisfied by (E,H) and (E,H) on �. Gauss’ divergence theorem applied in
�ε \ � then implies

Es(z) = −
∫

�ε

{[E s(y, z)]T[νε(y) × Hi (y)] + [Hs(y, z)]T[νε(y) × Ei (y)]} ds(y).

Using Eq. 10 we finally obtain

Es(z) = −
∫

�ε

{[E s(y, z)]T[νε(y) × Hε(y)] + [Hs(y, z)]T[νε(y) × Eε(y)]} ds(y).

On the other hand, by Stratton-Chu formula (7) and by using Eq. 10 we have for Es
ε

Es
ε(z) =

∫

�ε

{[E i (y, z)]T[νε(y) × Hε(y)] + [Hi (y, z)]T[νε(y) × Eε(y)]} ds(y).

By adding up the two last equations we obtain

Es
ε(z)−Es(z) =

∫

�ε

{[E(y, z)]T[νε(y)×Hε(y)]+[H(y, z)]T[νε(y)×Eε(y)]} ds(y).

We conclude the proof by using the boundary conditions satisfied by (Eε,Hε) on �ε

together with two integrations by part on �ε.

We can actually substitute Hε with H in formula (13) with an error of order ‖ε‖2.
This relies of on the following continuity result.

Lemma 4.5 Let BR be a ball of radius R sufficiently large so that � ⊂ BR/2. It
exists CR > 0 such that for ε ∈ B∞

1 small enough we have

‖Eε ◦ fε − E‖(Hcurl(BR\�))3 ≤ CR‖ε‖
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and

‖Hε ◦ fε − H‖(Hcurl� (�))3 + ‖Hε ◦ fε − H‖(Hcurl(BR\�))3 ≤ CR‖ε‖.

Proof The proof of this result is rather straightforward. We only give here the two
main ingredients. We first use that the forward problem has a unique solution that
depends continuously on the boundary right hand side. We second use that the bound-
ary operator curl�εηεcurl�ε +λε has a Lipschitz continuous dependence with respect
to the perturbation ε. A detailed proof of a similar result in the case of Helmholtz’
equation can be found in [5]. See also [12].

In the sequel we denote by O(·) a C∞([0, +∞[) function for which there exists
C > 0 such that for all x ∈ [0, +∞[

|O(x)| ≤ C|x|.
Then by using the two previous lemmas, we obtain the following result.

Lemma 4.6 The following representation formula holds,

Es
ε(z) − Es(z) = −

∫

�ε

[νε × E(y, z) + curl�ε (ηεcurl�εHTε (y, z))

+λεHTε (y, z)]TH(y) ds(y) + O(‖ε‖2),
uniformly for z in a compact set K ⊂ R

3 \ �ε.

Proof The proof relies on the continuity result of Lemma 4.5. We refer to Lemma
4.3 in [6] in the scalar case and to [12].

Before we proceed any further with the proof of Theorem 4.1 we need to define
an appropriate extension of λε, ηε, νε and curl�ε in the domain �ε \ �. For any
x0 ∈ �, there exists a local parametrisation of �, i.e. two open sets U ⊂ R

2 and
V ⊂ R

3 which are neighbourhoods of 0 and x0 respectively as well as a function
ϕ ∈ C1(U ; V ) such that ϕ(0) = x0 and

� ∩ V = {ϕ(ξ) : ξ ∈ U}.
For t ∈ [0, 1] let us define

ft := Id + tε, ϕt := ft ◦ ϕ.

For readability, the dependence of ft and ϕt on ε is not written explicitly. The func-
tion ϕt defines a parametrisation of �t := (Id + tε)(�) around xt

0 := ft (x0), and the
vectors

et
j := ∂ϕt

∂ξj

= (Id + t∇ε)
∂ϕ

∂ξj

= (Id + t∇ε)ej , for j = 1, 2 (14)

define a basis of tangent plane to �t at xt
0 where (∇ε)i,j = ∂εi/∂xj is the Jacobian

matrix of ε. We then define the associated covariant basis (ei
t ) on �t at point xt

0 by

ei
t · et

j = δi
j , pour i, j = 1, 2. (15)
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The outward unit normal to �t at point xt
0 is then given by

νt = et
1 × et

2

|et
1 × et

2|
.

