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Abstract Designing computational experiments involving �1 minimization with lin-
ear constraints in a finite-dimensional, real-valued space for receiving a sparse
solution with a precise number k of nonzero entries is, in general, difficult. Sev-
eral conditions were introduced which guarantee that, for example for small k or for
certain matrices, simply placing entries with desired characteristics on a randomly
chosen support will produce vectors which can be recovered by �1 minimization. In
this work, we consider the case of large k and introduce a method which constructs
vectors which support has the cardinality k and which can be recovered via �1 min-
imization. Especially, such vectors with largest possible support can be constructed.
Further, we propose a methodology to quickly check whether a given vector is recov-
erable. This method can be cast as a linear program and we compare it with solving
�1 minimization directly. Moreover, we gain new insights in the recoverability in a
non-asymptotic regime. Our proposal for quickly checking vectors bases on optimal-
ity conditions for exact solutions of the �1 minimization. These conditions can be
used to establish equivalence classes of recoverable vectors which have a support of
the same cardinality. Further, by these conditions we deduce a geometrical interpre-
tation which identifies an equivalence class with a face of an hypercube which is cut
by a certain affine subspace. Due to the new geometrical interpretation we derive new
results on the number of equivalence classes which are illustrated by computational
experiments.
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1 Introduction

The difficulty of finding suitable test instances is a serious problem in the field of
Sparse Reconstruction. A common and promising method to reconstruct a vector
x∗ ∈ R

n with only a few nonzeros entries from a linear transformation, which is
realized by a matrix A ∈ R

m×n with m < n, is performing the �1 minimization, i.e.

x∗ = arg min
y

‖y‖1s.t. Ay = Ax∗. (1)

This optimization problem was introduced in [26] and is called Basis Pursuit. Under
certain conditions (e.g. see [11, 21, 31]) the vector x∗ is also a solution with the
smallest number of nonzero entries; a vector x∗ with exactly k nonzero entries is
called k-sparse.

A popular method for finding a k-sparse vector x∗ satisfying (1) for a given matrix
A ∈ R

m×n is to choose an index set I ⊂ {1, . . . , n} with cardinality k and entries
x∗
i , i ∈ I , randomly. For small k this procedure is promising especially if the condi-

tions mentioned above are satisfied, but these conditions require small k. For large k

it is more difficult to get suitable k-sparse vectors x∗. Besides the question how to
compute x∗ satisfying (1) for a given matrix, we state the question how many differ-
ent pairs of index sets and signums do exist for a given sparsity k. We aim at partial
answers to these questions in a non-asymptotic regime.

We denote by I = supp(x∗) the support of a vector x∗ and its complement by
I c = {1, . . . , n}\I . By AI we denote the submatrix of a matrix A, whose columns
are indexed by I , by AT

I its transpose, and set s = sign(x∗)I . Further, the null space
of A is denoted by A and the range of A is denoted by rg(A) = {Ax : x ∈ R

n}. For
(1) to hold, it is necessary and sufficient (cf. [23, Theorem 2]) that

∃w ∈ R
m : AT

I w = s, ‖AT
Icw‖∞ < 1 and AI has full rank. (2)

A vector w fulfilling (2) will be called dual certificate for the support I and sign
s. Condition (2) shows that the recoverability of the solution x∗ only depends on its
support and its signum.

Definition 1 Let A ∈ R
m×n and k ≤ m ≤ n. For I ⊂ {1, . . . , n} and s ∈ {−1, 1}I , a

pair (I, s) satisfying (2) is called Recoverable Support of A. If I has the cardinality
k, a Recoverable Support (I, s) has the size k.

Thus, finding x∗ ∈ R
n which satisfies (1) for a given matrix A ∈ R

m×n is equiv-
alent to finding a corresponding Recoverable Support (I, s) such that I = supp(x∗)
and s = sign(x∗)I . For the rest of this paper we will denote the cardinality of a
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set I with |I | and the i-th column of a matrix A with ai . Moreover we will require
m ≤ n for all m × n-matrices.

With a geometrical interpretation of (2), new insights to Basis Pursuit, including
what kind of matrices can be used and how many Recoverable Supports do exist
for a certain size k, can be developed. To that end, consider that AT w is a rela-
tive interior point of an (n − |I |)-dimensional face of the n-dimensional hypercube
Cn := [−1, +1]n and assume that the range of AT is an m-dimensional subspace.
Hence, condition (2) leads to the geometrical interpretation that the m-dimensional
subspace rg(AT ) cuts the relative interior of an (n − |I |)-dimensional face of Cn.
In [23], the resulting polytope emerging from the intersection of the m-dimensional
subspace and Cn is considered. Counting all index sets I ⊂ {1, . . . , k} with |I | = k,
which satisfy this geometrical interpretation, one can give exact values for the num-
bers of recoverable vectors for a matrix A and a sparsity k. These values have been
estimated in several papers (e.g. [5–7]) through Monte Carlo samplings. Further this
interpretation brings Sparse Reconstruction together with the topic (cross-)sections
of a hypercube in Combinatorial Geometry.

A different geometrical interpretation has been given by Donoho in [3] through
associating projected n-dimensional cross-polytopes with the Basis Pursuit problem,
see also the accessible description in [8, Section 4.5]. The connection between Sparse
Reconstruction and the theory of convex polytopes gave new insights in both fields.
Our geometrical interpretation of Recoverable Supports, which is inspired by (2), is
dual to this approach. Nonetheless our interpretation delivers additional insights to
the questions posed above.

This paper is organized as follows. In Section 2 we develop conditions for the
existence of Recoverable Supports. The geometrical aspect around the stated geo-
metrical interpretation will be regarded more carefully in Section 3: a proof for the
geometrical interpretation of Recoverable Supports will be given, and exact num-
bers of Recoverable Supports for certain types of matrices as well as a non-trivial
upper bound for these numbers will be stated. Further we will introduce an algo-
rithm to compute a Recoverable Support of a given matrix and a given size in
Section 4. The theoretical results from these sections will be illustrated by Monte
Carlo experiments in Section 5. Through numercial experiments we additionally pro-
vide evidence that checking (2) is considerably faster than solving Basis Pursuit
as a linear program. In addition, our method stands out from recently done experi-
ments since we can also ensure that a vector is the unique solution of Basis Pursuit,
without restricting the test problems to a certain class of matrices (e.g. random
matrices).

2 Existence of and conditions for recoverable supports

2.1 Establishing a partial order

The condition (2) for Recoverable Supports rests on two things: The injectivity of the
submatrix AI with I being the support of x∗ and the existence of the dual certificate
w ∈ R

m. The following theorem shows that it is possible to shrink Recoverable
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Supports and states conditions when it is possible to obtain a larger Recoverable
Support from a given one.

Theorem 2 Let A ∈ R
m×n and let S1 = (I, s) be a Recoverable Support of A.

1. If for w satisfying (2) there is z ∈ ker AT
I satisfying ‖AT

Ic (w + z)‖∞ = 1 and A

restricted to J := {i : |aT
i (w + z)| = 1} has full rank, then with t = AT

J (w + z)

the pair S2 = (J, t) is a Recoverable Support of A and it holds I ⊂ J .
2. Let |I | > 1. For any j0 ∈ I there exists s̃ ∈ {−1, 1}I\{j0} with si = s̃i for all

i ∈ I\{j0}, such that the pair S3 = (I\{j0}, s̃) is a Recoverable Support of A.