We extend the surface scalar curl by using the following formula

curl�t := νt · curl
and for a row vector field or a matrix V defined on �t we define

VTt := (νt × V ) × νt

the tangent component of V on �t . Finally, the impedance functions λε and ηε are
extended in �ε \ � in the following consistent way:

λt := λ ◦ f −1
t , ηt := η ◦ f −1

t .

Let us recall the technical Lemma 4.5 from [6].

Lemma 4.7 Let λ be a C1(�) function and define λt := λ ◦f −1
t . Then the following

identity holds on �,

(ε · ν)(∇λt · νt )|t=0 = −(∇�λ · ε).

Lemma 4.8 The representation formula of Lemma 4.6 yields

Es
ε(z) − Es(z) = −

∫

�

(ε · ν)div{[E × H]T + ηt [νtcurl�tHTt ]Tcurl�tHTt

+ λt [H × (νt × H)]T}|t=0ds + O(‖ε‖2),
uniformly for z in a compact set K ⊂ R

3 \ �ε.

Proof From Lemma 4.6 we have

Es
ε(z) − Es(z) = −

∫

�ε

[νε × E + curl�ε (ηεcurl�εHTε ) + λεHTε ]TH(y) ds(y)

= −
∫

�ε

{[E × H]Tνε + ηε[curl�εHTε ]Tcurl�εHTε

+ λε[H × (νε × H)]Tνε} ds + O(‖ε‖2).
The Gauss divergence theorem together with the boundary conditions satisfied by
(E,H) on � imply

Es
ε(z) − Es(z) = −

∫

�ε\�
div{[E × H]T + ηt [νtcurl�tHTt ]Tcurl�tHTt

+ λt [H × (νt × H)]T}dx + O(‖ε‖2).
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By using the change of variable (x�, t) �→ x�+tε(x�) between �×(0, 1) and�ε\�,
and a Taylor expansion, this integral becomes after regrouping the O(‖ε‖2) terms

Es
ε(z) − Es(z) = − ∫

�
(ε · ν)div{[E × H]T + ηt [νtcurl�tHTt ]Tcurl�tHTt

+ λt [H × (νt × H)]T}|t=0ds + O(‖ε‖2).

In order to express the divergence term in Lemma 4.8 we need the following
technical lemma which is proven in the Appendix.

Lemma 4.9 For V ∈ (C2(�ext))
3,

(ε · ν)curl(νt × V )|t=0= (ε · ν)(div�VT )ν + (ε · ν)

(

R−2H�Id− ∂

∂ν

)

VT +[∇�(ν · ε) ×V ]×ν

and

(ε·ν)
∂

∂ν
(curl�t VTt)|t=0=−(ε·ν)div�(curl V)T−2H�(ε·ν)curl�VT−∇�(ν·ε)·(curl V),

where R = ∇�ν and 2H� = div�ν.

We shall now use this lemma to express d the integral representation of Es
ε − Es

obtained in Lemma 4.8 in terms of boundary values of E and H. We split the process
into two parts: Lemma 4.10 and Lemma 4.11.

Lemma 4.10 The following first identity holds for (E,H) and (E,H)
∫

�

(ν · ε)div{[E × H + λtH × (νt × H)]T}|t=0ds =
∫

�

HT {ik(ν · ε)HT

−ikZ[(ν · ε)(ν × E)] − curl�[(ν · ε)(ν · E)] − λ(ν · ε) (2R − 2H�)HT

−ikλ(ν · ε)ZHT + λ∇�[(ν · ε)(ν · H)] − ikZ[λ(ν · ε)HT ]} ds.

Proof Let us first recall that for two vector fields V and W and for a function ϕ,

div(V × W) = curl V · W − V · curl W, curl(ϕV ) = ∇ϕ × V + ϕcurl V.

Therefore, from Maxwell’s equations

div([E × H]T)|t=0 = ik(HTH + ETE)|�.