Proof The existence of z ∈ AT
I for the first statement is obvious and the conclusion

that (J, t) is a Recoverable Support follows directly by checking (2). For the second
statement notice that AI\{j0} has full rank too and that ker (AT

I ) � ker (AT
I\{j0}) holds.

Hence, for w ∈ R
m satisfying (2) there exists z ∈ ker(AI\{j0})\{0} with aT

j0
z 	= 0.

Choose λ 	= 0 such that |λ| <
(
1 − |aT

i w|) /|aT
i z| for all i ∈ I c with aT

i z 	= 0 and

λaT
j0

z ∈
{

(−2, 0) , if aT
j0

w = 1
(0, 2) , else

holds. Considering all elements of AT (w + λz) seperately, it follows

|aT
j0

w + λaT
j0

z| < 1,

aT
i w + λaT

i z = aT
i w = si for i ∈ I\{j0},

|aT
j w + λaT

j z| ≤ |aT
j w| + |λ||aT

j z| < 1 for j ∈ I c

by construction. Hence with s̃ = AT
I\{j0}(w + λz) the pair S2 = (I\{j0}, s̃) is a

Recoverable Support of A.

The following corollary can be obtained by applying the second statement in
Theorem 2 recursively.

Corollary 3 Let A ∈ R
m×n and (I, s) be a Recoverable Support of A. Then for any

J ⊂ I, J 	= ∅, there exists s̃ ∈ R
n with s̃J = sJ , such that the pair (J, s) is a

Recoverable Support of A.

By using the stated inclusion of Recoverable Supports, a partial order can be
obtained through Theorem 2: for Recoverable Supports S1 = (I, s), S2 = (J, s̃) with
sJ = s̃J , it is S2 ≤ S1 if and only if J ⊂ I . For example, the supports S1, S2 and
S3 from Theorem 2 fulfill S3 ≤ S1 ≤ S2. Moreover, any Recoverable Support can
be shrinked and enlarged under the assumption that the respective submatrix is injec-
tive. In other words, the set of all Recoverable Supports form a partially ordered set
and may be visualized as a Hasse Diagram. Further, there exist Recoverable Sup-
ports which can not be enlarged, and we call them Maximal Recoverable Supports.
Due to Corollary 3, the Maximal Recoverable Supports determine the full set of all
Recoverable Supports.
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The proof of Theorem 2 also provides a way to obtain a Recoverable Support if a
pair (I, s) satisfies all requirements but having AI as a full rank matrix.

Corollary 4 Let A ∈ R
m×n, I ⊂ {1, ..., n} and s ∈ {−1, 1}I . Further let there exist

w ∈ R
m satisfying AT

I w = s, ‖AT
Icw‖∞ < 1. If there exists J ⊂ I such that the

submatrix AJ has full rank, then there exists s̃ ∈ {−1, 1}J with s̃J = sJ such that
(J, s̃) is a Recoverable Support of A.

2.2 Sufficient and necessary condition

Similar to Section 2.1, we will consider dual certificates to establish a sufficient and
necessary condition for a pair (I, s) being a Recoverable Support of a given matrix.

For this purpose, we introduce the pseudo-inverse
(
AT

I

)†
of AT

I . The following
theorem und its corollary are an extension of Fuchs’ condition in [9].

Theorem 5 Let A ∈ R
m×n, I ⊂ {1, ..., n} and s ∈ {−1, 1}I . Then (I, s) is a Recov-

erable Support of A if and only if AI has full rank and there exists y ∈ ker
(
AT

I

)
such

that

‖AT
Ic (A

T
I )†s + AT

Icy‖∞ < 1.

Proof If (I, s) is a Recoverable Support, then AI has full rank and there exists
w ∈ R

m such that AT
I w = s. With ỹ ∈ ker(AT

I ) the vector w has the general repre-
sentation w = (AT

I )†s+ỹ. Since there exists at least one w satisfying ‖AT
Icw‖∞ < 1,

there exists y ∈ ker(AT
I ) proving the stated inequality.

Further, for y ∈ ker(AT
I ) consider w = (AT

I )†s + y. Since AI has full rank, AT
I

has linearly independent rows, so AT
I w = s holds as well as ‖AT

Icw‖∞ < 1.

Note that a conclusion of Theorem 5 is that

AI has full rank and ‖AT
Ic (A

T
I )†s‖∞ < 1

is a sufficient condition for (I, s) being a Recoverable Support of A by choosing
y = 0. For full rank matrices with |I | = rank(A) this is also a necessary condition
using the inverse A−T

I of AT
I .

Corollary 6 Let A ∈ R
m×n have a full rank, I ⊂ {1, ..., n} with |I | = m and

s ∈ {−1, 1}I . Then AI is invertible and ‖AT
IcA

−T
I s‖∞ < 1 holds if and only if (I, s)

is a Maximal Recoverable Support of A.

We close this section with the characterization on Recoverable Supprts with size
one when the corresponding column has the largest norm over all columns of the
considered matrix. The following theorem will be considered in Algorithm 1.

Theorem 7 Let A ∈ R
m×n and k ∈ {1, ..., n} such that for all j 	= k holds ‖aj‖ ≤

‖ak‖. Then for s ∈ {−1, +1} the pair ({k}, s) is a Recoverable Support of A if and
only if for any j 	= k with ‖aj‖ = ‖ak‖ it holds that aj 	= ak .
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Proof Let ({k}, s) be a Recoverable Support of A and without loss of generality let
s = +1. Assuming for j 	= k it holds that ak = aj , then for all y⊥ak it follows

∣∣∣‖ak‖−2aT
j ak + aT

j y

∣∣∣ = 1

which is a contradiction to Theorem 5.
For the converse implication let aj 	= ak with ‖aj‖ = ‖ak‖. With w = ‖ak‖−2ak

it holds that

|aT
k w| = 1and |aT

j w| = |aT
j ak|

‖ak‖2
<

‖aj‖
‖ak‖ = 1

by applying Cauchy-Schwartz inequality. Further for any ai satisfying ‖ai‖ < ‖ak‖
the inequality |aT

i w| < 1 holds. Trivially, the submatrix A{k} has full rank and with
s = aT

k w it holds that the pair ({k}, s) is a Recoverable Support of A.

Hence, every matrix whose columns have the largest norm possesses a Recov-
erable Support if and only if one of these columns do not appear multiple times.
That does not exclude matrices whose columns with largest norm have multiple
appearence from having Recoverable Supports; see for example the matrix A ∈ R

2×4

whose first two columns are standard basis elements of R2 and a3 = a4 = a1+a2 has
still four Recoverable Supports with size one. Moreover, Theorem 7 will be useful as
a starting point for the algorithm in Section 4.

3 Geometrical interpretation and number of recoverable supports

In this section, we deal with the geometrical interpretation of Recoverable Supports
presented in Section 1 and its implications on their number. In the end of this section,
we further derive a non-trivial, but heuristic upper bound on this number. As far as
we know, this is a new bound.