From the boundary conditions satisfied by (E,H) and the formula curl� V = ν·
curl V we have

ETE = [ν × E]T(ν × E) + (ν · E)[ETν] = −[ZHT ]T(ν × E) − 1

ik
(ν · E)[curl�HT ]T

where Z = curl�ηcurl� + λ. Similarly

div{λt [H × (νt × H)]T }|t=0 = [curl H|�]T(λtν × H)|�−HT|�curl[λt (νt ×H)]|t=0

= −ikλ[ET(ν × H)]|� − HT|�curl[νt × (λtH)]|t=0.
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By using the first formula of Lemma 4.9 we obtain

div{λt [H × (νt × H)]T}|t=0 = −ikλET(ν × H)|�
−HT

{

div�(λHT )ν+
(

R−2H�− ∂

∂ν

)

(λtHT )|t=0 + λ

ν · ε
[∇�(ν · ε)×H]×ν

}

and by using the boundary conditions

div{λt [H × (νt × H)]T}|t=0 = −ikλ[(ZHT )THT ]|�
−HT

{

div�(λHT )ν+
(

R − 2H� − ∂

∂ν

)

(λtHT )|t=0+ λ

ν · ε
[∇�(ν · ε)×H]×ν

}

.

We expand ∂(λtHT )
∂ν

|t=0 by using Lemma 4.7

div{λt [H × (νt × H)]T}|t=0 = −ikλ(ZHT )THT ) − ∇�λ · ε

ν · ε
HTHT

−HT
{

div�(λHT )ν + λ

(

R − 2H� − ∂

∂ν

)

HT + λ

ν · ε
[∇�(ν · ε) × H] × ν

}

.

From [28, formula 2.5.225]

− ∂

∂ν
HT = ν × curl H − ∇�(ν · H) + RHT ,

we get, using the boundary conditions,

− ∂

∂ν
HT = ikZHT − ∇�(ν · H) + RHT .

The identity U × (V × W) = (U · W)V − (U · V )W yields

−λ[∇�(ν · ε) × H] × ν = λ(∇�(ν · ε))(ν · H),

whence

−λ[∇�(ν · ε) × H] × ν + λ(ν · ε)∇�(ν · H) = λ∇�[(ν · ε)(ν · H)].
We finally get, using the symmetry of Z ,
∫

�

(ν ·ε)div{[E×H+λtH×(νt ×H)]T}|t=0ds =
∫

�

HT {ik(ν ·ε)H−(ν ·ε)div�(λHT )ν

−ikZ[(ν · ε)(ν × E)] − curl�[(ν · ε)(ν · E)] − λ(ν · ε) (2R − 2H�)HT

−ikλ(ν · ε)ZHT + λ∇�[(ν · ε)(ν · H)] − ikZ[λ(ν · ε)HT ] − (∇�λ · ε)HT } ds.

We conclude the proof by noticing that, using Maxwell’s equations,

ik(ν·H)−div�(λHT ) = (−div�(ν×E)−div�(λHT )) = div�(curl�(ηcurl�HT )) = 0

since div�curl� = 0.
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Lemma 4.11 The following second identity holds for (E,H) and (E,H)

∫

�

(ν · ε)div{ηt [νtcurl�tHTt ]Tcurl�tHTt }|t=0ds

=
∫

�

HT{−2curl�[H�(ν · ε)ηcurl�(HT )]
− ikZ[(ν · ε)curl�(ηcurl�HT )] − ikcurl�[ηcurl�[(ν · ε)ZHT ]]
− curl�[(∇�η · ε)curl�HT ]}ds}ds.

Proof First of all

div{ηt [νtcurl�tHTt ]Tcurl�tHTt }|t=0 = 2H�ηcurl�HT [curl�HT ]T

+ ∂ηt

∂ν
|t=0curl�HT [curl�HT ]T + η

∂

∂ν
(curl�tHTt [curl�tHTt ]T)|t=0,

where by using Lemma 4.7 once more we have

∂ηt

∂ν
|t=0 = ∇�η · ε

ν · ε
.

From the second equality in Lemma 4.9 we have by using Maxwell’s equations

∂

∂ν
(curl�tHTt curl�tHTt )|t=0

= curl�HT

∂

∂ν
(curl�tHTt )|t=0 + curl�HT

∂

∂ν
(curl�tHTt )|t=0

= curl�HT

{

ikdiv�ET − 2H�curl�HT + ik

ν · ε
ET∇�(ν · ε)

}

+ curl�HT

{

ikdiv�ET − 2H�curl�HT + ik

ν · ε
∇�(ν · ε) · E

}

.

The boundary conditions satisfied by (E,H) and (E,H) implies

∂

∂ν
(curl�tHTt curl�tHTt )|t=0

= curl�HT

{

−ikcurl�(ZHT ) − 2H�curl�HT + ik

ν · ε
[ZHT ]Tcurl�(ν · ε)

}

+ curl�HT

{

−ikcurl�(ZHT )−2H�curl�HT + ik

ν · ε
(ZHT ) · curl�(ν · ε)

}

.

We recall that for a function ϕ and a vector field V we have curl�(ϕV ) = −V ·
curl�(ϕ) + ϕcurl�(V ), therefore the previous relation gives

∂

∂ν
(curl�tHTt curl�tHTt )|t=0 = −4H�curl�HT curl�HT

− ik

ν · ε
curl�[(ν · ε)ZHT ]curl�HT − ik

ν · ε
curl�HT curl�[(ν · ε)ZHT ].
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Therefore
∫

�

(ν · ε)div{ηt [νtcurl�tHTt ]Tcurl�tHTt }|t=0ds

=
∫

�

{−2H�(ν · ε)η[curl�HT ]Tcurl�HT − ikη[curl�[(ν · ε)ZHT ]]Tcurl�HT

− ikη[curl�HT ]Tcurl�[(ν · ε)ZHT ] − (∇�η · ε)[curl�HT ]Tcurl�HT }ds

and integration by part on � gives the final expression.

Gathering the results of Lemmas 4.10 and 4.11 we obtain the following
proposition.

Proposition 4.12 We have the following formula for the discrepancy between Es
ε and

Es:

Es
ε(z) − Es(z) =

∫

�

H(·, z)TBε(E,H)ds + O(‖ε‖2)

uniformly for z in a compact set K ⊂ R
3 \ �ε where

Bε(E,H) := − ik(ν · ε)HT + curl�[(ν · ε)(ν · E)] + λ(ν · ε) (2R − 2H�)HT

− λ∇�[(ν ·ε)(ν ·H)]+2curl�[H�(ν · ε)ηcurl�HT ]+ikZ[(ν · ε)ZHT ]
+ (∇�λ · ε)HT + curl�[(∇�η · ε)curl�HT ].

We recall that Z· = curl�(ηcurl�·) + λ·, R = ∇�ν and 2H� = div�ν.

Proof First of all, by Lemmas 4.10 and 4.11:
∫

�

(ε · ν)div{E × H + λH × (νt × H) + ηνt (curl�tHTt curl�tHTt )}|t=0ds

=
∫

�

HT{ik(ν · ε)HT − ikZ[(ν · ε)ν × E)] − curl�[(ν · ε)(ν · E)]
− λ(ν · ε) (2R − 2H�)HT − ikλ(ν · ε)ZHT + λ∇�[(ν · ε)(ν · H)]
− ikZ[λ(ν · ε)HT ] − 2curl�[H�(ν · ε)ηcurl�HT ]
− ikZ[(ν · ε)curl�(ηcurl�HT )] − ikcurl�[ηcurl�[(ν · ε)ZHT ]]}ds.

The boundary conditions satisfied by (E,H) implies that

−ikZ[(ν · ε)(ν × E)] − ikZ[λ(ν · ε)HT ] − ikZ[(ν · ε)curl�(ηcurl�HT )] = 0.

We also have

−ikcurl�[ηcurl�[(ν · ε)Z(HT )]] − ikλ(ν · ε)ZHT = −ikZ[(ν · ε)ZHT ].
We then obtain the result by using Lemma 4.8.

We now have all the necessary results to conclude the proof of Theorem 4.1.

Proof of Theorem 4.1 First of all, since λ, η and � are analytical, we can extend
Proposition 4.12 to the case where � is not included in �ε (see [18] for the details).
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Moreover, by using the Stratton-Chu representation formula (7) we prove that for
f ∈ Hcurl� (�)∗, the electric field Ef solution to problem (1) is such that

Ef (z) =
∫

�

H(y, z)Tf (y)ds(y) for all z ∈ �ext. (16)

Therefore, Proposition 4.12 together with formula (16) concludes the proof.

4.3 Numerical validation of the shape derivative

In this section we describe the numerical procedure we use to compute the shape
derivative of the scattered field. We also present numerical experiments that we use
to validate the expression of the shape derivative given in Theorem 4.1. To be more
precise we compute the shape derivative of the following L2 cost functional

F(�) := 1

2

∥
∥T (λ, η, �) − E∞

obs

∥
∥2

L2
t (S

2)
.

where E∞
obs := T (λ, η, �obs) for given shape �obs, impedance coefficients λ and η,

direction of incidence θ̂ and polarisation p. In the next section we show how to solve
a shape identification problem by minimizing such cost functional.