Definition 8 For A ∈ R
m×n the number �(A, k) is defined as the number of all

Recoverable Supports of A with size k, i.e.

�(A, k) := |{(I, s) : (I, s)is a Recoverable Support of Awith size k}|.
Further let �(m, n, k) be defined as the maximum of � over all matrices of size
m × n, i.e.

�(m, n, k) := max{�(A, k) : A ∈ R
m×n}.

For some triples (m, n, k), the values for � and � will be derived in Sections 3.3
and 3.4. Prior, we briefly sketch some basics on convex polytopes in the next section.

3.1 Preliminaries

Let x1, ..., xm ∈ R
n, then its convex hull P = conv(x1, ..., xn) is called a polytope.

The dimension of a polytope is the dimension of its affine hull; a polytope with
dimension d is called d-polytope. We call P centrally-symmetric if for all x ∈ P it
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holds −x ∈ P . For λ ∈ R
n and c ∈ R we define the hyperplane Hλ,c = {x : λT x =

c}. Further the intersection F = Hλ,c ∩ P is called a face of P if λT x < c holds
for all x /∈ F . A face of P is also a polytope; more general, any intersection of a
polytope with an affine subspace is a polytope. The set of all k-dimensional faces of
P is denoted as Fk(P ). A centrally symmetric polytope is called k-neigborly if any
set of k + 1 vertices of P , not including an antipodal pair, spans a face of P .

A face F of the hypercube Cn := [−1, +1]n is uniquely determined by a pair
(I, s) consisting of an index set I ⊂ {1, ..., n} and s ∈ {−1, +1}I : with (I, s) choose
λ ∈ R

n through λI = s, λj = 0 if j /∈ I . We see that for any y ∈ R
n with

λT y > n − |I | it holds y /∈ Cn. Hence, it holds that F = Hλ,(n−|I |) ∩ Cn is an
|I |-dimensional face of Cn. For F ⊂ Cn we note the following equivalence:

F ∈ Fk(C
n)

⇔
∃!I ⊂ {1, ..., n}, |I | = n − k ∀v, w ∈ F : vI ∈ {−1, 1}I , vI = wI .

(3)

With I (F ) we denote the unique subset of {1, ..., n} determined by F ∈ Fk(C
n).

Since the equivalence also holds for subsets V ⊂ F , we also use I (V ) to denote the
unique subset. We collect these observations in the next lemma.

Lemma 9 For F ∈ Fk(C
n) there exists λ ∈ R

n such that

F = {x ∈ Cn : λT x = n − k} and Cn\F = {y ∈ Cn : λT y < n − k}.

On the basis of Lemma 9, we identify the relative interior of a face F with
relint(F ) = {x ∈ F : |xi | < 1, i /∈ I (F )}.

For an extensive overview in the field of convex polytopes, we refer to the books
by Grünbaum [10] or Ziegler [32].

Finally, we have all tools for proving the geometrical interpreation of Recoverable
Supports suggested in Section 1.

3.2 Geometrical interpretation of recoverable supports

With the introduced notation we will prove the following theorem. Note that the
results are similar to the interpretation in [23].

Theorem 10 Let A ∈ R
m×n have rank l and let k ≤ l. Then the following statements

are equivalent:

1. There exists a Recoverable Support of A with size k.
2. There exists F ∈ Fn−k(C

n) such that relint(F )∩ rg(AT ) 	= ∅ and AT
I (F ) has full

rank.
3. There exists V ∈ Fl−k(C

n ∩ rg(AT )) and v ∈ V with ‖vIc‖∞ < 1 and AI has
full rank for I := I (V ).

Proof First we state for any subset I ⊂ {1, ..., n} with |I | ≤ l that AI has full rank
if and only if AT

I has full rank.
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(1) ⇒ (2) : Let (I, s) be a Recoverable Support of A with size k. Choose λ ∈ R
n

with λI = s and λj = 0 for j ∈ I c and consider F := {x ∈ Cn : λT x = k}. It holds
F ∈ Fn−k(C

n). By assumption there is w ∈ R
m such that AT w ∈ relint(F ), hence

relint(F ) ∩ rg(AT ) 	= ∅.
(2) ⇒ (3) : Denote I = I (F ) and choose λ ∈ F with λj = 0 for j /∈ I . Then

V = {y ∈ P : λT y = k} is a face of P = Cn ∩ rg(AT ) and further V ⊂ F . Hence
I = I (V ) and there is v ∈ V with ‖vIc‖∞ < 1. Since P is an l-polytope, it follows
V ∈ Fl−k(P ).

(3) ⇒ (1) : Let I = I (V ). There is w ∈ R
m such that AT w = v and fur-

ther ‖AT
Icw‖∞ < 1. Hence, the pair (I, vI ) is a Recoverable Support of A with

size k.

Theorem 10 partitions solutions of (1) into equivalence classes separated into faces
of Cn with different dimensions. For the rest of this section, we will use the notation
of each polytope used in Theorem 10 and P := Cn ∩ rg(AT ). A first consequence
of the latter theorem gives an equivalent expression of Definition 8: For A ∈ R

m×n

with rank l and k ≤ l it is �(A, k) = |Fl−k(P )|.
Further the second statement from Theorem 2 delivers the following corollary.

Corollary 11 Let A ∈ R
m×n have rank l. Then the polytope P = Cn ∩ rg(AT ) is

l-dimensional, centrally-symmetric, and simple, i.e. any vertex of P is adjacenced by
l edges.

With Corollary 11 we can link Sparse Reconstruction to simple,
centrally-symmetric polytopes. Further with the two representations of the geomet-
rical interpretation given by Theorem 10 we can involve the results from the field
(cross-)sections of a hypercube from Combinatorial Geometry. This will be done in
Sections 3.4 and 3.5.

3.3 Geometrical interpretation of basis pursuit by Donoho

In this subsection we briefly present the geometrical interpretation of Basis Pursuit
by Donoho [3, 4].

With the cross-polytope C = {x ∈ R
n : ‖x‖1 ≤ 1} and the projection operator

A ∈ R
m×n, we consider the projected cross-polytope AC = {Ax : x ∈ C} and further

the following theorem.

Theorem 12 [3, Theorem 1] Let A ∈ R
m×n. These two statements are equivalent:

– The polytope AC has 2n vertices and is k-neighborly.

– Any k-sparse vector solves Basis Pursuit uniquely.

Theorem 12 connects Sparse Reconstrunction with projected cross-polytopes.
Thus, one can apply results from convex polytopes like the following necessary con-
dition taken from [3] which is based on [28]. In the following, the floor function is
denoted by �·�.
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Corollary 13 Let A ∈ R
m×n with 2 < m ≤ n − 2. If any k-sparse vector x∗ solves

(1) then k ≤ �(m + 1)/3�.

Further in [4] tools from [27] are used to count the faces of randomly-projected
cross-polytopes. Considering that any preimage of a face of AC is a face of C (e.g. see
[32, Theorem 7.10]), the following lemma connects the property of k-neigborliness
of AC and C. We need the term k-simplex describing a polytope with k + 1 vertices.

Lemma 14 [4, Lemma 2.1] Let A be a projection and P = AC such that for k ∈ N

it holds |Fi (P )| = |Fi (C)| for i = 1, ..., k − 1. Then any F ∈ Fl(P ) is an l-simplex
for l = 0, ..., k − 1 and P is k-neighborly.

Hence, with Lemma 14 one can say rakishly that if we are losing faces through the
projection, Basis Pursuit loses the power of reconstructing sparse vectors. Moreover,
there exist explicit functions ρN, ρF : (0, 1] → [0, 1] (cf. [4, Section 3]) such that
the following theorems hold.

Theorem 15 [4, Theorem 1] Let ρ < ρN(δ) and A : R
n → R

m a uniformly-
distributed random projection with m ≥ δn. Then

Prob{|Fl(C)| = |Fl(AC)|, l = 0, ..., �ρm�} → 1 as n → ∞.

Theorem 16 [4, Theorem 2] Let m ∼ δn and A : Rn → R
m be a uniform random

projection. Then for k with k/m ∼ ρ, ρ < ρF (δ)it holds

|Fk(AC)| = |Fk(C)|(1 + o(1)).

The functions ρN, ρF are displayed in Fig. 1 and are known in the context of Phase
Transitions [30]. Theorem 15 implies that for large m and n tending to infinity, with
high probability any �ρm�-sparse vector x∗ is recoverable. Donoho states [4, Section
1.5] that the result in Theorem 16 can be seen “as a weak kind of neighborliness
[...] in which the overwhelming majority of (rather than all) k-tuples span (k − 1)-
faces”. Further he remarks that this result is “sharp in the sense that for sequences
with [k/m ∼ ρ > ρF (δ)], we do not have the approximate equality”. An additional
result [4, Theorem 4] is the limit value consideration

lim
δ→1

ρF (δ) = 1.

This value combined with Theorem 16 implies that for δ → 1 and n → ∞ almost
all vectors x∗ can be recovered through (1) since the number |Fk(AC)| tends to
concentrate near its upper bound value 2k+1

(
n

k+1

)
.

Taking up our geometrical perspective, we introduce the polar set K∗ of K ⊂ R
m

as
K∗ := {w ∈ R

m : xT w ≤ 1for all x ∈ K}
and see with

AT (AC)∗ = {AT w ∈ R
m : |aT

i w| ≤ 1, i = 1, ..., n} = rg(AT ) ∩ Cn
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Fig. 1 Functions ρN (blue) and ρF (red) in Theorems 15 and 16

that the projected cross-polytope AC and Cn ∩ rg(AT ) are dual to each other, see
also [23], which means that both polytopes have isomorphic face lattices. Hence,
our approach simply differs that we additionally consider unique solutions of Basis
Pursuit.

For further considerations, we denote the cross-section of an m-dimensional
subspace K of R

n and Cn as regular if K has no point in common with any
(n − m − 1)-dimensional face of Cn. The second statement in Theorem 10 connects
regular cross-sections of the hypercube to Recoverable Supports. In general, we can
not assume that the sections occuring through regarding the range of AT are regu-
lar but we still can use some basic result from literature and connect them to Sparse
Reconstruction. This is done in Section 3.4 and 3.5.

3.4 Values for �

In this subsection, we give some values of � for specified matrices and sizes of their
Recoverable Supports. In general, the polytope P = rg(AT ) ∩ Cn is not a regular
cross-section. Thus, the already difficult problem of counting k-faces of a (simple)
polytope becomes even more difficult counting only all k-faces of P intersecting
with (n − m + k)-faces of Cn in case of full rank matrices. Different from � (cf.
Section 3.5), using past results for a lower bound of � over all m × n-matrices is, as
far as we know, only possible under certain assumptions, as the following corollary
states.

Corollary 17 Let A ∈ R
m×n with rank l and assume rg(AT ) ∩ Cn is a regular

cross-section. Then
�(A, l) ≥ 2l .

Proof The result follows from Statement 3 of Theorem 10 and [17, Corollary 2].
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With the same assumptions, Euler’s relation [24, 25] and Steinitz’ characterization
for 3-polytopes [29] can be applied, but the practicability is limited since for every
matrix the regularity of its corresponding cross-section has to be checked. Consider-
ing the cross-section as a simple polytope delivers a different lower bound, which is
only dependent on the value �(A, 1).

Corollary 18 Let A ∈ R
m×n with rank l. Then

�(A, l) ≥ (l − 1)�(A, 1) − (l + 1)(l − 2).

Proof Combining [1, Theorem 1] and Corollary 11 proves the result.

Note that Corollary 18 provides a lower bound on the number of Recoverable
Supports of a matrix if the number of Recoverable Supports of size one is known.
However, there are no more than 2n possibilities and these can be checked easily for
any matrix.

For the rest of this section we consider two types of matrices: Equiangular tight
frames and Gaussian matrices. The term equiangular tight frame will be dwelled on
later; a Gaussian matrix means that its entries are independant and standard normally
distributed random variables, i.e. having mean zero and variance one.

First we consider Gaussian matrices and regard the work of Lonke in [15]. With
erf we denote the Gauss Error function and E(Z) describes the expected value of Z.

Corollary 19 Let A ∈ R
m×n be a randomly drawn Gaussian matrix. Then

E(�(A, m)) = 2m

(
n

m

)√
2m

π

∫ ∞

0
e−mt2/2

[
erf

(
t√
2

)]n−m

dt.

Further it holds that

E(�(A, m)) ≥
(

n

n − m

)
2n

(
1

π
arctan

1√
m

)n−m

, (4)

where equality holds for m = n − 1.

Proof The result follows from [15, Proposition 2.2, Proposition 2.5] and the second
statement of Theorem 10.

In Section 5 we will match (4) with Monte-Carlo samplings. Additionally, Lonke
delivers an asympotic behavior for sizes k 	= m.

Corollary 20 LetA ∈ R
m×n be a randomly drawn Gaussian matrix. Then for k 	= m

it holds that

lim
n→∞ E(�(A, k))(2n)−kk! = 1.

Proof Combining [15, Corollary 3.4] and the second statement of Theorem 10
proves the assertion.
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As Lonke says [15, Section 3], the value �(A, k) “tends to concentrate near the
value [2k

(
n
k

)
], which bounds it from above” (cf. the statement of Donoho [4] as an

implication of Theorem 16).
For the rest of this section we regard equiangular tight frames {ai}1≤i≤n in R

m,
where the vector ai forms the i-th column of the m × n-matrix. Among other things,
these frames have the property that any pair of columns has the same inner product. In
case of minimally redundant matrices, i.e. m = n−1, the only equiangular tight frame
is (up to rotation) the so-called Mercedes-Benz frame, see [19, Section 3.2] and [18].
Particularly, Mercedes-Benz frames have an additionally property: Each row of such
a matrix has the mean value equal to zero, in other words, the kernel is spanned by
the vector of all ones. This property can be used to give the exact number of Maximal
Recoverable Supports. Let n be odd. Since any v ∈ rg(AT ) has the mean value zero,
any vertex of P has the same property. We construct these vertices combinatorically
by choosing an index set J ⊂ {1, ..., n} with |J | = (n − 1)/2; there are

(
n

(n−1)/2

)

different possibilities choosing J . Further there are (n + 1)/2 different possibilities
choosing one l ∈ {1, ..., n}\J . For, say, the Mercedes-Benz frame A ∈ R

n−1×n it
holds that v ∈ R

n, with vi = 1 for i ∈ J and vl = 0 as well as the remaining entries
having the value −1, is an vertex of P . Hence

�(A, n − 1) =
(

n + 1

2

) (
n

n−1
2

)
. (5)

Using the same argument for n even, we get �(A, n − 1) = 0 but �(A, n − 2) =
(n/2)

(
n

n/2

)
. Keeping in mind that the combinatorical amount increases with a decreas-

ing number of ±1, we can construct any Recoverable Support of A with any size,
e.g. for n even it holds

�(A, n − 2) =
(

n − 1

2

) (
n + 1

2

)(
n

n−1
2

)
.