For analytic λ, η and �, by using the result of Theorem 4.1 and since the forward
problem is linear we prove that the shape derivative of F in the direction ε is given by

F ′(�) · ε = 1

4π



(∫

�

G(y) · Bε(E,H)(y)ds(y)

)

, (17)

where Bε is given in Proposition 4.12, E(y) = E s(y, θ̂)p + E i (y, θ̂ )p, H(y) =
H s(y, θ̂)p + H i (y, θ̂ )p and the adjoint state G is given by

G(y) :=
∫

S2
H (y, −x̂)g(x̂)ds(x̂),

where
g(x̂) := (T (λ, η, �) − E∞

obs)(x̂).

From Eq. 17, evaluating the shape derivative of F requires the knowledge of two
total fields: (E,H) and G that we numerically compute by solving two scattering
problems: a first one associated with the incident plane wave (E i (y, θ̂)p, H i (y, θ̂ )p)

and a second one associated with an electromagnetic Herglotz wave (Gi
E,Gi

H) given
by

Gi
E(y) :=

∫

S2
Ei (y, −x̂)g(x̂)ds(x̂) , Gi

H(y) :=
∫

S2
Hi (y, −x̂)g(x̂)ds(x̂).

Then G = Gi
H + Gs

H is the total magnetic field associated with the solution (Gs
E,Gs

H)

to Eq. 1 for f being given by Eq. 2 with Ei = Gi
E and Hi = Gi

H.
We choose here to use edge finite elements to solve the second order system

associated with the Maxwell system (1) which can be written as
{
curl curl Hs − k2Hs = 0 in �ext,
i
k
ν × curl Hs + curl�(ηcurl�Hs

T ) + λHs
T = f on, �

(18)
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where f is given by Eq. 2 in term of the incident field (Ei ,Hi ). We complement this
system with the approximate first order radiation condition

x̂ × curl Hs + ik(x̂ × Hs) × x̂ = 0 on �, (19)

where � is is closed regular surface that is far from � . Typically, � is a sphere or
an ellipsoid such that the distance between � and � is of the order of one wave-
length. We discretise the domain contained between � and � with tetrahedron with
approximately twelve tetrahedron per wavelength (l := 2π/k) and we approximate
the field H with the Nédélec edge elements of the first kind (see [27]). We use the
finite elements software Freefem++ (see [20]) to set up and solve the discrete sys-
tem. Finally, the far-field pattern is computed by using the integral representation
formula (8). The solver has been validated against Mie’s serie solutions in the case
of the scattering by a sphere and we obtained relative errors smaller than 5 % on the
L2 norm of the far field pattern in several test cases. Then we evaluate (17) by using
numerical integration. The only problematic point would be the numerical evaluation
of the operator Bε since it contains fourth order derivatives. First we transform (17)
by using integration by part on �:

F ′(�) · ε = 1

4π



∫

�

(ν · ε) {−ikHT · G + (ν · E)curl�GT + λ (2R − 2H�)HT · G
+ λ(ν · H)div�GT + 2H�ηcurl�HT curl�GT + ikZHT · ZGT } .

We evaluateZHT by first computingHη, theL2 projection of ηcurl�HT on piecewise
linear functions that solves

∫

�

Hηv ds =
∫

�

(ηcurl�HT )v ds,

for all v in the space of piecewise linear functions defined on the triangular discreti-
sation of �. We then compute ZHT by evaluating curl�Hη as a piecewise constant
function.

We numerically validate both, the characterization of the shape derivative and its
numerical evaluation, by comparing expression (17) with a numerical evaluation of

∂εF (�) := F(�) − F(�t )

t
, (20)

for �t := � + tε(�) where t is a small positive number and ε is a vector field defined
on �. We also used finite elements to compute ∂εF (�).

Numerical Results

We will consider data E∞
obs that correspond with the scattering of an incident plane

wave of frequency k = 4, of direction of direction of incidence θ̂ = (0, 0, 1) and
of polarisation p = (1, 0, 0). Moreover we set η = −λ = i/k and the obstacle
�obs is a sphere of radius 0.3l where l := 2π/k is the wavelength of the incident
wave. The obstacle � is taken as being a sphere of radius 0.5l and the deformation is
ε = x̂ = x/|x|. In this case, Eq. 20 can also be computed via Mie’s series for ε = x̂

(we denote by ∂̃F ε this value) and we have the following results.