The theoretical results so far are illustrated in Fig. 2 by Monte Carlo experiments with
Mercedes-Benz frames and randomly drawn Gaussian matrices. One may observe
that the empirical results agree with the theoretical statements.

For n even we can also construct a matrix A ∈ R
n−1×n similar to the formula (5),

this will be revisited in Section 3.5.

Lemma 21 Let A ∈ R
m×n then there exists a matrix B ∈ R

m+1×n+1 such that
�(B, m + 1) = 2�(A, m).

Proof Consider the set W = {w ∈ R
m : wsatisfies (2) for some (I, s)} and for α 	= 0

the matrix

B =
[

A 0
0 α

]
.

Then for any w ∈ W the elements w(1) = (w, α−1)T , w(2) = (−w, α−1)T satisfy
(2) for B. Hence there are 2�(A, m) Recoverable Supports of B with size m+1.
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Fig. 2 Monte Carlo Sampling versus Theoretical Results in Section 3.4 and 3.5. Results from Monte
Carlo experiments for Mercedes-Benz frame and Gaussian matrix (displayed as crosses) of the size (n −
1) × n. For any n ≥ 4, one thousand pairs (I, s) with I ⊂ {1, ..., n}, |I | = n − 1, s ∈ {−1,+1}I where
taken randomly and tested whether (I, s) is a Recoverable Support. The y-axis displays the proportion
of Recoverable Supports versus all tested pairs. For Mercedes Benz-frames only results for n odd are
displayed. The formula (4) is plotted as a straight line, and formula (5) is displayed as points. The lower
bound from Corollary 17 is displayed in the dashed line

Since for n even it holds that
(
n + 2 − n

2

) (
n + 2

n
2

)
= 2

(
n + 1 − n

2

)(
n + 1

n
2

)
,

and, by denoting �·� as the Floor function, we can state matrices A ∈ R
n−1×n

satisfying

�(A, n − 1) =
(
n −

⌊n

2

⌋) (
n

�n
2 �

)
.

This formula will be important in Corollary 26.
Up to here, the partial order in the set of all Recoverable Supports of a certain

matrix has not been used. The following lemma enters this subject. It will be help-
ful for bounding � and � and further gives some characteristics about the actual
recoverability which is the number of Recoverable Supports in proportion to the total
number of (n − k)-faces of Cn (where k is the size of the appropriate Recoverable
Support).

Lemma 22 Let A ∈ R
m×n, then for any k ≤ rank(A) with �(A, k) 	= 0, there exists

a positive number λ ≤ 2(n − k + 1) satisfying

λ�(A, k − 1) = k�(A, k).

Proof Regarding the lattice of all Recoverable Supports of A, Theorem 2 states
that any Recoverable Support with size k is adjacent to k Recoverable Supports with
size k − 1, i.e. the number k�(A, k) states the number of all adjacences between
Recoverable Supports with size k and k − 1. Hence, there is a positive number λ

satisfying the desired equation. Any Recoverable Support (I, s) with size k − 1 is
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adjacent to no more than 2(n−k +1) Recoverable Supports with size k, since |I c| =
n − k + 1 and each new sj , j ∈ I c, in a Recoverable Support with size k can adopt
both signs: a positve or a negative sign. Hence, it follows λ ≤ 2(n − k + 1).

The number λ from Lemma 22 states the averaged number of outgoing adjacences
from a Recoverable Support with size k − 1 to Recoverable Supports with size k.
The upper bound for λ implies a statement for the probability that an appropriate pair
(I, s) is a Recoverable Support.

Proposition 23 Let A ∈ R
m×n, then the mapping

k �→
[

2k

(
n

k

)]−1

�(A, k) (6)

is monotonically nonincreasing.

Proof Assume there is k ≤ rank(A) satisfying
[

2k−1
(

n

k − 1

)]−1

�(A, k − 1) >

[
2k

(
n

k

)]−1

�(A, k).

Since there is λ ∈ R such that λ�(A, k − 1) = k�(A, k), it follows that λ >

2(n − k + 1), which is a contradiction to Lemma 22.

The mapping (6) states the ratio between the actual number of Recoverable Sup-
ports of A with size k and the total number of all pairs (I, s) with I ⊂ {1, ..., n}, s ∈
{−1, +1}I , previously introduced as the recoverability. The second proposition aims
at an actual number of � for sparsity rank(A) − 1 if the number of Maximal
Recoverable Supports is known.

Proposition 24 Let A ∈ R
m×n with rank l and assume �(A, l) 	= 0. Then �(A, l −

1) = l
2�(A, l).

Proof Regarding any Recoverable Support (I, s) with size l−1, it holds that the null
space of AT

I is one-dimensional. Since there exist at least one Recoverable Support
with size l, we can enlarge it, due to Theorem 2, in two different directions.

Proposition 24 states another interesting fact about the number of Maximal Recov-
erable Support: Noticing that all values of � are even due to the symmetry of the
underlying polytope, we observe for an odd rank l of a matrix A that �(A, l) is
divisible by four or even a higher even number.

3.5 Bounds and values for �

In this subsection, we give bounds and values for the largest possible number of
Recoverable Supports of all matrices with a certain size, i.e. � (cf. Definition 8).

It is obvious that we can slice the three dimensional cube C3 with a hyperplane
in maximal six edges, see Fig. 3. As Fig. 3 prompts it is not possible to slice less
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Fig. 3 Examples for Sections rg(AT ) ∩ C3. Left: Regular Section; Center: Not a Regular Section; Right:
Regular Secction with Mercedes Benz Frame

than four edges without failing the origin, the graphics in the middle shows that it is
possible to touch also vertices of the hypercube. Despite Theorem 10 implies that the
results from the field cross-sections of a hypercube can be used for our issues, these
results often require a regular cross-section while, in general, the section rg(AT )∩Cn

is not regular. In contrast to lower bounds (cf. Section 3.4), results for an upper bound
can be used, as regarded in the following of this subsection. Note that McMullens
Upper Bound Theorem [20] can not be used as a typical choice, since it exceeds the
trivial bound.

Firstly we give an upper bound for � if k is large. This result is already known
[3, Corollary 1.3] (cf. Corollary 13) in the field of Sparse Reconstruction.

Corollary 25 Let 0 < m < n − 1. If k > m+1
3 then �(m, n, k) < 2k

(
n
k

)
.

Proof This result follows from [14, 28] and the second statement in Theorem 10.

Considering minimally redundant matrices, remind m = n − 1, we get the
following value for Maximal Recoverable Supports.

Corollary 26 It holds that

�(n − 1, n, n − 1) =
(
n −

⌊n

2

⌋) (
n

�n
2 �

)
.

Proof Combining [22] and Statement 2 of Theorem 10 proves the result.

In Section 3.4 we have seen that the Mercedes-Benz frame with an odd number of
columns and the construction in Lemma 21 reaches this value. Additionally, with the
mutual coherence slightly more than half of the values �(n − 1, n, k) for variable k

are known from the following result.

Corollary 27 It holds that

�(m, n, k) = 2k

(
n

k

)
if k <

1

2

(

1 +
√

m(n − 1)

n − m

)

.
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Proof This follows from [11, 12].

The bound in Corollary 27 can be reached by equiangular tight frames, see [12]. As
a further consequence of the bound in Lemma 22, the following proposition delivers
an upper bound for �.

Proposition 28 For k ≤ m it holds that

�(m, n, k) ≤ 2(n − k + 1)

k
�(m, n, k − 1).

Proof Assume there is k ≤ m for A ∈ R
m×n with �(m, n, k − 1) = �(A, k − 1)

and Ã ∈ R
m×n with �(m, n, k) = �(Ã, k) satisfying

�(Ã, k) >
2(n − k + 1)

k
�(A, k − 1),

then it holds that

2(n − k + 1)

k
�(A, k − 1) < �(Ã, k) ≤ 2(n − k + 1)

k
�(Ã, k − 1)

with Lemma 22, which is a contradiction to �(m, n, k − 1) = �(A, k).

Similarly to the value �, the latter result implies further statements about �, which
are similar to Propositions 23 and 24.

Corollary 29 It holds that �(m, n, m − 1) = m
2 �(m, n,m).

Additionally, we get a similar statement to Proposition 23 about an upper bound
of the recoverability.

Corollary 30 The mapping

k �→
[

2k

(
n

k

)]−1

�(m, n, k)

is monotonically nonincreasing.

To the end of this section, we develop a heuristic upper bound of �. Considering
λ in Lemma 22, we can establish an upper bound of � by assuming that λ can be
bounded from below, i.e. λ ≥ 2(l − k + 1) for matrices with rank l. Conveniently,
we derive this heuristic bound for full rank, minimally redundant matrices A, i.e.
l = n − 1, but the construction can be adapted straightforward to other instances.
Assume λ ≥ 2(n − k), then for a positive integer v < n it follows

�(A, n − 1) ≥ 2v−1 (v − 1)!(n − v)!
(n − 1)! �(A, n − v)
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by applying the lower bound recursively. Through substituting k = n − v and
bounding �(A, k − 1) by Corollary 26, we obtain

�(A, k) ≤ 2k+1−n

(
n − 1

k

)(
n −

⌊n

2

⌋)(
n

⌊
n
2

⌋
)

.

Since the right-hand side of the latter inequality exceeds the trivial bound 2k
(
n
k

)
for

small k, we postulate the following heuristic upper bound:

�(n − 1, n, k) ≤ min

{
2k

(
n

k

)
, 2k+1−n

(
n − 1

k

) (
n −

⌊n

2

⌋) (
n

⌊
n
2

⌋
)}

. (7)

In general, the inequality λ ≥ 2(l−k+1) is not true, but we motivate this bound by the
observation that the transition from all pairs (I, s) are Recoverable Supports to none
of the pairs (I, s) are Recoverable Supports is rapid, e.g. [5, 6], and, furthermore,
this bound is true and strict in case that k = l, cf. Corollary 29. As far as we know,
there is no matrix exceeding this heuristic; it will be considered in the computational
experiments in Section 5. Moreover, this bound is also strict due to Corollary 26,27
and 29 for some values of k.

In the context of the Hasse Diagram of all Recoverable Supports, the maximum
� also states a geometrical question: what is the maximal λ such that the ratio λ/k

between the outgoing edges of all Recoverable Supports with size k − 1 and the
incoming edges of all Recoverable Supports with size k? Results for this question
would give further insights about � and improve a non-trivial upper bound. Combin-
ing Corollary 30 with Corollary 27 delivers an interesting insight for A ∈ R

m×n: if
�(A, k̃) = 2k

(n

k̃

)
holds for some k̃ ≤ m, then equality holds in Lemma 22 for all

k ≤ k̃, and also for �.

4 Computing a recoverable support

In general, generating test instances for computational experiments is an expensive
problem in Basis Pursuit. Even for, say, Gaussian matrices, where one only has to
find an instance satisfying the optimality condition for �1 minimization derived by
its subdifferential, it is not straightforward to find a suitable x∗ satisfying (1) if the
desired x∗ shall not be very sparse.

One naı̈ve way to generate a test instance is to choose an arbitrary k-sparse vec-
tor x∗, solve (1) with some solver and then check whether the solution is equal to
x∗. This may work well for small k but usually becomes computationally expensive
for larger k. Moreover, this construction suffers from a “trusted method bias”, i.e.
the method used to solve (1) may work better on instances which inherit a particular
structure (something which may not be under control of the experimenter). Another
approach has been proposed in [16]: Choose a pair (I, s) randomly and construct a
dual certificate, i.e. find w as in (2). This problem could be seen as a convex feasibil-
ity problem [2] and can be solved, e.g., by alternating projections as outlined in [16].
This approach often leads to dual certificates w such that the value ‖AT

Icw‖∞ is close
to one and hence, the result may not be trustworthy due to numerical errors. A more
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favorable way to check the reconstructability using (2) would be to check if for some
(I, s) the optimal value of

min
w

‖AT
Icw‖∞subject to AT

I w = sI (8)

is less or equal one. Similar to the �1 minimization problem (1), this may be cast as a
linear program. However, there are important differences to the naı̈ve approach: First,
the number of variables is m which may be much smaller than n. Moreover, one does
not rely on the entries of x∗ but only on its sign and the support.

However, in all the above methods one generates some trial support (I, s) and then
checks whether it is recoverable. Derived from Corollary 19, the probability for an
appropriate pair (I, s), |I | = n − 1, being a Maximal Recoverable Support of a ran-
domly drawn Gaussian matrix of the size (n−1)×n tends to zero for huge n. Hence,
one may never find any (n − 1)-sparse vector by any trial-and-error method and a
similar conclusion is true for k-sparse vectors for m × n matrices if k is sufficiently
large. But in view of Theorem 2, there is a systematic way to generate Recoverable
Supports (I, s) with maximal size by selecting a 1-sparse recoverable vector, comput-
ing a corresponding dual certificate and incrementally increasing the support while
maintaining a valid dual certificate (according to Theorem 2, 1.). The method is out-
lined in Algorithm 1. Note that there is considerable freedom in lines 7 and 8 of the
algorithm on how to continue.

Algorithm 1 is designed for arbitrary matrices of arbitrary sizes. However, it is
possible that the algorithm does not deliver a desired Recoverable Support if it gets
stuck in line 10. To protect against these cases the method could be extended by
including the second statement of Theorem 2; this extension would deliver more
freedom to jump between different index sets I but requires elaborate bookkeeping
of previously visited index sets. We experienced that this extension is not necessary
in most cases.
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The first issue about the algorithm might be the question, for what kind of matri-
ces does the method compute a Recoverable Support. Theorem 7 gives an answer:
matrices whose columns with maximal Euclidean norm are pairwise linearly inde-
pendant. The construction in the proof of Theorem 7 for a Recoverable Support with
size one is used in the first three lines. Hence, for these matrices the variable s in line
3 has only one entry equal to one in absolute value, the rest of the absolute entries
are less than one; this occasions the clauses in line 4 and 5.