∂εF (�) = 11.7 , ∂̃F ε(�) = 11.3 , F ′(�) = 10.9.



Electromagnetic inverse shape problem for coated obstacles 1199

These three values are fairly close given that we have a precision of approximately
5 % on the forward solver. Considering an artificial boundary � as close as one
wavelength from the scatterer is certainly not enough to achieve such precision for
more complex objects such as the cube use below. Nevertheless, the accuracy we
obtained is certainly good enough for illustration purposes.

5 Application to shape identification of obstacles with GIBC

We propose in this section to use the characterization of the shape derivative obtained
previously to reconstruct the shape � of a scatterer with boundary conditions of the
form

ν × E + curl�(ηcurl�HT ) + λHT = 0 sur �,

with constant λ and η, from the knowledge of the far field produced by the scattering
of J incident plane waves. We first present the proposed regularised steepest descent
minimization procedure and then show some numerical validating results.

5.1 Reconstruction procedure

The technique we used to solve the inverse problem consists in minimizing the
following cost functional

FJ (�) := 1

2

J∑

j=1

∥
∥
∥T (�, θ̂j , pj ) − E∞

j,δ

∥
∥
∥
2

L2
t (S

2)
,

where the far field patterns E∞
j,δ represent the data and we do not mention the depen-

dence of T on λ and η for simplicity reasons. For more clarity we made explicit the
dependence of T on the direction of incidence θ̂j and the polarisation pj of the inci-
dent plane wave. Therefore, we obtain the shape derivative of FJ in the direction ε

as being given by

F ′
J (�) · ε := 1

4π

J∑

j=1



(∫

�

Gj (y) · Bε(Ej ,Hj )(y)ds(y)

)

, (21)

where Bε is given in Theorem 4.1, Ej (y) = E s(y, θ̂j )pj + E i (y, θ̂j )pj , Hj (y) =
Hs(y, θ̂j )pj + Hi (y, θ̂j )pj and the adjoint state Gj is given by

Gj (y) :=
∫

S2
Hj (y, −x̂)gj (x̂)ds(x̂),

where gj (x̂) := (T (�, θ̂j , pj ) − E∞
j,δ)(x̂). We assume moreover that the impedance

coefficients λ and η are constant, fixed and known and that for j = 1, · · · , J , the far
field patterns E∞

j,δ are

E∞
j,δ = T (�0, θ̂j , pj ) + δj ,

for some surface �0 and “small” functions δj ∈ L2
t (�) (the noise). The case of

known but non constant coefficients requires a careful treatment since the coefficients
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would be known and defined on a shape that is unknown. One could for example
assume that the unknown object can be described by a function of two variable X

and Y and define the coefficients as functions of X and Y . Another solution would
consist in defining the coefficients in R3 but their physical significance would not be
completely clear anymore. For more details on non constant impedances we refer to
[6] that considers a similar problem for the scaler Helmholtz equation.

In the experiments hereafter we numerically compute an exact data set
T (�0, θ̂j , pj ) by using finite elements and the δi are modeled by a realisation of a
Gaussian random variable with mean 0 and variance 1. The δj are then normalised
such that ‖δj‖L2

t (S
2)

‖T (�0, θ̂j , pj )‖L2
t (S

2)

= δ0,

for a given noise level δ0 > 0.
We propose to use a steepest descent method to minimize FJ . At each step n we

update the current shape �n by moving it with a regular representation of the shape
derivative of F . More precisely, we begin with a given initial mesh M0 obtained from
the discretisation of the domain contained between an initial guess for the geometry �

and the auxiliary boundary �. Then we move this mesh iteratively until convergence.
For a given step n of the algorithm we obtain the mesh at step n+1, which is denoted
Mn+1, by applying the following deformation to the current mesh Mn:

Mn+1 := (Id + αnV )Mn,

where V ∈ Xh solves

(V , W)(H 1(Mn))3+σ�(∇�V, ∇�W)(L2
t (�n))3×3+(V , W)(L2

t (�n))3 = F ′
J (�n)·W, (22)

for all W ∈ Xh where Xh is the set of piecewise linear Lagrange finite elements
defined on the mesh Mn that vanish on the exterior boundary � (see [2] for a similar
approach). The parameter αn > 0 is the step size, σ� > 0 is a regularisation coeffi-
cient and F ′

J (�n) · v is given by formula (21). One advantage of this approach is that
it is a parametrisation free procedure (see Fig. 1 for an example of successive meshes
obtained during the iterative process). The inverse crime is automatically avoided
since the mesh is different at each step.