Theorem 10 gives a geometrical interpretation of Algorithm 1. In line 3 we start
on one facet of the hypercube and by line 14 we walk along the range of the trans-
posed matrix to the next lower-dimensional face of the hypercube. Consequently, the
method requires at least k − 1 iterations for computing a Recoverable Support with
size k. Experiences show that mostly only k − 1 iterations are required. The if-clause
in line 10 saves for being stuck in an unsuitable face.

In any iteration step of the while loop, an element of the corresponding null space
is chosen. To choose such a vector it is advantageous to maintain an orthonormal
basis for the kernel of AT

I during the iteration in the form of some decomposition.
In our setting, we are calling up a rank one update to a QR decomposition. In the
worst-case scenario it may happen that one needs to check several vectors y in line 7,
however, using an orthonormal basis of the kernel one can just try all of the basis
vectors one after another. This worst case would lead to an iteration number O(l2)

for computing a Recoverable Support with size l. Actually, we were not able to con-
struct such an instance and usually the iteration number is O(l). Our setting of this
method, implemented as a MATLAB program, can be found online at http://wwwopt.
mathematik.tu-darmstadt.de/spear/. Further, experiments with Gaussian matrices and
Mercedes-Benz frames are evaluated in one of the author’s PhD thesis [13].

5 Computational experiments

In this section, we present computational experiments for the topics of the previous
sections. The optimization problem (8) delivers an alternative method to perform
numercial experiments in Basis Pursuit. A comparison of solving (8) and solving the
�1 minimization in (1) will be done in the following subsection. In Section 5.2 we
will highlight the theoretical results from Section 3 with Monte Carlo experiments
and will show the behaviour of the heuristic upper bound from (7).

All experiments were done with Matlab R2012b employed on a desktop computer
with 4 CPUs, each Intel� CoreTM i5-750 with 2.67GHz, and 5.8 GB RAM; the �1
and �∞ minimization problems were solved as linear programs with Mosek 6.

In the Monte Carlo experiments it will be tested whether a pair (I, s), with I ⊂
{1, ..., n}, s ∈ {−1, 1}I , is a Recoverable Support of a given matrix. The experiments
were done as follows: For a given matrix A ∈ R

m×n and k ≤ m, we generate I ⊂
{1, ..., n} with |I | = k randomly by choosing I uniformly at random over {1, ..., n}
and assure whether the submatrix AI has full rank through the Matlab function rank.
If AI has no full rank, then (I, s) is not a Recoverable Support of A; otherwise we
also choose s ∈ {−1, 1}I randomly and solve the �∞ minimization problem (8) with

http://wwwopt.mathematik.tu-darmstadt.de/spear/
http://wwwopt.mathematik.tu-darmstadt.de/spear/
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s = sign(x∗
I ). If the optimization problem is feasible, solved with status ’optimal’

and its optimization value is strictly less than one, the pair (I, s) will be recorded as
a Recoverable Support of A. For each size k, we perform M repetitions and average
the results; the number M varies from experiment to experiment and may be obtained
from the descriptions to each experiment. For reproducibility the code for all tests is
at http://wwwopt.mathematik.tu-darmstadt.de/spear/.

5.1 Comparing �1 and �∞ solver in Mosek

To check whether a pair (I, s) is a Recoverable Support, there are different meth-
ods, e.g. outlined in Section 4. In this subsection, we compare the naı̈ve approach,
i.e. solving (2) for some x∗ with the desired signum s, with solving Eq. 8. For com-
parision, we decided to perform a similar setup as in typical studies of the Phase
Transition, see e.g. [30]. We chose, as in [30], Gaussian matrices A ∈ R

m×n for
fixed n = 1600 and varying m such that δ = m/n ∈ (0, 1] is chosen in forty
equidistant steps. The tests were realized as Monte Carlo experiments with varying
|I | = k such that for any m the value ρ = k/m ∈ (0, 1] is chosen in forty equidis-
tant steps. For any triple (m, n, k), we did the following testing. We chose A ∈ R

m×n

as a randomly drawn Gaussian matrix, and performed the Monte Carlo sampling as
described above by firstly check whether (I, s) is a Recoverable Support of A, then
choose x∗ with supp(x∗) = I, sign(x∗)I = s, and solve Basis Pursuit with the right-
hand side Ax∗. This procedure is done with M = 10 repetitions. Remarkably, both
approaches can be cast as solutions of linear programs and hence, we used the same
solver for linear programs. More precisely, testing whether (I, s) is a Recoverable
Support by solving (8) was implemented as a linear program and solved with the
Mosek routine mosekopt with all tolerances set to default. We decide that the pair
(I, s) is a Recoverable Support if AI has full rank, the optimization problem is fea-
sible, it is solved with a status ’Optimal’, and its objective value is strictly less then
1 − 10−12. On the other hand, we checked whether x∗ satisfies (1) by solving the
constrained �1 minimization as a linear program with the Mosek routine mosekopt;
again all tolerances were set to default. We judge a calculated solution x̃ to be exact if
‖x̃ − x∗‖ < 10−5.

First we observe that all calculated solutions were solved with the status “Opti-
mal”. Figure 4 displays the averaged results of the decision whether a calculated
solution of �1 minimization is the desired solution (left) and a tested pair is a Recov-
erable Support (right). The miss-fit between the figures comes from the fact that the
solutions of (1) are not accurate enough to fulfill the desired tolerance of 10−5. Relax-
ing the bound from 10−5 to 10−3 would lead to almost identical figures in this case
but may lead to more errors in other circumstances. Alternatively, instead of measur-
ing the Euclidean distance between the calculated solution x̃ and the actual solution
x∗, one may compare whether the support of x∗ and the support of x̃ coincide; how-
ever, to determine the support, another tolerance would be needed to identify the
nonzero entries. In perspective to previous experiments, e.g. [30], the results as in
Fig. 4 are as expected. Further, we see agreement to previous testings as the phase

http://wwwopt.mathematik.tu-darmstadt.de/spear/
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Fig. 4 Averaged results from Monte Carlo experiments whether test instance is solved by �1 minimiza-
tion (left) and (8) (right). The values reach from zero (none of the instances where solutions) to one (all
instances were solutions)

transition between one to zero is displayed by the curve ρF from Theorem 16 (cf.
Fig. 1).

For measuring the performance of both procedures, we measure the time it took to
solve each linear program. We excluded all operations to formulate the constraints of
the linear programs from the time measurement. Additionally before solving (8), we
checked whether AI has full rank and measure its duration. If AI is not a full rank
matrix, the problem (8) would not be solved. Since we are only considering Gaussian
random matrices, which are full spark matrices with probability 1, we could have
skipped the testing of the rank (and we would have saved about 0.7 percent of the
entire run time of the test) but we decided to present the test without any restrictions
to specific test problems.