The regularisation parameter is kept fixed during iterations while the step size
evolves in the following way: we initialise it with a relatively small value and increase
it by a multiplicative parameter r > 1 if the cost functional decreases between mesh

Fig. 1 Different meshes obtained during the minimization procedure corresponding to Fig. 4
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Mn and Mn+1. On the contrary, we decrease it by the same multiplicative parameter
r if the cost functional increases between meshes Mn and Mn+1 and we move back
to the mesh Mn. A direct consequence of such approach is that the algorithm does
not diverge and we can choose to stop the iterations when the step size is too small.
To keep reasonably short computations (a few hours on a twelve core workstation)
we choose to stop the algorithm after a sufficiently large number of iterations. In
the experiments hereafter we observed that 40 iterations is generally sufficient to
obtain a shape which barely evolves between iterations. We observe for instance tiny
differences between Figs. 1c and d. Finally, let us mention that moving meshes in
dimension three is certainly a complicated subject and we used the free software
mmg3d (see [15]) to perform this step. We also used the mesh adaptation capabilities
of mmg3d at every step to further ensure that the mesh stays regular enough after
each iteration. We can summarise the algorithm as follows:

Initialisation: pick an initial mesh M, an initial step size α, solve Eqs. 18–19 for
all incident plane waves and evaluate the initial cost functional FJ

Iterations: until α < αmin or the maximum number of iterations is reached
1. compute the I adjoint states G (one for each incident wave)
2. compute a descent direction V by solving Eq. 22

3. define a new mesh M̃ := (Id + αV )M

4. solve Eqs. 18–19 in M̃ for all incident plane waves and

evaluate the cost functional F̃

5. if F̃ < F

α := rα, M := M̃, F := F̃ ,

else
α := α/r and go back to step 3.

5.2 Numerical results

We now present three examples of reconstructions obtained using the procedure
described here above. Our goal is to show how the algorithm behaves with respect to

Fig. 2 Reconstruction with δ0 = 2 % of noise and for two incident waves : θ̂1 = −θ̂2 = (0, 0, 1) and
p1 = p2 = (0, 1, 0). The impedance parameters are λ = 0.5 and η = 0
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Fig. 3 Reconstruction with δ0 = 2 % of noise and for four incident waves : θ̂1 = −θ̂2 = (0, 0, 1),
θ̂3 = −θ̂4 = (0, 1, 0), p1 = p2 = (0, 1, 0) and p3 = p4 = (1, 0, 0). The impedance parameters are
λ = −0.25i and η = 0.25i

the shape complexity and to demonstrate that our choice of minimization procedure
(regularisation of the gradient and parametrisation free optimisation) gives valuable
results. For each example we plot three shapes: the exact shape �0 used to simulate
the data, the initial guess and the shape obtained at the 40th iteration of the minimiza-
tion algorithm. The blue line represents the wavelength of the incident wave, in all
cases we considered an obstacle which was about the size of the wavelength and we
used the same parameters: the regularisation coefficient for the computation of the
shape gradient is σ� = 0.3, the initial step size is α0 = 0.1, the actualisation rate for
the step size is r = 1.2 and the level of noise is δ0 = 2 %. We recall that the incident
plane waves that are used to generate the data are of the form

E i (x, θ̂)p := − 1

ik
curlxcurlx

(
peikx·θ̂) = ik((θ̂ × p) × θ̂ )eikx·θ̂ ,

H i (x, θ̂)p := curlx
(
peikx·θ̂) = ik(θ̂ × p)eikx·θ̂ ,

and are characterised by their direction of incidence θ̂ and polarisation p.

Fig. 4 Reconstruction with δ0 = 2 % of noise and for four incident waves : θ̂1 = −θ̂2 = (0, 0, 1),
θ̂3 = −θ̂4 = (0, 1, 0), p1 = p2 = (0, 1, 0) and p3 = p4 = (1, 0, 0). The impedance parameters are
λ = −0.25i and η = 0.25i.
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In the first test (Fig. 2) we considered data from 2 incident waves while in the sec-
ond and third one we considered four incident waves since the shape reconstruction
is more challenging (�0 is non convex in Fig. 3 or non connected in Fig. 4). In the
three cases the reconstructions are accurate and comparable to the one obtained with
the so called Linear Sampling Method (see [13]) that requires the use of many more
incident waves (but indeed is much less expensive and does not need a priori initial
guesses).

Appendix

Proof of Lemma 4.9 We use the notation introduced in Section 4.2. We comple-
ment the tangent basis (e1, e2) (associated with the local parametrisation ϕ (14)) with
e3 = ε. This defines a non orthogonal basis of R3 and we denote by (f 1, f 2, f 3)

the associated covariant basis. Let us also introduce (e1, e2, e3) the covariant basis
associated with (e1, e2, ν). One easily verifies (see also [6]):

f 1 = e1 − 1

ν · ε
(e1 · ε)ν , f 2 = e2 − 1

ν · ε
(e2 · ε)ν and f 3 = 1

ν · ε
ν.

We also denote by ν̃t the extension of the normal vector ν given by

ν̃t (x� + tν(x�)) = ν(x�) for x� ∈ �.

Let us prove the first identity of Lemma 4.9. By using [28, Theorem 2.5.20] we have

curl(νt × V )|t=0 = div�(VT )ν +
(

R − 2H�Id − ∂

∂ν

)

[(νt × V ) × ν̃t ]|t=0

since
curl�([νt × V ] · ν̃t )|t=0 = curl�([ν × V ] · ν) = 0.

Moreover,

∂

∂ν
[(νt × V ) × ν̃t ]|t=0 = ∂

∂ν
[((νt − ν̃t ) × V ) × ν̃t ]|t=0 + ∂

∂ν
VT .

For any vector field W ,

∂W

∂ν
|� =

2∑

i=1

∂W

∂ξi

(f i · ν) + ∂W

∂t
(f 3 · ν).

Hence we end up with

∂

∂ν
[((νt −ν̃t )×V )×ν̃t ]|t=0 =

[
∂

∂t
(νt − ν̃t )|t=0 × V

]

×ν = −[∇�(ν ·ε)×V ]× ν

ν · ε

where for the first equality we used that for i = 1, 2

∂

∂ξi

[((νt − ν̃t ) × V ) × ν̃t ]|t=0 = 0

and for the second equality we used [18, Lemma 2.3]. This gives the first identity of
Lemma 4.9.



1204 N. Chaulet, H. Haddar

For the second identity of Lemma 4.9 we first remark that

∂

∂ν
(curl�t VTt )|t=0= ∂

∂ν
(νt ·curlV)|t=0= ∂

∂ν
(̃νt ·curlV)|t=0+ ∂

∂ν
[(νt−ν̃t )·curlV ]|t=0.

(23)
Similarly we prove that

∂

∂ν
[(νt − ν̃t ) · curlV ]|t=0 = − 1

ν · ε
∇�(ν · ε) · (curlV )|�. (24)

We denote

rot�̃t
((̃νt × V ) × ν̃t ) := ν̃t · curl V

and

div�̃t
(V × ν̃t ) := rot�̃t

((̃νt × V ) × ν̃t ).

From [28, Lemma 2.5.10] we have

∂

∂ν
[div�̃t

(V ×ν̃t )]|t=0−div�̃t

[
∂

∂ν
(V × ν̃t )

]

|t=0 = −div�(RV )+2[(V ×ν)·∇�H�].
(25)

We also observe that

div�̃t

[
∂

∂ν
(V × ν̃t )

]

|t=0 = div�

[
∂

∂ν
(V × ν)

]

= div� [−curl V + (curl�VT )ν + (R − 2H�)(V × ν)]

and

−(curl V ) · ν + curl�VT = 0.

Whence

div�̃t

[
∂

∂ν
(V × ν̃t )

]

|t=0 = div�[−(curl V )T + (R − 2H�)(V × ν)].

Combining this last relation together with Eq. 25 gives

∂

∂ν
(̃νt ·curlV )|t=0 = ∂

∂ν
[div�̃t

(V × ν̃t )]|t=0 = −div�(curl V )T −2H�div�(V ×ν).

Finally, we can conclude by plugging this last identity and Eq. 24 into Eq. 23.
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