In dependence of δ and ρ, Fig. 5 shows the averaged duration of solving (8) and
calculating the rank of the submatrix divided by the averaged duration of the �1 min-
imization. One may observe that all quotients are less than one which means that in
all cases solving (8) and checking the injectivity of the submatrix is faster than solv-
ing Basis Pursuit as a linear program. Figure 6 illustrates that the duration of both
methods do increase with an increasing δ, but while solving (8) seems to depend only
on δ, the �1 minimization depends on δ and also on ρ. Moreover, the contours of ρF

from Theorem 16 can be seen in the duration of time at the �1 minimization as well
as in the Fig. 4: one may say that, on average, solving Basis Pursuit at ρ = ρF (δ)

takes more time than solving it at any different ρ in the neigborhood of ρF (δ). Addi-
tionally, for small δ only small differences up to a quotient of 4/5 appear in the
comparision of the time duration. In total, the use of checking (8) instead of doing �1
minimization reduces the computational time by a factor of 0.29 (which amounts to
a total save of 16 hours of computational time in our experiments).

Furthermore, one may observe that the quotients decrease between δ = 0.225 and
δ = 0.25. This phenomenon stems from the duration of the �1 minimization program,
cf. Fig. 6. We believe that an internal change in Mosek, where it is decided whether
the primal or the dual problem should be solved, causes this behaviour.
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Fig. 5 Comparision of duration performances between �1 minimization and (8) and checking injectivity

5.2 Number of recoverable supports for certain types of matrices

In this subsection, we compare computational experiments on the number of Recov-
erable Supports of several types of matrices with results from Section 3 whereas we
restrict our experiments to minimally redundant matrices. The computational experi-
ments were done by Monte Carlo experiments described above. Since in the previous
sections only Gaussian matrices as well as Mercedes-Benz frames were considered,
we will use these types as test problems. Note that in any repetition of the Monte
Carlo procedure, a new Gaussian matrix is drawn. Further note that the calculated
value approximates the expected number of Recoverable Suppports divided by the
total number of different pairs (I, s), I ⊂ {1, ..., n}, |I | = k, s ∈ {−1, +1}I , as
in (6).

Similar to Section 5.1, the experiments were done by checking (2) through check-
ing whether the corresponding submatrix is injective and solving (8) afterwards. If

Fig. 6 Duration of �1 minimization (left) and solving (8) with injectivity check (right) in seconds
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the optimal value is strictly less than 1 − 10−12, we record the chosen pair (I, s) as a
Recoverable Support. We did the experiments with n = 15, 34, 155 and n = 555 and
all |I | = k ≤ n−1. For each k we did M =1000 repetitions. In Figs. 7-9 all results are
shown averaged. The size k of the desired Recoverable Support is given on the x-axis,
on the y-axis the probability of recoverability is shown in percent. These functions
are empirical approximations of the mapping (6). For comparison, the heuristic upper
bound from (7) in proportion to the total number 2k

(
n
k

)
is also displayed. Addition-

ally, a circle for each type of matrix denotes the size k when the recoverability at k+1
is less then one hundred percent (Empirical Bound). The empirical bounds are upper
bounds for the smallest value k where the actual recoverability (6) at k+1 is less than
one hundred percent, since there exists one pair (I, s) which is not a Recoverable
Support and the recoverability curve (6) is monotonically nonincreasing by Proposi-
tion 23. Note that in almost all cases (e.g. n = 155, k = 111 in Fig. 8) the empirical
recoverability curves are not monotonically nonincreasing due their empirical nature.
The black cross denotes the last k for which the recoverability guarantee for small
sizes in Corollary 27 holds (Bound Mutual Coherence). All figures only show results
from the smallest of all displayed bounds to n − 1, since the tests deliver a recov-
erability of one hundred percent for the missing sizes. Besides the empirical results

for the Mercedes-Benz frame A, Fig. 7 shows the actual ratio �(A, k)
[
2k

(
n
k

)]−1
in

black with respect to k for n = 15. For these results each of the 2|I |(15
|I |

)
pairs (I, s)

with |I | ≤ 14 have been checked solving (8) if it was a Recoverable Support.
We emphasize that Mosek solved all problems with the status ’Optimal’. In Fig. 7

one can see for the Mercedes-Benz frame that the results of the Monte Carlo sampling
(blue) coincide with the actual values (black) up to an error of 10−1. We tolerate
this margin of error since improving the precision on one-tenth, we need to increase
the number of samplings M a hundredfold. All results are bounded by the Upper
Bound (red) except for the Mercedes-Benz frame in this case, which obviously is

Fig. 7 Monte Carlo Sampling for n = 15,m = 14. The black curve respresents the actual number of
Recoverable Supports of the Mercedes-Benz frame proportional to 2k

(15
k

)
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Fig. 8 Monte Carlo Sampling for n = 34,m = 33 (left) and n = 155,m = 154 (right)

owed by the lack of accuracy. Further the “Bound Mutual Coherence” coincides with
the empirical bound for the Mercedes-Benz frame, which is not the case in the other
cases. Only in the case n = 155 the “Bound Mutual Coherence” is the weakest bound,
but as expected the distance to the “Empirical Bound Mercedes-Benz”’ increases
with increasing n. In all cases, Mercedes-Benz has the largest empirical bound. At
n = 155, this values is k = 151, while for n = 555 it is k = 543. However,
the distance between the ’Empirical Bound Mercedes-Benz’ and the Upper Bound
reaching one hundred percent increases with increasing n. Additionally, Proposition
24 holds for all suitable cases except an error of at most 10−2. Hence, the results
underlay the expectation that (7) is a good bound for k close to n − 1.

Regarding Gaussian matrices, we observe that these matrices do not exceed the
empirical recoverability curve of the Mercedes-Benz frame if n is odd. Contrary, it is
expected that, at least with k close to n − 1, the recoverability curves of the Gaussian
matrices exceed the curve of the Mercedes-Benz frame in case n even; this behaviour
may be observed in Fig. 8.

Fig. 9 Monte Carlo Sampling for n = 555,m = 554. Left: segment from the “Empirical Bound Gaus-
sian” to k = 554. Right: segment from the “Empirical Bound Mercedes-Benz” to k = 554, this graphics
is a segment of the left graphics
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As also observed in the past similar experiments (e.g. [5, 6]), in all cases one can
notice a rapid transition from one hundred to zero percent as k increases.

6 Conclusion

In this paper, we gave further insight in the apparently difficult question which vec-
tors are recoverable by �1 minimization for a given matrix A. Through arranging
recoverable vectors in equivalance classes (Recoverable Supports), dependent on A,
it follows from Theorem 2 that the Recoverable Supports form a partial ordered
set, which is completely known if its maximal elements, i.e. Maximal Recoverable
Supports, are known. Although Algortihm 1 is able to compute such a Maximal
Recoverable Support quite quickly, even for rather large matrices, we are still far
away from any computational method which can result in an exhausting description
of the set of Recoverable Supports (and such a method seems to be out of reach).

Moreover, we elaborated on a geometrical viewpoint on sparse recovery which is
dual to the view through the projected cross polytope. Exact values and new bounds
on the number of Recoverable Supports were derived by connecting �1 minimiza-
tion to the dual approach via cross sections of the hypercube which has impact on
probability whether a given vector can be reconstructed.
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